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Exercice 1 : 

Partie I : 

Pour tout entier naturel non nul n, on considère la fonction 𝑓𝑛 définie sur 𝐼 = [0,+∞[ par : 

𝑓𝑛(0) = 0 et  ( ∀𝑥 ∊ [0,+∞[ ) ;  

 𝑓𝑛(𝑥) = √𝑥(ln x)
𝑛 et soit (𝐶𝑛) sa courbe représentative dans un repère orthonormé 

(0; 𝑖; 𝑗) 

1)  

a)  ∀𝑥 ∊ ]0,+∞[ : 

(2𝑛)𝑛 (𝑥
1
2𝑛 ln (𝑥

1
2𝑛))

𝑛

= (2𝑛)𝑛 (𝑥
1
2𝑛 )

𝑛

(ln (𝑥
1
2𝑛))

𝑛

 

(2𝑛)𝑛 (𝑥
1
2𝑛 ln (𝑥

1
2𝑛))

𝑛

= (2𝑛)𝑛𝑥
𝑛
2𝑛 (ln (𝑥

1
2𝑛))

𝑛

 

(2𝑛)𝑛 (𝑥
1
2𝑛 ln (𝑥

1
2𝑛))

𝑛

= (2𝑛)𝑛𝑥
𝑛
2𝑛 (

1

2𝑛
ln (𝑥))

𝑛

 

(2𝑛)𝑛 (𝑥
1
2𝑛 ln (𝑥

1
2𝑛))

𝑛

= (2𝑛)𝑛𝑥
𝑛
2𝑛 (

1

2𝑛
)
𝑛

(ln (𝑥))𝑛 

(2𝑛)𝑛 (𝑥
1
2𝑛 ln (𝑥

1
2𝑛))

𝑛

= 𝑥
1
2 (
2𝑛

2𝑛
)
𝑛

(ln (𝑥))𝑛 

(2𝑛)𝑛 (𝑥
1
2𝑛 ln (𝑥

1
2𝑛))

𝑛

= 𝑥
1
2(ln (𝑥))𝑛 

(2𝑛)𝑛 (𝑥
1
2𝑛 ln (𝑥

1
2𝑛))

𝑛

= √𝑥(ln 𝑥)𝑛 
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(2𝑛)𝑛 (𝑥
1
2𝑛 ln (𝑥

1
2𝑛))

𝑛

= 𝑓𝑛(𝑥) 

La continuité a la droite : 

lim
𝑥→0+

𝑓𝑛(𝑥) = lim
𝑥→0+

 (2𝑛)𝑛 (𝑥
1

2𝑛 ln (𝑥
1

2𝑛))
𝑛

   Changement de variable 𝑦 = 𝑥
1

2𝑛 

lorsque 𝑥 → 0+ aussi 𝑦 → 0+ 

lim
𝑥→0+

𝑓𝑛(𝑥) = lim
𝑦→0+

 (2𝑛)𝑛(𝑦 ln (𝑦))𝑛 = 0   Car lim
𝑦→0+

 𝑦 ln y = 0 

Donc lim
𝑥→0+

𝑓𝑛(𝑥) = 𝑓𝑛(0) alors 𝑓𝑛 est continue à droite en 0. 

b) lim
𝑥→+∞

𝑓𝑛(𝑥) = lim
𝑥→+∞

√𝑥(ln 𝑥)𝑛 = +∞ 

c) ∀𝑥 ∊ ]0,+∞[ :  

𝑓(𝑥)

𝑥
=
(2𝑛)𝑛 (𝑥

1
2𝑛 ln (𝑥

1
2𝑛))

𝑛

𝑥
 

𝑓(𝑥)

𝑥
=
(2𝑛)𝑛 (𝑥

1
2𝑛 )

𝑛

( ln (𝑥
1
2𝑛))

𝑛

𝑥
 

𝑓(𝑥)

𝑥
=
(2𝑛)𝑛𝑥

𝑛
2𝑛 ( ln (𝑥

1
2𝑛))

𝑛

𝑥
 

𝑓(𝑥)

𝑥
=
(2𝑛)𝑛𝑥

1
2 ( ln (𝑥

1
2𝑛))

𝑛

𝑥
 

𝑓(𝑥)

𝑥
=
(2𝑛)𝑛 ( ln (𝑥

1
2𝑛))

𝑛

𝑥
1
2

 

𝑓(𝑥)

𝑥
=
(2𝑛)𝑛 ( ln (𝑥

1
2𝑛))

𝑛

𝑥
𝑛
2𝑛
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𝑓(𝑥)

𝑥
=
(2𝑛)𝑛 ( ln (𝑥

1
2𝑛))

𝑛

(𝑥
1
2𝑛)

𝑛  

𝑓(𝑥)

𝑥
= (2𝑛)𝑛 (

 ln (𝑥
1
2𝑛)

𝑥
1
2𝑛

)

𝑛

 

Alors :  

lim
𝑥→+∞

𝑓(𝑥)

𝑥
= lim

𝑥→+∞
(2𝑛)𝑛 (

 ln (𝑥
1
2𝑛)

𝑥
1
2𝑛

)

𝑛

 

lim
𝑥→+∞

𝑓(𝑥)

𝑥
= lim
𝑦→+∞

(2𝑛)𝑛 (
 ln (𝑦)

𝑦
)
𝑛
= 0   Avec : Changement de variable 𝑦 =

𝑥
1

2𝑛 lorsque 𝑥 → +∞ aussi 𝑦 → +∞ 

Alors, (𝐶𝑛)  admet un branche parabolique suivant l’axe (𝑂𝑥) au voisinage de +∞  

d) Cas 1, 𝑛 est paire : 

lim
𝑥→𝑂+

𝑓(𝑥)

𝑥
= lim

𝑥→0+
(2𝑛)𝑛 (

 ln (𝑥
1
2𝑛)

𝑥
1
2𝑛

)

𝑛

= +∞ 

Alors 𝑓𝑛 n’est pas dérivable en a droit de 0, (𝐶𝑛)  admet une demi-tangente vertical 

d’équation 𝑥 = 0 dirigé vers le haut  

Cas 2, n est impaire : 

lim
𝑥→𝑂+

𝑓(𝑥)

𝑥
= lim

𝑥→0+
(2𝑛)𝑛 (

 ln (𝑥
1
2𝑛)

