CHAPITRE |

Champs éectriques créés
par _des distributions de charges ponctuelles

| Loi de Coulomb

|-1 Charges électriques

La nature présente 2 types de charges électriques que par commodité on note
négatives et positives (On aurait pu les appeler vertes et rouges).

L es charges de méme signe se repoussent.
L es charges de signes contraires sattirent.

|-2 Direction et sens des forces électriques.

Si deux charges de méme signe (toutes deux positives ou toutes deux négatives)
sont situées aux points A et B, lacharge située en A est soumise aune force Fgp dirigée
selon le vecteur BA. Cette force est notée avec les indices g o pour rappeler qu'elle
sapplique sur lacharge placée en A, et est due ala présence de lacharge placée en B.

Lacharge située en B est soumise aune force Fg dirigée dans le sens du vecteur
AB. Lesforces Fg, et Fp g sont égales et opposées.

Fga s Fag
A B
Si les charges sont de signes contraires, la charge située en A est soumise a une

force Fg, dirigée de dans le sens du vecteur AB alors que la charge située en B est
soumise aune force F 55 dirigée dansle sens du vecteur BA.

Fea F
A B

De nouvesau, lesforces Fgp et Fapg Sont égales et opposées.
Dans un cas comme dans I'autre, il faut bien noter que les forces sont radiales, c'est
a-dire portées par I'axe qui joint les deux charges.

[-3 Intensité des forces é ectriques

Des expériences maintes fois répétées ont montré que les intensités des forces
auxquelles sont soumises les charges situées en A et B sont:

-Inversement proportionnelles au carré de la distance rp g séparant les charges
(doubler ladistance entre les charges conduit a une diminution des forces d'un facteur 4).

-Proportionnelles a deux grandeurs ga €t gg qui quantifient les charges. On
appelle ces grandeurs charges électriques.

2/05/03 1



|-4 Expression delaloi de Coulomb

Ces assertions, déduites d'un grand nombre d'expériences et de mesures, se
synthétisent par une expression mathématique appeléeloi de Coulomb:

ou:

U, g €st le vecteur unitaire (de norme 1) paralléle au vecteur AB. Ce vecteur sert a
indiquer ladirection et le sensdelaforce Fag, sansen affecter l'intensité:

- AB
u - fi\uJ

1/4g £ est un coefficient de proportionnalite adapté aux unités. Dans |e systeme
international (Sl), laforce est exprimée en Newtons (N), la charge en Coulombs (C), les
distances en metre (m) et laquantité ey
1

gg= ————
36x 10°

Laconstante £ est appel ée permittivite du vide.

1-5 1L e Coulomb

Le Coulomb est la quantité de charge é ectrique apportée par un courant électrique
de 1 ampeére en 1 seconde.

Lavaleur absolue de lacharge éémentaire del'éectron lel est égdea 1.6 1019¢

-A quelles forces sont soumises deux charges de 106 Coulomb séparées de 1m,
1cm,1mm?

-2 microbilles sont séparées de 1cm. Quelles charges identiques doivent-elles
porter pour qu'elles soient soumises a une force de IN?

-Considérons une bille de cuivre de 1mm de diametre. Déterminer |e nombre
d'électrons contenus dans une telle bille électriqguement neutre. Quelle fraction

d'éectrons faut-il retirer pour amener sa charge a 1076 Coulomb?
(le numéro atomique du cuivre est 29, sa masse atomique 63.5 et sa densité 8.93)

|-6 Loi de gravitation

Vous avez déja rencontré un exemple de force exercée a distance sur un corps
(sanslien "matériel” tel qu'une corde reliant ce corps al'extérieur).

C'est la force d'attraction universelle entre deux masses my et mg. Elle est
toujours attractive (il n'y a pas deux sortes de masses) et sécrit:

Fas=-G miAsz UaB
'Ap
Une telle force est formellement équivalente alaloi de Coulomb avec ses deux
caractéristiques fondamentales: elle est radiale et inversement proportionnelle au carré de
la distance entre les corps.
Ici les charges sont remplacées par |es masses et |e coefficient de proportionnalité

G, appelé constante d'attraction universelle, est égal a6.67 101l g,

2/05/03 2



Déterminer I'intensité de la force d'attraction universelle sappliquant sur deux
billes de cuivre de 1 mm de diamétre séparéesde 1 cm.

Quelle quantité d'éectrons faut-il déplacer d'une bille a I'autre pour créer une
force éectrique éguivalente?

Le rayon de la premiere orbite de Bohr de |'atome d'hydrogéne est de 5.29 1072
nm. Comparer lesintensités des forces éectriques et gravitationnelles entre I'électron et

le proton dont les masses sont repectivement 0.91 10-30 kg et 1.672 10-30 kg .

I Composantes delaforce

De temps a autre, nous ferons un petit détour mathématique. Voici le premier il
concerne les composantes d'un vecteur dans un repere cartésien.

11-1 Repere cartésien

C'est celui que vous connaissez et sur lequel vous avez travaillé a 2 dimensions.

Lerepére est défini par un point origine O et trois axes (0x,0y,0z) perpendiculaires
entre eux. Les vecteurs unitaires porteés par les axes sont: ey,e,/,e,.

(Bien noter la disposition relative des directions (0x, Oy, 0z). Telles qu'elles sont
placées, elles définissent un triedre direct. Dans un tel triedre, un bonhomme transpercé
des pieds alatéte par Oy, regardant ladirection Oz, aladirection Ox a sa gauche. On peut
noter aussi que 0x, Oy et 0z sont respectivement orientés selon les directions du pouce, de
I'index et du majeur de lamain droite.

Un point M del' espace est repéré par |es trois composantes du vecteur r joignant
0OaM. r =0M:
F(Xms YM: ZM) =Xm &+ Ym &y + 2 &

M' est la projection de M dans le plan (xOy) les composantes X €t y\, der sont
les coordonnées du point M' dans ce plan.

Lacomposante z), est obtenue en tragant la paralléle a OM' passant par M.

On diraindistinctement qu'un objet setrouve au point M ouenr.

L es composantes du vecteur AB joignant deux points A aB sécrivent:

XA XB XB - XA
rn = | YA re = |yB rag =rg-fra = | YB-YA
ZA ZB ZB - ZA

Les modules des vecteurs sont:

A=VXR +YA +ZA  OU rag =(XB-Xa)? +(yB- ya)® Hz- zaf
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En exprimant |la distance entre A et B par les composantes du vecteur AB,
I'expression de laforce devient:

1 Oa OB
At e (xg- XA)2 +(yB- YA)Z HzB- Z)2

Fag = UAB

11-2) Expression des forces par leurs composantes

De méme que e vecteur AB joignant le point A au point B, le vecteur unitaireup g

et les vecteurs forces peuvent étre exprimés par leurs composantes:
1 Oa OB

4t g (XB- xA)Z +(yB- YA)Z Hzg- ZA)Z
UAB x
1 da OB
= u - u
e ‘uﬁii] AT Ao (xg-xal+ (ver yaR Hzezal

1 Oa OB
| 4meo (xB- XA+ (YB- YA)? Hze- Za)?

UAB x

UaB z

Dans un repére cartésien, ou I'unité de longueur est le centimétre, deux charges
ga= 1077 Cetqg = -2.10°7 C sont situées respectivement en A (2,-1,3) et B (-1,2,0).
Déterminer les composantes de la force qui sapplique sur la charge située en A.

L1l Principe de superposition

Considérons trois points de |'espace 01, 0o et M. Plagons en M une charge . Puis
effectuons trois opérations successives.

i) Plagons la charge g1 en 01. En I'absence de charge en 05, Il sexerce sur la

charge g Situéeen M uneforce Fo,y dont le sens et I'intensité sont donnés par laloi de
Coulomb.

i) Retirons la charge g4 et plagons en O, lacharge d,. | sSexerce sur lacharge q
Stuéeen M uneforce Fo,y donnéeelle auss par laloi de Coulomb.

iii) Tout en conservant lacharge g, en 0, replagons lacharge g en 04. Il sexerce
sur M uneforce Fy.

On observe alors que, en présence simultanée de g; en 01 et de g, en 0y, laforce
Fp Qui Sexerce sur g est la somme géomeétrique (vectorielle) des forces Fo,v et Foum
qui exercaient sur g lorsgue les charges gy ou g, étaient seules présentes.
Cette observation se généraise aune distribution de charges gy, do, 4g,...,.€{C.
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Laforce exercée sur une charge g située en M, par une distribution de charges g1,
0o, g3 €etc. situéesen 04, 0y, O3, etc. , est égale la somme des forces Fo,m, Fom» Fogm,
etc. qu' exercerait sur g chacune des charges, s elle éait seule.

Cela se symbolise par une expression mathématique:

Fy = Famv = 1 qqiu.
M IE oM 24ﬂ80 rO%M oM

Cette régle est appel ée principe de superposition.

Considérons 4 charges gp, dg. dc. g situées dans un méme plan muni d'un
repere orthonormé. Ces charges sont placées respectivement en A(0,2) , B(-1,0), C
(1,0) et M (2,2). (Ies nombres entre parenthéses représentent les coordonnées exprimées
en cm).

Déterminer par construction graphique la force Fy, appliquee sur M

a) s les 4 charges sont de +10 -Ic

b) s = qg=qc=+10"/C qa=-2.10"7C

Déterminer dans chaque cas en quel point M' il faut placer une nouvelle charge
g pour gue la résultante des forces sappliquant sur M soit nulle.

|V Notion de champ électrique.

Reprenons la distribution de charges gy, g, g3, etc. situées aux points 04,
05, 03, €tc.. et penchons nous sur les valeurs des forces qui sexercent sur differentes
charges placées successivement en un point M de |'espace.

Si nous plagonsen M une chargeq, il Sexerce en M une force:

1 2 3
41 g1 9 Uogm + 1 929 Uoom + 1 0439 Uogm
T €0 2 4 eg 2 4 eg 2

01M 02M M

Fm=Fom +Foom +Fogm =

ro
3
Ou encore:
- Q1 02 a3
Fv=q 4 1 Uoim + 1 Uogom + 1 Uogm
T €0 2 4 gg 2 4 gg 2
01M 0oM 03M

Fv=0 1 8! UOiM)
(IE 47[380 r0i2M

Sans modifier ladistribution de charge g1, gp, g3 remplagonsla charge g située en
M par une nouvelle charge g'. Une nouvelle force F'\, sapplique en M:
Fu=qd [ ) 1 gi Ug; M
~ 4mey v oM
Il apparait que le remplacement de g par g' n'a pas modifié |I'expression vectorielle
entre parenthéses. Cette grandeur vectorielle Ey,, due aux charges extérieures, est

indépendante de la charge que I'on place en M
En estlechamp électriqueen M crée par les charges .
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Ev = 1 G ‘
M 2 4mweg 2 Hoim
oM

Etant donné une distribution g; de charges, considérées comme exterieures, il est

donc toujours possible de définir, en chagque point r de I'espace, une grandeur vectorielle
E(r) appelée champ dectrique.
Le champ éectrique est tel que laforce exercée sur une charge ponctuelle g placée

enr est:
|F(r) = qE()]

On peut déterminer le champ électrique au point r en'y placant une charge test
unité de 1 Coulomb. Le champ électrique en ce point n'est alors autre que la force qui
sexerce sur une charge unité de +1 Coulomb.

L'unité de champ éectrique est le volt par metre (V/m). Un champ électrique de 1
V/m crée sur une charge de 1 C uneforcede 1 N.

A l'instar des forces électrostatiques, le champ électrique obéit au principe de
superposition (Ces grandeurs ne sont séparées que par le coefficient de proportionnalité

Q).

Deux charges électriques A et B de méme charge g= 1076C sont placéesen (-1,0)
et (1,0), l'unité est 2.5 cm. Déterminer et tracer sur papier millimétrique (avec une
échelle adaptée) le champ éectrique en un nombre raisonnable de points. Utiliser au
mieux les symétries du probléme.

V Notion de champ vectoriel
V-1 L e champ éectrique, une nouvelle grandeur physique

A ladistribution de charges, qui etaient localisées en certains points 01, 0, etc. de

I'espace, nous avons fait correspondre un champ éectrique vectoriel E(r) défini en chaque
point r de I'espace.

On peut alors distinguer deux manieres de calculer laforce qui sexerce sur une
charge g placéeen M:

1€ facon: On considére les charges électriques extérieures gy, gy etc ..placées en
01, 02 etc.
On écrit laloi de Coulomb et on fait usage du principe de superposition.

zéﬂ% facon; on considere le champ électrique E(r) situé en M (d0 bien sOr aux
charges extérieures)
Et on écrit F=gE.

Si le résultat est équivalent, la deuxiéme méthode tend a faire oublier les charges
extérieures et ane retenir que la présence du champ éectrique

Cette démarche conduit a substituer aux charges électriques extérieures une
nouvelle grandeur physique: le champ éectrique E.

V-2 Description d'un champ vectoriel

Connaitre un champ électrique E, c'est connaitre le vecteur champ électrique en
chague point de I'espace, en direction, en sens et en intensité. Dans quel ques cas simples,
il est donné par une relation algébrique. Dans des cas plus complexes, il peut étre calculé
en des points de maillage suffisamment fin. Avec les moyens informatiques actuels, il est
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trés facile d'écrire un programme tel que, entrant les charges et leurs positions, I'ordinateur
fournisse en chaque point M demandé une petite fléche dont le sens, la direction et la
longueur renseignent sur le champ éectrique en ce point.

Pour avoir un apercu visuel rapide du champ électrique, il suffit de tracer en des
point uniformément distribués un ensemble de telles petites fleches. C'est ainsi qu'on
visualise et ressent le mieux ce qu'est un champ électrique. C'est ce que vous avez fait dans
I'exercice du paragraphe précédent.

(Une image vous renseigne sur une propriété physique dans sa globalité spatiale.
N'hésitez pas a utiliser ce moyen de communication. Il vaut largement une formule
déchiffrable par les seuls spécidistes).

V 3 Leslignes de champ

Un champ de vecteurstel que E étant donné, une ligne de champ est par définition
une courbe tangente en chaque point au vecteur champ défini en ce point. Ony gjoute de
petites fléches pour rappeler le sens du champ.

Les lignes de champ du champ électrique ne se coupent pas. Elles partent des
charges positives (ou de I'infini) et aboutissent aux charges négatives (ou al'infini).

V-4 Lignes de champ d'un systéme formé d'une charge ponctuelle placée a
l'origine

Une charge q est placée en 0O, origine des coordonnees. Tracer les lignes de
champ.

V1 Ledipdle électrique
VI1-1) Définition

On appelle dipble éectrique un ensemble formeé de deux charges -q (en N) et +q
(en P) de mémes valeurs absolues et de signes contraires.

L 'ensemble formé des deux charges reste globalement neutre.

Ledipdle est défini par lacharge g et par le vecteur NP qui joint les deux charges.

On appelle moment dipolaire le vecteur p =q NP

Nous verrons en travaux dirigés que, dans la limite ou la distance NP est
suffisamment petite, le moment et laforce exercés par un champ électrique extérieur sur
un dipdle ne dépendent que de p et sont indépendants des valeursindividuelles de g et de
NP.
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V1-2) Importance du dipble é ectrique dans les matériaux

Lorsque dans une molécule globalement neutre, les barycentres des charges
positives et négatives ne se superposent pas, on peut considérer que la molécule forme un

dipdle.
Une telle molécule induit en son voisinage un champ éectrique caractéristique qui
va lui permettre d'interagir avec les autres charges électriques et les autres dipbles du

systeme.
Ex : molécule d'eau , d'acide chlorhydrique, d'ammoniac etc...

Voir auss une animation montrant le champ créé par un dipdle dectrique sur le site

http://mwww.col orado.edu/physi cs/2000/appl ets/forcefield.ntml
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CHAPITRE ||

Potentiel électrique créé par
une distribution de charges ponctuelles

| Potentiel électrique

[-1 Introduction du champ scalaire potentiel éectrique

Le champ électrique est un champ vectoriel, c'est-a-dire qu'il est caractérisé en
chaque point r de |'espace par un vecteur E(r) dont il faut connaitre la direction, le sens et
I'intensité. Dans un repére orthonormé, il est repéré par ses trois composantes scalaires
Ex(r), Ey(r) et E(r).

Nous avons vu en outre que pour déterminer le champ éectrique total en un point
de I'espace, il faut, en vertu du principe de superposition, faire la somme vectorielle de
champs électriques é émentaires dus a chacune des charges.

Tout serait tellement plusfacile s chague point de I'espace éait caractérisé non pas
par un vecteur mais par un scalaire V(r), et si apartir de ce scalaire on pouvait calculer
simplement le champ électrique et laforce exercée sur une charge g située en ce point.

Eh bien, ce champ scdaire existe, il Sappellele potentiel éectrique.

Dans un repére orthonormé cartésien, les composantes du champ électrique sont
liées a ce potentiel dectrique par troisrelations:

Y Y Y
=-_" E, =-2 E,=-"_
T 9 Y, z 0z

|-2 Dériveées partielles

V(r) signifiequeV est unefonction detroisvariablesx, y et z.
dV/ox est la dérivée partielle de V par rapport a x. Cette dérivée sobtient en
supposant, le temps du calcul, quey et z sont des constantes.
Tout cela, vous le retrouvez en thermodynamique et vous le notez:

E,=- ( ﬂ )
aX y’Z
avecy et z enindice, pour bien vous rappeler quelors de ladérivation, y et z sont a
considérer comme des constantes.

Ici nous estimons qu'il n'y a pas d'ambiguité, aussi, pour ne pas alourdir les
formules, nous ne mentionnons pas les variables qui doivent étre considérées comme des
constantes lors de la dérivation.

Soit la fonction f(x,y,2) = 2x2y2- 22x2 + xy; calculer les fonctions dérivées
partielles de f par rapport a x,y puis z. Calculer ensuite les différentes dérivées partielles
des premiéres dérivées partielles. Que constatez vous?
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[-3 Potentiel éectrique dii a une charge ponctuelle

Soit une charge electrique g placéeau point A: 1 (Xa, YA, Za)-
Montrons que le potentiel électrique en un point M: r (X,y,2)

VN=Veya= V(x-Xal? +(y-yaP Hz-zaf

conduit al'expression du champ éectrique donné par laloi de Coulomb.
Ladérivation de V par rapport ax, changée de signe, sécrit:

CV(xy2) _ a (X-Xa) 1
ox 47080 | /(x-xaR +(y-yal Hzzal | (XXa) +(y-yal? Hz-Za)?

ou le terme entre crochet n'est autre que la composante selon x du vecteur unitaire
UaM-

La répétition du calcul sur y et z permet de montrer que les composantes de E
sobtiennent apartir de laforme de potentiel donné ci dessus.

Si on appeller ladistance qui séparele point M du point A, e potentiel éectrique
créeéen M par lacharge g placéeen A est smplement:

- Oa
Vy =
M 4dmegr

[-4 ....a une constante prés

En fait, e le potentiel éectrique est déterminé a une constante pres.

Il est bien évident que si vous gjoutez une constante quel conque a l'expression de
V, le champ éectrique E(r), et donc les forces qui sexerceront sur des charges placées en
r, sont inchangés (les dérivées d'une constante sont nulles).

Puisgue en fin de compte les forces représentent |les seules grandeurs accessibles a
I'expérimentateur, il est bien égal d'ajouter ou de ne pas gjouter une constante au potentiel.

C'est tout de méme plus simple de ne pas |'gouter.

Un systéme de charges g; crée dans |'espace un champ électrique E(r) et un

potentiel V(r). Al'origine 0, les composantes du champ électrique sont, exprimeées en
volts par metre: E(0)=(-30, 20,10) et le potentiel V(0) est de 8 volts. Estimer la valeur du
potentiel enr( 2,-1,0). préciser les hypotheses de calcul.

Un systéme de charge g; crée en chaque point de |'espace un champ V. (les
distances étant exprimées en cm) V(-1,0,0) = 16V, V(1,0,0) = 12V, V(0,-1,0) = - 15V,
V(0,1,0) = -9V, V(0,0,-1) = -6V, V(0,0,1) = 8V. Estimer le champ électrique a l'origine
et au point r(0.5, 0.5, 0.5)

|l principe de superposition

Nous avons vu dans le chapitre précédent que le champ électrique créé par une
distribution de charges était égal ala somme vectorielle des champs électriques créés par
chacune de ces charges g €elle éait seule.

De méme, |e potentiel électrique créé par une distribution de charges est égal ala
somme algébrique des potentiels électriques créés par chacune de ces charges s elle était
seule.

