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Exercice 1 : (10 points)

On considère la fonction numérique f définie sur R par :

f(x) =
ex

e2x + e

et soit (Γ) sa courbe représentative dans un repère orthogonal
(
O, i⃗, j⃗

)
.

Partie I :

1- a) Montrer que : (∀x ∈ R) ; f(1− x) = f(x)

Solution : Calculons f(1− x) :

f(1− x) =
e1−x

e2(1−x) + e
=

e · e−x

e2 · e−2x + e
=

e1−x

e2−2x + e

Multiplions numérateur et dénominateur par e2x :

f(1− x) =
e1−x · e2x

(e2−2x + e)e2x
=

e1+x

e2 + e2x+1
=

ex+1

e(e1 + e2x)
=

ex

e2x + e
= f(x)

Donc ∀x ∈ R, f(1− x) = f(x). 0.25pt

b) Interpréter graphiquement le résultat obtenu.

Solution : La relation f(1−x) = f(x) montre que la courbe (Γ) est symétrique par rapport

à la droite verticale d’équation x =
1

2
. 0.25pt

c) Calculer limx→−∞ f(x) puis en déduire limx→+∞ f(x)

Solution :

Quand x → −∞, ex → 0 et e2x → 0, donc :

lim
x→−∞

f(x) =
0

0 + e
= 0

En utilisant la symétrie démontrée en 1-a), on a :

lim
x→+∞

f(x) = lim
x→−∞

f(1− x) = lim
x→−∞

f(x) = 0

0.5
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d) Interpréter graphiquement les deux résultats obtenus.

Solution : Les limites montrent que :

La droite y = 0 (l’axe des abscisses) est une asymptote horizontale à (Γ) en −∞ et en
+∞.

0.5

2- a) Montrer que : (∀x ∈ R) ; f ′(x) = f(x)1−e2x−1

1+e2x−1

Solution : (∀x ∈ R) :

f ′(x) =
ex(e2x + e)− ex(2e2x)

(e2x + e)2
=

e3x + ex+1 − 2e3x

(e2x + e)2
=

−e3x + ex+1

(e2x + e)2

Factorisons le numérateur :

f ′(x) =
ex(−e2x + e)

(e2x + e)2
=

ex

e2x + e
· −e2x + e

e2x + e
= f(x) · e(1− e2x−1)

e(e2x−1 + 1)
= f(x)

1− e2x−1

1 + e2x−1

0.5

b) Donner les variations de f puis en déduire que : (∀x ∈ R) ; 0 < f(x) <
1

2

Solution :

Signe de la dérivée : Le dénominateur 1 + e2x−1 > 0 toujours. Donc le signe de f ′(x)
dépend de 1− e2x−1.

1− e2x−1 > 0 ⇔ e2x−1 < 1 ⇔ 2x− 1 < 0 ⇔ x <
1

2
f ′(x) > 0 sur ]−∞, 1

2
[

f ′(x) < 0 sur ]1
2
,+∞[

Variations :

f est strictement croissante sur ]−∞, 1
2
[

f est strictement décroissante sur ]1
2
,+∞[

Maximum en x =
1

2
: f

(
1

2

)
=

e1/2

e+ e
=

√
e

2e
=

1

2
√
e
≈ 0.30

Encadrement :

f(x) > 0 car ex > 0 et e2x + e > 0

Le maximum est 1
2
√
e
< 1

2
, donc f(x) < 1

2

1

3- Représenter graphiquement la courbe (Γ).

x

y x = 1
2

(0, 1
1+e

)

0.5
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Réalisé par Youssef SEMHI Contact 0644127117 / 0708875223

4- a) Montrer que :
∫ 1

2

0
f(x)dx =

∫ 1
1
2
f(x)dx

Solution : Effectuons le changement de variable u = 1− x dans la deuxième intégrale :∫ 1

1
2

f(x)dx =

∫ 0

1
2

f(1− u)(−du) =

∫ 1
2

0

f(u)du =

∫ 1
2

0

f(x)dx

car f(1− u) = f(u). 0.5

b) En déduire que
∫ 1

0
f(x)dx = 2

∫ 1
2

0
f(x)dx

Solution : ∫ 1

0

f(x)dx =

∫ 1
2

0

f(x)dx+

∫ 1

1
2

f(x)dx = 2

∫ 1
2

0

f(x)dx

d’après la question précédente. 0.25

5- a) En effectuant le changement de variables : t = ex, montrer que :

∫ 1
2

0

f(x)dx =

∫ √
e

1

dt

t2 + e

Solution : Posons t = ex, donc dt = exdx = tdx et dx = dt
t
.