𝑥
1
2𝑛

)

𝑛

= −∞ 
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Alors 𝑓𝑛 n’est pas dérivable en a droit de 0, (𝐶𝑛)  admet une demi-tangente vertical 

d’équation 𝑥 = 0 dirigé vers le bas  

2)  

a) On a 𝑓𝑛 est dérivable sur ]0, +∞[  car 𝑓𝑛 est le produite de deux fonctions 

dérivables sur 𝑓𝑛 tel que :                              

∀𝑥 ∊ ]0,+∞[ ;   𝑓(𝑥) = ℎ(𝑥)(𝑔(𝑥))𝑛   

∀𝑥 ∊ ]0,+∞[  ;       𝑓′(𝑥) =
1

2√𝑥
× (ln 𝑥)𝑛 + √𝑥 ×

𝑛

𝑥
× (ln 𝑥)𝑛−1 

 𝑓′(𝑥) =
1

2√𝑥
× (ln 𝑥)𝑛 +

𝑛

√𝑥
× (ln𝑥)𝑛−1 

 𝑓′(𝑥) =
(ln 𝑥)𝑛 + 2𝑛(ln 𝑥)𝑛−1

2√𝑥
 

𝑓′(𝑥) =
(ln 𝑥)𝑛−1(ln 𝑥 + 2𝑛)

2√𝑥
 

b) ∀ 𝑛 ≥ 2 on a : 𝑓′(𝑥) = 0 équivalent a: 

(ln 𝑥)𝑛−1(ln 𝑥 + 2𝑛)

2√𝑥
= 0 

(ln 𝑥)𝑛−1(ln 𝑥 + 2𝑛) = 0 

(ln 𝑥)𝑛−1 = 0       𝑜𝑢      (ln 𝑥 + 2𝑛) = 0 

ln 𝑥 = 0       𝑜𝑢     ln 𝑥 = −2𝑛 

𝑥 = 1       𝑜𝑢     𝑥 = 𝑒−2𝑛 

c) Si n est paire alors n-1 est impaire : 
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𝑥 0                                𝑒−2𝑛                        1                       +∞ 

2𝑛 + 𝑙𝑛 𝑥  − + + 

(ln 𝑥)𝑛−1 − − + 

𝑓′(𝑥) + − + 

𝑓(𝑥) 
                         𝑓(𝑒−2𝑛)                                                 + ∞ 

  

 −∞                                                        𝑓(1) 

 

Si n est impaire alors n-1 est paire  

𝑥 0                            𝑒−2𝑛                           1                        +∞ 

2𝑛 + 𝑙𝑛 𝑥  − + + 

(ln 𝑥)𝑛−1 + + + 

𝑓′(𝑥) − + + 

𝑓(𝑥) 
+∞                                                                                      +∞ 

  

                                                            𝑓(1) 

d) On a : 

∀𝑥 ∊ ]0,+∞[  ;       𝑓′′(𝑥) = (
(ln 𝑥)𝑛−1(ln 𝑥 + 2𝑛)

2√𝑥
)

′

 

𝑓′′(𝑥) =
((ln 𝑥)𝑛−1(ln 𝑥 + 2𝑛))

′
× 2√𝑥 − (ln𝑥)𝑛−1(ln 𝑥 + 2𝑛)(2√𝑥)

′

4𝑥
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𝑓′′(𝑥) =

((𝑛 − 1)
1
𝑥
(ln 𝑥)𝑛−2 × (ln 𝑥 + 2𝑛) + (ln 𝑥)𝑛−1 ×

1
𝑥) × 2√𝑥 −

(ln 𝑥)𝑛−1(ln 𝑥 + 2𝑛) ×
1

√𝑥
4𝑥

 

𝑓′′(1) =

((𝑛 − 1)
1
𝑥
(ln 1)𝑛−2 × (ln 1 + 2𝑛) + (ln 1)𝑛−1 ×

1
1) × 2√1 −

(ln 1)𝑛−1(ln 1 + 2𝑛) ×
1

√1
4 × 1

 

𝑓′′(1) =
0

4
= 0 

Alors le point d’abscisse 1 est un point d’inflexion de (𝐶𝑛) 

Partie II : 

1) Soit 𝛽 ∈ ]1, 𝑒[ un réel fixé. On considère la suite numérique (𝑢𝑛)𝑛≥1 définie par : 

(∀𝑛 ∈ ℕ∗); 𝑢𝑛 = 𝑓𝑛(𝛽) 

a) On a : 

𝛽 ∈ ]1, 𝑒[ 

1 < 𝛽 < 𝑒 

Et puisque 𝑓𝑛 est croissant sur ]1, 𝑒[  alors :  

(∀𝑛 ∈ ℕ∗); 𝑓𝑛 (1) < 𝑓𝑛 (𝛽) < 𝑓𝑛 (𝑒) 

  0 < 𝑓𝑛 (𝛽) < √𝑒 

 0 < 𝑢𝑛 < √𝑒 

b) On a :  

(∀𝑛 ∈ ℕ∗); 𝑢𝑛+1 − 𝑢𝑛 = 𝑓𝑛+1(𝛽) − 𝑓𝑛(𝛽) = √𝛽(ln𝛽)
𝑛+1 −√𝛽(ln𝛽)𝑛 =

√𝛽(ln𝛽)𝑛(ln𝛽 − 1)   

Et puisque 𝛽 < 𝑒 alors  ln 𝛽 < ln 𝑒 donc ln 𝛽 < 1 

Donc √𝛽(ln𝛽)𝑛(ln 𝛽 − 1) < 0   
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Alors : (∀𝑛 ∈ ℕ∗); 𝑢𝑛+1 − 𝑢𝑛 < 0   

(𝑢𝑛)𝑛≥1 est décroissante. 

c)  On a : 

lim
𝑛→+∞

𝑢𝑛 = lim
𝑛→+∞

𝑓𝑛(𝛽) = lim
𝑛→+∞

√𝛽(ln𝛽)𝑛 = 0 

Car 1 < 𝛽 < 𝑒 alors  0 < ln𝛽 < 1 

2)  

a) On considère la fonction 𝑔𝑛 définie sur ]1, 𝑒[ par : 𝑔𝑛(𝑥) = 𝑓𝑛(𝑥) − 1  

On a 𝑔𝑛 est continue sur ]1, 𝑒[ car 𝑓𝑛 est sur ]1, 𝑒[ 

On a lim
𝑛→1+

𝑔𝑛(𝑥) = −1 et lim
𝑛→𝑒−

𝑔𝑛(𝑥) = 0
+ 

Et puisque 𝑓𝑛 est strictement croissant sur ]1, 𝑒[ alors 𝑔𝑛 est strictement croissant 

