
                                Exercice 1         
Déterminer la négation et la valeur de vérité de chacune des propositions suivantes :  

  1)   ( ) 2x x x∃ ∈ <ℝ             2)        ( ) 2n n n∀ ∈ ≥ℕ         3)          ( )* 1
x x

x
∀ ∈ >ℝ   

  4)     ( ) ( ) 2 0x y x y∀ ∈ ∃ ∈ + − =ℝ ℝ                5)      ( ) ( ) 2 0y x x y∃ ∈ ∀ ∈ + − =ℝ ℝ   

  6)       ( ) ( ) 2 2 0y x xy y x∃ ∈ ∀ ∈ + + + =ℝ ℝ     7)           ( ) ( )* 1 1n n n∀ ∈ + + ∈ℕ ℕ   

Exercice 2  

En utilisant le raisonnement par contraposé montrer que :  

  1)        ( ) ( ) ( )2 21 1 : 2 2x y x y x x y y∀ > ∀ > ≠ ⇒ − ≠ −  

  2)     soient , ,z y x  trois réels . montrer que :  ( ) (2x y z x z+ > ⇒ >  ou  )y z>  

  3)  ,b a  deux réels tels que  2b a≠   montrer que 
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  4)  ( ) ( ) ( ):x a x b x b a ∀ ∈ < ⇒ < ⇒ ≤ ℝ  

  5)  montrer que tout ,y x  de  ℝ  on a : 
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Exercice 3  

 En utilisant l’absurde montrer que :   

 1)        ( ) 1

2

n
n

n

+∀ ∈ ∉
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ℕ ℕ                        2)         ( ) 2 7 12n n n∀ ∈ + + ∉ℕ ℕ  

 3)  soient n  un entier naturel impair et 
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, , ..... ,
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x x x  des éléments distincts de { }1,2,......,E n=   

   Montrer que ( ) ( )k E n k est impair∃ ∈ −   

 4)  soient , ,c b a  des réels de *+ℝ  et tels que 1abc >  et 1 1 1
a b c

a b c
+ + < + +   

   a)   montrer que 1a ≠  et 1b ≠  et 1c ≠   
   b)  montrer que 1a < ou 1b <  ou  1c <                                    

Exercice 4  

 Utiliser le raisonnement par disjonction de cas et montrer que :    
 1)  a)  si n  est non divisible par 3  alors 2 1n −  est divisible par 3   

      b)   déduire que le nombre ( )2 2ab a b−  est divisible par 3  pour tous a et b  de ℕ   
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Exercice 5  

 Montrer par récurrence que :    1)    9  divise  4 6 1n n+ −                    2)    3  divise 34n n−   
          3)     2 3 37/3 2n n+ ++  ( )n∀ ∈ ℕ                    4)        1 6 111/9 2n n+ ++   ( )n∀ ∈ ℕ     

   5)   ( ) ( ) ( )*1 1 1+∀ ≥ ∀ ∈ + > +ℝ
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                                  Exercice 6             www.manti.on.ma   
 Soient a et b  deux réels de 0,1     .  on pose A ab=  ;  ( ) ( )1 1B a b b a= − + −   et   ( ) ( )1 1C a b= − −   

1)   montrer que ( )2B ab ab≥ −    

 2)   on suppose que 
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b) montrer que   
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c)  montrer que  
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Exercice 7  

 Pour tout entier naturel n  supérieur ou égal à 2  on pose  
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   2)  a)  vérifier que  ( ) ( )2 21 1 1 1+ − + + = + +k k k k    

        b)  déduire que ( ) ( )
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Exercice 8  

  Soit a  un élément de  ] [0,1  .  

  1)   montrer que ( )( )2, p qp q p q a a∀ ∈ ≤ ⇒ ≥ℕ   

  2)  a) montrer que 2 1
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       b)  déduire que ( ) 11 1n na n a a −− ≥ −   
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Exercice 9  

 1)  montrer que   : 

( ) ( ) ( )2 1 1n n est uncarrée parfait n estsommededeux carrées parfaits∀ ∈ + ⇒ +ℕ   

  2)   a)   montrer que  ( )( )*2 2 2
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         b)  déduire que pour tous réels , ,c b a   de *+ℝ   on a : 
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  3)   montrer que la proposition ( )( )*2 1 1 1
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         b)   déduire que  3 ∉ℚ                 
 