Changement des bornes :

x = 0 ⇒ t = 1

x = 1
2
⇒ t = e1/2 =

√
e

Donc : ∫ 1
2

0

ex

e2x + e
dx =

∫ √
e

1

t

t2 + e
· dt
t
=

∫ √
e

1

dt

t2 + e

0.25

b) Montrer que :
∫ 1

2

0
f(x)dx = 1√

e

[
arctan (

√
e)− π

4

]
Solution : ∫

dt

t2 + e
=

1√
e
arctan

(
t√
e

)
+ C

Donc :∫ √
e

1

dt

t2 + e
=

1√
e

[
arctan(1)− arctan

(
1√
e

)]
=

1√
e

[
π

4
− arctan

(
1√
e

)]
Mais en utilisant arctan(x) + arctan

(
1
x

)
= π

2
pour x > 0, on a :

arctan

(
1√
e

)
=

π

2
− arctan

(√
e
)

Donc : ∫ 1
2

0

f(x)dx =
1√
e

[π
4
−

(π
2
− arctan

(√
e
))]

=
1√
e

[
arctan

(√
e
)
− π

4

]
0.5
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c) En déduire l’aire, en cm2, du domaine plan délimité par (Γ), les droites d’équations
respectives : x = 0, x = 1 et y = 0

Solution : L’aire A est :

A =

∫ 1

0

f(x)dx = 2

∫ 1
2

0

f(x)dx =
2√
e

[
arctan

(√
e
)
− π

4

]
Donc l’aire est :

A =
2√
e

[
arctan

(√
e
)
− π

4

]
cm2

0.25

Partie II :

On considère la suite (un)n∈N définie par : u0 ∈]0; 12 [ et (∀n ∈ N) ; un+1 = f(un)

1- Montrer que : (∀x ∈ R) ; |f ′(x)| ≤ f(x)

Solution : D’après I.2-a), on a :

f ′(x) = f(x)
1− e2x−1

1 + e2x−1

Donc :

|f ′(x)| = f(x)

∣∣∣∣1− e2x−1

1 + e2x−1

∣∣∣∣
Or

∣∣∣∣1− e2x−1

1 + e2x−1

∣∣∣∣ ≤ 1 car :

Si 1− e2x−1 ≥ 0, alors
1− e2x−1

1 + e2x−1
≤ 1 + e2x−1

1 + e2x−1
= 1

Si 1− e2x−1 ≤ 0, alors
e2x−1 − 1

1 + e2x−1
≤ e2x−1 + 1

1 + e2x−1
= 1

Ainsi |f ′(x)| ≤ f(x). 0.5

2- a) Montrer que : ∀x ∈
[
0; 1

2

]
; 0 ≤ f ′(x) < 1

2

Solution : Pour x ∈
[
0; 1

2

]
:

2x− 1 ≤ 0 donc e2x−1 ≤ 1

Ainsi 1− e2x−1 ≥ 0 et 1 + e2x−1 ≥ 1

Donc f ′(x) ≥ 0.

De plus, comme f(x) <
1

2
(d’après I.2-b)) et

∣∣∣∣1− e2x−1

1 + e2x−1

∣∣∣∣ < 1, on a :

f ′(x) <
1

2
× 1 =

1

2

Finalement : 0 ≤ f ′(x) <
1

2
. 0.5
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b) Montrer que g : x 7→ f(x)− x est strictement décroissante sur R

Solution : Calculons la dérivée :

g′(x) = f ′(x)− 1

D’après la question 1, |f ′(x)| ≤ f(x) <
1

2
, donc :

g′(x) ≤ f(x)− 1 <
1

2
− 1 = −1

2
< 0

Ainsi g est strictement décroissante sur R. 0.25

c) Existence et unicité de α ∈
[
0; 1

2

]
tel que f(α) = α

Solution :

g(0) = f(0)− 0 =
1

1 + e
> 0

g
(
1
2

)
= f

(
1

2

)
− 1

2
=

1

2
√
e
− 1

2
≈ −0.20 < 0

g est continue et strictement décroissante sur
[
0; 1

2

]
Donc, il existe un unique α ∈

[
0; 1

2

]
tel que g(α) = 0, c’est-à-dire f(α) = α. 0.5

3- a) Montrer que : (∀n ∈ N) ; 0 < un <
1

2

Solution : Par récurrence :