]1, 𝑒[ , donc d’après le théorème de croissement finie, l’équation 𝑔𝑛(𝑥) = 0 admet 

une unique solution 𝑥𝑛  dans l’intervalle  ]1, 𝑒[ ; 

Finalement il existe un unique 𝑥𝑛 ∊  ]1, 𝑒[  tell que 𝑓𝑛(𝑥𝑛) = 1 

b) On a : 𝑥 ∊  ]1, 𝑒[  , 𝑓𝑛+1(𝑥) = √𝑥(ln 𝑥)
𝑛+1 = √𝑥(ln 𝑥)𝑛 × ln 𝑥 = 𝑓𝑛(𝑥) ln 𝑥 

Et comme  ln 𝑥 < 1 alors 𝑓𝑛+1(𝑥) < 𝑓𝑛(𝑥) alors pour 𝑥 = 𝑥𝑛+1, on a :  

𝑓𝑛+1 (𝑥𝑛+1) < 𝑓𝑛 (𝑥𝑛+1) 

On suppose que 𝑥𝑛+1 ≤ 𝑥𝑛, et comme 𝑓𝑛 est strictement croissant sur 

]1, 𝑒[ alors 𝑓𝑛 (𝑥𝑛+1) ≤ 𝑓𝑛 (𝑥𝑛)  et comme 𝑓𝑛+1 (𝑥𝑛+1) < 𝑓𝑛 (𝑥𝑛+1) donc ; 

𝑓𝑛+1 (𝑥𝑛+1) < 𝑓𝑛 (𝑥𝑛+1) ≤ 𝑓𝑛 (𝑥𝑛) 
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𝑓𝑛+1 (𝑥𝑛+1) < 𝑓𝑛 (𝑥𝑛+1) ≤ 𝑓𝑛 (𝑥𝑛) 

1 < 𝑓𝑛 (𝑥𝑛+1) ≤ 1 

1 < 1 Donc c’est absurde, alors (∀𝑛 ∈ ℕ∗) ; 𝑥𝑛+1 > 𝑥𝑛 

Conclusion : (𝑥𝑛)𝑛≥1 est une suite croissante. Et puisqu’il est borné, alors il est 

convergent. 

3) On pose 𝑙 = lim
𝑛→+∞

𝑥𝑛 

a) On a 𝑥𝑛 ∊  ]1, 𝑒[ alors  1 < 𝑥𝑛 < 𝑒 puisque (𝑥𝑛)𝑛≥1 est croissant, alors : 

1 < lim
𝑛→+∞

𝑥𝑛 ≤ 𝑒 

1 < 𝑙 ≤ 𝑒 

b) On a : 

𝑓𝑛 (𝑥𝑛) = 1 

√𝑥𝑛(ln 𝑥𝑛)
𝑛 = 1 

(ln 𝑥𝑛)
𝑛 =

1

√𝑥𝑛
 

lim
𝑛→+∞

(ln 𝑥𝑛)
𝑛 = lim

𝑛→+∞

1

√𝑥𝑛
 

lim
𝑛→+∞

(ln 𝑥𝑛)
𝑛 =

1

√𝑙
 

c) Si 𝑙 < 𝑒 alors : 

Puisque 𝑙 < 𝑒 alors lim
𝑛→+∞

𝑥𝑛 < 𝑒  donc lim
𝑛→+∞

ln 𝑥𝑛 < 1  ce qui implique que     

lim
𝑛→+∞

ln (ln 𝑥𝑛) < 0  donc lim
𝑛→+∞

𝑛 ln(ln𝑛) = −∞ 
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Si 𝑙 < 𝑒 alors lim
𝑛→+∞

ln((ln 𝑥𝑛)
𝑛) = −∞ c’est-à-dire que lim

𝑛→+∞
(ln 𝑥𝑛)

𝑛 = 0 

ce qu’est contradictoire avec lim
𝑛→+∞

(ln 𝑥𝑛)
𝑛 =

1

√𝑙
 donc : 𝑙 = 𝑒 

lim
𝑛→+∞

𝑥𝑛 = 𝑒 

 

Partie III : 

On pose pour tout 𝑥 ∈ 𝐼  , 𝐹(𝑥) = ∫ (𝑓1(𝑡))
2𝑑𝑡

1

𝑥
  

1)  

a) On a 𝐹(𝑥) est primitive d’une fonction continue sur 𝐼 alors 𝐹(𝑥) est aussi 

continue sur 𝐼  

b) On a 𝑓1(𝑡) = √𝑡 ln 𝑡  , alors : 

𝐹(𝑥) = ∫ 𝑡(ln 𝑡)2𝑑𝑡
1

𝑥

 

On pose :  

{
𝑢 = (ln 𝑡)2    𝑒𝑡   𝑢′ =

2 ln 𝑡

𝑡

𝑣′ = 𝑡           𝑒𝑡     𝑣 =
1

2
𝑡2 

 

Donc : 

𝐹(𝑥) = [
1

2
𝑡2(ln 𝑡)2]

𝑥

1

−∫ 𝑡 ln 𝑡  𝑑𝑡
1

𝑥

 

𝐹(𝑥) = [−
1

2
𝑥2(ln 𝑥)2] − ∫ 𝑡 ln 𝑡  𝑑𝑡

1

𝑥

 

On pose :  
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{
𝑢 = ln 𝑡     𝑒𝑡   𝑢′ =

1

𝑡

𝑣′ = 𝑡           𝑒𝑡     𝑣 =
1

2
𝑡2 

 

𝐹(𝑥) = −
1

2
𝑥2(ln 𝑥)2 − [

1

2
𝑡2 ln 𝑡]

𝑥

1

+
1

2
∫ 𝑡 𝑑𝑡
1

𝑥

 

𝐹(𝑥) = −
1

2
𝑥2(ln 𝑥)2 + [

1

2
𝑥2 ln 𝑥] +

1

2
[
1

2
𝑡2]