Cette propriété découle de la propriété de dérivation d'une somme qui est
simplement égale ala somme des dérivées.
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Si le champ éectrique total E(r) en un point r est lasomme vectorielle des champs
E(r) et Eg(r) créés par des charges placéesen A et B:

_ _ _oVa dVe _ oV
= + T ax
Ex(r) Eax(r) +Egx(r) ax ax X
ou
V(r) =Va(r) +Vg(r)

Restons cependant modestes. Nous avons présenté comme une avancée le passage
du champ électrique au potentiel en disant: "cette fois-ci ,nous n'aurons plus a gouter des
Vecteurs, nous n'gjouterons que des scalaires'. C'est vrai.

Mais ce serait un peu trop beau s un scalaire apportait la méme information qu'un
vecteur atrois composantes.

En effet, si la connaissance du champ électrigque en un point r nous permet de
déterminer laforce qui Sapplique sur une charge q placée en ce point r par larelation:

F(r)=q E(r)

La connaissance du potentiel en cet unique point r ne permet pas a lui seul de
déterminer laforce qui sapplique sur lachargeq. Il nous faut savoir aussi comment V
varie au voisinage de ce point, puisque c'est des dériveées partielles de V que sont déduites
les composantes de E et findlement de F.

LI1-Topologie

[11-1 Equipotentielles

Si la topologie d'un champ vectoriel est donnée par les lignes de champ, la
topologie d'un champ scalaire est donnée par des courbes de niveau. Dans le cas d'un
potentiel électrique, les courbes de niveau sappellent les équipotentielles. Ce sont les
courbes joignant les points de méme potentiel.

Une charge g= 106 C est placée a I'origine. Tracer quelques équipotentielles.
Comment se situent-elles par rapport aux lignes de champ?

[11-2 Propriétés des équipotentielles.

Les équipotentielles sont des lignes fermées (se fermant éventuellement al'infini).
Elles entourent les charges.

Elles sont perpendiculaires aux lignes de champ.

[11-3 Exemple d'un systéme de lignes de champ et d'équipotentielles.
) -

Cet exemplatfe est poin évaluatidngeulernent.
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Tracé a partir du logiciel YP Champ électrique
http://www.ncf .carleton.ca/~ch865/champel ectrique.html

[11-4 Détermination graphigue de champs é ectriques

A partir des quelques équipotentielles du schéma ci-dessous, tracer a la méme
échelle les vecteurs champs électriques aux endroitsindiqués par des points.
40V

30V

20V

10v

—

111-5 Analogie cartographique

Vous avez tous effectué des promenades en montagne avec des cartes présentant
des lignes de niveau. Ces lignes rejoignent les points situés ala méme altitude. Ce sont
des lignes fermées entourant les sommets et les fonds. Elles sont strictement équivalentes
aux équipotentielles.

Les lignes équivalentes aux lignes de champ ne sont pas représentées. Pour ce
faire, il faut prendre en chague point la perpendiculaire aux lignes de niveau. Les nouvelles
lignes indiquent la direction de la pente au point considéré (sens d'écoulement de |'eau).

Plus les lignes de niveau sont serrées, plus la pente est importante. La pente locale
est le pendant du champ éectrique.

i Gresind
cartes empruntees a: http //perso wanadoo fr/j mit/ori enZ htm
V le gradient

V-1 Une diversité de démarches complémentaires

Dans votre métier, vous aurez a résoudre des problemes pratiques et concrets.
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C'est ladémarche que nous avons pratiquée dans | es exercices ci-dessus. |l y a peu
de mathématique mais il faut avoir compris la physique du probleme et faire preuve
dinitiative. Nous disposons d' informations limitées en nombre ou sous forme graphique.

Il existe des démarches beaucoup plus mathématiques qu'il faut aussi savoir
utiliser parce qu'elles représentent des moyens tres puissants de résolution de problémes
(pourvu qu'ils soient bien posés). Les mathématiques conduiront a des solutions, qu'il
faudrainterpréter physiquement et dont il faudra sassurer de la cohérence en examinant
quelques cas limites. 11 ne faut pas utiliser I'arsena mathématique "téte baissée et apriori"”
maisil ne faut pas non plusy renoncer par crainte du calcul. Vous I'aurez compris: lafin
de ce chapitre se dirige vers un développement plus mathématique des champs et
potentiels éectriques.

V-2 Vecteur gradient

De fagon générale, a partir d'un champ scalaire, il est possible de construire un
champ vectoriel dont les composantes en coordonnées cartésiennes sont données par les
relations:

Exz_ﬂ Ey:_ﬂ Ezz_ﬂ
X ay 0z
Un vecteur défini ains est appelé (au signe pres) un gradient:

|E=-grad V |

Nous verrons plus tard que le gradient peut étre considéré comme un étre
mathématique avec ses propriétés propres.

Dansle cadre de ce gu'on appelle I'analyse vectorielle, on sera appel é a manipuler
cette grandeur (et quelques autres) en oubliant, comme pour tout vecteur, ses composantes
dans un repere particulier.

Nous voulons ici donner simplement les composantes du gradient dans deux
repéres appel és cylindrique et sphérique.

V- Coordonnées cylindrigues
V-1 Repérage d'un point en coordonnées cylindriques

En coordonnées cylindriques, un point M de |'espace est repéré comme un point
de cylindre (droit, a base circulaire) dont I'axe 0z est généralement confondu avec I'axe 0z
du repére cartésien.

A
Z b, &
\\ e@
M e
|
|
|
|
|
|
0 . Y -
0. N g
\r | ///
AN
X \\!//
___________ "
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M (our) est repéré par le rayon r du cylindre sur lequel il Sappuie, z sa cote par
rapport au plan de référence xOy et 6 I'angle (Ox, OM") ot M' est la projection de M sur le
plan x0y.

Lanotation r(r,0,z) vient se substituer ar(X,y,z) du repere cartésien. Vous pouvez
facilement vérifier que, pour un point donné, les composantes cartésiennes et cylindriques
sont liées par:

X =r cosh y=rsng z=z

V-2 Repérage d'un vecteur en coordonnées cylindriques

Nous nous posons la question de repérer un vecteur dont e point d'application est
situé au point M, r(r,0,2)

Pour cela nous attachons & M un repere orthonormé local. Nous I'appelons local
par ce quil n'est pas le méme pour tous les points M de |'espace.

Cereperelocd est fait de 3 vecteurs unitaires de base orthogonaux :

€, est un vecteur paralléle aOM'

ep est paralele au vecteur tangent en M' au cercle de rayon OM' contenu dans le
plan x0y

e, est pardléle al'axe oz

Dans ce repere, le vecteur champ éectrique a 3 composantes:

Ecrire dans ce repere les composantes des vecteurs unitaires ey, ey, € du repere

cartésien.
Noter qu' en coordonnées cartésiennes le méme repere (ey, ey, e,) et attache a

chaque point de I'espace.
V-3 Gradient en coordonnées cylindriques

Lorsque le potentiel V(r) est exprimé a l'aide des trois variables (r,0,z) les
composantes du champ électrique dans le repere cylindrique attaché au point M sont
données par:

L9V
Er ar

= - = = -lﬂ

E =-grad V Eq -
Ez _av

0z

V1 Coordonnées sphériques

V1-1 Repérage d'un point en coordonnées spheriques

En coordonnées sphériques, un point M (r) est considéré comme point d'une
sphére.

M est repéré
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- par lerayon r de lasphere alaguelle il appartient

- L'angle 6 entre ladirection Oz et la direction OM.
6 = (0z, OM)

- I'angle @ entre ladirection Ox et ladirection OM' ou M' est la projection de
M dans e plan x0y:
¢ = (0x,0M")
Un point M(r) étant donné, montrer que ses coordonnées cartésiennes s écrivent
en fonction des coordonnées sphériques; ainsi:

X=rsnfcosp y=rsnfsing z=r coso

A n
z ' M
N
N e
N
AN
€y
I
r |
I &
0 I
I
O I y
t v |
P > [ s
\ I. //
\ I,/
X ~ _ _ ________ RV
M

En géographie, ou on est amené a repérer un point sur la sphére terrestre, 1'angle 6
indiquerait la latitude par rapport au p6le nord et I'angle ¢ longitude est par rapport au
méridien de référence.

V1-2 Repérage d'un vecteur en coordonnées sphérigues

En coordonnées sphériques, un vecteur E(r) attaché au point r est repéré par trois
composantes ( E,, Eg, E(p) dans un repere orthonormé local (e, €y , e(p):
€ est paralléle aladirection OM

eg est tangent en M au cercle de rayon r décrit dans le plan qui contient alafois
lesdirections 0z, OM et OM'

est tangent en M au cercle de centre M" et de rayon M"M contenu dans le plan
perpendiculaire a 0z.

Considérons les champs et potentiels électriques créés par une charge ponctuelle

g placée a l'origine 0. Exprimer V puis les composantes de E en coordonnées
sphériques.
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V1-3 Gradient en coordonnées sphériques

Lorsque le potentiel V(r) est exprimé a l'aide des trois variables (r,0,¢) les
composantes du champ électrique dans le repére sphérique attaché au point M sont
données par:

4V
Er ar
E =-grad V = =| -1
g Eq f 2

E .1 v

¢ rsind ade

Tout celavous semble sans doute bien compliqué! Cela se clarifieraal'usage.
Pour vous rassurer, déduisez le champ électriqgue E créé par une charge
ponctuelle & partir de I'expression du potentiel V(r,0,¢) exprimé en coordonnées

sphériques.

V1l L erotationnel du champ électrique

Considérons un champ de vecteur E(X,y,z) et ses composantes E, (X,y,2), Ey(x,y,z)
et E; (Xy,2).

On appelle rotationnel de E le vecteur rot(E) dont les composantes en
coordonnées cartésiennes sont:

OE, 0Ey
oy oz
9Ex IE,
9z ox
0B, 9Ey
ox ay |

rot (E) =

Si le champ de vecteur E dérive d'un potentiel scalaireV selon lareation
E=-gradV, aorsrot E=0:

E=-grad V = rotE =0

(O en caractere gras signifie vecteur nul)

Lerotationnel est un nouvel étre mathématique de I'analyse vectorielle.

Retenons pour l'instant qu'un champ de vecteur dont le rotationnel n'est pas nul ne
peut pas étre un champ électrique. Dans ce cas en effet il ne dériverait pas d'un gradient.

VIl L e"vecteur" nabla

Le "vecteur nabld' noté V est largement utilisé dans les ouvrages anglo-saxons. Ce
n'est pas un vrai vecteur mais seulement un vecteur symbolique, c'est-a-dire qu'on peut
(moyennant quel ques précautions) le manipuler comme un vecteur. |1 Sécrit:

d d d
V=ey . —+e -~ € ——
X ox % ay ‘oz

et en coordonnées cartésiennes, ses composantes sont:

2/05/03 16



L e rotationnel du vecteur E apparait comme le produit vectoriel de nablaet de E:
rotE =VaAE

Legradient de V apparait comme le produit de nablaet de V:
grad V=VV

Attention: |'utilisation de ce "vecteur" comporte quel ques pieges!!
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CHAPITRE 11

Champs et potentiels créés
par des distributions de charges non ponctuelles

|- Introduction

Jusqu'ici, nous avons admis que les charges étaient ponctuelles, c'est-a-dire
localisées en des points de dimension "infiniment petite'.

Cela est correct lorsque I'on considére la charge de particules élémentaires telles
que ' électron ou le proton.

Cela reste raisonnable lorsque les objets chargés sont de dimension petite
comparée aladistance qui les sépare de |'observateur.

L 'approximation devient médiocre lorsgue au moins une des dimensions de |'objet
portant la charge éectrique devient significative devant la distance objet-observateur.

Elle devient totalement irréaliste lorsque cette dimension est plus grande que la
distance objet-observateur.

Nous alons examiner les effets d'extension spatiale de |'objet portant la charge
électrique en procédant en trois étapes:

i) Lataille de I'objet est importante dans une seule des dimensions et reste faible
dans les deux autres dimensions. L'objet est typiquement un fil, linéaire ou curviligne. Les
charges sont distribuées suivant une ligne.

ii) L'objet est étendu suivant deux directions. C'est une feuille plane ou "ondulée”.
Les charges sont distribuées sur une surface.

iii) L'objet est éendu dans les trois directions. C'est un volume au sein duquel les
charges sont contindment réparties.

|| Répartition des charges sur un objet filiforme
l1-1 Densité de charge linéique:

Considérons un fil AB, rectiligne ou curviligne, de longueur L portant une charge
éectrique Q uniformément répartie.

On appelle densité de charge linéique ou charge par unité de longueur la quantité
A=Q/L

3Déter miner la charge linéique d'un fil de 4m chargé uniformément d'une charge
de10°C.

Dans le cas général, la charge n'est pas uniformément répartie et la densité de
charge linéque varie de point en point.

Sur un tel fil, un point P est repéré par sa coordonnée curviligne |. Cette
coordonnée | représente la distance que doit parcourir un mobile partant d'un point O
chois comme origine pour rejoindre le point P.

Soit un point P ,voisin de P, de coordonnée curviligne |+dl
L'élément defil PP de longueur dl porte un éément de charge dq.
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dl

| +dlI

On appelle densité de charge linéique en | lalimite lorsque P se rapproche de P de
lagrandeur de do/dl|

_ dg )
M) = limg o (&
Ladensité de charge linéique sexprime en Coulombs par metre.
Il est bien clair que dans |'expression ci-dessus, dq et dl tendent vers 0
simultanément mais que le rapport des deux tend vers une limitefinie.
Pour déterminer la charge totale connaissant A\(l), découpons le fil en ééments de
longueurs Al; situés entre les cotes |; et |j44.

0

M)

A I i 5 |

Affectons une densite de charge uniforme A(l;) al'éément de fil comprisentre ; et
li+1. L'élément de charge Ag; portée par I'élément de longueur Al;= ;11 - |; est égal au
produit A(l;) Al; cest-a-dire al'aire du rectangle grise sombre.

La charge totale portée par lefil est alors égale ala somme des aires de tous les
rectangles.

Q=Y Ag =Y M(li) Al
Cette valeur n'est qu'approxilmative puiéqu' on a affecté laméme densité de charge
entrel; et |; 1. Elle devient plus proche de laredité s on affine le pas de la découpe. Elle

tend vers I'aire comprise entre I'axe des abscisses, la courbe A(l) et les deux droites
verticadlesélevéesen A et B
Comme vous l'avez vu, cette aire est égale a l'intégrale de A(l) entre | p €t I,

abscisses curvilignes des points A et B.
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Ig B
Q:f () dl :f () dl
la A (D)

Ladeuxieme notation signifie intégrale curviligne effectuée en suivant laligne ().

11-2 Exemple de charge portée par un fil

Considérons un fil de longueur L dorigine A de coordonnée curviligne .
Supposons que la densité de charge linéique de ce fil soit fonction de I'abscisse | et

sécrive M) = 104 1.
Entreles points d'abscissel et dabscissel + dI, I'@dément de charge est
dg=A(1) dl =1041 dl.
Lachargetotae est donc:

L
L
Q= 10-4|d|:1o-4{E} - 51032
0 2.0

La charge totale portée par un fil de longueur L est de 10°6C. Sachant gue la
répartition de chargeest delaformel(l) =Al 2 déterminer le coefficient A.

[11 Calcul du potentiel électrigue créé par un fil chargé
[11-1 Approximation par discrétisation

Considérons un fil curviligne AB. Cefil est chargé avec une densité linéique A(l).
Notre objectif est de calculer le potentiel créé par les charges portées par cefil en un point
guelconque M de I'espace.
Pour celg, divisons le fil AB en segments AA1, A1Ao, Aj_1A|, ElC. assez petits
pour que |'on puisse considérer:
1) que tous les points appartenant au méme segment elémentaire Aj_1A;
sont alaméme distance r; de M.
if) que la densité de charge linéique A; dans l'intervalle A;_1A; est
uniforme.
Dans ces conditions, la charge portée par le segment AAq est |4 Al4. Lacharge
portée par le segment A;_1A; est |; Al;.

A 4meg) nir

A A A, Ay A, A A B

L'élément de potentiel potentiel créé par le segment Al = AAq est:
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A1 Al
AVq= 1 1 1
17 4n eg N

Le potentiel créé par le segment Ali= A;_1A; est:

1 N Al
daeg i

AVi=

Tragons un diagramme faisant figurer en abscisse les distances Al;, et en ordonnée
les grandeurs (1/4m £) Aj/tj, €tc.

Le potentiel AV; peut étre considéré comme |'aire du rectanglei, de largeur Al; et de
hauteur (1/4m £q) A/t

En vertu du principe de superposition, le potentiel total est |la somme des aires de
tous les rectangles soit:

i=7
A Al

V = 1 i i
izzl dmaeg Vi

[11-2 Limite continue

Le calcul ci-dessus ne constitue qu'une premiére approximation. Pour effectuer un
calcul plus précis, il nous faut de nouveau affiner le maillage et faire tendre la courbe en
escalier vers une courbe continue.

Le potentiel total est I'aire sous la courbe représentant (1/4mep)Mr en fonction del

5 AI/4nsOr

B
~ A() dl
VM—I 1
N r ()

L'intégration est alors plus ou moins facile a effectuer selon laforme de A(l) et de

r(l).

On peut donc dire que I' dément de potentiel dV créé en M par lacharge dectrique
dg=A(l) dl localisée au voisinage du point P entre les abscisses curvilignes | et |+dl et
Stuée aladistancer(l) sécrit:

_ 1 M)d
dv daeg r(l)
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et que le potentiel total est lasomme (au sens de l'intégrale) des élémentsdV.
C'est un type de calcul infinitésimal que nous serons trés souvent amenés a répéter
en physique.

[11-3 Coordonnées du point source et de |'observateur

Lorsdu calcul d'un élément de potentiel, nous avons deux points a considérer: le
point source P ou se trouve |'é ément de charge et le point M, ou se situe I'observateur, et
en lequel on cherche acaculer le potentiel V.

Chacun de ces points est décrit par ses propres coordonnées. Lorsqu'il y a
confusion possible, nous noterons avec un ' r'(x',y',z") les coordonnées du point source et
r(x,y,z) les coordonnées du point M.

Pour calculer le potentiel, on devraintégrer sur lesvariable x',y',z' et on obtiendra
une fonction V(x,y,z). Le champ électrique en r seradéduit du gradient de V, en dérivant
par rapport ax,y,z.

Dans bien des cas, il n'y a pas de confusion possible, et nous ne prendrons pas la
peine d'gouter des" .

[11-4 Exemple de calcul de potentiel

Examinons lefil rectiligne de longueur L=2a uniformément chargé, centré en 0 et
dirigé le long de I'axe Oy. Calculons le potentiel en un point M situé sur I'axe Ox ala
distance x du fil.

Les coordonnées de P sont (X',y',2) et cellesde M sont (X,y,2)

Considérons un élément de longueur dy' compris entre y' et y'+dy'. La charge
portée par cet élément est égale a A dy'. La distance entre cet élément de longueur et e

point M est égaleél(x2 + y'2) vz
Lacontribution dV de cet dément dy' au potentiel en M est donc:
dv=_1 &
4780 \/y'2 +x2

et par intégration sur lesy' entre -a et +a, nous avons:
(Pour ce qui est de I'intégration, voyez un cours de mathématique ou consultez les tables)
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+a

V(x0) = M dy’ L [in(y +/y2+x2)]2=

4meg A/y-2+7X2 = 47eg 4
a

C'est un résultat exact.

De fagon similaire, on peut calculer V(x,y) en tout point du plan xOy de lafigure.

Le potentiel en un point (x,y,z) quelconque de I'espace se déduit de V(x,y) par
rotation autour de I'axe Oy.

Un fil rectiligne de longueur 10cm porte une charge de 1uC uniformément
répartie sur sa longueur. Représenter I'évolution du potentiel le long de |'axe ox.

[11-5 Examen du comportement asymptotique

I est toujours heureux, aprés un tel calcul, d'examiner s le comportement a grande
distance, ou a petite distance, ou encore en des points particuliers de haute symétrie, sont
physiquement raisonnables.