Initialisation : u0 ∈
[
0; 1

2

]
par définition

Hérédité : Si 0 < un < 1
2
, alors un+1 = f(un) avec :

f(un) > 0 car f > 0

f(un) < f
(
1
2

)
= 1

2
√
e
< 1

2
car f croissante sur

[
0; 1

2

]
Donc ∀n ∈ N, 0 < un <

1

2
. 0.5

b) Montrer que : (∀n ∈ N) ; |un+1 − α| ≤ 1
2
|un − α|

Solution : Comme f(α) = α, on a :

|un+1 − α| = |f(un)− f(α)|

Par le théorème des accroissements finis, il existe cn entre un et α tel que :

f(un)− f(α) = f ′(cn)(un − α)

Or on sait que :

D’après II.2.a), pour tout x ∈
[
0, 1

2

]
, |f ′(x)| < 1

2

Comme un ∈
]
0, 1

2

[
(d’après II.3.a)) et α ∈

[
0, 1

2

]
, alors cn ∈

]
0, 1

2

[
On en déduit :

|un+1 − α| = |f ′(cn)| · |un − α| < 1

2
|un − α|

0.5
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c) Montrer par récurrence que : (∀n ∈ N) ; |un − α| ≤
(
1

2

)n

|u0 − α|

Solution :

Initialisation : Pour n = 0, égalité évidente

Hérédité : Si |un − α| ≤
(
1

2

)n

|u0 − α|, alors :

|un+1 − α| ≤ 1

2
|un − α| ≤

(
1

2

)n+1

|u0 − α|

Donc par reccurence : (∀n ∈ N) ; |un − α| ≤
(
1

2

)n

|u0 − α|

0.5

d) Convergence de (un) vers α

Solution : Comme
(
1
2

)n → 0, alors un → α. 0.25

Partie III :

On considère la suite (Sn)n∈N∗ définie par :

Sn =
1

n(n+ 1)

n∑
k=1

k

ek/n + e1−k/n

1- a) Vérifier que : Sn = 1
n+1

∑n
k=1

k
n
f
(
k
n

)
Solution : Commençons par exprimer f

(
k
n

)
:

f

(
k

n

)
=

ek/n

e2k/n + e

Réécrivons le terme général de Sn :

k

ek/n + e1−k/n
=

kek/n

e2k/n + e
= k · ek/n

e2k/n + e
= kf

(
k

n

)
Ainsi :

Sn =
1

n(n+ 1)

n∑
k=1

kf

(
k

n

)
=

1

n+ 1
· 1
n

n∑
k=1

kf

(
k

n

)
=

1

n+ 1

n∑
k=1

k

n
f

(
k

n

)
0.25

b) Montrer que :
∫ 1

0
xf(x)dx =

∫ 1
2

0
f(x)dx

Solution : Par le changement de variable t = 1− x :∫ 1

0

xf(x)dx =

∫ 0

1

(1− t)f(1− t)(−dt) =

∫ 1

0

(1− t)f(t)dt

6
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En additionnant avec l’intégrale originale :∫ 1

0

xf(x)dx+

∫ 1

0

(1− x)f(x)dx =

∫ 1

0

f(x)dx

2

∫ 1

0

xf(x)dx =

∫ 1

0

f(x)dx∫ 1

0

xf(x)dx =
1

2

∫ 1

0

f(x)dx =

∫ 1
2

0

f(x)dx (d’après I.4-b))

0.5

2- Montrer que la suite (Sn) converge et déterminer sa limite

Solution : Reconnaissons une somme de Riemann :

Sn =
n

n+ 1︸ ︷︷ ︸
→1

· 1
n

n∑
k=1

k

n
f

(
k

n

)
︸ ︷︷ ︸

→
∫ 1
0 xf(x)dx

Quand n → +∞ :

lim
n→+∞

Sn =

∫ 1

0

xf(x)dx =

∫ 1
2

0

f(x)dx =
1√
e

[
arctan

(√
e
)
− π

4

]
0.5

Exercice 2 : (3.5 points)