𝑥

1

 

𝐹(𝑥) = −
1

2
𝑥2(ln 𝑥)2 +

1

2
𝑥2 ln 𝑥 +

1

2
[
1

2
−
1

2
𝑥2] 

𝐹(𝑥) = −
1

2
𝑥2(ln 𝑥)2 +

1

2
𝑥2 ln 𝑥 +

1

4
−
1

4
𝑥2 

𝐹(𝑥) = −
1

2
𝑥2(ln 𝑥)2 +

1

2
𝑥2 ln 𝑥 +

1

4
(1 − 𝑥2) 

2)  

a) lim
𝑥→0+

𝐹(𝑥) = lim
𝑥→0+

−
1

2
𝑥2(ln 𝑥)2 +

1

2
𝑥2 ln 𝑥 +

1

4
(1 − 𝑥2) 

lim
𝑥→0+

𝐹(𝑥) = lim
𝑥→0+

−
1

2
(x ln 𝑥)2 +

1

2
𝑥2 ln 𝑥 +

1

4
(1 − 𝑥2) 

lim
𝑥→0+

𝐹(𝑥) =
1

4
 

b) Puisque 𝐹(𝑥) est continue sur 𝐼 alors : 

lim
𝑛→0+

𝐹(𝑥) = 𝐹(0) =
1

4
 

c) Calcule de volume : 

𝑉 = | lim
𝑥→0+

𝜋∫ 𝑡(ln 𝑡)2𝑑𝑡
1

𝑥

| = 𝜋[−𝐹(1) + 𝐹(0)] =
𝜋

4
𝑐𝑚3 
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Exercice 2 : 

1)  

a) Calcule : 

𝑧 +
1

𝑧
= √𝑥 + 𝑖√𝑦 +

1

√𝑥 + 𝑖√𝑦
 

𝑧 +
1

𝑧
= √𝑥 + 𝑖√𝑦 +

1 × (√𝑥 − 𝑖√𝑦)

(√𝑥 + 𝑖√𝑦)(√𝑥 − 𝑖√𝑦)
 

𝑧 +
1

𝑧
= √𝑥 + 𝑖√𝑦 +

√𝑥 − 𝑖√𝑦

𝑥 + 𝑦
 

𝑧 +
1

𝑧
=
(√𝑥 + 𝑖√𝑦)(𝑥 + 𝑦)

𝑥 + 𝑦
+
√𝑥 − 𝑖√𝑦

𝑥 + 𝑦
 

𝑧 +
1

𝑧
=
𝑥√𝑥 + 𝑦√𝑥 + 𝑖(𝑥√𝑦 + 𝑦√𝑦)

𝑥 + 𝑦
+
√𝑥 − 𝑖√𝑦

𝑥 + 𝑦
 

𝑧 +
1

𝑧
=
𝑥√𝑥 + √𝑥 + 𝑦√𝑥 + 𝑖(𝑥√𝑦 + 𝑦√𝑦 − √𝑦)

𝑥 + 𝑦
 

𝑧 +
1

𝑧
=
√𝑥(𝑥 + 1 + 𝑦)

𝑥 + 𝑦
+ 𝑖

√𝑦(𝑥 − 1 + 𝑦)

𝑥 + 𝑦
 

𝑧 +
1

𝑧
= √𝑥 (

1

𝑥 + 𝑦
+
𝑥 + 𝑦

𝑥 + 𝑦
) + 𝑖√𝑦 (−

1

𝑥 + 𝑦
+
𝑥 + 𝑦

𝑥 + 𝑦
) 

𝑧 +
1

𝑧
= √𝑥 (

1

𝑥 + 𝑦
+ 1) + 𝑖√𝑦 (−

1

𝑥 + 𝑦
+ 1) 

𝑧 +
1

𝑧
=
12

5
+
4

5
𝑖 

b) On :  
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𝑧 +
1

𝑧
=
12

5
+
4

5
𝑖 

Alors : 

(𝑧 +
1

𝑧
) × 𝑧 = (

12

5
+
4

5
𝑖) × 𝑧 

𝑧2 + 1 = (
12

5
+
4

5
𝑖) 𝑧 

𝑧2 − (
12

5
+
4

5
𝑖) 𝑧 + 1 = 0 

∆= (
12

5
+
4

5
𝑖)
2

− 4 × 1 × 1 

∆= (
12

5
+
4

5
𝑖)
2

− 4 =
28

25
+
96

25
𝑖 = (

2

5
(4 + 3𝑖))

2

 

Alors : 

{
 
 
 

 
 
 

𝑧1 =
−𝑏 − √∆

2𝑎
=

(
12
5
+
4
5
𝑖) − √(

2
5
(4 + 3𝑖))

2

2

𝑧2 =
−𝑏 + √∆

2𝑎
=

(
12
5
+
4
5
𝑖) + √(

2
5
(4 + 3𝑖))

2

2

 

{
  
 

  
 

𝑧1 =

(
12
5
+
4
5
𝑖) − (

2
5
(4 + 3𝑖))

2

𝑧2 =

(
12
5
+
4
5
𝑖) + (

2
5
(4 + 3𝑖))

2
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{
 
 

 
 
𝑧1 =

4
5
−
2
5
𝑖

2

𝑧2 =

20
5
+
10
5
𝑖

2

 

{
𝑧1 =

4

10
−
2

10
𝑖

𝑧2 =
20

10
+
10

10
𝑖

 

{
𝑧1 =

2

5
−
1

5
𝑖

𝑧2 = 2 + 𝑖
 

c) Puisque 𝑥 𝑒𝑡 𝑦 sont des reels, alors (𝑥, 𝑦) = (4,1)  

2) Les solutions de system est :  

𝑆 = {(4,1)} 

Partie II : 

1) ∀𝑧 ∈ ℂ  |𝑧| = 1 equivalent a 𝑧 × 𝑧̅ = 1 equivalent a: 

𝑧̅ =
1

𝑧
 

2)  

a) On a 𝐴𝑃⃗⃗⃗⃗⃗⃗  et 𝐵𝐶⃗⃗⃗⃗⃗⃗  deux vecteurs colinéaires alors : 

𝑝 − 𝑎

𝑐 − 𝑏
∈ ℝ 

𝑝 − 𝑎

𝑐 − 𝑏
=
𝑝̅ − 𝑎̅

𝑐̅ − 𝑏̅
 

Alors : 