Ainsi, dans I'exemple précédent, on sattend a ce que |'expérimentateur placé a
grande distance du fil (comparé a salongueur 2a) ne se rende plus tout afait compte de
son extension spatiale et |e voie comme une charge ponctuelle Q= 2a\ dont il serait ala
distance de x. Ainsi on attend a grande distance un comportement du potentiel de la
forme:

V(x,0) ~ 28~

4mweoX

On retrouve effectivement ce comportement en écrivant:

Inatia2+x2 - |, (1+ 1 - In (1— 1

-a +Va2+x2 1+£ 1+£
V a2 V a2

En tenant compte du développement limité (pour ¢ petit) du logarithme au
voisinage de l'unité&:

In (1+€) = ¢
ouici:
1
AJ1+X2
a’
et en tenant compte du fait que (x2/a2) >>1

On obtient pour x>>a:

V0 ~ -~ 2a_ Q
(x0) Arweg X Admegx

€ =

Il est clair que nous avons negligé a devant x aux moments "opportuns’.
Vous allez sans doute vous demander ce que sont ces moments opportuns.
Pour les déceler, il y adeux conditions:

i) 1l faut connaitre les développements limités les plus courants,

i) Il faut pratiquer et faire un certain nombre de telles approximations.

Nous n'insisterons jamais assez pour vous inciter a examiner ce que deviennent

des formules trouvées par de longs calculs, dans des cas particuliers simples ou dans des
conditions extrémes.
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|V Champ électrique créé par un fil
V-1 Champ éectrique, dérivée du potentiel

Le calcul du champ électrique en un point r a partir du potentiel électrique
nécessite en principe la connaissance du potentiel au voisinage de ce point et cela dans
toutes les directions (suivant X, y et z). On utilise alorslarelation:

E=-grad V.

Toutefois, par des arguments de symétrie, la détermination du champ éectrique en
des points, le long de lignes ou sur des plans particuliers peut ne nécessiter qu'une
connaissance partielle du potentiel.

C'est le cas dans I'exemple du fil uniformément chargé, si I'on veut déterminer le
champ électrique en des points situés sur |'axe Ox ou plus généralement dans le plan x0z.
Par symétrie, il est clair qu'en tout point M du plan bissecteur du fil, le champ électrique
est dirigé dansladirection OM. Celasignifieque si M est sur I'axe 0x, le champ électrique
n'a de composante ni suivant y ni suivant z. La seule composante du champ est donc:

X
qui ne requiert que la connaissance de lavariation de V en fonction de la variable

Montrer que la composante E, du champ électrique en un point de |'axe ox
Secrit:

- Q 1
B (0x)= 47 €0 xVa2 +x2

Discuter son comportement a grande distance
V-2 Formule générale du champ électrique créé par un fil

Reprenons |a découpe du fil curviligne et déterminons le champ électrique AE;
creé par chaque élément de longueur Al; comprisentre A;_q et A; et placé aladistance ;
du point M.

Chaque éément defil Aj_1A; créeen M un éément de champ qui est un vecteur:

AE;= i AL u;

47 egr?

OuU u; est le vecteur unitaire joignant le milieu du segment de droite A;_1A; au point
M.

Le champ éectrique total E est |a somme vectorielle des champs & émentaires
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E:Z A A|i2 U
i 43"380ri

~ cequi signifie que composante par composante: (nous écrivonsici la composante
cartésienne x, nous pourrions le faire sur toute autre composante):

E, = Ai Al

> Uijx
T 4mepr

Par passage alalimite continue on obtient pour Ey

_ 1 [rod
Ex 43‘[801 |’2(|) uy (1)

Le méme calcul peut étre répété pour les deux autres composantes:
ce gue nous récapitulons formellement par:

e, = 1 fx(l)ou m

T 4meg r2(1)

Cette équation entre vecteur est formelle en ce sens qu'on ne peut pas intégrer
directement. Il faut faire la somme vectorielle des éléments de champ éectrique. Cette

relation ne fait que synthétiser trois intégrales scalaires définissant chacune les
composantes du champ €l éctrique.

V- 3 Exemple de cacul

Reprenons le calcul du champ éectrique E(x,0) créé par un fil de longueur 23,
uniformément chargé.

L' élément de fil de longueur dy' compris entre y' et y'+dy', situé a la distance
(x2+y'2)]J 2 deM, porte une charge Ady'. Lacomposante Uy, du vecteur unitaire est :
Uy =COSO = X

VX2 +y'?
I vient:
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+a

47eg (x2+y' 2) 32
-a
Soit:
. y'=+a
E, (x,0 = -AX y
X( ) 43‘[280 X2,/X2+y'2 y'=-a

Soit encore en tenant compte de Q=24l:

- Q 1
EX(X’O) 4.7':80.)(Va2+x2

Reprendre plusieurs fois et en détail I'ensemble du calcul. 1l a valeur d'exemple.

On peut voir aussi sur lafigure ci-dessus que des é éments de fil symétriques par
rapport al'axe Ox produisent des éléments de champ dont la résultante est orientée suivant
0x. Cela justifue qu'en tout point M du plan bissecteur du fil, le champ électrique est
dirigé suivant OM.

Montrer par le calcul que Ey, (x,0) est nul.

V_Charge surfacique
V-1 Densité de charge surfacique

Considérons une surface S (non nécessairement plane) portant une charge Q
uniformément répartie. On appelle densité de charge surfacique la quantité o= Q/S.

Tout comme lefil, la surface peut ne pas étre chargée uniformément. Dans ce casiil
faut préciser la charge surfacique en chague point de la surface, al'aide d'un repére adapté
alaforme delasurface.

Si lasurface est plane, on choisiraun repére cartésien ou polaire. Si lasurface est
en forme de calotte sphérique, on penchera plutét pour pour un repére sphérique. Si la
surface est gauche..., ce sera beaucoup plus complexe et il faudra se tourner vers des
méthodes numériques.

V-2 Densité de charge surfacique en coordonnées cartésiennes

A dx

b
y+dy
o
y
e
O X x+dx a

Le repere cartésien est particulierement bien adapté lorsque la surface est
rectangulaire et plane.
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Dans e repére (x0y), un @ément de surface, dont I'abscisse est compris entre entre

X et x+dx, et I'ordonnée entre y et y+dy, présente un élément d'aire dS= dx dy (en gris
foncé sur lafigure ci-avant) et porte un élément de charge d2q(x,y)= o(X,y) dx dy.
( Pour les notations, voir la note sur lesinfiniments petits au paragraphe suivant).

Le calcul de lachargetotale de la plaque peut aors seffectuer en deux étapes:

i) Détermination de I'élément de charge dq portée par un élément rectangulaire de
longueur a et de largeur dy (élément en gris clair) compris entrey et y+dy. Cet éément de
charge est une fonction de la variable y et sobtient en faisant la somme des é éments de
charge dg selon x (dans ce calcul y est une constante).

X=a

dq(y) = f dg(xy) = f [ o(x,y) dy | dx = dyf o(x,y) dx =A(y) dy

x=0 x=0 x=0

Il sagit d'un calcul tout afait équivalent acelui de lacharge d'un fil rectiligne de
longueur g, portant la charge linéique o(x,y) dy.

Nous avons sorti dy de l'intégration car il ne dépend pas de x.

dq(y) prend la forme t(y) dy et représente I'élément de charge apporté par les
tranches dont I'ordonnée est comprise entre y et y+dy.

i) Sommation des contribution de charge dq apportée par chaque tranche dy:

y=b y=b
Q =f da(y) = f t(y) dy

y=0 y=0

Nous avons intégré sur x puisintégré sur y. Nous aurions pu faire I'inverse, c'est-
a-dire intégrer sur lesy puis sur les x. Nous aurions alors fait la somme de contributions
de bandes verticales d'épaisseur dx.

Bien sOr, le résultat est indépendant de I'ordre d'intégration et I'on note:

Xx=a py=b y=b px=a
Q= f f o(x)y) dx dy = f f o(x,y) dx dy
x=0 y=0 y=0 x=0

Ceci et appelé intégrale double.
V-3 Note sur les infiniments petits

- dx ou dy sont desinfiniment petits du premier ordre.
- une expression renfermant le produit de deux infiniment petits du premier ordre

est un infiniment petit du deuxiéme ordre; elle se note en principe d2S = dx dy ou d2g=
o(x,y) dx dy.

--une expression renfermant le produit de trois infiniment petits du premier ordre
est un infiniment petit du troisiéme ordre. Par exemple, I'éd ément de volume d3t= dx dy
dz.

L'exposant (2 ou 3) indiquant I'ordre de l'infiniment petit est généralement omis
lorsgu'il n'y a pas d'ambiguiité et I'on note souvent dS pour d2S ou dr pour d3t.)

V-3 Exemple de charge portée par une surface rectangulaire

Considérons une surface rectangulaire dont les abscisses sont situées entre x = a
et X = b et les ordonnées entre y = ¢ et y = d. Supposons que cette surface soit chargée
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avec une densité surfacique o(x,y) fonction de x et dey, o(x)y) = A (x2+y2).

Déterminons la charge totale de la plaque.
Procédons comme ci-avant et intégrons tout d'abord suivant les x:

x=b
=b
da(y) = dyf AC@ry) dx=dy X +y2x”
3 X=a

X=a

C'est la charge apportée par le rectangle gris clair situé entre'y et y+dy.
Par intégration sur lesy, on obtient la charge total e soit:

y=d
o= [P5® vva) o
y=c¢

Terminer le calcul de Q

V-4 Densité de charges surfaciques en coordonnées polaires

L es coordonnées polaires sont les coordonnées naturelles d'objets circulaires. Un
point M est repéré par ladistance r = OM qui la sépare du centre O et I angle orienté 6 que
fait ladirection OM avec |'axe des x.

L es coordonnées polaires sont équivalentes aux coordonnées cylindriques ala cote
z=0.

¢

dr |
*< 21w r

Une surface élémentaire du deuxieme ordre est représentée en noir sur le dessin
ci-dessus. Danslalimitede dr et dedo petits, cette surface est un petit rectangle de cotés

dretrdo.

L'éément de surface d2S sécrit:
d?S = rdrdo
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Si I'on fait I'intégrale (somme) de cette expression sur tous les angles 6 compris
entre 0 et 2, on obtient un nouvel éément de surface représenté en gris. Ce nouvel
élément de surface ( maintenant infiniment petit du premier ordre) sécrit:

0=2n 0 =2n

0=2n

dS:f rdrdezrdrf do = rdr Me:o =2nr dr
06=0 06=0

dS est bien I'aire d'un rectangle de largeur dr et de longueur 2 r = périmétre du
cercle derayon r. On obtient ce petit rectangle en déroulant I'aire hachurée.

Vous alez dire que dérouler une couronne de cercle n'ajamais donné un rectangle.
Celatend vers un rectangle dans lalimite des dr petits, c'est-a-dire dans |alimite ou nous
travaillons.

Dailleurs nous pouvons nous convaincre du bien-fondé de la méthode en
terminant le calcul del'aire S du cercle. |1 reste afaire pour celala somme de couronnes de
rayonsr, cest adireintégrer dSsur lavariabler entre O et R:

r=R

S =f 2nr dr = nt R
. . . r:O

ce qui est bien lI'aire du cercle derayon R.

En coordonnées polaires, la densité surfacique o(r,0) est une fonction der et de 6.
Dans certains cas particuliers, elle n'est fonction que de 6. Dans des cas plus particuliers
encore, elle ne dépend d'aucune de ces variables et est uniforme.

Par un raisonnement tout a fait similaire a celui que nous avons suivi pour les
coordonnées rectangulaires, nous avons.

=2 r=R r=R =21
Q :f daf o(r,e)rdr:f rdrf o(r,0)do
6=0 r=0 r=0 6=0

On peut intégrer dans |'ordre que I'on veut. Ce n'est pas tres compliqué, il faut juste
un peu de pratique.

V-5 Exemple de charge portée par un disque

Considérons un cercle de rayon R chargé avec une densité de charge o(r,0) = A r

cos20 . Cen'est pas une densité de charge trés habituelle. Elle est d'autant plus grande que
I'on séloigne du centre O du cercle et que I'on se rapproche de |'axe 0x. Disons qu'elle est
inventée pour illustrer le calcul de o.

Représenter un cercle et y porter des charges dont la densité varieenr cos20

0= 2t r=R 0=2t
Q= do Ar2cos?d dr = AR’ o9 do = A R
3 3

0=0 r=0 6=0

Faire en détail le calcul ci-dessus. Les tables donnent:
cosu du = U+ Sn2u
2 4

Reprendre le calcul enintégrant d'abord sur 6.
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V1 Potentiel électrique créé par une surface

VI1-1 Expression générale

Un élément de surface dS' portant une charge d2g= o dS placé aladistancer du
point M produit en ce point une contribution au potentiel :
d2 \V = 1 o dsS

7 7 7 7 4 J-C 80 r
nous avons représenté deux éémentsdsS.
Le potentiel total créé en M est |la somme de toutes les contributions é émentaires

et sécrit formellement:

ds

dE

ou les deux signesintégral signifient qu' il faut faire une intégrale double. |l sagit
d'un calcul souvent difficile puisque les & éments de surface ne sont pas en général sur un
méme plan.

Il faut paramétrer |'éément de surface (c'est-a-dire I'exprimer en fonction de
variables), exprimer r et ¢ en fonction de ces paramétres puis intégrer sur ces parametres.

V1-2 Expression du potentiel créé par un rectangle chargé

Considérons le rectangle ABCD placé dans le plan (y0z), chargé avec une densité
de charge surfacique dont la valeur dépend des parameétres naturels du problémey' et Z
(ici x'=0)

Un élément de surface dS= dy' dz' localisé au point (y',z') porte une charge
élémentaire dg= o(y',z") dy' dz'. Cet élément de surface est placé a une distance r (y',z)
d'un point M (x,y,z) dont on veut connaitre le potentiel. r sexprime en fonction dey et z
selonlareation:

ry2) = VxP Ay- yP Hz- 2P
L'éément de potentiel enx, y, z Sécrit:

Gy 1 olyz) dyde
AT A/xf Ay -y )2+(z -7 )

et le potentidl total en M:
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Le cacul peut étre plus ou moins complexe maisil est en principe faisable.

V1-3 Potentiel créé par un disgue en un point son I'axe

L es coordonnées naturelles d'un disgue chargé sont les coordonnées polaires. Un
élément de surface du disque rdr do placé en (r,0) ( éément en noir) porte une charge

d2g= o(r,0) rdr do. Il est placé aladistance d = (r2 + x2) V2 gy point M. Sa contribution
au potentiel est donc:
2y = 1 o(r, ©) rdrde
47 €0 VX2 +r12
(Nous notons d la distance entre I'él ément de charge et le point M (au lieu de

I'habituel r) pour éviter toute confusion avec le rayon r de la couronne élémentaire choisie
sur |'objet circulaire)

e
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Reste aintégrer en 6 (‘entre 0 et 2r) pour avoir la contribution au potentiel dueala
couronne en gris de rayon r et d'épaisseur dr. Puis en r (entre O et R) pour avoir la
contribution de toutes |es couronnes, c'est-a-dire la contribution totale.

V1-4 Potentiel créé par un disque uniformément chargé, en un point de son |'axe

Si ledisque est uniformément charge, o(r,0) = o

r=R 0=2x r=R
v =90 __rdr do = 2T 9 __rdr
41eg - Yx2 +r2 6= 4meg - X2 +r2
(on peut intégrer directement en g avec comme résultat 2 lorsque ¢ ne dépend

gquedelavariabler)

En utilisant larelation

f _udu - {2 +a2

Ju2 +a2
on arrivetresfacilement a:
V = i(VR2+x2 -1x1)
0

Fairele calcul en détail, c'est un cas classique.

VIl Champ électrique créé par une surface
V1I-1 Calcul apartir du potentiel

Vous pouvez reprendre mot a mot le paragraphe consacré au calcul du champ
électrique créé par un fil a partir du potentiel. Ici aussi, nous tirerons au maximum
avantage des symétries du probléme.

Calculer le champ électrique créé en un point M de l'axe d'un disque
uniformément chargé.

V11-2 Expression formelle

De fagon tout a fait similaire a ce que nous avons fait pour le calcul direct du
champ électrique créé par un fil chargé, nous pouvons écrire formellement le champ
éectrique créé par une surface chargée.

Chague éément de surface dS, de charge surfacique o, placé aladistancer deM
et dont la direction le joignant & M est repérée par le vecteur unitaire u, apporte une
contribution d2E au champ éectrique:

dmweyg 2

u

Le champ éectrique tota sécrit:

Ey = 1 ffodS‘ u
4dmeg s r2

Le champ électrique total est la somme sur toute la surface S des champs

électriques élémentaires créés par les ééments de surface dS' portant des charges d2g= o
ds
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Cette relation se décompose en trois nouvelles relations val ables pour chacune des

composantes:
E, = 1 f f o ds U,
47eg s r2

Comme precédemment pour le potentiel, il est possible d'effectuer le calcul de Ey
en parametrant o, I, Uy et dS' al'aide de coordonnées cartésiennes, polaires, cylindriques
ou sphériques.

Calculer par méthode directe le champ produit en un point M de I'axe d'un
disque chargé uniformément.

V1l Densité de charge volumique
V111-1 Distribution de charge volumique

Si un solide de volumet' porte une charge Q uniformément répartie, la densité de
chargevolumiqueest p=Q/t'.

Quelle est la densité de charges volumiques dans une sphére de 1cm3
uniformément chargée portant 10°6¢c?

Dans le cas général, la charge n'est pas uniforme et la densité volumique p(r')
dépend du point r' que I'on considere. L'élément de charge dans le volume dt' localisé

autour du point r' est d3g= p(r') dr'.

V1I1-2 Distribution de charges volumiques en coordonnées cartésienne

En coordonnées cartésiennes, un élément de volume sécrit:
dt' =dx' dy' dz
Ladensité de charge p(x'y',z)) est fonction de x', y' et z:'
L'é@ément de charge contenu dans un volume dt' entourant le point r' est:
d3q = p(x'y',Z) dx' dy' dz'
Lachargetotae Q est uneintégrale triple sur lestrois variables, prises dans
I'ordre que I'on veut. Elle sécrit:

Q =fff p (Xy',Z) dx' dy' dz
.

t' figurant en bas du signe intégral signifie que l'intégration porte sur tout le
volume du solide.

Déterminer la charge électrique portée par un cube de c6té a centré a l'origine
des axes et dont la densité de charge volumique sécrit p(X'.y',z)'= A(x'2+ y2+ 22)

V111-3 Distribution de charges volumiques en coordonnées cylindrigues.

Comme leur nom l'indique, les coordonnées cylindriques sont particuliérement
bien adaptées a un solide cylindrique de rayon R et de hauteur H.

Dans un tel repére, I'élément de volume sécrit dr rdg dz. Ce n'est pasimmédiat a
Voir ni areprésenter. Pour bien vous en persuader, il n'y apas de secret, il faut représenter
plusieurs fois vous-mémes cet é ément de volume.
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Reprenons | e triédre en coordonnées cylindriques:
L'éément de volume dr est un parallél épipede dont les axes sont selon g, e et e,

Passer der ar+dr (a0 et z constants) déplace le point M de dr le long de e,. dr
est le premier coté du parallélépipéde élémentaire.

Passer de 6 a0+d0 déplace le point M lelong de ey . Le déplacement est de rdo.
rdo représente le second cbté du parallélépipede élémentaire.

Passer de z a z+dz déplace M de dz lelong de e,. dz représente |e troisieme cote.

L'éément de volume drt est donc de= rdr db dz.

Reste aintégrer selon les trois coordonnées, dans |'ordre que I'on veut. L'ordre le
plus naturel consiste a intégrer tout d'abord selon 6 de 0 a 2, ce qui génere un volume
sous forme de couronne de rayon r (et donc de périmétre 2rt r) d'épaisseur dr et de
hauteur dz. La deuxiéme intégration porte, selon r, de 0 a R. Cette intégration génére un
disgue de rayon R et de hauteur dz. La troisieme intégration selon dz génere le cylindre
dans son entier.

Lacharge totale est donc:

Q:fff p(r,0,2)rdrd6 dz
T

Déterminer la charge portée par un cylindre de hauteur H de rayon R, d'axe de
révolution Oz, posé sur e plan xOy et dont la densité de charge est p(r,6, 2= Ar

V1l1-4 Distribution de charges volumiques en coordonnées sphériques

L es coordonnées naturelles d'un corps apparai ssant sous forme de sphére sont les
coordonnées sphériques. Les coordonnées sont r, 6, ¢ . L'élément de volume est dt =

rZdr sin® do do. Plus encore ici, vous ne serez convaincus que Si Vous-méemes, vous
dessinez I'dément de volume dr et les volumes engendrés par les intégrations successives.
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L'éément de volume dr est le parall €l épipede rectangle dont les cotés sont selon ey,
% %

Passer de r ar+dr déplace le point M de dr le long de I'axe €,. dr est |e premier
cOté du parallé épipéde.