1- a) Vérifier que le discriminant est : ∆α = (2αeiα(1− 2i))2

Solution : L’équation (Eα) s’écrit :

z2 − 2αeiα(1 + 2i)z + i22α+1ei2α = 0

Calculons le discriminant :

∆α =
[
2αeiα(1 + 2i)

]2 − 4 · 1 · i22α+1ei2α

= 22αei2α(1 + 4i− 4)− 8i22αei2α

= 22αei2α(−3 + 4i− 8i)

∆α = 22αei2α(−3− 4i)

Donc on constate que :

(2αeiα(1− 2i))2 = 22αei2α(1− 4i− 4) = 22αei2α(−3− 4i) = ∆α

car (1− 2i)2 = 1− 4i− 4 = −3− 4i. 0.5
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b) Solutions a et b avec |a| < |b|

Solution : Les racines sont :

z =
2αeiα(1 + 2i)± 2αeiα(1− 2i)

2

Donc :

b =
2αeiα[(1 + 2i)− (1− 2i)]

2
= 2αeiα · 2i = 2α+1ieiα

a =
2αeiα[(1 + 2i) + (1− 2i)]

2
= 2αeiα · 1 = 2αeiα

On a bien |b| = 2α+1 > |a| = 2α. 0.5

2- Vérifier que
b

a
est imaginaire pur

Solution :
b

a
=

2α+1ieiα

2αeiα
= 2i

qui est bien imaginaire pur. 0.5

Partie II :

Le plan complexe est rapporté à un repère orthonormé direct (O, u⃗, v⃗). On note par M(z)
le point d’affixe z. On pose :

λ =
b

ia
avec Im

(
b

a

)
= λ

1-a) Montrer que :
h

b− a
=

−iλ

1 + λ
Solution :

On a : h =
a+ b

2
et b− a ̸= 0, donc :

h

b− a
=

a+ b

2(b− a)
=

1

2
· a+ b

b− a

En factorisant par a :

a+ b

b− a
=

a(1 + b
a
)

a( b
a
− 1)

=
1 + b

a
b
a
− 1

⇒ h

b− a
=

1

2
·
1 + b

a
b
a
− 1

En posant λ =
b

ia
⇒ b

a
= iλ, on a :

h

b− a
=

1

2
· 1 + iλ

iλ− 1
=

−iλ

1 + λ

Donc :
h

b− a
=

−iλ

1 + λ

Et puisque : arg

(
h

b− a

)
=

−π

2
Alors les droites (OH) et (AB) sont donc perpendiculaires.

8
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1-b) Montrer que les points A,H,B sont alignés
Solution :

h− a

b− a
=

a+b
2

− a

b− a
=

b− a

2(b− a)
=

1

2
∈ R

Le quotient est réel, donc les vecteurs A⃗H et A⃗B sont colinéaires, ce qui implique que
A,H,B sont alignés. 0.5

2- a) Montrer que
n

m− a
= −λi (où I(m) milieu de [OH], J(n) milieu de [HB])

Solution :
On a :

m =
0 + h

2
=

h

2

n =
h+ b

2
Alors :

n =
h+ b

2
=

ab
a+b

+ b

2
=

ab+ b(a+ b)

2(a+ b)
=

2ab+ b2

2(a+ b)

=
2a · 2ia+ (2ia)2

2(a+ 2ia)
=

4ia2 − 4a2

2a(1 + 2i)
=

−4a2 + 4ia2

2a(1 + 2i)

=
−2a+ 2ia

1 + 2i

m− a =
h

2
− a =

ab
a+b

2
− a =

ab

2(a+ b)
− a

=
2ia2

2(a+ 2ia)
− a =

ia

1 + 2i
− a

= a

(
i

1 + 2i
− 1

)
=

a(−1− i)

1 + 2i

n

m− a
=

−2a+2ia
1+2i

a(−1−i)
1+2i

=
−2 + 2i

−1− i

=
2(−1 + i)

−1− i
· −1 + i

−1 + i
=

2(1− 2i+ i2)

1− i2
=

2(−2i)

2
= −2i = −λi

0.5

2- b) Perpendicularité de (OJ) et (AI) et égalité OJ = |λ|AI

Solution :
n

m− a
= −2i est imaginaire pur =⇒ (OJ) ⊥ (AI)

Module : |n| = |−2i| · |m− a| =⇒ OJ = 2 · AI 0.5

2- c) Cocylclicité de K, I,H, J

Solution :

On a :

9
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I est le milieu de [OH] par définition.