(𝑝 − 𝑎)(𝑐̅ − 𝑏̅) = (𝑝̅ − 𝑎̅)(𝑐 − 𝑏) 
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(𝑝 − 𝑎) (
1

𝑐
−
1

𝑏
) = (

1

𝑝
−
1

𝑎
) (𝑐 − 𝑏) 

(𝑝 − 𝑎) (
𝑏 − 𝑐

𝑐𝑏
) = (

𝑎 − 𝑝

𝑝𝑎
) (𝑐 − 𝑏) 

(𝑝 − 𝑎) (
𝑏 − 𝑐

𝑐𝑏
) = (

𝑎 − 𝑝

𝑝𝑎
) (𝑐 − 𝑏) 

(
𝑏 − 𝑐

𝑐𝑏
) = (

𝑏 − 𝑐

𝑝𝑎
) 

(
1

𝑐𝑏
) = (

1

𝑝𝑎
) 

𝑝 =
𝑐𝑏

𝑎
 

b) On a (𝐴𝑃) et (𝐴𝑄) sont perpendiculaire alors :  

𝑝 − 𝑎

𝑞 − 𝑎
∈ 𝑖ℝ 

𝑝 − 𝑎

𝑞 − 𝑎
= −(

𝑝 − 𝑎

𝑞 − 𝑎
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

𝑝 − 𝑎

𝑞 − 𝑎
= −

𝑝̅ − 𝑎̅

𝑞̅ − 𝑎̅
 

(𝑝 − 𝑎)(𝑞̅ − 𝑎̅) = −(𝑝̅ − 𝑎̅)(𝑞 − 𝑎) 

(𝑝 − 𝑎) (
1

𝑞
−
1

𝑎
) = −(

1

𝑝
−
1

𝑎
) (𝑞 − 𝑎) 

(𝑝 − 𝑎) (
𝑎 − 𝑞

𝑎𝑞
) = −(

𝑎 − 𝑝

𝑎𝑝
) (𝑞 − 𝑎) 

(𝑝 − 𝑎) (
𝑎 − 𝑞

𝑎𝑞
) = −(

𝑝 − 𝑎

𝑎𝑝
) (𝑎 − 𝑞) 

(
1

𝑎𝑞
) = −(

1

𝑎𝑝
) 
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1

𝑎𝑞
= −

1

𝑎𝑝
 

𝑞 = −𝑝 

c) On suppose que (𝑃𝑅) et (𝑂𝐵) sont perpendiculaire alors :  

𝑝 − 𝑟

𝑏 − 0
∈ 𝑖ℝ 

𝑝 − 𝑟

𝑏 − 0
= −(

𝑝 − 𝑟

𝑏 − 0
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

Or : 

(
𝑝 − 𝑟

𝑏 − 0
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
=
𝑝̅ − 𝑟̅

𝑏̅
 

(
𝑝 − 𝑟

𝑏 − 0
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= −

𝑏(𝑟 − 𝑝)

𝑝𝑟
 

(
𝑝 − 𝑟

𝑏 − 0
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= −(𝑝 − 𝑟)

𝑎

𝑐𝑟
 

Et on a : 𝑟 =
𝑎𝑏

𝑐
  et 𝑝 =

𝑏𝑐

𝑎
  ,  donc : 

(
𝑝 − 𝑟

𝑏 − 0
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= −

(𝑝 − 𝑟)

𝑏
 

Donc (𝑃𝑅) et (𝑂𝐵) 

Exercice 3 : 

On rappelle que (𝑀3(ℝ),+,×) est un anneau et non commutatif d’initié 𝐼 = (
1 0
0 1

0
0

0 0 1
)  

Soit 𝐸 = {𝑀(𝑎, 𝑏, 𝑐) = (
𝑎 0
0 𝑏

0
−𝑐

0 𝑐 𝑏
) /(𝑎, 𝑏, 𝑐) ∈ ℝ3} 

1) Montrer que E est un sous-groupe de (𝑀3(ℝ),+) 
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- Pour 𝑎 = 0, 𝑏 = 0 𝑒𝑡 𝑐 = 0 on a : 𝑀(0,0,0) = (
0 0
0 0

0
0

0     0 0
) ∈ 𝐸 

- Soit 𝑀(𝑎, 𝑏, 𝑐) et 𝑀(𝑎′, 𝑏′, 𝑐′) dans 𝐸, on a : 

𝑀(𝑎, 𝑏, 𝑐) − 𝑀(𝑎′, 𝑏′, 𝑐′) = (
𝑎 0
0 𝑏

0
−𝑐

0 𝑐 𝑏
) − (

𝑎′ 0
0 𝑏′

0
−𝑐′

0 𝑐′ 𝑏′
)

= (
𝑎 − 𝑎′ 0 0
0 𝑏 − 𝑏′ −(𝑐 − 𝑐′)

0 𝑐 − 𝑐′ 𝑏 − 𝑏′

) ∈ 𝐸 

Donc 𝐸 est un sous-groupe de (𝑀3(ℝ),+). 

2)  

a) Montrer que 𝜙 est un homomorphisme de (𝐸, +) vers (ℝ × ℂ , ∗). 

Soient Soit 𝑀(𝑎, 𝑏, 𝑐) et 𝑀(𝑎′, 𝑏′, 𝑐′) dans 𝐸 , alors :  

𝜙(𝑀(𝑎, 𝑏, 𝑐) + 𝑀(𝑎′, 𝑏′, 𝑐′)) = 𝜙 (𝑀(𝑎 + 𝑎′, (𝑏 + 𝑏′) + 𝑖(𝑐 + 𝑐′))) 

D’autre part,  

𝜙(𝑀(𝑎, 𝑏, 𝑐)) ∗ 𝜙(𝑀(𝑎, 𝑏, 𝑐)) = (𝑎, 𝑏 + 𝑖𝑐) ∗ (𝑎′, 𝑏′ + 𝑖𝑐′)

= (𝑎 + 𝑎′, (𝑏 + 𝑖𝑐) + (𝑏′ + 𝑖𝑐′)) = (𝑎 + 𝑎′, (𝑏 + 𝑏′) + 𝑖(𝑐 + 𝑐′)) 

Alors : 𝜙(𝑀(𝑎, 𝑏, 𝑐) + 𝑀(𝑎′, 𝑏′, 𝑐′)) = 𝜙(𝑀(𝑎, 𝑏, 𝑐)) ∗ 𝜙(𝑀(𝑎′, 𝑏′, 𝑐′)) 

Donc 𝜙 est un homomorphisme de (𝐸,+) vers (ℝ × ℂ , ∗). 