Passer de 0 a 6+d0 déplace M de r dq dans la direction de eg. r db est le second
coté du parallélépipéede.

Passer de ¢ a @+dg déplace les points M' et M dans la direction €p de OM' dg.
Or OM'=r sinf. Le déplacement dans la direction de & &t donc r sinb dg.

L'éément de volume est :

dr = r2 dr Sind do dg

L'élément de charge porté par le volume dt situé au voisinage du point de
coordonnées (r, 0, ¢) Sécrit :

d®q= p(r,0,9) r2dr sind do dg

Et la charge totale sécrit:

Q:Iff p (r,0,9) r2dr sinb do do
T

Si onintégre successivement selon ¢, 0, r, ce qui est lafagon naturelle de procéder:

L'intégration selon ¢ ( de 0 a 2t) engendre une couronne d'axe 0z, située ala cote
r cosd, derayon r sind et dont les deux autres dimensions sont r do et dr.

L'intégration selon 6, engendre une couronne sphérique de rayon r et d'épaisseur
dr.

L'intégration selon r (de 0 a R) engendre la sphere tout entiére.

Représenter |es surfaces engendrées successives.

Déterminer par intégrations successives la charge portée par une sphére de
rayon R chargée uniformément avec |a densité volumique pg.
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| X Potentiel et champ créés par un volume chargé.
| X-1 Potentiel éectrique

L'é@ément de volume dt' entourant le point r* et portant I'éément de charge p(r') dt'
crée au point M situéen r un éément de potentiel d3V:

Py = 1 p(r) dt
Auey |r-r']

Le potentiel total en M est la somme de ces contributions soit:

_ 1 p(r) dv
o

Comme précédemment, il faut paramétrer chacune des grandeurs et intégrer sur les
parametres. Ce peut étre compliqué!!

|X-2 Champ électrique

Il peut étre deduit du potentiel par dérivation al'aide delarelation E=-grad V.
Alternativement, on peut déterminer I'é ément de champ dE créé en M par la
relation:

#e=_1 P (r) dv u
47 €0 ( r-r' )2
ou le vecteur unitaire u est porté par la direction joignant I'élément de volume
portant la charge dg au point M.

Soit en intégrant sur le volume:

- 1 p(r) dv

relation valable composante par composante.

X Symétries de distribution de charges et champ électrique

Dans bien des situations, et nous en avons rencontré, des considérations de
symétrie permettent de simplifier considérablement les calculs.

Larégle de symétrie la plus courante est celle-ci: le champ éectrique en un point
d'un plan de symétrie de la distribution de charges est un vecteur dont la direction est
contenue dans ce plan.
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Il est clair sur le schéma ci-dessus que deux charges qp €t qg €gales et
symétriques par rapport au plan ([]) produisent des champs électriques Ep et Eg

symeétriques par rapport a ce plan. Leur résultante est située dans le plan de symétrie. En
répétant le raisonnement sur toutes les charges symeétriques deux a deux, on trouve bien
sOr une résultante totale de champ électrique contenue dans le plan.
Si un point est situé al'intersection de deux plans de symétrie de la distribution de
charge, alorsle champ éectrique est dirigé suivant ladroite d'intersection des deux plans.
Si un point est situé al'intersection de trois plans de symétrie, le champ éectrique
en ce point est nul.

X Ce qu'il faut savoir

Ce chapitre est long et sans doute difficile.

Il vous faudra un certain temps pour bien voir dans I'espace les éléments de
volume, et les formes engendrées par les différentes intégrations.

Mais vous devez arriver a manipuler ces méthodes d'intégration, non seulement
parce qu'elles apparaissent en électricité, mais parce que vous les rencontrerez dans
différentes autres matiéres telles que lamécanique.
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CHAPITRE IV

Flux hamp électri théor €

) Enoncé du théor éme de Gauss
| -1 Cas particulier du théoréme de Gauss

Considérons une charge q placée en 0. Tragons trois sphéres &4, §,, 5.
concentriques de centre O derayonry, 1, et r.

En tout point de la sphére §,, le champ électrique E; est dirigé

perpendiculairement a la surface de la sphere. Son intensité est donnée par la loi de
Coulomb: .
El - 4 J':IIZ- €0 rTz
On verifie aisement que le produit delasurface S; =4 n rl2 delasphére &, par
le champ électrique E,= E (r;) est égal ala constante g/e; et ne dépend pasder,. Le
méme raisonnement peut étre reproduit sur les sphéres &, et &,

Le produit du champ électrique créé en un point M par une charge ponctuelle
placée en O, et de la surface de la sphére de rayon OM, est une constante g/t ,

indépendante du point M considére.

Ceci est un cas particulier d'un théoreme plus général qu'on appelle théoreme de
Gauss.
Laraison de la constance de ce produit tient de toute évidence au fait que la surface

de la sphére croit comme OM? aors que le champ électrique en un point de cette sphére
décroit comme 1/0M2,
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|-2 Enoncé général du théoréme de Gauss

Dans toute sa généralité, |le théoreme de Gauss sénonce ainsi:

Leflux total du champ éectrique sortant d'une surface imaginaire fermée est égal a
|asomme des charges intérieures divisée par &,

Ce théoréme doit vous laisser un peu perplexes.

En relisant le paragraphe précédent, vous devez penser que le flux était le produit
de la surface de la sphére imaginaire par le champ électrigue en chaque point de cette
surface. C'est vrai dans le cas particulier considéré.

Vous vous dites peut-étre encore que, pour que cet énonceé soit valable aussi bien
pour les charges négatives que pour les charges positives, le signe du flux doit changer
avec celui de la charge. Pour cette raison, on decréte que le flux est positif lorsque le
champ électrique est dirigé vers I'extérieur de la sphere et qu'il est négatif si le champ
électrique est dirigé versl'intérieur. C'est une convention.

En fait,ce théoréme ne parle pas de sphére; il ne parle que de surface fermée. Il ne
précise pas la position de la charge, il ne dit pas non plus si la charge est ponctuelle,
étendue ou méme sil y a plusieurs charges. |l ne parle que de charges intérieures ala
surface fermée.

Il nefait nullement alusion aux charges extérieures ala surface fermée.

Ce théoreme sépare les charges en deux groupes:. celles qui sont intérieures ala
surface fermée et celles qui lui sont extérieures.

Tout celamérite précision. C'est I'objet de ce chapitre
-3 Modéle

Nous allons montrer la validité du théoréme de Gauss en raisonnant sur un
systéme physique imagé que nous appellerons du "tireur fou" et qui possede bien des
aspects du champ éectrique.

Le systéme physique a partir dugquel nous allons raisonner n'est toutefois pas un
champ éectrique et il ne présente donc pas toutes ses caractéristiques. Pour cette raison, il
faudra rester prudent.

Mais sur les aspects qui nous intéressent, les choses sont plus "matérielles’ et
donc plus faciles & appréhender.

En fait nous avons hésité a développer cette image de "tireur fou" parce qu'une
telle image risque toujours de compliquer les choses plutdt que de les simplifier.

Nous n'y avons finalement pas renoncé pour deux raisons:

i) 1l vous faut apprendre a aborder des problémes par transposition. Dans votre vie
professionnelle, vous serez amenés a transférer des modes de raisonnement et des
résultats d'un sujet al'autre ou d'un probléme al'autre. La comparaison que nous allons
développer est un apprentissage au décl oisonnement.

i) Le modele que nous allons mettre en oeuvre fait apparaitre les choses sous un
aspect de bilan. Dans votre formation d'ingénieur matériaux, vous aurez souvent a
effectuer detelsbilans.

Alors tentons cette comparaison. Avec un peu de recul, vous nous direz si nous
avons compliqué les choses ou si hous avons aidé a comprendre le théoreme de Gauss.
Au vu de vos appréciations, nous rectifierons (pour les prochaines années) notre facon de
présenter ce probléme géométriquement délicat.
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LI Lachargeéectriqueet letireur fou

[1-1 Le modéle du tireur fou

Imaginons qu'une charge électrique placée a l'origine 0 soit émettrice de
projectiles.

Disons que c'est un tireur fou qui mitraille sans discernement dans toutes les
directions de |'espace et émet un nombre Qy de projectiles par seconde.

Un tireur fou émet 100 000 projectiles par seconde. Combien de projectiles un
homme "parallélépipédique’ de 1.8 m de hauteur, 0.4 m de largeur et 0.25 m
d'épaisseur, placé a 100m ( puis a 1000m) recevra-t-il (en moyenne) de projectiles par
seconde?

[1-2 Loi de"Coulomb" du tireur fou

Il est clair que le tireur placé a l'origine affecte chaque point r de I'espace par le
nombre de projectiles qu'on peut y recevoir par seconde.

Chaque point M(r) de I'espace peut étre caractérise par le nombre de projectiles
E1g(r) qu' une surface unité test sozlm2 placée en ce point, bien perpendiculairement au
faisceau de projectiles, recoit par seconde (la surface test est toujours placée
perpendiculairement au sens de déplacement des projectiles).

Si letireur fou émet isotropiquement Q- projectiles par seconde, le nombre Eq¢

de projectiles regus par la surface test placeeenr est égal a Q¢ sol4arr2:

ETp=- 0
TF 4MZQTF

S 4nr? est la fraction de surface de la sphére de rayon r couverte par la surface

test.
Cette relation n'est pas sans rappeler laformule du champ électrique créé par une
charge ponctuelle.

Poussons encore un peu la comparaison. Remplagons s, par ty=1/s, et faisons de
E+r un vecteur qui, outre le nombre de projectiles regus par seconde sur la surface test,

indique le sens de déplacement des projectiles.
Pour cela, introduisons le vecteur unitaire u dont le sens est |e sens de déplacement
des projectiles. Eq sécrit:
1 Qrr

ETE=-=— ~'Fu
TF 47 to r2
Ce vecteur ressemble alors comme un frere au vecteur champ éectrique. 11 posséde

ses deux caractéristiques essentielles: il est radial et décroit en 1/r2.

Ainsi, méme sils n'ont pas laméme signification physique, le champ éectrique E
et le vecteur E4 sont mathématiquement identiques: |es propriétés mathematiques de I'un
seront les propriétés mathématiques de I'autre. C'est ce que nous allons mettre a profit.

1l Théoreme de Gaussdu tireur fou

[11-1 Définition du flux de projectiles

Considérons un élément de surface dS appartenant a une surface imaginaire
fermée S. Nous définissons I'élément de flux d?¢, de E;p & travers dS comme le
nombre de projectiles que regoit cette surface pendant 1 seconde.
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dS n'est pas la surface test et n'est donc pas nécessairement placée
perpendiculairement ala direction de déplacement des projectiles.
Le nombre de projectiles regus va donc dépendre de la position de |'élément de
surface dS mais aussi de son orientation.
Si I'élément de surface dS est parfaitement perpendiculaire a la trajectoire des
projectiles:
do7r = Eqp dS

Si au contraire I'élément de surface dS se présente de profil, il ne recoit aucun
projectile et dp = 0 ( dp est un infiniment petit du second ordre).

Il parait clair que la grandeur & prendre en compte n' est pas I'élément de surface
dS mais sa projection sur le plan perpendiculaire au faisceau de projectile. L'élément de
flux est dors:

ou 6 est I'angle entre un vecteur perpendiculaire adsS et la direction des projectiles.

Dans quelle situation géométrique le flux de E est-il le plus devé.

Cette relation peut en fait sécrire comme un produit scalaire. Pour cela,
définissons un élément de surface dS comme un vecteur dont l'intensité est égale a
I'élément d'aire dS, et le sens celui de la normale sortante par rapport ala surface fermée
sur laguelle sSappuie I'édément de surface dS. 1l vient dors:

Par intégration, le flux atraversla surface fermée est |la somme de tous les él ément
de flux obtenus lorsque dS parcourt toute la surface soit:

¢:” ErrdS

111-2 Flux de projectiles dus a des tireurs fous

Si il y a3 tireurs fous, chacun fournit son propre E1p (Evgq Etpo ETpg) etle
flux total atravers une surface dS n'est autre que la somme des flux individuels.

d= ¢t 0y + 03

Il est évident que le nombre de projectiles recus par seconde par dS est la somme
des projectiles provenant de chacun destireurs.

On peut définir Evg =Eqgq+ Eqpo + E1ps

dp = Eqg. dS = Eqpq .dS+ E7pp.dS + Eqp3.dS = df; + do, + dig
C'est le théoréme de superposition du tireur fou.
Comme on peut le voir sur lafigure ci-dessous, certains éléments de flux peuvent

étre positifs alors que d'autres sont négatifs. Tout dépend de la position des tireurs a
I'intérieur et al'extérieur de la surface fermée.
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[11-3 Equation bilan

Leflux total ¢ est égal au nombre de projectiles qui quittent le volume délimité par
lasurface totale S pendant 1 seconde.

Il est bien clair que ce nombre est égal au nombre de projectiles émis depuis
I'ensembl e des points sources intérieurs ala surface.

En régime stationnaire, le nombre de projectiles émis pendant 1 seconde a
I'intérieur du volume V délimité par lasurface S doit étre égal au nombre de projectiles qui
quittent ce volume et donc franchissent la surface S dans le sens sortant.

Sil y aen outre des tireurs extérieurs, les projectiles gu'ils émettent ne font que
passer. En 1 seconde, ils sont autant a pénétrer dans le volume qu'aen sortir. Le flux d a
ces projectiles tirés de I'extérieur est localement positif, localement négatif mais
globaement nul.

Si ladistribution des tireurs fous n'est pas tres simple, I'expression des é éments
de flux E+g.dS doit étre assez inextricable. Mais e bilan global doit étre inchangé et la
somme sur toute |a surface fermee des E1p.dS est égale a Qrpj/ty , U Qqp; est le
nombre de projectiles émis par seconde a l'intérieur de la surface fermée.

111-4 Résultat mathématique:

Oublions I'image des tireurs fous et la notion de déplacement qui est associée aux
projectiles quils émettent. Et ne retenons que I'aspect mathematique.

Nous avons montré par des arguments physiques que,si a un point source 0, on
faisait correspondre en chague point de I'espace M un vecteur radial E+(r) dont

I'intensité décroissait comme l'inverse du carré de la distance OM, alors le flux de ce
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vecteur atravers une surface imaginaire fermée de forme quel conque entourant O était une
constante.

Les flux étant des grandeurs scalaires, le flux total créé par une distribution de
points sources 0, est égale ala somme des flux dus a chacun des points sources.

Appliquons ce résultat a |'étre mathématique qu'est le champ électrique E et qui
possede |es mémes propriétés mathématiques que E4 .

On pourrait aussi I'appliquer au champ de gravitation
Formuler e théoréme de Gauss du champ de gravitation.

|V Théoréme de Gauss du champ éectrigue
1V-1) Flux du champ éectrigue

Si danslanotion flux on ressent communément une idée de mouvement, c'est sans
doute parce que I'on parle du flux et du reflux de I'eau. C'est aussi parce que les flux que
I'on introduit en physique sont souvent ceux de vecteurs auxquels sont associées des
déplacements d'objets ou de fluides comme dans I'image du tireur fou.

En fait le flux est une définition mathématique n'impliquant a priori aucun
mouvement.

Etant donné un champ de vecteur E(r) et un élément de surface orienté dS placé
enr, un éément deflux dp est défini par:

dp = E(r) dS

Le flux total atravers une surface fermée est égal ala somme de ces éléments de
flux.

Le champ éectrique est un champ de vecteur et, comme tel, des éléments de flux
lui sont associés.

Mais, vous voyez, nous sommes incorrigibles puisque, pour nous convaincre des
propriétés du flux du champ électrique nous avons fait appel au champ de vecteur Eq¢

auquel est associée I'idée de mouvement.
|V -2 Théoreme de Gauss

Leflux total du champ électrique sortant d'une surface fermeée est égal ala somme
des charges intérieures divisée par ¢,. C'est une simple transposition de théoreme de
Gauss du tireur fou.

Nous espérons que ce théoréme vous laisse moins perplexes. Si vous n'étes pas
vraiment convaincu par notre démarche, consultez le livre de R. Feynmann, ou le cours de
Berkeley: vousy trouverez des approches complémentaires.

Nous dlons maintenant nous tourner vers|'utilisation de ce théoreme.

V Application a certains calculs de champ éectrique

V-1 Calcul direct du champ électrigue créé par une sphére chargée uniformément
en surface

Considérons une sphére de rayon R, centrée en 0, chargée en surface avec une

densité de charge uniforme o et essayons de déterminer le champ électrique qu'elle crée
enun point r del'espace.
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s
A < >

2t p = 2t Rsno

Sur lafigure ci-dessus, I'ensemble des points de la sphére situés ala distance d du
point M décrit un cercle de rayon p= R siné.

L'ensembl e des points d'une couronne de sphére, d'aire 2t R sin Rdo (Rd6 est la
largeur de la couronne), porte un élément charge:

dg= 0 27t R2sin6 do

Ces points sont situés ala distance d de M telle que:
d2=r2+R2- 2 Rr cosh

Une telle couronne contribue au potentiel V par I'édément dV:

dv=_0 2n R%sin 6 do
4me0 {R24r2-21 Reos @

Le potentiel total est la somme (intégrale) sur les 6 de 0 an de |I'expression ci-
dessus:

0=7T
V() = 1 j o2t R2sin6 do
4meo ),_ o VR2+r2-2rRcos

Le champ éectrique est dirigé suivant ladirection Ox et sobtient par dérivation du
potentiel aing calculé.

Par symétrie de rotation, le champ électrique peut étre déterminé en un point
quelconque de |'espace

Ce calcul est faisable. On peut imaginer qu'il vous effraie.

V-2 Application du théoréme de Gauss

En fait, ce champ électrique peut étre calculé simplement par application du
théoreme de Gauss.

Nous avonstracé sur lafigure ci-aprestrois sphéres, derayon R, r; et r.

La sphere de rayon R est la sphére physique, chargée en surface avec la densité de
charge o.
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Les spheresr; et r, sont deux sphéres imaginaires appel ées aussi sphere de Gauss
qui sont des surfaces fermées sur lesquelles on va appliquer le théoreme de Gauss. Les
indicesi et e viennent rappeler qu'elles sont respectivement intérieures et extérieures ala
sphére chargée.

Remarquons maintenant que, par symétrie, le champ éectrique E(r) en tout point
distant de r du point O (r plus grand ou plus petit que R) est radial et ne dépend que der.

Son flux ¢ atravers une sphére de Gauss de rayon r sécrit donc simplement ¢=
4rr?E(r). 11 est égal aQ/eqou Q est lachargeintérieure alasphere derayonr.
Deux cas se présentent:

r=r<R

Il 'y apas de chargesintérieures ala surface de Gauss, Q,=0 et donc E(r;)=0.

Le champ éectrique al'intérieur de la sphére chargée uniformément en surface est
nul.

i) r=r>R

Lacharge totale Q= o 4nR? se trouve & l'intérieur de la sphére de rayon le. LE
théoreme nous dit que:

& =4n r3E(re) = 74“80 R?
0
Soit:

2
E(r =0 &
(=08
Le champ électrique al'extérieur de la sphére est identique a celui qui serait créé
par une charge ponctuelle Q; placée au centre de celleci.

Si nous étions allés jusqu'au bout du calcul du paragraphe précédent, c'est ce que
nous aurions trouve, ... maisaquel prix !!

Tracer le profil du champ éectrique E(r) en fonction de r. Quelle discontinuité
subit-il lors du franchissement de la surface de la sphere?

V-3 Conditions d'applications du théoreme de Gauss

Il faut bien voir que si le théoreme de Gauss est d'une grande généralité, il n'est
utilisable en pratique que si le systeme présente un degré de symétrie élevé. C'est parce
gue le champ électrique était toujours normal ala surface de la sphere derayonr et qu'il
était a priori d'intensité constante que I'expression du flux fut particulierement simple et
utilisable.
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Danslapratique, il faut pouvoir définir une surface de Gauss fermée sur laguelle
le champ électrique est constant et radial, ou non constant mais tangentiel.

V-4 Champ éectrique créé par un fil infini chargé uniformément

Un calcul direct peut étre effectué comme au chapitre précédent mais utilisons
plutdt |e théoreme de Gauss.

Par symétrie, e champ électrique en tout point r est radial et orthogonal al'axe du
fil.

Considérons la surface de Gauss constituée d'un tronc cylindrique droit de rayon
r de hauteur h, et des deux disques de rayon r couvrant ses extrémités.