J est le milieu de [HB] par définition.

K est le point d’intersection de (OJ) et (AI).

Et on a :

D’après 2-b), (OJ) ⊥ (AI), donc ÎKJ =
π

2
.

D’après 1-a), (OH) ⊥ (AB). Comme (IJ) ∥ (AB) (par la propriété des milieux), on

a (OH) ⊥ (IJ), donc ÎHJ =
π

2
.

Et on a :

Les points I, H, J voient le segment [IK] sous le même angle droit.

Donc, les points K, I,H, J appartiennent à un même cercle de diamètre [KH].

Conclusion : Les quatre points K, I,H, J sont cocycliques. 0.25

2- d) Montrer que (IJ) ⊥ (OA)

Solution :

Dans le triangle OHB :

I est le milieu de [OH] et J celui de [HB].

Donc : (IJ) ∥ (OB).

De plus, on a
b

a
= 2i, donc les vecteurs O⃗A et O⃗B sont orthogonaux :

(OB) ⊥ (OA)

Par conséquent, comme (IJ) ∥ (OB), on déduit :

(IJ) ⊥ (OA)

0.25

Exercice 3 : (3 points)

1- Montrer que pour un nombre premier impair p et un entier a premier avec p :

a
p−1
2 ≡ 1 [p] ou a

p−1
2 ≡ −1 [p]

Solution :

Par le petit théorème de Fermat, comme p est premier et a p = 1 :

ap−1 ≡ 1 [p]

Donc : (
a

p−1
2

)2

≡ 1 [p]

Donc p divise
(
a

p−1
2 − 1

)(
a

p−1
2 + 1

)
Comme p est premier, il divise l’un des deux facteurs :

a
p−1
2 ≡ 1 [p] ou a

p−1
2 ≡ −1 [p]

0.5
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2- On considère l’équation ax2 ≡ 1 [p]. Soit x0 une solution.

a) Montrer que xp−1
0 ≡ 1 [p]

Solution :

Comme x0 est solution, ax2
0 ≡ 1 [p]

Donc x0 ̸≡ 0 [p] (sinon 0 ≡ 1 impossible)

Par le petit théorème de Fermat :
xp−1
0 ≡ 1 [p]

0.5
b) En déduire que a

p−1
2 ≡ 1 [p]

Solution :

De ax2
0 ≡ 1 [p], on élève à la puissance p−1

2
:

a
p−1
2 xp−1

0 ≡ 1 [p]

Or xp−1
0 ≡ 1 [p], donc :

a
p−1
2 ≡ 1 [p]

0.25

3- Soit n un entier naturel non nul.

a) Montrer que si p divise 22n+1 − 1, alors 2
p−1
2 ≡ 1 [p]

Solution :

Si p | 22n+1 − 1, alors 22n+1 ≡ 1 [p]

Posons d = ordp(2), le plus petit entier tel que 2d ≡ 1 [p]

d divise 2n+ 1 (impair) et p− 1 (Fermat)

Comme d est impair et divise p− 1, il divise p−1
2

Donc 2
p−1
2 ≡ (2d)k ≡ 1k ≡ 1 [p]

0.5
b) En déduire que 11x+ (22n+1 − 1)y = 1 admet une solution dans Z2

Solution :

Pour p=11, 25 = 32 ≡ 10 ̸≡ 1 [11]

Donc 11 ne divise pas 22n+1 − 1

Ainsi pgcd(11, 22n+1 − 1) = 1

Par le théorème de Bézout, il existe (x, y) ∈ Z2solution

0.5

4- On considère l’équation x2 + 5x+ 2 ≡ 0 [11]

a) Montrer que 2(2x+ 5)2 ≡ 1 [11]
Solution :

x2 + 5x+ 2 ≡ 0 [11]

8(x2 + 5x+ 2) ≡ 0 [11]

8x2 + 40x+ 16 ≡ 0 [11]

8x2 + 7x+ 5 ≡ 0 [11]

11
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Développons 2(2x+ 5)2 :

2(2x+ 5)2 = 2(4x2 + 20x+ 25)