Donc 𝜙(𝐸) = ℝ × ℂ 

b) Commutativité de (ℝ × ℂ , ∗). 

Puisque 𝜙 est un homomorphisme de (𝐸, +) vers (ℝ × ℂ , ∗) et que 𝐸 est un 

sous-groupe de (𝑀3(ℝ),+), alors + loi commutative dans 𝐸 donc (𝐸, +) est un 
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groupe commutatif puisque homomorphisme conserve la commutativité alors :  

(ℝ × ℂ , ∗) est un groupe commutatif. 

3)   

a) Montrer que T est commutative. 

Soit (𝑥 , 𝑧)  et  (𝑥’, 𝑧’) dans ℝ × ℂ. Par définition :  

(𝑥 , 𝑧)𝑇(𝑥′, 𝑧′) = (𝑥𝑅𝑒(𝑧′) + 𝑥′𝑅𝑒(𝑧), 𝑧𝑧′)   

Et comme 𝑅𝑒(𝑧) et 𝑅𝑒(𝑧′) sont des réels, l'addition de réels est commutative et 

la multiplication des nombres complexes est commutative. Donc : 

(𝑥 , 𝑧)𝑇(𝑥′, 𝑧′) = (𝑥𝑅𝑒(𝑧′) + 𝑥′𝑅𝑒(𝑧), 𝑧𝑧′) = (𝑥′, 𝑧′)𝑇(𝑥, 𝑧) 

Alors, 𝑇 est commutative. 

b) Elément neutre de 𝑇 

Pour tout (𝑥, 𝑧) ∊ ℝ × ℂ : 

(𝑥, 𝑧) 𝑇 (0,1) = (𝑥 × 𝑅𝑒(1) + 0 × 𝑅𝑒(𝑧), 𝑧 × 1) = (𝑥 × 1 + 0, 𝑧) = (𝑥, 𝑧) 

Et puisque 𝑇 est commutative alors (0,1) est l’élément neutre de 𝑇 dans ℝ × ℂ  

c) Non associativité de 𝑇 : 

Soit (1, 𝑖) et (𝑥, −𝑖) dans ℝ× ℂ   avec 𝑥 ∈ ℝ, 

(1, 𝑖) 𝑇 (𝑥, −𝑖) = (1 × 𝑅𝑒(−𝑖) + 𝑥 × 𝑅𝑒(𝑖), 𝑖 × (−𝑖)) = (1 × 0 + 𝑥 × 0,1)

= (0,1) 

Soit (𝑥′, 𝑧′) dans  ℝ × ℂ   avec  𝑧′ = 𝑎 + 𝑖𝑏 

On a : 

(𝑥′, 𝑧′)𝑇((1, 𝑖) 𝑇 (𝑥, −𝑖)) = (𝑥′, 𝑧′)𝑇(0,1) = (𝑥′, 𝑧′) 
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Et on a : 

((𝑥′, 𝑧′) 𝑇 (1, 𝑖))𝑇(𝑥,−𝑖) = (0 + 𝑎′, −𝑖𝑧′)𝑇(0,1) = (𝑎′, −𝑖𝑧′)𝑇(0,1)

= (𝑎′, −𝑖𝑧′) 

Alors (𝑥′, 𝑧′)𝑇((1, 𝑖) 𝑇 (𝑥, −𝑖)) ≠ ((𝑥′, 𝑧′) 𝑇 (1, 𝑖))𝑇(𝑥, −𝑖) 

Donc la loi 𝑇 est non associative dans ℝ× ℂ    

4) Soit 𝐺 = {(𝐼𝑚(𝑧), 𝑧),   𝑧 ∈ ℂ} 

a) Montrer que G est un sous-groupe de (ℝ × ℂ  , ∗  ): 

- L’élément neutre de ∗  dans ℝ × ℂ est (0,0), qui appartient à 𝐺, donc 𝐺 est non 

vide. 

- Soient (𝐼𝑚(𝑧), 𝑧) et (𝐼𝑚(𝑧′), 𝑧′) deux éléments de 𝐺 : 

(𝐼𝑚(𝑧), 𝑧) ∗ (𝐼𝑚(𝑧′), 𝑧′) = (𝐼𝑚(𝑧) − 𝐼𝑚(𝑧′), 𝑧 − 𝑧′) = (𝐼𝑚(𝑧 − 𝑧′), 𝑧 − 𝑧′) 

Comme (𝐼𝑚(𝑧 − 𝑧′), 𝑧 − 𝑧′) ∊ 𝐺, alors 𝐺 est un sous-groupe de (ℝ × ℂ  , ∗  ) 

b) Montrer que 𝜓 est un homomorphisme de (ℂ∗  , ×  ) vers (ℝ × ℂ  , 𝑇) 

Soient 𝑧 𝑒𝑡 𝑧’ deux éléments ℂ∗ : 

𝜓(𝑧 × 𝑧′) = 𝜓((𝑥 + 𝑖𝑦) × (𝑥′ + 𝑖𝑦′)) 

𝜓(𝑧 × 𝑧′) = 𝜓(𝑥𝑥′ − 𝑦𝑦′ + 𝑖(𝑥𝑦′ + 𝑥′𝑦)) 

𝜓(𝑧 × 𝑧′) = 𝜓((𝑥 + 𝑖𝑦) × (𝑥′ + 𝑖𝑦′)) 

𝜓(𝑧 × 𝑧′) = (𝑥𝑦′ + 𝑥′𝑦 , 𝑥𝑥′ − 𝑦𝑦′ + 𝑖(𝑥𝑦′ + 𝑥′𝑦)) 

Et on a :  

𝜓(𝑧) 𝑇 𝜓(𝑧′) = ((𝑥 + 𝑖𝑦) 𝑇 (𝑥′ + 𝑖𝑦′)) 