A cette surface fermée appliquons | e théoreme de Gauss.

Lacharge intérieure a cette surface est égaleaQ, = A h.

+
+
— 4 }»
A +
E(r) N E(r)
- —_—
+
+
+
—y F
+ I
+

Le flux de E a travers la surface fermée peut étre décomposé en trois
contributions:

Leflux de E atraversle disque supérieur, le flux de E atraversle disque inférieur
et leflux de E atraversle tronc cylindrique.

Les flux de E a travers les disgques sont nuls car le champ électrique leur est
tangent.

Leflux de E atraversla surface du tronc de cylindre est ssimplement égal a2 r h
E(r). (E(r) est constamment perpendiculaire ala surface.

L e théoreme de Gauss sécrit:

¢=2r rhE(r) =Ah
€0
soit:

E(r) =2
(1) 21 ggl

L e champ dectrique crée par unfil infini, uniformément chargé, décroit en 1/r.
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V-5 Quand peut-on considérer un fil commeinfini?

Un fil sera considéré comme infini si la distance r entre |'observateur (placé
suffisamment loin des extrémités du fil) et le fil est beaucoup plus petite que lalongueur
du fil, c'est-a-direlorsque r<< a.

Dans le chapitre précédent (paragraphe 1V-3) nous avions montré que le champ
électrique radial en un point du plan bissecteur du fil uniformément chargé était radial et
Sécrivait (vous remplacerez aisément |es notations dans leur contexte):

- Q 1
"0= 47 €0 rVr2+a2

Lalimite r<< asobtient en négligeant r2 devant & danslaracine carrée. Soit:
E(r) = Q 1 _

Aueg Tl 2 egl

ce qui est exactement |'expression trouvée par |e théoreme de Gauss.

V1) Franchissement d'une surface chargée

V1-1 Champ créé par un plan infini chargé uniformément

Considérons le plan x0y chargé uniformément avec la densité de charge o.
Déterminons le champ éectrique créé aladistance z de ce plan.

++++++++

++++F+++F+

Par symétrie, le champ électrique est dirigé suivant Oz, vers les z positifs ou
négatifs selon que |'on se trouve a droite ou a gauche du plan chargé.

Considérons la surface de Gauss fermée constituée d'un cylindre d'axe z'z fermé
par les deux disgues hachurés de surface S placés de part et d'autre du plan chargé aux
cotes+z et -z.

Le champ électrique est tangent au cylindre et perpendiculaire aux deux disques
hachurés.

Leflux de E atraverslasurface fermée se compose du flux atraversle cylindre,
du flux atraversle disque de droite et du flux atravers le disque de gauche.
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Leflux atraversle cylindre est manifestement nul puisgque le champ éectrique est
tangentiel a ce cylindre.
Leflux atraversle disque de droite est SE(2). Il est positif puisque dirigé suivant
lanormal e sortante.
Le flux a travers le disgue de gauche est S E(-z) = S E(2). Il est aussi positif
puisque alafoisle champ et lanormale sortante ont changé de sens.
L'égalité entre E(2) et E(-z) est due alasymétrie.
Leflux total atraversla surface fermée est donc:
¢ = 2SE(2
Lacharge Q; al'intérieure de cette surface fermee est celle portée par le disque
central de lafigure précédente, soit:
Q=So

L'application du théoreme de Gauss donne:

E (2 :2%30

Le champ E(2) est indépendant de la cote z.
Toutes les positions situées a distance finie d'un plan infini sont équivalentes.

V1-2 Discontinuité du champ éectrique lors de la traversée d'une surface chargée

Nous allons utiliser le résultat ci-dessus pour déterminer la modification du champ
éectrique lors de latraversée d'une surface chargée. Nous voulons connaitre la différence
de champ électrique entre deux points A4 et A, infiniment proches situés de part et d'autre
de cette surface.

Pour ce faire, nous nous appuyons sur deux arguments:

-Un élément rectangulaire de plan, de longueur a et de largeur b finies, peut étre
considéré comme infini si la distance d séparant I'observateur du plan chargé est
suffisamment petite. (d << aet b)

- Une surface quelconque de rayon de courbure r,, peut localement étre considéree
comme plane par un observateur qui se trouve aune distance d << r (C'est lavision que

I'on ade laterre a proximité du sol).
Celasignifie qu'un éément de surface quelconque portant localement une densité
de charge o crée en son voisinage immédiat ( d <<r.) un champ éectrique o/2¢ normal a

lasurface.
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En présence d'autres charges, les champs électriques totaux E; et E, en des points
Aq et A, tres proches de la surface est aors la somme de deux composantes:
-Le champ E ; du aux charges de surface ( o/2¢ ).
-Le champ E_ di aux autres charges situees trés loin comparée a la
distance qui séparelespoints A; et Ay :

E1=Ea+Exn et Eo=Ea+Es

L e franchissement de la surface n'affecte pas E, qui est créé par des charges
"éloignée". Ladistance infime qui sépare deux points situés de part et d'autre de la surface
ne conduit a aucune modification de E,. C'est pour cela que le méme E, apparéit dans E
et Eo.

2 Au vu du paragraphe précédent, les champs E; sont égaux, opposés et
perpendiculaires a la surface (et n'ont pas de composante tangentielle suivant t). Il est
assez évident que si on définit nq, le vecteur unitaire perpendiculaire alasurface et dirigé
dans le sens du milieu (1) vers le milieu (2), on a la relation

agébrique(Eg2 - Eg1) N12 = EQ . Et donc puisque seule la composante E ; est différente:
0

(E2-E1)nip =9
€0

Il sen suit que lors de latraversee d'une surface chargée:

- Lacomposante tangentielle du champ éectrique total est continue Ey = Ep
- lacomposante normale subit une discontinuité E, - Ep= ole

avec By = Eq1.t Ep=Eot Enp=E1.nip Epp=Eangp

VI1l) Formelocale du théoréme de Gauss
V1I-1 Equation globale et forme locale

L e théoréme de Gauss, tel que nous I'avons présenté, est apparu sous une forme
globale. Le flux atravers une surface fermée est reliée ala quantité de charges intérieures
a ce volume indépendamment du détail de leur distribution .

Une équation locale relie deux grandeurs en un point r.

E = -gradV est une équation locale en ce sens que le champ en r est lié ala
dérivée du potentiel en ce mémepointr.

|| existe une forme locale du théoreme de Gauss. Elle sécrit:

X ay 9z  eg

Ellerelie, en chaque point de |'espace, la somme des trois dérivées partielles écrites
ci-dessus a la densité de charge volumique en ce méme point.
(Les charges surfaciques et ponctuelles doivent étre traitées a part.)

Un vecteur E éant donné, on a pris|'habitude de noter:

2/05/03 50




divE =

X ay oz

Laforme locale du théoréme de Gauss sécrit alors;

dveE = £
€0

La divergence (div) d'un vecteur est un scalaire. Cet étre mathématique vient
rejoindre le gradient et |e rotationnel dans ce que I'on appelle 'analyse vectorielle.

Danslevide,p=0 et divE=0

Comme le gradient et le rotationnel, la divergence présente une expression en
coordonnées cartésiennes, cylindriques et sphériques.

V1I-2 Bilan sur un volume éémentaire

Considérons un petit parall€l épipede rectangle centré en un point d'aoscisse X, Yo,
z, et decOtésabet c.

L es deux faces perpendiculaires ala direction Ox sont situées en x= xy-al2 et X =
Xg-al2. Les cotés de ces faces sont b (parallélement aOy) et ¢ (parallélement a0z). L'aire

de ces deux faces est égale au produit bc.
Reproduire |le méme raisonnement pour les autres faces.

L'ensemble des 6 rectangles (tels que ABCD) forme une surface fermée entourant
le volume V= abc du parallé épipéde rectangle.

S5
(Xg Yor 20) Yo~ b2 Yo+ b2
A B
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Lesvecteurs S, S,, S5, Sy, S, Sy représentant les surfaces des rectangles sont
orientés versI'extérieur du volume et sécrivent:
0 0
S5= 0| Se= 0
ab -ab

bc - bc 0 0
S1=| 0 0 | S3=| ac | S4=| -ac
0 0 0 0
¢ =(E1S1 +E2S2) +(E3S3 +E4Sy4) + (EsS5 +E6Se ) = d12 + 934 + ds6
Déterminons ¢4, C'est-a-dire la somme des flux du champ électrique atraversles
surfaces S; et S,. Pour cela, faisons figurer ces deux surfaces de profil.

So=

E, estlechamp électrique E en xgt+ &2. E; = E ( Xgt+ &2, Yo, Zp)

A Z
A, B E,F
E Eq
—g —
S, X0Y040 S X
C.D G, H
Xo- al2 x0+a/2

Puisgue bc est I'aire du rectangle ABCD, et au vu de l'orientation de S; qui n'ade
composante que suivant I'axe 0x, le flux de E atraverslasurface S; seécrit: (-bc) E, (Xg-
al2,y,Zy). Nous avons donc:

$10 = (bC) Ey(Xg*tal2, Yq, Zg) + (-bc) E, (Xg- @2, ¥, Z)
= (bo) [ Ex(Xp*ta2, Yo, Zg) - E(Xg-a2, Y, Zp]

Puisque a est tres petit et tend vers 0, on peut faire un dével oppement limité autour
dexq, Yor Zo:

Ex (Xo+a/2, Yo, Z0) = Ex(Xo.Yo, 20) + aaix (X0,Yo, Z0) (%‘)
oE -
Ex (a2, Yo, 20) = Ex (oo, 20) +{7 ¢ (xoo, Zo)) (2)

d'ou:

JE
$12 =abc T;(XO’ Yo, 20)

ou le produit abc n'est autre que le volume V du parallél épipede rectangle.

Lesflux ¢, €t ¢ peuvent étre calculés de laméme fagon, ce qui conduit &
q) =V @ + @ + (E
. o . ) X oy 9z
ou les dérivées partielles sont a prendre en (X, Yo, Zg)

2/05/03 52



La charge a l'intérieur du volume est |la densité locale de charge p(Xq, Yo, Zo)
multipliée par le volume du parallélépipede: Q; =pV.

L 'application du théoreme de Gauss donne:

Xy 9z &g

C'est la forme locale de ce théoréme que nous annoncions au paragraphe
précédent:

div E = P
€0
V111 Equation de Poisson

La combinaison de la forme locale du théoreme de Gauss div E =p/eg et de la
relation E=- grad V conduit al'équation de Poisson.

En effet:
JE, OE, OF a(gv) a(gv) a((jav)
divE =0 4 Oy y Oz o \X] Y] 10Z) _ P
X dy oz X ay 0z €0
entraine:

2 2
OV LV VP
X2 9gy2  9z2 €0

ce qui est I'équation de poisson. Elle se synthétise en:

av +P =0
€0
ou:
2 2 2
A:L+L+i

Est un nouvel étre d'analyse vectorielle appelé laplacien scalaire.

[ X Relation de Green-Ostrogradsky

| X-1 Enoncé généra

Nous avons montré ci-dessus que le flux de E a travers la surface (orientée
normale sortante) qui délimite un petit cube est égale aladivergence de E multipliée par le
volume de ce cube.

Ceci se généralise atoute surface fermée et atout vecteur U.
Soit U un champ de vecteur, X une surface fermée dont les éléments de surface dS

sont orientés dans le sens de la normale sortante, V le volume délimité par la surface
fermée.
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On adefagon générae:

V1I1-2 Exemple

L'application de ce théoreme sur un volume quelcongue et pour un champ de
vecteur non trivial est trés vite compliquée.

Nous nous contenterons de le vérifier sur un champ radia de composante:
g XX Y &= e
et pour un volume délimité par une sphére de rayon R centrée al'origine.

a est un vecteur radial de normer. div a vaut 3 en tout point de I'espace. Le flux de
aatraverslaspherederayon R est donc:

nR2=4 7R3
L'intégrdedela dlvergence de a dans lasphere est:

3x g TR3=47R3
X _Notion d'angle solide
X-1 Angledu plan

Considérons le centre O d'un cerclederayonr.
Soit un arc de cercle de longueur AB. (AB est I'arc, qu'il ne faut pas confondre avec la
corde)

Lamesure del'angle . est en radian: o= AB/r

AA e
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L'angle o peut étre défini a partir d'un cercle de rayon 2r. Dans ce cas, |'arc
intercepté est de longueur double et lamesure de o est inchangée. L'angle o est une entité
en soi indépendante du cercle qui a servi aen déterminer lamesure.

Vous pouvez découper dans le plan d'une feuille de papier un angle a. . Vous visez
une région du plan en placant votre oeil au sommet de |'angle et en regardant la région
délimitée par les deux demi-droites qui définissent I'angle.

Lafraction des directions que vous voyez, rapportée a 2r, est lavaleur del'angle.

Un édément dangle do. est simplement défini par di/r

Lasomme des éléments d'angle qui permettent de viser le plan tout entier est 2.

X-2 Angle solide

Prenez maintenant une feuille de papier et enroulez-la en formant un cone.

Si vous visez par le petit trou place ala pointe de ce cbne, vous avez une vision
d'une fraction des directions de I'espace un peu comme avec |'angle vous aviez une vision
d'une portion du plan.

Vous pouvez déformer ce cone en appuyant sur ses cOtés et vous avez une vision
d'une fraction différente de I'espace.

Lafraction des directions de I'espace que vous apercevez, rapportée adn est ce que
I'on appelle I'angle solide.

Pour déterminer lavaleur d'un angle solide 2, tracons une sphere de centre O et de

rayon r. Lasurface du cercle interceptée par leconeest S. Ladivision de Spar rlest la
valeur del'angle solide Q.

L'angle solide est sans dimension. On dit qu'il est en stéradian. Le stéradian vient
se subgtituer au radian de I'angle d'un plan.
Lavaeur maximale de I'angle solide est 4.

L' angle solide d<2 sous lequel un éément de surface dS est vu depuis le point O
es:
do = dS.u
r2
ou u est le vecteur unitaire porté par le segment de droite joignant le point 0 a
I'élément de surface dS.

X-3 Relation entre le flux et I'angle solide

Le champ électrique créé enr par une charge q située au point 0 Sécrit:
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-9 wu
E=_1 U
4dmeg r2
L'éément deflux d¢ atravers|'@dément de surface dS placé au point r sécrit:

= = q U.dS: q
d¢=E.dS 4reg 2 4758on

Le flux total du champ électrique a travers une surface S de forme quelconque,
sobtient en découpant cette surface en éléments dS et en intégrant sur les éléments
dangle solide. Il vient alors:

(P_q

B 4eg

Le flux du champ électrique créé par une charge ponctuelle atravers une surface
quelconque est égal ag/4 m £ multiplié par I'angle solide sous lequel on voit cette surface

depuisle point O.

Si lasurface est fermée et entoure lacharge g, I'angle solide est 4 et le flux est o/
80 .

Si la surface fermée n'entoure pas la charge q, I'angle solide est 0 (bien faire
attention aux signes des éléments de surface dS suivant la normale sortante au point
considéré) et le flux est nul.

C'est le théoréme de Gauss.
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CHAPITRE V

Travail desforces électriques
Enerqie électr ti

| Travail desforces électriques
[-1 Probléme

Considérons une distribution de charges. Cette distribution de charges crée en
chaque point de I'espace un champ éectrique E(r) et un potentiel V(r).

Placons en un point M(r) une charge g. Il sSapplique sur cette charge une force
F(r)=qE(r)

Déplacons lacharge du point A au point B lelong d'une ligne (T).

L e déplacement de la charge saccompagne du déplacement du point d'application
delaforce F(r) et donc d'un travail delaforce électrique.

(T)

Questions:

i) Quelle et lavaleur du travail de laforce éectrique lors de son déplacement de A
enB?
ii) Cetravail dépend-il du chemin suivi?

|-2 Réponse

La réponse a de telles questions passe généralement par une succession de
considérations et de démonstrations.

Ici, laréponse est tellement simple que nous la donnons d'emblée. Nous gardons
les considérations pour la suite.

Réponse

ii) letravail effectué par laforce électrique lors de son déplacement de A aB ne
dépend pas du chemin suivi.

i) letravail W de laforce électrique est égal a q(V 5-Vg), Cest-ardire au produit de
lacharge g multipliée par la différence de potentiel (V 5-Vg) entreles points A (origine) et
B (extremité).

Soit gp = 1uC une charge placée a I'origine et g= 2uC une seconde charge
placée en A(2,0,0). Déterminer le travail de la force exercée sur q lors du déplacement
de cette charge de A a B (0,3,0) (unité de longueur: 1 cm).



[-3 Travail delaforce électrique sur un chemin sSsmple

Considérons le systeme électrique constitué d'une charge centrale g, placée a

I'origine. Cette charge crée dans I'espace un champ E et un potentiel V dont nous avons
étudié les caractéristiques dans | es chapitres précédents.

Nous introduisons une nouvelle charge q sur laguelle sexerce laforce F(r) =g
E(r)

Calculonsletravail W effectué par laforce F lors d'un déplacement de lacharge g
du point A au point B, en suivant le chemin compose de I'arc de cercle AC centré en 0,
suivi du segment radial CB.

Qo

Lelong de AC, laforce est toujours perpendiculaire au déplacement et donc le
travail effectué par cette force est nul.

A I'opposg, sur le segment de droite CB, laforce se trouve toujours parallele au
déplacement. L'éément de travail W effectué par la force F(r) lors d'un déplacement
radial der ar+dr est :

OW = F(r) dr

Letravail total est la somme destravaux éémentaires. || est obtenu par intégration
sur lavariabler, soit:
b b
w=| Frd =-1 99 g
f ®) 4meg f r2
rc rC

Puisque 1/r2 et ladérivée de -1r, ce travail sécrit:

-1 4%/ _ 99 _. 99 _ }
W 41 eg { r LA dmegran 4dmeglp q(Va-Ve)

(il aététenu compte du fait query=r etV =V )
ce qui est I'expression du travail que nous avons annonceée.

[-4 Autres chemins

Plutét que de suivre ACB, suivons maintenant le chemin ADEFB.

AD et EF sont des arcs de cercle sur lesquels le travail est nul. Les points A,D et
E,F sont au méme potentiel: V-V, Ve-Ve.

DE et FB sont des chemins radiaux sur lesquels on peut reproduire le calcul du
paragraphe précédent.



soit: W=q(Vp-Ve) +qd(VeVE)=a(Va-Vp)

Pour aler de A a B, on peut imaginer bien d'autres chemins qui sont une
succession d'arcs de cercles et de segments radiaux.

On peut aussi dire qu'un chemin quelconque menant de A a B (tel que celui
représenté en trait épais sur le schéma) peut étre approché avec une précision auss grande
gue I'on veut par une succession d'arcs de cercle et de chemin radiaux. Dans tous les cas
letravail vaut W = q (V 5-Vp).

|-5 Généralisation a une distribution de charge

Soit un systeme électrique forme de deux charges g, et g, placées en O, et 0,.
Determinons e travail résultant du déplacement d'une charge g dans le champ crée par g
et O

En vertu du théoréme de superposition, la force total e appliquée sur q sécrit:

F=qE=qE;+qE,=F; + F,

ou E, et E, sont les champs créés indépendament par les g, et g, si elles étaient
seules.

Lestravaux desforces F, et F,lorsdeleurs déplacementsde A aB sécrivent:

] Wi=q(Via-Vig)  Wr=a(Voa-Vop)

ou V1 et V2 sont les potentiels dus separément a g et g,.

Or, lors d'un déplacement |, le travail d'une force F: W=F | est égal ala somme
des travaux de ses composantes F,| + F,l = W ;+W, (distributivité du produit

scalaire).ll sensuit:
W=q[ (V1a*Von) - (V1g+Vop)]

soit par application du théoréme de superposition sur les potentiels, V = V+V.!
W=q(Va-Vp)

|-6 Lignes de champ et équipotentielles

En suivant les arcs de cercle et les chemins radiaux, nous avons en fait suivi une
succession d'équipotentielles et de lignes de champ.

Le long d'une équipotentielle, le travail est nul car la force paralléle a E, est
constamment perpendiculaire au déplacement.

Lelong d'une ligne de champ, le déplacement est parallele alaforce. L'éément de
travail et S\W=qEd =qdV.

Lorsque le champ électrique est créé par une distribution de charges, les
équipotentielles ne sont plus des sphéres et les lignes de champ ne sont plus des segments
de droites, maisil est toujours possible d'approcher une ligne joignant un point A a un
point B par une succession de lignes de champ et d'équipotentielles qui, on le sait, se
coupent aangle droit et forment un quadrillage déformé de |'espace.