= 8x2 + 40x+ 50

≡ 8x2 + 7x+ 6 [11] (car 40 ≡ 7 et 50 ≡ 6 [11])

Nous avons :
8x2 + 7x+ 6 ≡ 1 [11]

Mais 8x2 + 7x+ 6 ≡ 2(2x+ 5)2 [11], donc :

2(2x+ 5)2 ≡ 1 [11]

Conclusion

x2 + 5x+ 2 ≡ 0 [11] ⇐⇒ 2(2x+ 5)2 ≡ 1 [11]

0.25

b) En déduire qu’il n’existe pas de solution dans Z

Solution :
D’après la question 4-a), nous avons établi l’équivalence :

(F ) ⇐⇒ 2(2x+ 5)2 ≡ 1 [11]

Alors :
(2x+ 5)2 ≡ 6 [11] (car 2−1 ≡ 6 [11])

Et on a :
02 ≡ 0 [11]

12 ≡ 1 [11]

22 ≡ 4 [11]

32 ≡ 9 [11]

42 ≡ 16 ≡ 5 [11]

52 ≡ 25 ≡ 3 [11]

62 ≡ 36 ≡ 3 [11]

72 ≡ 49 ≡ 5 [11]

82 ≡ 64 ≡ 9 [11]

92 ≡ 81 ≡ 4 [11]

102 ≡ 100 ≡ 1 [11]

Les résidus quadratiques modulo 11 sont : 0, 1, 3, 4, 5, 9.

Conclusion

6 n’est pas un résidu quadratique modulo 11, donc l’équation (2x + 5)2 ≡ 6 [11]
n’a pas de solution.

Par conséquent, l’équation (F ) n’admet aucune solution dans Z.

L’équation (F ) n’admet pas de solution dans Z.
0.5
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Exercice 4 : Structures algébriques (3.5 points)

On considère la matrice A =

−1 −1 0
−1 −1 0
−1 1 −2

 et l’ensemble E = {M(x) = I+xA | x ∈ R}.

1- a) Montrer que A2 = −2A

Solution : Calculons A2 :

A2 =

 (−1)(−1) + (−1)(−1) + 0 (−1)(−1) + (−1)(−1) + 0 0
(−1)(−1) + (−1)(−1) + 0 (−1)(−1) + (−1)(−1) + 0 0

(−1)(−1) + 1(−1) + (−2)(0) (−1)(−1) + 1(−1) + (−2)(0) (−2)2

 =

2 2 0
2 2 0
0 0 4


Et :

−2A =

2 2 0
2 2 0
2 −2 4


A2 = −2A 0.25

b) En déduire que ∀(x, y) ∈ R2, M(x)M(y) = M(x+ y − 2xy)

Solution : On a :

M(x)M(y) = (I+xA)(I+yA) = I+xA+yA+xyA2 = I+(x+y)A+xy(−2A) = I+(x+y−2xy)A

M(x)M(y) = M(x+ y − 2xy) 0.25

2- a) Calculer M

(
1

2

)
×

0 0 0
0 0 0
0 0 1


Solution :

M

(
1

2

)
= I +

1

2
A =

1 0 0
0 1 0
0 0 1

+
1

2

−1 −1 0
−1 −1 0
−1 1 −2

 =

 1
2

−1
2

0
−1

2
1
2

0
−1

2
1
2

0



M

(
1

2

)
×

0 0 0
0 0 0
0 0 1

 =

 1
2

−1
2

0
−1

2
1
2

0
−1

2
1
2

0

×

0 0 0
0 0 0
0 0 1

 =

0 0 0
0 0 0
0 0 0


0.25

2- b) En déduire que M
(
1
2

)
n’est pas inversible

Solution :

M

(
1

2

)
×

0 0 0
0 0 0
0 0 1

 =

0 0 0
0 0 0
0 0 0


Or la matrice M

(
1

2

)
est non nulle. Alors M

(
1

2

)
n’est pas inversible.

0.25
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3) Montrer que E \
{
M

(
1
2

)}
est stable pour la multiplication

Solution :
Soient M(x),M(y) ∈ E \ {M(1

2
)} avec x, y ̸= 1

2
.