𝜓(𝑧) 𝑇 𝜓(𝑧′) = 𝜓(𝑥𝑥′ − 𝑦𝑦′ + 𝑖(𝑥𝑦′ + 𝑥′𝑦)) 
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𝜓(𝑧) 𝑇 𝜓(𝑧′) = (𝑥𝑦′ + 𝑥′𝑦 , 𝑥𝑥′ − 𝑦𝑦′ + 𝑖(𝑥𝑦′ + 𝑥′𝑦)) 

Donc :   𝜓(𝑧 × 𝑧′) = 𝜓(𝑧) 𝑇 𝜓(𝑧′) , alors  𝜓 est un homomorphisme de 

(ℂ∗  , ×  ) vers (ℝ × ℂ  , 𝑇) 

c) Déduire que (𝐺 − {(0,0)}  , 𝑇) est un groupe commutatif : 

On a (ℂ∗  , ×  ) est un groupe commutatif, et  𝜓 est un homomorphisme de 

(ℂ∗  , ×  ) vers (ℝ × ℂ  , 𝑇), alors (ℝ × ℂ  , 𝑇) aussi un groupe commutatif, 

il suffit de montrer que 𝐺 − {(0,0)} est un sous-groupe de (ℝ × ℂ  , 𝑇), 

donc : 

𝐺 − {(0,0)} est non vide car (0,1) appartient a 𝐺 − {(0,0)} 

Soient (𝐼𝑚(𝑧), 𝑧) 𝑒𝑡 (𝐼𝑚(𝑧’), 𝑧’) deux éléments de 𝐺 − {(0,0)}, on a : 

(𝐼𝑚(𝑧), 𝑧) 𝑇 (𝐼𝑚 (
1

𝑧′
) ,
1

𝑧′
) = (𝐼𝑚(𝑧) × 𝑅𝑒 (

1

𝑧′
) + 𝐼𝑚 (

1

𝑧′
) × 𝑅𝑒(𝑧)) 

(𝐼𝑚(𝑧), 𝑧) 𝑇 (𝐼𝑚 (
1

𝑧′
) ,
1

𝑧′
) = (𝑦 ×

𝑥′

𝑥′2 + 𝑦′2
+

−𝑦′

𝑥′2 + 𝑦′2
× 𝑥 , (𝑥 + 𝑖𝑦) × (

𝑥′

𝑥′2 + 𝑦′2
− 𝑖

𝑦′

𝑥′2 + 𝑦′2
)) 

(𝐼𝑚(𝑧), 𝑧) 𝑇 (𝐼𝑚 (
1

𝑧′
) ,
1

𝑧′
) = (

𝑥′𝑦

𝑥′2 + 𝑦′2
+

−𝑥𝑦′

𝑥′2 + 𝑦′2
 ,
𝑥𝑥′ + 𝑦𝑦′

𝑥′2 + 𝑦′2
+ 𝑖 (

𝑥′𝑦 − 𝑥𝑦′

𝑥′2 + 𝑦′2
)) 

(𝐼𝑚(𝑧), 𝑧) 𝑇 (𝐼𝑚 (
1

𝑧′
) ,
1

𝑧′
) = (

𝑥′𝑦 − 𝑥𝑦′

𝑥′2 + 𝑦′2
 ,
𝑥𝑥′ + 𝑦𝑦′

𝑥′2 + 𝑦′2
+ 𝑖 (

𝑥′𝑦 − 𝑥𝑦′

𝑥′2 + 𝑦′2
)) 

(𝐼𝑚(𝑧), 𝑧) 𝑇 (𝐼𝑚 (
1

𝑧′
) ,
1

𝑧′
) = (𝐼𝑚(

𝑥𝑥′ + 𝑦𝑦′

𝑥′2 + 𝑦′2
+ 𝑖 (

𝑥′𝑦 − 𝑥𝑦′

𝑥′2 + 𝑦′2
)) ,

𝑥𝑥′ + 𝑦𝑦′

𝑥′2 + 𝑦′2
+ 𝑖 (

𝑥′𝑦 − 𝑥𝑦′

𝑥′2 + 𝑦′2
)) 

Donc :  

(𝐼𝑚 (
𝑥𝑥′+𝑦𝑦′

𝑥′
2
+𝑦′2

+ 𝑖 (
𝑥′𝑦−𝑥𝑦′

𝑥′
2
+𝑦′2

)) ,
𝑥𝑥′+𝑦𝑦′

𝑥′
2
+𝑦′2

+ 𝑖 (
𝑥′𝑦−𝑥𝑦′

𝑥′
2
+𝑦′2

)) ∊ 𝐺 − {(0,0)}  
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Donc : 𝐺 − {(0,0)} est un sous-groupe de (ℝ × ℂ  , 𝑇), alors : 

(𝐺 − {(0,0)}   , 𝑇) est un groupe commutatif 

5) Montrer que (𝐺,∗ , 𝑇) est un corps commutatif 

- On a 𝐺 est un sous-groupe de(ℝ × ℂ  ,∗) , alors (𝐺  ,∗) est un corps commutatif. 

- Et on a (𝐺 − {(0,0)}   , 𝑇) est un groupe commutatif, donc il suffit de vérifier la 

distributivité de 𝑇 𝑠𝑢𝑟 ∗   

Soient (𝐼𝑚(𝑧), 𝑧) , (𝐼𝑚(𝑤),𝑤) et (𝐼𝑚(𝑢), 𝑢) de 𝐺, on a : 

(𝐼𝑚(𝑧), 𝑧)𝑇((𝐼𝑚(𝑤),𝑤) ∗ (𝐼𝑚(𝑢), 𝑢) ) = (𝐼𝑚(𝑧), 𝑧)𝑇((𝐼𝑚(𝑤) + 𝐼𝑚(𝑢)),𝑤 + 𝑢)) 

                                                     = (𝐼𝑚(𝑧), 𝑧)𝑇((𝐼𝑚(𝑤 + 𝑢)), 𝑤 + 𝑢)) 

                                                     = (𝐼𝑚(𝑧) × 𝑅𝑒(𝑤 + 𝑢) + 𝐼𝑚(𝑤 + 𝑢) × 𝑅𝑒(𝑧), 𝑧𝑤 + 𝑧𝑢) 

Et on a :  