Tracez un réseau imaginaire et compatible de lignes de champ et
d'équipotentielles. Montrez que le travail effectué pour joindre un point A & un point B est
LI Travail et différentiellestotales exactes

Nous allons dans ce paragraphe revoir lanotion de travail de fagon plus générale

et examiner dans quelles conditions celui-ci ne dépend que de I'état initia et de I'état final
et se trouve indépendant du chemin suivi.

206038 59



[1-1) Travail d'une force constante lors de son déplacement sur une trajectoire
rectiligne

Lors d'un déplacement rectiligne de A vers B, letravail d'une force constante F
(endirection et en intensité) est égal au produit du déplacement AB par |la composante de
laforcelelong delatragectoire.

F
A 0 B

La composante de laforce n'étant autre que F cosd ou 6 est I'angle orienté (F,AB),
le travail sexprime mathématiquement comme le produit scalaire de laforce F par le
vecteur déplacement AB.

W=F.AB = FAB cost

l1-2 Travail d'une force non constante lors de son déplacement sur une trajectoire
rectiligne.

Considérons le cas ou latrgjectoire AB est toujours rectiligne, maisou laforce
dépend de la position de son point d'application M. Si I'on suppose que AB est porté par
|'axe Ox, M est donné par son abscisse X, l'intensité de la force est une fonction F(x) et
I'angle qu'elle fait avec ox est donné par une fonction 6(x).

Il ne peut plus étre question ici d'utiliser une formule globale telle que celle du
paragraphe précédent. Il nous faut decouper AB en ségments AA 1, AjA,,.. A; A, etc..de
taille suffisamment petite pour que I'on puisse considérer que sexerce le long de chacun
d'eux uneforce F constante.

Nous admettrons par exemple que sur le segment délimité par les points A;_1(x;_;)
et A;(x;), laprojection delaforce sur latrgjectoire est égale a:

Fcost;=1 /2 [F(X;_1) cos 0(x;_1) +F(X;) cosd(x;)]

Ains, lorsdu deplacement de A, ; aA;, letravail exerce par laforce électrique est

AFCOSG
B Q/
As /
A4 /
03 o F3 3 | 4 |5
A2 /
A Al A2 A3 A4 As B

A1 /

. —

A



Il Sensuit que le travail total de laforce électrique lors de son déplacement de A a
B est lasomme de tous les travaux éémentaires, soit:
n n

W=y AWs=
=1 i

Fi A A; coso;
=1

Représentons dans un diagramme de type "histogramme” des petits rectangles
indicés 1,2,..1,...n dont les bases sont €gales aux distances A;_;A; = Al;= X; -x;_; €t dont
les hauteurs sont égales aux produits F; cos;.

Dans ce diagramme, I'aire du rectangle i n'est autre que le travail AW;.

Letravail total effectué lors du déplacement de A vers B est |la somme de chacune
decesaires, c'est adire l'aire totale sous la courbe en escalier.

Avec |'affinement du pas, la courbe en escalier se rapproche d'une courbe continue
représentée par lafonction g(x)=F(x) cosd(x). Le travail tend vers |'aire hachurée sous
cette courbe.

\

B / A F cos6
/ .
E A B

A

L'élément de travail dW produit par la force F(x) lors de son déplacement
élémentairedex ax + dx est égal &
OW = F(x) cost(x) dx

W:f oW :f F(x) cos6(x) dx

XA XA

Considérons trois points A, B, C et D placés sur un axe ox, aux
coordonnées X,=5m et Xg= 12m et Xxo= 120m xp=0130m. Un mobile soumis a une
force F se déplace sur I'axe Au point M d'abscisse x, exprimé en metre; I'intensité de la
force est en Newton F(xX)=2x et I'angle 6 vaut en degrés 6(x) = 30°+2x.

Déterminer letravail effectué par la force lors du déplacement de A en B, puis de
C en D. Montrer a quelles aires correspondent ces travaux.

Notez bien que I'intégration d'une fonction & une variable est a priori faisable. Tout
au plus faut-il consulter une table d'intégrales



[1-3 Cas géné&rdl, travail d'une force variable se déplacant sur un chemin curviligne.

g Nous avons suppose jusqu'ici que le point M se déplagait sur un ségment de
roite AB.

Dans le cas général le point M décrit une trajectoire curviligne quelcongue (I).
Une origine étant choisie sur latrgectoire, la position de M est repérée par le scalaire | qui
indique la distance que doit parcourir un mobile pour joindre 0 aM en suivant la courbe.

L ors du découpage par morceau, la courbe continue est transformée en une ligne
brisée joignant les points A;_;A; delacourbe réelle. L'élément de travail AW; effectué par
laforce F; lors de son déplacement sur le segment A;_;A; de longueur Al, avec lequel elle
faitunangleo; , et ega &

A

Lors du passage a la limite continue, nous dirons que I'élément de travail dW
effectué par laforce F(l) lors d'un déplacement élémentaire dl est égd a
dW=F(l) coso (I) di

Letravail total delaforcelors de son déplacement lelong delaligneTI est:

W = IF(I) cosO(l) di
r
Unetelleintégrale est appd éeintégrae curviligne lelong du cheminT.

11-4 Expression vectorielle du travail démentaire

Considerons le vecteur A;_;A; joignant les points A;_; et A; apparus lors de la
découpe de la courbe I'. Appelons ce vecteur A I.. Le travail AW, effectue lors du
déplacement A |, sécrit aussi:

AW; =F; . A,

Lors du passage a la limite continue Al devient dl = u.dl ou u est le vecteur
unitaire tangent alacourbe (I') au point d'abscisse curvilignell.

L'éément detravail est:

dW=F dI

W = IF(I) dl
T

dl est le vecteur infiniment petit joignant deux point M et M' de la trajectoire,
infiniment proches de latrgectoire.

Letravail total sécrit dors:
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[1-5 Expression du travail élémentaire dans un repére cartésien

Dans un repere cartésien les vecteurs F et dl peuvent étre exprimés par leurs
composantes:

Fx dx
F = Fy dl = dy
F; dz

Compte tenu de I'expression du produit scalaire, I'éément de travail effectué par la
force F lors du déplacement dl de son point d'application sécrit:

OW = Fdx + Fdy + F,dz

et letravall total devient:
W:f Fxdx +F,dy +F,dz
r

Insistons encore sur lefait que l'on calcule le travail en suivant latrgjectoire (I'). Si
I'on se donne dx, alors dy et dz sont fixeés.

W n'est pas la somme de trois intégrales suivant X, y et z. C'est une somme lelong

du chemin, ce qui nécessite un paramétrage du chemin (T).

Considérons dans un repere cartésien trois points A (1,0,0), B(2,0,0) et C(2,1,0).
Déterminer les travaux effectués par les forces dont les composantes sont données ci
dessous lors des déplacements AB, BC et AC :

) F=X Fy=y, F=z

i) F=xy, Fy:yz, F=x

Letravail dépend-il du chemin suivi?

L1l Travail et différentielles totales exactes

[11-1 Formes différentielles

Soit X(x,y,2) ,Y (X,y,2) et Z(x,y,z) trois fonctions continues des trois variables x,y,z.
On appelle forme différentielle la quantité dg définie par:

dg = X(x,y,2) dx + Y (X,y,2) dy + Z(X,y,z) dz

De telles formes différentielles apparaissent en physique comme des
contributions infinitésimales g a une grandeur g lors de variations élémentaires dx, dy et

dz des parametresx y et z.

Ains une contribution € émentaire du travail des forces électriques apparait comme
une forme différentielle.

[11-2 Intégrale curviligne

Une intégrale curviligne est la somme des contributions infinitésimales 6g

accumulées lelong d'un chemin (T).
Letravail desforces éectriques se présente sous forme d'une intégrale curviligne.
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~ Insistons encore sur le fait que, dans le cas général, le calcul d'une telle grandeur
implique la connaissance du chemin suivi.

[11-3 Cas particulier de forme différentielle: 1es différentiell es total es exactes

La définition d'une forme différentielle n'implique aucune relation entre les
fonctions X, Yet Z.

Il est néanmoins un cas particulier tresimportant de forme différentielle: c'est celui
ou les fonctions X, Y et Z ne sont pas indépendantes les unes des autres mais sont les
dérivées partielles d'une méme fonction scalaire g:

Xy =2 Yxy2)= %3 Z(xy.2)= 29

Alors, dans ce cas particulier, I'intégrale curviligne le long d'un chemin (I') menant
du point A au point B ne dépend pas du chemin suivi. Elle est égale ala différence des
vaeursdegen A et en B. On écrit alors:

B
fég= f dg = g(B)-g(A)
T A

La forme différentielle dg se note alors dg (avec un d "droit"). dg Sappelle
différentielle de g ou différentielle total e exacte.

Si l'indication du chemin (T') est nécessaire pour effectuer la somme d' éléments
d'une forme différentielle il devient superflu pour effectuer |la somme des é éments d'une
différentielle totale exacte. |l suffit de préciser les points de départ et d'arrivée, ce qui rend
I'expression proche de celle d'une intégrale.

Si T est une boucle fermée qui commence en A et finit au méme point A:

f;dg =0

La boucle entourant le signe intégral signifie gue le chemin d'intégration est un
contour fermé.

En remplagant X,Y,Z par leur expression en fonction de g, il vient:
dg= %9 ax + %9 gy+ 99 gz
X ay 9z
Rappel : lesdérivées "rondes’ dg/ox sous-entendent que la dérivation seffectue
par rapport a la seule variable x, les autres étant considérées comme des constantes, le
temps deladérivation. Si il y aambiguité (en thermodynamique, il y atoujours ambiguité)

il faut écrire:
9= (%), o [5). ¥*[%),.

Ecrirela différentielle dela fonction g(x,y,2) = x2+y2+ 72
111-4 Reconnaitre une différentielle totale exacte

Au chapitre 11, nous avons calcul é les dérivées partielles d'une fonction g(x,y,z) =
2x2y2 -72x2 +xyz. Si nous les appelons X(x,y,2) , Y(X.y,2) e Z (X,y,2) nousavons:
X(X,y,2) = 3—3 =4xy2-22%x +yz e Y(Xy,2) = gs = 4x%y +xz
En dérivant X par rapport ay et'Y par rapport ax, il vient:
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aX
ay
X _aY ) . :
Nous observons que ay et o sont egales. Les dérivées secondes partielles par
rapport aux mémes variables X puisy ou y puis x sont égales.

%); est ladérivée par rapport ay de ladérivée de g par rapport ax . Elle se note:

X 9 (ag)_ 99

= 8xy+z = 8xy+z

X

gy ~ aylox)T oxay
C g _ g
et donc: X ady — 9y oX

En étendant |e raisonnement sur les trois fonctions X,Y ,Z et les trois composantes
X,Y,Z, on reconnaitra si les fonctions X,Y et Z sont les dérivees partielles d'une méme
fonction scaaireg s onaalafoais:
0Z _ Y X _dZ Y _ oX

ay 9z 9z ax  ax  ay

Lesquelles de ces formes différentielles sont des différentielles totales exactes:
59 = (X%+x) dx + 2y dy+ zZY2dz

89 = x2yzdx + xy?zdy+ xyz2dz

89 = (x2+y2+72) dx + (X2+y2+72) dy + (x2+y?+79) dz

09 = (3x2+2y) dx + 2xdy + 2z dz

Déterminer la fonction g lorsgu'elle existe

[11-5 Travail delaforce éectrique

L'dément detravail de laforce éectrique sécrit comme une forme différentielle;
OW=Fdl = Fdx + F, dy + Fdz

Or les composantes F,,, F,, et F, delaforce, définie localement a partir du champ

électrique E selon larelation F(r)= qE (r), sont les dérivées partielles de la fonction
scalaire-qV(r). il Sen suit:

swW=dw =-q Y dx + dy+ Y dz
X ay 9z

Letravail effectué lors du déplacement de lacharge q de A vers B est, quel que

soit le chemin suivi:
WAB:'Q(VB'VA) ZQ(VA'VB)
|V Circulation d'un champ de vecteur E

V-1 Circulation de E

De méme que I'on parle de I'éément de travail W= F dl de laforce F lors du
déplacement infinitésimal dl, on parle de I'élément de circulation 8C = E dl du champ
électrique lors du déplacement dl d'un "mobile"

Puisque F et E ne sont séparés que par un coefficient de proportionnalité g, ce qui
aétédit sur letravail de F reste valable sur lacirculation de E.

L'éément de circulation d'un champ éectrique E est une différentielle totale exacte
et sécrit dC=-dV.
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Lacirculation de E sur une chemin (T) joignant le point A au point B est égadeala
différence de potentidle V ,-Vg:
f Ed =0

Lacirculation de E sur un contour fermé est nulle.

Cette relation est vraie parce que E dérive d'un gradient. Elle est arapprocher de:
rot E=0
qui éait vraie pour cette méme raison.
Il sagit en fait de deux relations équivalentes. Mais|'une est vraie en chague point,
?;?n gne équation locale, alors que I'autre est une forme intégrale qui nécessite un contour

V-2 Retour sur le gradient

Larelation entre la variation de potentiel et de champ le long d'un chemin (I)
précisé sécrivent:
dv=-E.dl

soit en coordonnées cartésiennes;
dv=-Ex.dx -Ey.dy - E,.dy

Choisissons un chemin paralléle al'axe des x. Lorsque I'on suit ce chemin, y et z
sont constants et donc leurs variations dy et dz sont nulles:
(dV)ay et z constants = - Ex . dX

oV
Ex =-
X (8X )y,z

0it:

Et en répétant I'opération sur y et z:
E = grad V

V Energie potentielle d'une charge

V-1 Définition

Il existe de nombreuses formes d'énergie. Vous connaissez |'énergie potentielle
mgh d'un corps de masse m placé al'adtitude h. Vous connaissez aussi |'énergie cinétique
due ala vitesse de deplacement d'un corps E, =1/2 m v2. Il existe d'autres formes

d'énergies: I'énergie nucléaire, I'énergie calorifique (profondément liée a I'agitation
thermique des atomes dans un corps), &tc.

L'energie potentielle est celle qui ne dépend que de la seule position du corps,
toutes choses étant égales par ailleurs.



Par définition, I'énergie potentielle d'un corps est égale au travail fourni par
I'expérimentateur pour amener le corps a sa position. Cette énergie potentielle est restituée
al'expérimentateur lors du retour de |'objet & sa position premiere, (les autres énergies
n'étant pas modifiées).

Pour effectuer un déplacement de I'objet soumis a une force F(r) (ici la force
électrique), I'expérimentateur doit appliquer a tout moment une force Fexp telle que la

résultante des forces : Fexp+ F estnulle.
Energie potentielle= Travail de Fexp = -Travall deF

Vous allez peut-étre objecter que, si la résultante des forces est nulle, I'objet ne
quittera pas sa position d'équilibre. C'est exact. L'expérimentateur doit appliquer au départ
une force Iégérement plus importante pour accélérer le corps et [ui donner de lavitesse. A
I'opposé, il doit appliquer une force légérement réduite a l'arrivée pour ralentir I'objet et
I'immobiliser. Plus faibles seront les excédents de force, plus faible sera la vitesse de
déplacement de I'objet. Mai's nous ne sommes pas presses; nous avons un temps infini.
Les deux éléments perturbateurs peuvent étre aussi petits que I'on veut et finalement étre
négligés (Une analyse rigoureuse montrerait que de toute facon ils se compensent).

V-2 Energie potentielle d'une charge dans un champ éectrique

Soit un champ éectrique E auquel est associé le potentiel V. E et V sont créés par
les charges g, placéesen 0; . On definit I'énergie potentieIIeEp d'une charge q placéeenr
comme letravail que doit fournir I'expérimentateur del'infini au pointr.

i=1
Ep= E %[ (chargeq) X ( potentiel Vi crééenri par les autres charges)]
i=1

(pour faire la distinction entre I'ensemble des charges qui créent le champ et celle qui le
subit, on peut appeler les premiéres ( les ¢) charges actives et I'autre (q) charge passive)

Déterminer I'énergie potentielle d'un I'électron situé sur la premiére orbite de
Bohr d'un élément de numéro atomique Z. Quelle est cette énergie pour |'atome
d'hydrogéne et du cuivre. (Donner |'énergie en électron volt). Quelles sont les longueurs
d'onde de photons de mémes énergies?

V1 Energie potentielle d'un ensemble de charges ponctuelles
V1-1 Définition

L 'énergie potentielle d'un ensemble de charges gy, Og, g, --Situées aux pointsr 4,
rg: o €st égale au travail fourni par I'expérimentateur pour déplacer ces charges de
I'infini aleurs positions finales.

On ferabien ladigtinction entre |'énergie potentielle d'une charge (passive) dansle
champ de charges extérieures (actives) et I'énergie potentiel d'un systeme formé d'un
ensemble de charges.

V1-2 Energie potentielle d'un systéme de deux charges

Au départ, les deux charges g, €t g sont placéesal’infini: disons g, est al'infini
adroite et qg al'infini a gauche. Aucune de ces charges n'est soumise a une force (trop
éloignées les unes des autres, les charges ne se "voient” pas).

Déplacons la charge g, de I'infini a sa position finale, le point r ,. Durant ce
déplacement g, n'est soumis a aucune force (gg est trop loin). L'expérimentateur ne
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fournit aucun travail et ce déplacement n'apporte aucune contribution a I'énergie
potentielle.
q, étant en A, déplagons la charge B de l'infini versle point r 5. Pour effectuer ce

déplacement, I'expérimentateur doit en permanence exercer sur gg une force égale et

opposée a laforce éectrique. Le travail de laforce électrique est celui de déplacement
d'une charge gy dans le champ V 55 crée par une charge g, , la distance entre A et B

variant del'infini aryg =1 rg-ral,

aa

Ep =Wexp=-W= -0dg(Vag(®)-Vas (') )= G 47 eo i

Nous aurions pu tout aussi bien amener d'abord B de l'infini puis déplacer A dans
le champ Vg5 de B. L'expression de I'énergie potentielle est inchangée puisqu'il suffit
d'intervertir A et B dans larelation ci-dessus (c'est heureux puisque nous avons défini
I'énergie potentielle comme provenant de la seule position des charges).

Nous pouvons symeétriser I'expression de |'énergie potentielle totale d'un systeme
compose de deux charges en écrivant:

EPZ:QAQB_; B .1 0a _

B 5 =1 (qaVea+qeV
Admegrag 2  4meglaB 2qB4T580I'AB 2(QA BA+0sVaB)

Ou encore en repassant a une notation aun indice otV 5 est le potentiel en A (créeé
par B) et Vg est le potentiel en B (créé par A)

E, = % (Qa VA +08VB)

V1-3 Energie potentiel d'un systéme de trois charges

Pour déterminer I'énergie potentielle totale d'un systeme de trois charges, g, , Og,
e, il faut proceder atrois opération successives.

-Amener g, del'infini au point r ,. Comme précédemment, le déplacement de la
premiére charge seffectue sanstravail:

Wexp,1=0

-Amener g del'infini enrg dansle champ créé par lacharge g,. Letravail est:
Wexp, 2 = Gg8VaB
-Amener enfin g, del'infini ar . dansle champ créé par les charges g, €t gg. En

vertu du principe de superposition, le potentiel créé par A et B est égal ala somme des
potentiels créés par chacune de ces charges séparément et donc:

WExp, 3 = Oc(Vac +Vac)

L' énergie potentielle totale est donc:

E, = = A8 , GcOrn ., dc OB
dmegrap dregrac 4meglpe

ou en symétrisant:



E, =Llga ( s + Gc )+ Lo ( ga + Qc )+ L ( Gs + A

2 dmxeorap 4dmeorac 2 4dmeorag  4dmeorac 2 dmeorsc 4 meorac

Soit encore;
Ep =§1CIA Va+ %QBVB'*' %QC Ve

ou 'V, estlepotentiel crééen A par toutes les charges du systeme autres que A
(ici gg et gp).

V1-4 Généralisation

Reproduire le raisonnement avec 4 charges et genéraliser.

L'énergie potentielle totale d'un systeme de n charges ¢ situées aux points r;,
Sécrit comme:

i=1
Ep = E %[ (chargeq) X ( potentiel Vi crééenri par les autres charges)]
&

g Vi

A\

5

Dans le chlorure de sodium, les atomes de sodium sont sous forme Na* et les
atomes de chlore CI". La structure est cubique de paramétre 0.564 nm. Les Na* sont

placés au centre et sur les arétes du cube. Les Cl™ sont situés sur les coins et les centres
desfaces. Evaluer I'énergie potentielle par atome d'un tel systéme.