On a :
M(x)M(y) = (I + xA)(I + yA) = I + (x+ y)A+ xyA2

= I + (x+ y − 2xy)A (car A2 = −2A d’après 1-a)

= M(x+ y − 2xy)

Alors : x+ y − 2xy ̸= 1

2
:

Supposons x+ y − 2xy = 1
2
. Alors :

4xy − 2x− 2y + 1 = 0

⇔ (2x− 1)(2y − 1) = 0

⇔ x =
1

2
OU y =

1

2

Contradiction avec l’hypothèse x, y ̸= 1
2
.

Conclusion :

∀M(x),M(y) ∈ E \ {M(1
2
)}, M(x)M(y) = M(x+ y − 2xy︸ ︷︷ ︸

̸=
1

2

) ∈ E \ {M(1
2
)}

0.25

4) Montrer que
(
E \ {M(1

2
)},×

)
est un groupe commutatif

Solution :
i) Stabilité : Déjà démontrée dans la question 3.
ii) Associativité : Héritée de l’associativité du produit matriciel dans M3(R).
iii) Élément neutre :

M(0) = I + 0 · A = I

Alors :
∀M(x) ∈ E,M(x)M(0) = M(x+ 0− 0) = M(x)

iv) Inverse : Pour tout M(x) ∈ E \ {M(1
2
)} (x ̸= 1

2
), on cherche M(y) tel que :

M(x)M(y) = M(0)

⇔ M(x+ y − 2xy) = M(0)

⇔ x+ y − 2xy = 0

⇔ y(1− 2x) = −x

⇔ y =
x

2x− 1
(défini car x ̸= 1

2
)

Donc :

M

(
x

2x− 1

)
est bien l’inverse de M(x)

14
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v) Commutativité :

M(x)M(y) = M(x+ y − 2xy) = M(y + x− 2yx) = M(y)M(x)

Conclusion : (
E \ {M(1

2
)},×

)
est un groupe commutatif

1

5) a) Montrer que φ est un homomorphisme de (R,+) vers (E, T )

Solution :
Soit φ : R → E définie par φ(x) = M

(
1−x
2

)
.

On a :

∀x, y ∈ R, φ(x+ y) = M

(
1− (x+ y)

2

)
= M

(
1− x

2
+

1− y

2
− 1

2

)

= M

(
1− x

2

)
TM

(
1− y

2

)
= φ(x)Tφ(y)

En on a :

∀M(a) ∈ E,∃x = 1− 2a ∈ R tel que φ(x) = M(a)

φ est un homomorphisme de (R,+) vers (E, T ) et φ(R) = E 0.5

b) En déduire que (E, T ) est un groupe commutatif

Solution :
φ : (R,+) → (E, T ) est un homomorphisme. Et on a : φ(R) = E Comme (R,+) est un

groupe commutatif, par transport de structure, (E, T ) hérite des mêmes propriétés.

(E, T ) est un groupe commutatif 0.25

6) Montrer que (E, T,×) est un corps commutatif

Solution :
i) (E, T ) est un groupe commutatif (déjà démontré en 5b)
ii) (E \ {0},×) est un groupe commutatif (déjà démontré en 4)
iii) Distributivité : On a :

M(b)TM(c) = M
(
b+ c− 1

2

)
M(a)× (M(b)TM(c)) = M(a)×M

(
b+ c− 1

2

)
= M

(
a+ b+ c− 1

2
− 2a(b+ c− 1

2
)
)

= M
(
a+ b+ c− 1

2
− 2ab− 2ac+ a

)
= M

(
2a+ b+ c− 2ab− 2ac− 1

2

)
Et on a :

M(a)×M(b) = M(a+ b− 2ab)

M(a)×M(c) = M(a+ c− 2ac)

(M(a)×M(b))T (M(a)×M(c)) = M(a+ b− 2ab)TM(a+ c− 2ac)

= M
(
a+ b− 2ab+ a+ c− 2ac− 1

2

)
= M

(
2a+ b+ c− 2ab− 2ac− 1

2

)

15
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Donc :

M(a)× (M(b)TM(c))︸ ︷︷ ︸
Membre gauche

= (M(a)×M(b))T (M(a)×M(c))︸ ︷︷ ︸
Membre droit

= M
(
2a+ b+ c− 2ab− 2ac− 1

2

)
Preuve par calcul direct en utilisant les expressions analytiques.

iv) Commutativité de × : Déjà établie.

(E, T,×) satisfait toutes les propriétés d’un corps commutatif 0.5
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