((𝐼𝑚(𝑧), 𝑧)𝑇(𝐼𝑚(𝑤),𝑤)) ∗ ((𝐼𝑚(𝑧), 𝑧)𝑇(𝐼𝑚(𝑢), 𝑢)) = 

(𝐼𝑚(𝑧) × 𝑅𝑒(𝑤) + 𝐼𝑚(𝑤) × 𝑅𝑒(𝑧), 𝑧𝑤) ∗ (𝐼𝑚(𝑧) × 𝑅𝑒(𝑢) + 𝐼𝑚(𝑢) × 𝑅𝑒(𝑧), 𝑧𝑢) = 

(𝐼𝑚(𝑧)𝑅𝑒(𝑤) + 𝐼𝑚(𝑤)𝑅𝑒(𝑧) + 𝐼𝑚(𝑧)𝑅𝑒(𝑢) + 𝐼𝑚(𝑢)𝑅𝑒(𝑧), 𝑧𝑤 + 𝑧𝑢) = 

(𝐼𝑚(𝑧)(𝑅𝑒(𝑤) + 𝑅𝑒(𝑢)) + 𝑅𝑒(𝑧)(𝐼𝑚(𝑤) + 𝐼𝑚(𝑢)), 𝑧𝑤 + 𝑧𝑢) = 

(𝐼𝑚(𝑧)𝑅𝑒(𝑤 + 𝑢) + 𝑅𝑒(𝑧)𝐼𝑚(𝑤 + 𝑢), 𝑧𝑤 + 𝑧𝑢) 

Donc : 

(𝐼𝑚(𝑧), 𝑧)𝑇((𝐼𝑚(𝑤),𝑤) ∗ (𝐼𝑚(𝑢), 𝑢) ) = ((𝐼𝑚(𝑧), 𝑧)𝑇(𝐼𝑚(𝑤),𝑤)) ∗ ((𝐼𝑚(𝑧), 𝑧)𝑇(𝐼𝑚(𝑢), 𝑢)) 

Donc 𝑇  est distributif sur ∗   

Conclusion : (𝐺,∗ , 𝑇) est un corps commutatif. 

Exercice 5 : 
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Soit 𝑝 un nombre premier impaire. On pose : 𝑆 = 1 + 𝑝 + 𝑝2 + 𝑝3 +⋯+ 𝑝𝑝−1 

Soit 𝑞 un nombre premier qui divise 𝑆. 

1)  

a) Soit 𝑑 = 𝑝⋀𝑞 donc 𝑑 divise 𝑝 et divise 𝑞, et puisque 𝑝 est premier alors 𝑑 = 1 

ou 𝑑 = 𝑝, et puisque 𝑞 est premier aussi alors 𝑑 = 1 , donc 𝑝 𝑒𝑡 𝑞 sont premiers 

entre eux. 

b) On a 𝑝⋀𝑞 = 1et 𝑞 un nombre premier alors, d’après théorème de Gausse : 

𝑝𝑞−1 ≡ 1[𝑞] 

c) (𝑝 − 1)𝑆 = 𝑝𝑆 − 𝑆 

(𝑝 − 1)𝑆 = 𝑝(1 + 𝑝 + 𝑝2 + 𝑝3 +⋯+ 𝑝𝑝−1) − (1 + 𝑝 + 𝑝2 + 𝑝3 +⋯+ 𝑝𝑝−1) 

(𝑝 − 1)𝑆 = 𝑝 + 𝑝2 + 𝑝3 +⋯+ 𝑝𝑝−1 + 𝑝𝑝 − 1 − 𝑝 − 𝑝2 − 𝑝3 −⋯− 𝑝𝑝−1) 

(𝑝 − 1)𝑆 = 𝑝 − 𝑝 + 𝑝2 − 𝑝2 + 𝑝3 − 𝑝3 +⋯+ 𝑝𝑝−1 − 𝑝𝑝−1 + 𝑝𝑝 − 1 

(𝑝 − 1)𝑆 = 𝑝𝑝 − 1 

Deduction: 

On a: (𝑝 − 1)𝑆 = 𝑝𝑝 − 1  et puisque 𝑞 divise 𝑆 alors il exist 𝑘 appartient à ℤ tell 

que 𝑆 = 𝑘 × 𝑞 alors  𝑝𝑝 − 1 = 𝑘 × 𝑞(𝑝 − 1) donc 𝑞 divise 𝑝𝑝 − 1 donc : 

𝑝𝑝 − 1 ≡ 0[𝑞] 

𝑝𝑝 ≡ 1[𝑞] 

2) On suppose que 𝑝 𝑒𝑡 𝑞 − 1 sont premier entre eux. 

a) Soit p et q-1 deux nombres premiers entre eux : 

𝑝𝑢 + (𝑞 − 1)𝑣 = 1 
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𝑝𝑢 = 1 + (𝑞 − 1)(−𝑣) 

𝑝𝑢 = 1 + (𝑞 − 1)(−𝑣) 

𝑝𝑝𝑢 = 𝑝1+(𝑞−1)(−𝑣) 

(𝑝𝑝)𝑢 = 𝑝 × (𝑝(𝑞−1))
−𝑣

 

Et on a : 

 𝑝𝑞−1 ≡ 1[𝑞] et 𝑝𝑝 ≡ 1[𝑞] alors : 

(1)𝑢 ≡ 𝑝 × (1)−𝑣[𝑞] 

Enfin :  

𝑝 ≡ 1[𝑞] 

b) On :  

𝑆 = 1 + 𝑝 + 𝑝2 + 𝑝3 +⋯+ 𝑝𝑝−1 ≡ 1 + 1 +⋯+ 1[𝑞] = 𝑝[𝑞] = 1[𝑞] 

Donc : 

𝑆 = 1[𝑞] 

3) On suppose que 𝑝𝑔𝑐𝑑(𝑝, 𝑞 − 1) = 1 alors : 

𝑆 = 1[𝑞] 

Or 𝑞 divise 𝑆, Alors : 

𝑆 = 0[𝑞] 

Alors : 0 = 1[𝑞] donc 𝑞 divise 1, ce qui est absurde, donc : 𝑝𝑔𝑐𝑑(𝑝, 𝑞 − 1) ≠ 1 

Puisque 𝑝 est premier alors 𝑝 divise 𝑞 − 1, donc : 

𝑞 − 1 = 0[𝑝] 

Enfin :  
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𝑞 = 1[𝑝] 

 

 

 

 

 

 

 

 

 

 

 

 