V1l Enerqie électrostatique d'une distribution continue de charges

Imaginons un systéme dont la densité de charge finale est p(r) et dont le potentiel
électrique final est donné par V(r).

Si on divise uniformément (en tout point de I'espace) la densité de charge
électrique par un facteur 2, en vertu du principe de superposition, le champ électrique et le
potentiel seront eux auss divisés uniformément par 2.

Plus généralement au lieu de diviser charges, champs et potentiels par 2, on peut
les multiplier simultanément et en tout point de I'espace par un coefficient A quelcongue,
positif ou négatif.
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p(r)

A+ dA

[/

- |
0 r o r+dr 0 r o r+dr

Nous allons utiliser cette propriété pour amener le systéme d'un état initial sans
charge et a potentiel nul en tout point de I'espace al'état final donné par ladistribution de
chargefinae p(r) et par le potentiel final V(r).

Imaginons que I'on est a une étape intermédiaire et que I' on a déja apporté de
I'infini une quantité de charge telle que la densité de charge soit Ap (r) et que donc le
potentiel est A V(r).

Densité de charge Potentiel
Etat initiad 0 0
Eta Q) AV(r)
intermédiaire (A +d\) p (1) (A +dr) V(r)
Etat final p(r) V(r)

Le potentiel éant A V(r), apportons de I'infini une quantité de charge petite, telle
gue la densité de charge en chaque point r de |'espace passe de Ap(r) a (A+dA)p (r).
L'accroissement de densité de charge est évidemment p(r)dA.

L'éément de charge transféré de I'infini au volume dt entourant le point r est égd a
p(r)d\ dt. De fagon similaire & ce que nous avons vu au chapitre 111, I'élément de travail
fourni par I'expérimentateur pour transférer cet élément de charge dans le volume dr,
depuis le potentiel nul al'infini au potentiel AV (r) enr, est é‘)Wexp,dt = A V(r) p(r) di dr.
Cen'est autreque V dq.

Puisgue I'expérimentateur doit effectuer un transfert de charges élémentaires dans
tout I'espace, I'éément de travail qu'il doit fournir est |la somme étendue sur tout |'espace
des @éments 6Wexp,dr , SOit:

Wep= [[[ p(r) V(r) de| A dn

Il faut bien voir que le transfert de charge est infiniment petit et qu'il seffectue a
potentiel pratiqguement constant, méme si apres |'opération, le potentiel est passé de A V()
a(A+0n) V(r).

Letravall total afournir par I'expérimentateur pour amener le systéme de I'éat ou A
= 0acelui ouA=1 est lasomme sur A des travaux élémentaires, soit:

- A=1
Wexp= | [[] p(r) Vr)de| [, 2 ondn

Puisque le travail fourni par |'expérimentateur pour transférer les charges n'est

autre que I'énergie éectrostatique, on obtient apres intégration sur A
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£ =1 [ [[] p) V() o
C'est une formule assez proche de celle rencontrée au chapitre [11. Lasomme X est
simplement remplacée par une intégrale qui Sadapte aux distributions de charge.

Cette relation se généralise atoutes | es distributions de charge non ponctuelles et
Sécrit:

£, =1 [ [[] o) V() ae | +3 [ [ o9 vee) ds] L[ [ 20 va) o]

C'est la somme sur toutes les charges, du produit de la densité de charge par le
potentiel ectriquetotal.

Application au condensateur plan

Le condensateur plan est constitué de deux surfaces chargées maintenues aux
potentiels V5 et Vg. La premiere surface porte la densité +o et la seconde avec -o.

L'intégration est immédiate:
E,=12[0SVp-0SVp]= 12Q(V,-Vg)= L2CV2

qui n'est autre que la relation trouvée au chapitre précédent en suivant un autre
chemin mais en déplacant toujours les charges par quantités infiniment petites, sous le
potentiel des charges préalablement transférées.

V1l Densité d'énergie électrostatique

V1l1-1 Densité d'énergie électrostatique dans |e condensateur plan
Rappelons-nous:

- Le champ éectrique al'intérieur du condensateur plan est éga aE=V/l ouV et
la différence de potentiel entre les armatures et | la distance qui les sépare. Le champ
électrique al'extérieur du condensateur est nul.

- lacapacité du condensateur est donnée par C= ¢ S/1.

En remplacant C et V dans|'expression de I'énergie, il vient:
Ep = % o B2V

ou V°=IS est le volume de I'espace dans lequel régne le champ électrique E.

L 'énergie électrostatique apparait donc comme le produit du volume V” par une grandeur
qui aladimension d'une densité d'énergie par unité de volume.

V1l1-1 Densité d'énergie électrostatique

Un calcul plus éaboré montre que, méme dans les cas des distributions de charges
les plus complexes, on aboutit alavaeur del' énergie potentielle finale, s on admet qu'il
régne en tout point r de I'espace une densité d'énergie électrostatique égae &

dEP -1 2
d= _EEOE



ou E est le champ éectrique en ce point.

Soit en intégrant sur tout |'espace:

N

E, = f 1 E2dr
tout I'espace

I X L esdeux facons de calculer I'énergie
IX-1 Deux calculs équivalents

II'y adonc deux fagons équivalentes de déterminer I'énergie électrostatique d'une
distribution de charges.

1" facon : Faire la somme sur toutes les charges de 1/2p V.

28Me facon : Faire la somme sur tout I'espace de la densité d'énergie
éectrostatique.

Cette deuxieme facon de procéder va bien au dela d'une simple équivalence de
calcul puisqu'elle semble montrer (et ce sera de plus en plus justifié par la suite) que le
champ éectrique n'est pas un simple intermédiaire de calcul qui servirait adéterminer la
force sappliquant sur une charge, mais une grandeur physique apportant sa propre
énergie.

|X-2 Exemple d'une sphére chargée en surface

Considérons une sphere de rayon R chargée en surface. déterminons I'énergie
électrostatique de ce systeme.

1"facon de calculer:
Le potentiel auquel est porté la sphére est:
_ Q
v (R) 4 €0 R

Toutes les charges Q étant portées au méme potentiel V(R). il vient:

_loy =1 @
\ B =29V 235 4neor
28M€f acon de calculer:

Le champ éectrique est nul de 0 AR et vaut Q/ 4r g, r2 de R al'infini. I' énergie
peut donc auss Sécrire;

2
A4mr2dr

ce qui conduit aussi &




CHAPITRE VI

L es conducteurs en équilibre statique

| Conducteurs et isolants

[-1 L es charges dans |es matériaux

Vous savez que la matiére est composée de charges positives: les protons localisées
dans les noyaux des atomes et de charges négatives, les électrons, formant le nuage
électronique dont I'extension spatiale représente lataille de I'atome.

Vous avez appris auss que I'on pouvait classer les électrons en deux groupes: les
électrons des couches profondes qui sont fortement liés aux atomes et les éectrons des
couches périphériques qui peuvent passer d'un atome a l'autre, conduisent a la liaison
chimique et assurent la stabilité des molécules ou des solides.

Les isolants se distinguent des conducteurs par le type de liaison qui assure la
cohésion du solide et par lamobilité des é ectrons des couches externes.

-2 Lesisolants

Dans les isolants, les électrons des couches externes forment des liaisons
covalentes, ioniques ou plus généralement ionocovalentes. Dans ce type de liaison, un
électron ne séloigne jamais de I'atome dont il est issu, tout au plus Sen écarte-t-il pour
atteindre les atomes premiers voisins. Chaque éectron reste localisé dans une région tres
restreinte de |I'espace. 1l n'est pas mobile.

|-3 Electrons libres dans les conducteurs

Dans les conducteurs, au contraire, les électrons (au moins une partie d'entre eux)
qui assurent la cohésion du méta sont libres de se déplacer dans |'ensemble du matériaux.
Les électrons libérés par les atomes sont appel és éectrons libres.

La valence d'un métal est égale au nombre d'électrons que libére chacun des
atomes.

Un métal peut alors étre considéré comme un réseau d'ions positifs baignés par
une mer d'éectrons libres.

|-4 L'échelle de '8 ectrogtatique

En I'absence de sollicitation électrique extérieure, un métal est électriquement
neutre en chacun de ses"points'.

II'y aen moyenne (localement) compensation entre les charges + desions positifs
et les charges - des éectrons libres.

Cela est vrai a condition de considérer un "point" comme un volume petit mais
|égérement supérieur alataille del'atome. C'est ce quel'on fait en éectrostatique.

Dans le métal représenté ci-dessous, les électrons sont uniformément répartis et
viennent compenser en chague "point" la charge électrique positive desions. Du point de
vue de |'électrostatique, tout se passe comme si ce métal ne portait aucune charge
éectrique.
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Il Champ électrigue dans un conducteur

[1-1 Réponse d'un conducteur a une sallicitation extérieure

Considérons un métal non chargé dans lequel les charges positives fixes et
négatives mobiles (électrons libres) sont distribuées de facon uniforme. Ce métal est
électriqguement neutre et ne fait apparaitre aucune charge éectrique résultante.

Approchons de ce métal un solide chargé positivement tel que celui représenté sur
lafigure ci-dessous. Le solide chargé crée dans |'espace et en particulier dans le métal un
champ éectrique E(r).

En fait, les électrons libres du métal vont réagir tres vite a ce champ électrique €,
animés par laforce de Coulomb, ilsvont se déplacer en sensinverse au champ éectrique.
Les éectrons vont donc se diriger vers les charges positives portées par |e solide extérieur.

Ne pouvant sortir du solide, des é ectrons vont progressivement saccumuler sur la
face du métal située au voisinage de la charge extérieure positive et créer en ces points une
charge négative résultante. A l'inverse, une charge positive résultante va apparaitre au
voisinage de laface opposée du solide par défaut d'électrons.

Excédent de charges
negatives

Défaut de charges
L e déplacement des charges réduit puis rend nul négatives

le champ éectrique al'intérieur du métal
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Cefaisant, les charges résultantes apportent leur contribution au champ éectrique
al'intérieur et al'extérieur au solide.

A l'intérieur du métal, ce nouveau champ viendra de toute évidence sopposer au
champ créé par les charges extérieures et réduire le champ éectrique total. Les électrons
libres ne cesseront leur mouvement de migration que lorsgu'ils ne seront plus soumis a
aucune force, c'est-a-dire lorsgue le champ éectrique tota al'intérieur du métal seranul.

Ains al'équilibre, al'intérieur d'un conducteur, le champ électrique total est nul.
(situation d'électrostatique)

La situation ci-dessus ne doit pas étre confondue avec celle ou les extrémités du fil
conducteur sont maintenues a des potentiels V, et V,, et reliées a des réservoirs de charges

positives et négatives. Cette connexion empécherait |'accumulation de charges sur les
surfaces et ne conduirait & aucune modification du champ éectrique al'intérieur du métal.
Les électrons ne feraient que "passer" (situation d'électrocinétique gque |'on verra au
chapitre suivant.)

11-2 L ocalisation des charges

Au vu de la description ci-dessus, les charges électriques (résultantes) semblent
saccumuler versles surfaces.

Montrons en effet que si e champ éectrique al'intérieur d'un corps est nul, alors
les charges électriques (Sil en porte) sont nécessairement des charges surfaciques.

Pour cela, considérons une surface fermée al'intérieur de ce corps. Par hypothése,
le champ électrique est nul en chacun des points de cette surface. Par application du
théoréme de Gauss, la somme des charges é ectriques intérieures a cette surface fermée est
nulle.

Puisgue le méme raisonnement peut étre reproduit sur toute surface fermée de
taille aussi petite que I'on veut, ne traversant pas les frontiéres du corps, alors on peut
conclure qu'il n'y a pas de charge électrique volumique a l'intérieur d'un corps au sein
duquel régne un champ éectrique nul.

A 1'équilibre, les charges électriques portées par un métal sont exclusivement
surfaciques.
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11-3 Potentiel électrigque dans un conducteur

Considérons deux points A et B situés al'intérieur du métal au sein duquel regne
un champ éectrique nul.

Déterminons la différence de potentiel entre deux points A et B.

Pour cela, considérons un chemin (') asitué al'intérieur du métal. La différence
de potentidl entre les points A et B ne dépend pas du chemin suivi. Elle peut sécrire:

B
VA - VB = f E di
A ()
Puisque E est nul sur tout le chemin suivi, la différence de potentiel entre A et B
est nulle.

A I'équilibre, tous les points d'un métal sont au méme potentiel. Le métal constitue
une équipotentielle.

La aussi, il faudra bien faire la distinction avec la situation rencontrée en
électrocinétique, qui n'est pas une situation d'équilibre statique et ou le champ éectrique a
I'intérieur du métal n'est pas nul.

11-4 Champ électrique ala surface externe d'un conducteur

Le champ électrique externe situé au voisinage immédiat d'un conducteur est
perpendiculaire ala surface. Ceci est di au fait que la surface est une équipotentielle et
que les lignes de champ sont perpendiculaires aux équipotentielles.

Ce champ électrique est lié trés directement a la densité de charge surfacique
locde.

Pour déterminer ce champ, il suffit de considérer une surface fermée, dont deux
faces paralléles S sont situées de part et d'autre de la surface du métal et dont les autres
€léments sont perpendiculaires a cette surface.

Puisque le champ électrique interne est nul et si nous appelons Eg le champ

électrique externe immédiat, nous avons.

S(0 +Es):07S soit: Eg=C
0 0
L adiscontinuité de la composante normale du champ €electrique est o/,

On peut résumer les propriétés d'un conducteur électrique al'équilibre statique:

-Le champ édectrique est nul al'intérieur du conducteur

-Le potentiel est constant sur |'ensemble du conducteur

-Les charges éectriques sont localisées en surface.

-Le champ éectrique externe au voisinage immédiat du conducteur est norma ala
surface et vaut ol

LIl Lecondensateur sphérique

[11-1 rappels sur le condensateur plan

Vous avez rencontré en classe de terminale le condensateur plan. Ce condensateur
était constitué de deux plagues métalliques appel ées armatures situées en vis a vis et
chargées de charges opposées Q et -Q.
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1
+ -
S i

VAI _ VB
+ -

+ -
+ -
Q + - Q

Vous avez auss appris que ce condensateur est caractérise par sa capacité C. Cette
grandeur était définie comme le coefficient de proportionnalité liant la différence de
potentiel V 5- Vg entre les armatures ala charge Q citée plus haut.

Q=C(Va-Vp)

Vous avez peut-étre vu aussi que la capacité C est liée ala surface S des armatures
et aladistance d qui les sépare par larelation:

c=%tS

: d | L
Nous reviendrons sur ce condensateur en séance de travaux diriges.
Dans ce chapitre, nous nous penchons sur un condensateur ou les armatures
métalliques portées a des potentiels VA et Vg ne sont plus planes mais sphériques.

[11-2 Description géométrique du condensateur sphérique

Considérons une sphére (intérieure sur la figure ci-dessous) conductrice pleine, de
rayon R portant la charge Q.

Au vu des conclusions précédentes et vu la symétrie du problemes, les charges Q
vont se répartir sur la surface avec ladensité de charge

o= Q
41 R?

Entourons cette sphere d'une couronne sphérique conductrice de rayon intérieur R,
et de rayon extérieur R..

L 'ensemble constitué de la sphere interne (armature intérieure, qui pourrait étre
creuse) et de la couronne sphérique (armature extérieure) est appel€ un condensateur.

2/05/03 77



111-3 Charge portée par |a surface intérieure de la couronne sphérique

Considerons une sphére de rayon r compris entre R, et R... Vu les propriétés des

conducteurs en équilibre, en tout point de cette sphere, le champ électrique est nul. Cela
signifie, par application du théoreme de Gauss, que la somme des charges intérieures a
cette sphere est nulle.

Puisgue les charges intérieures comprennent la charge +Q localisée sur la surface
de la petite sphere, il faut gjouter Q;= - Q sur la surface intérieure de la couronne

sphérique. Vu lasymétrie du probléme, la charge Q; se répartira uniformément en surface.

[11-4 Champ éectrique entre les deux armatures

Considérons maintenant une sphére de rayon r compris entre les armatures du
condensateur, c'est-a-dire entre R et R.. Vu lasymétrie du probléme, le champ électrique

E(r) en chague point de cette sphere est radia et constant. En appliquant le théoreme de
Gauss sur la surface fermée que constitue cette sphere derayonr, il vient:

4xr2E(r) = Q
. €0
Soit:
_ Q _ oR?
E(r) = =
") Amegr2  gor?

[11-4 Différence de potentiel entre les deux armatures

Ladifférence de potentiel entre les armatures sobtient en intégrant dV = -E. dl le
long d'un rayon. Sur un tel rayon, E et dl sont colinéaires et il sSensuit:

Vo= Q (1.1
VA VB 47 €0 (Ri R)
111-5 Capacité du condensateur

Comme dans le condensateur plan, il y a proportionnalité entre la charge Q portée
par I'armature centrale (et - Q porté par la surface interne de I'armature externe) et la
différence de potentiel entre les armatures. Le coefficient de proportionnalité C, qui relie Q
aladifference de potentiel V -V selon:

Q=C (Va-Vg)

est appelé la capacité du condensateur.
La capacité du condensateur sphérique est:

_ 4neggRR
= R-R
L'unité de capacité est le farad

[11-6 Condensateur plan, limite du condensateur sphérique

Si ladistance entre les armatures devient beaucoup plus petite que les rayons R et
R;, le condensateur sphérique sapproche du condensateur plan.

Verifier en remplacant R par R+d et en se plagant dans le cas ou d<<Rquel'on
retrouve I'ensemble des expressions du condensateur plan.
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[11-7 Charge portée par |a surface externe de la couronne sphérique

Lacharge Q, portée par la surface externe de la couronne sphérique va dépendre
du potentiel V5 de cette couronne par rapport al‘infini.

Deux cas extrémes apparai ssent:
- Lacouronne sphérique est isolée

- L'armature externe est reliée a un réservoir de charge et est maintenue a un
potentiel V=0

Si I'armature externe est isolée, la somme des charges qu'elle contient doit étre
nulle. Puisque la charge -Q se place sur la surface intérieure de cette armature, la charge
Q.= +Q doit se placer sur la surface extérieure.

Par application du théoréme de Gauss sur une sphere de rayon r>R,, le champ
électrique en un point M(r) extérieur aux armatures est simplement Q/4me r2. De Rea

l'infini, le potentiel vaut Q/4megr. Il est constant dans I'armature extérieure ol il vaut
Qldney R

Si I'armature est maintenue a un potentiel nul, il 'y a pas de différence de potentiel
entre l'infini et les points situés a R, Celaimpose un champ électrique extérieur nul. Par

application du théoreme de gauss Q=0.

Le casle plus frequent reste celui ot I'on impose un potentiel Vg différent de0 a
I'armature externe. On peut facilement montrer que la charge Q, est alors égale a
4megRV 4.

Danslapratique, cette charge Q. est en général beaucoup plus faible que Q et sera
négligée.

LV _énergie stockée dans un condensateur
V-1 Charge directe d'un condensateur

Considérons deux armatures de condensateur non chargé. Au départ, ladifférence
de potentiel entre lesarmatures AV =V ,- Vg est égale a 0.

Nous allons charger le condensateur en extrayant lacharge Q de I'armature A et en
la déposant sur I'armature B.

En fait, ce transfert doit étre réalisé par étapes en prélevant sur I'armature A et en
déposant sur I'armature B des éléments de charge dq successifs.

Prélevons une charge 6q al'armature A et amenons lasur I'armature B. Ce premier
transfeﬁt ne requiert aucun travail puisque la différence de potentiel entre les armatures
était nul.

Aprés ce premier transfert de charge, I'armature A porte la charge dq et I'armature
B lacharge -0q. la différence de potentiel u,- ug est 5g/C. (lalettre u est utilisée pour
noter les potentiels au cours de la charge du condensateur. u vavarier de0aV).

Effectuons un deuxiéme transfert d' élément de charge 9. Le travail delaforce
électrique est 6 (ug-U,) €t donc celui fourni par I'expérimentateur est 8q (Up-Ug)= 0q
g/C =0q dg/C.

Aprés ce second transfert, la charge du condensateur est g= 209 et la différence de
potentiel entre les armatures est U, -ug = g/C = 25¢/C.
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Letravail fourni par I'expérimentateur pour un troisieme transfert est dq (U,-Ug)=
0q g/C =0q (200g/C), etc.

Ains I'élément de travail fourni par I'expérimentateur pour transférer la charge 8q
est W = (up-ug) 8q =09 ¢/C oli g est lacharge qui a été transférée préalablement et u,-
ug ladifférence de potentielle acquise par les transferts de charge précédents.

Letravall total fourni par expérimentateur pour transférer la charge Q est lasomme
destravaux éémentaires soit:

V-2 Energie potentielle d'un condensateur

Puisque I'énergie potentielle électrostatique est égale au travail fourni par
I'expérimentateur pour modifier la position des charges, et compte tenu des relations entre
V=(V,-Vp), Q &t C, on obtient |es relations suivantes:

_1 @ _ 1 _ Qv
Bp=y o =y CVi=,

VI Charge et décharge d'un condensateur atraversunerésistance
V-1 Décharge d'un condensateur

Considérons un condensateur C portant a l'instant initial la charge Q. Relions a
I'instant t=0 ses armatures a une résistance R. Sacharge al'ingtant t est notée q(t).

En choisissant e signe de charge et |e sens positif du courant comme indiqués ci-
dessous, i(t) = -dg/dt ( si le courant sécoule dans le sensindiqué par lafléche( 1>0), g
décroit)

Ladifférence de potentiel V(1) =V 5- Vg sécrit:
-En considérant 1a branche contenant |a résistance:
V- Vg =Ri=-Rdgdt
-En considérant la branche contenant |e condensateur:

V,-Vg =0/C
ce qui conduit a:
da,a _
R a +C =0

C'est une équation différentielle du premier ordre a coefficients constants et sans
second membre.
Lasolution générale sécrit:
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w=reo (- )

La constante A se détermine en tenant compte du fait que g=Q al'instant t=0. soit

A=Q.

I'intensité instantannée di ciurant i = dg/dt =

Oé?:q(t): F?C o (- oo

Lapuissance dissipée al'instant t danslarésistance est:

_dwW(h) _

P(t) R (i(t)?
Cela signifie que I'éément d'énergie dW(t) dissipé dans la résistance entre les
tempst et t+dt sécrit:
dW() = R(i(t))?dt

L'énergie total e dissipée dans larésistance lors de la décharge, est:

t=o0 t=o0
w:f R (i(t))zdt:R(RQC)Zf ep (- 24
t t=0

=0

gue I'on trouve facilement par intégration:
_Q?
W=""_
2C

L'énergie qui était contenue dans le condensateur est dissipée par effet joule.

V-2 Charge d'un condensateur

Considérons un circuit contenant une pile fournissant une tension E (a ne pas
confondre avec le champ éectrique), une résistance R et un condensateur de capacité C.

A l'ingtant t=0, |e condensateur n'est pas chargé et on ferme le circuit.

Avec les signes des charges et le sens du courant indiqués sur lafigure ci dessous:
i= dg/dt . En effet s le courant Sécoule dans le sens de lafléche (1 >0) q croit.

L

| g
A @ | | ¢ B
i \
—~— R |
C
V
NOUS avons:

VA'VB:% Ve-Va=Ri  Ve-Vg =V

ce qui conduit al'équation différentielle:
V=R da ,q
qui est une éguation différentielle a coefficients constants avec second membre.
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Lasolution est la somme d'une solution de |'équation sans second membre et d'une
solution particuliere.
Comme vu plus haut, la solution de I'équation sans second membre est:

=10 - )

alorsque g= CV est une solution particuliere.
Il vient:

qt) = CV +)»exp(- Rt )
dont la solution, compte tenu de la condition initiale g(0)= 0 Sécrit:

00=CV (t-on| o)

I'intensité dans le circuit sécrit:
i =\ __t
=% (5]

La puissance débitée par le générateur est: P(t) =V i(t)

La puissance dissipée dans larésistance est R i4(t)
La puissance fournie au condensateur est : q(t) i (t) / C

Montrer que I'énergie totale fournie par le générateur est QV ou Q est la charge
finale du condensateur.

Montrer ensuite que I'énergie QV/2 est stockée dans le condensateur et que QV/2
est dissipée par effet joule.

Tracer dans chacun des cas ((t) et i(t).
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CHAPITRE VII

L rants électri

| L ecourant continu
[-1 Maintien d'un courant continu

Considérons un cylindre métalligue conducteur, constitué d'ions positifs fixes et
d'éectrons libres mobiles. Comme nous I'avons vu précédemment, en I'absence d'influence
électrique extérieure, il y alocalement et en moyenne compensation entre les ions positifs
fixes et les @ectrons libres mobiles, ce qui assure la neutralité éectrique locale du métal.

Placons sans contact, au voisinage de ses extrémités, deux plaques chargées
positivement et négativement.

+ E
ﬁ —
® DO OO

® 060066 6

Instant t=0. les électrodes créent un champ éectrique qui va disparaitre quasiment
instantanément.

A l'instant t=0 un champ électrique créé par |es électrodes apparait dansle cylindre.

Mais quasi instantanément les électrons libres du métal se déplacent sous I'influence
du champ en induisant un excédent de charges négatives au voisinage de la plaque positive et
un défaut d'éectrons au voisinage de la plague négative, ce qui a pour effet d' annihiler le
champ éectrique al'intérieur du cylindre qui, comme dans | e chapitre précédent, devient une
équipotentielle.

+ E=0 _
® 00 ® 0 0

® 6 @
EECECECHCHCECHECEC

f \

Excés d'électrons Défaut d'électrons

Cette situation n'assure pas de transfert de charge d'une électrode a |'autre et donc pas
de passage continu de courant.

Pour cefaire, mettons les électrodes et les extrémités du métal en contact et faisons en
sorte que des électrons puissent étre librement fournis ou recus par les électrodes
maintenues a leurs potentiels. Celles-ci se comportent comme des réservoirs de charges. |1
est clair que des électrons, attirés par I'excédent de charges positives localisées a l'extrémité
droite du barreau, passent de |'électrode négative au barreau pour de nouveau assurer la
neutralité électrique en cette extrémité. De le méme fagon, a extrémité gauche, les électrons
excédentaires quittent le barreau pour rejoindre I'électrode positive et assurer la aussi la
neutralité éectrique.
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Celaapour effet de rétablir le champ éectrique initial et d'entretenir |e déplacement
des électrons al'intérieur du barreau et un transfert de charge avec les électrodes.

+ E
ﬁ |

® ® ® 0 ® ® 0 ® OF
V-—— —— 2

PO 00 00 o oF
€ :

I
Le gradient de potentiel al'intérieur du cylindre est rétabli.
Ce champ E qui assure le déplacement des électrons et |a circulation du courant est
appel é champ éectromoteur.

|-2 Intensité de courant électrique

Considérons une section droite du cylindre sur lequel nous avons fait figurer les
électrons libres. Les ions positifs qui assurent la neutralité électrique n'ont pas été
représenteés.

On appelle intensité de courant électrique la quantité de charge Q qui traverse la
section droite S en une seconde.

Soit v la vitesse de déplacement des électrons, q = -lel leur charge élémentaire, n la

densité d'électrons libres par unité de volume (pour le cuivre n est de 8.45 1028/m3), etp=
ng ladensité de charge par unité de volume.
LesdN éectrons qui traversent la section S pendant I'intervalle de temps dt compris
entret et t+dt sont ceux qui se trouvaient al'instant t dansle cylindre délimité par lasection S
et lasection S distante de la précédente de dl = v dt. Ce nombre d'éectrons est:
dN =nSd

L'éément de charge dQ qui traverse S pendant le temps dt est:
dQ=nSlg=nqgqv Sdt

Aingi, l'intensité du courant électrique au tempst, égale a la charge qui traverse S
pendant I'unité de temps, est Ssmplement:
=dQ/dt=ngvS=pVvS

Par malchance historique, le sens positif du courant électrique a été choisi opposé au
sens de déplacement des électrons.

[-3 Densité de courant

Par définition, on appelle densité de courant électrique la grandeur vectoriellej:

j=nqv = pv

Ladensité de courant est un vecteur parallele ala vitesse de déplacement des charges,
d'intensité d'autant plus importante que la charge des porteurs élémentaires est élevee et que
leur densité volumique est grande.
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L'intensité du courant électrique apparait comme le produit scalaire de la surface S et
deladensité de courant j. L'intensité est le flux dej atravers S.
On peut tout aussi bien choisir une surface S; qui ne soit pas une section droite du

barreau mais soit une section oblique orienté de telle sorte que le vecteur S, fasse un angle 0
avec I'axe du barreau. Il sen suit que l'aire S;= S/cosh est supérieure al'aire S. Maisle flux
dej atravers cette surface reste identique. Le produit scalairej.S; resteégal al =j.S.

Ains l'intensité du courant éectrique est une grandeur scalaire. Pour la définir, il faut
se donner un circuit orienté fermeé supportant une surface orientée. L'intensité de courant est
la quantité de charge qui franchit la surface par unité de temps.

-4 Exemple d'intensité a travers un circuit

Reprenons I'exemple d'un cylindre au sein duquel regne une densité de courant |
uniforme. Représentons une coupe perpendiculaire vue de dessus.

Le cercle entrait gras délimite le pourtour extérieur du cylindre.

j représente le vecteur densité de courant. Il est supposé uniforme dans tout le
conducteur.

Sur le pourtour extérieur du cylindre, nous avons figuré un circuit orienté (C;) auquel
correspond un vecteur surface S; perpendiculaire au plan de lafigure et dirige vers I'avant.

Déterminons l'intensité du courant qui traverse (C,). |4 est smplement e produit de
lasurface S, etdej 1, =] S,.

Nous avons aussi représenté deux circits (C,) et (Cy).

Puisque la densité de courant sur la surface externe au conducteur est nulle, l'intensité
de courant qui traverse (C,) est identique acelle qui traverse (C,).

I=1, =1, est ce que I'on appelle communément I'intensité qui parcourt le conducteur.

L'intensité de courant qui traverse (C5) est de toute évidence égalealy = S;. Cette
intensité est leflux dej atravers S;. |5 estinférieure al.

|-5 Densité de courant non uniforme et intensité de courant

Dans |'exemple vu ci-dessus, la densité de courant a été supposée uniforme. En fait
dans un métal, la densité de courant j peut ne pas étre constante, si par exemple larésistivité
du métal n'est pas uniforme.

Supposons simplement gue la densité de courant varie avec la distance al'axe du
cylindre selon uneloi j(r).

Puisgue tous les point situés a la distance r de I'axe central sont parcourus par la
méme densité de courant j(r), lacontribution de la partie hachurée al'intensité | du fil est:

dl = j(r2rrdr
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dr

et I'intensité totale qui parcourt lefil derayon R est :

R
I:f j(r) 2 r dr
0

LI L oisd'écoulement des charges électriques
11-1 Etablissement d'un courant continu dans un supraconducteur

Plongé dans un champ électrique constant,
E=VAa-Vs

. L., :
ou L est lalongueur du fil aux extrémités duquel les potentiels V , et Vg sont

maintenus, chague éectron de charge q = - lel est soumis aune force F= gE et obéit alaloi
fondamentale de ladynamique:

—gE=madv
FquOIt

Puisgue la dérivée de la vitesse est constant (mouvement uniformément accéléré), la
vitesse obét al'éguation:
V= % Et +vo
0ou v, est lavitesse initiale des €lectrons qui ici se trouve étre nulle.
la densité de courant sécrit aors:

2
j = nqv:—nmq Et

ce qui signifie que la densité de courant et donc I'intensité du courant croissent
linéairement avec le temps.

Vous savez que ce n'est pas vrai. En effet, si al'aide d'un générateur vous établissez
une différence de potentiel entre les extrémité d'un fil, I'intensité du courant est constante et
suit laloi U=RI. Vous avez par exemple mesuré qu'un fil de cuivre de 10m de longueur, de
0.1mm?2 de section soumis a une différence de potentiel de 1V était parcouru par un courant
constant de 0.17A.

En fait, s lacroissance linéaire de l'intensité du courant électrique n'est pas observée
sur le cuivre, elle est vérifiée sur le niobium en dessous de 10K ou sur un alliage d'yttrium,
de baryum, de cuivre et d'oxygeéne (Y BaCuO) en dessous de 90K. Ces matériaux sont a ces
température des supraconducteurs. Pour stopper |'accroissement du courant, il est nécessaire
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de supprimer ladifférence de potentiel. Les éectrons ne sont plus soumis a aucune force et
poursuivent leur déplacement & vitesse constante sans le moindre freinage. On peut ainsi
faire circuler indéfiniment un courant dans un anneau supraconducteur fermé dans lequel on
alancéle courant.

[1-2 Etablissement d'un courant dans un conducteur résistif

Dans les cas qui restent malheureusement usuels, la suppression de la différence de
potentiel et donc du champ éectrique interne conduit a la disparition instantanée du courant.

Cela signifie donc que les électrons sont soumis a des forces de frottement. Les
frottements proviennent des interactions avec les ions positifs ou avec les impuretés
contenues dans le métal.

Laforme laplus simple de force de frottement est f=-kv. C'est une force opposée au
sens de déplacement et proportionnelle alavitesse.

Sous I'effet de laforce éectrique et de laforce de frottement, larelation fondamentale
de ladynamique devient:

F=m %’ =gE -kv
et lavitesse obéit al'équation différentielle suivante:
m ‘#V +kv =qE
qui est une éguation différentielle a coefficients constants avec second membre.

Lasolution est lasomme:
- delasolution de I'équation sans second membre:

dv =

mY + kv =

| Va 0
v=A e_(m)I

- et d'une solution particuliere:

vo,=—E

~|Qa

Lacongtante étant déterminée par la condition initiale: at=0, v=0, il vient:

vV = vw( l-e f )
ou T = - (m/k) est une constante de temps caractéristique.

] ] ]
T 2t 3t 4t - t
lorsque t << T IlI'argument de I'exponentielle est trés petit devant 1 et par
développement limité ( pour e petit € =~ 1+ ¢)
V=V, %
Lorsque t>>t |'exponentielletend versO et v tend vers savitesse limite v,
v est en fait trés proche de v, lorsquet est supérieur a 3 ou 4.
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Ladensité de courant est est dors:
2 2
j = NG g - NATE - Ge= 1
k m Pe
ou o est une grandeur caractéristique du matériau appelée conductivité électrique. Son
inverse pe est larésistivité éectrique.

L'intensité du courant électrique sécrit:

|:jS: §E:§M
Pe Pe L
note:

Larésistivité électrique se note genéralement p. Nous I'avons notée p, afin d'éviter
toute confusion avec la densité de charge volumique notée elle aussi p.

LIl L arésistance électrique
[11-1 Définition
Laformule donnant I'intensité du courant se réécrit:
Va-Vg=Pel | = R

R est déduit de la connaissance du courant et de la différence de potentiel. Ains dela
connaissance de la résistance R et des dimensions géométriques du fil on peut déduire la
résistivité p du matériau. Connaissant p,, lacharge de I'électron et samasse on en déduit k

er.

A I'aide des valeurs numériques données ci-dessus, déterminer la résistivité du
cuivre et montrez que pour ce métal T est de I'ordre de 1014s. Déterminer la vitesse v de
déplacement des éectrons.

Cette tres faible valeur de t dans les métaux montre pourquoi |'évolution du courant
lors de I'établissement de la différence de potentiel n'est pas observable. L'intensité du
courant atteint quas instantanément savaeur limite .

[11-2 L aforce électromotrice

Considérons un circuit contenant un générateur maintenant entre les extrémités d'un
fil métallique une difféerence de potentiel V=V -V . Les électrons circulent dans le métal

sous |'effet du champ éectrique E et de laforce F avec:

B B
vA-vB=f E.dl =j %.dl
A A

Dans la derniere expression, nous avons remplacé E par F/q ou F est laforce qui
sapplique sur les charges g.

Sans doute parce que laforce intervient a ce niveau et par abus de langage, on note V
laforce électromotrice entre A et B. Dansles circuits électriques, elle est souvent notée E et
ne doit pas étre confondue avec un champ éectrique.

Ainsi laforce électromotrice entre A et B apparait comme la circulation, entre ces
points, de laforce rapportée alacharge, qui sapplique sur les charges mobiles et assure leur
mouvement.

Il faudra bien se souvenir de cette définition lors de I'éude de I'induction et de la
force éectromotrice induite.

2/05/03 88



[11-3 Résistance é ectrique et loi de Joule

Comme nous I'avons vu plus haut, les forces de frottement conduisent & une vitesse

limite de déplacement des électrons et les freinent en un temps de 10-14 s lors de la
suppression du champ électrique. En régime continu, elles provoquent un dégagement de
chaleur.

L a puissance dissipée par chague électron est:

p=-fv=kv2= K j2

n2 q2
soit par unité de volume (on multiplie par ladensité éectronique):
— K 2 -, i2
P=n 2 g2 J Pe)
et pour I'ensemble du fil: (on multiplie par L Sle volumetotal du fil):
W =RI?

C'est laloi de Joule.

La chaleur dissipée dans un conducteur électriques est due aux forces de frottement
des éectronslors de leur déplacement.

LV _Calculs de circuits électrique

Ce paragraphe ne constitue qu'un rappel de ce que vous avez déavu sur les circuits
électriques ssmples. Nous proposons en V-4, et sans lajustifier, une méthode de résolution
systématique des circuits complexes. Vous pouvez trouver de longs dével oppements dans
deslivres d'éectricité plus spécialisés.

V-1 Loi desnoeuds

Un circuit électrique simple est composé de générateurs et de résistances. Ces
éléments forment un réseau ou apparaissent des branches et des noeuds. Une succession de
branches formant un circuit ferme est appel ée une maille.

I3
S3

Lesforce électromotrices des générateurs et les résistances de chague branche étant
données, les intensités peuvent étre calculées a l'aide de deux lois simples appelées 1€ et

29M€ | ois de Kirchhoff ou loi des noeuds et loi des mailles.

Lapremiére desloisest uneloi de conservation. Un volume entourant un noeud et tel
que celui limite ci-dessous par les surfaces S;, S, et S; n'est |e siege d'aucune accumulation
de charges. Cela signifie que, pendant |'unité de temps, il y a autant de charges pour entrer
dans ce volume que pour en sortir.
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Puisque la quantité de charge traversant les surfaces limitant le volume est égale au
produit du temps et de I'intensité du courant, il sen suit pour I'exemple ci dessus:

I+ 1= 15

La somme des intensités des courants entrants est égale ala somme des intensités des
courants sortants.

Si par convention, on choisit comme positif de courant le courant se déplacant vers
un noeud, laloi des noeuds sécrit:

V-2 Loi desmailles
Laloi des mailles constitue la synthese de trois propriétés.

-Un générateur maintient entre ses bornes une différence de potentiel E; (ne pas
confondre E; avec un champ éectrique E; qui est ici une force électromotrice)

-Ladifférence de potentiel entre les bornes d'une résistance est égale aRl.
-Lasomme des différences de potentiel d'un circuit fermé est nulle.

En choisissant un sens de parcours positif de lamaille, selon lequel les courants sont
orientés et en placant les générateurs de telle sorte que le sens choisi comme positif |'atteint
par laborne - (laplus petite sur le schéma), on a pour chaque maille:

Y (RIk-E¢)=0

k

Si dans une branche le courant se trouve étre orienté en sens contraire du sens de
parcours, on fait precéder R, du signe - et sl le sens positif du parcours atteint le générateur
par laborne positive, on fait précéder E, du signe +.
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V-3 Principe de résolution d'un circuit.

On dispose d'un circuit complexe dont on a représenté une maille ci-dessous. La
détermination des courants passe par 4 étapes.

-Définition d' un sens de courant arbitraire sur chague branche. (Si le résultat final de
courant est positif, c'est qu'effectivement il circule dans ce sens, si le courant est trouvé
négatif, c'est quiil circule en sens oppose.

-Ecriture de laloi de conservation du courant a chaque nceud (loi des nceuds), soit au
vu du schéma ci dessous:

lgl 1,70 Ig+l #1520 -lglgl,=0  etc

-Définition d'un sens de parcours positif sur chague maille. (cercle fléché de la
figure).

-Ecriture laloi des mailles de pour chacun d'eux, soit ici:

-Résolution du systeme d'égquation

V-4 Méthode des courants de maille
Larésolution des circuits électriquestelle qu' énoncée ci dessus est simple dans son

principe. Elle peut néanmoins conduire a des calculs longs et pénibles, souvent ala suite d'un
choix peu heureux d'éimination de variables.

Vous pourrez trouver dans les livres spécialisés plusieurs méthodes de résolution
systématiques. Nous vous en proposons une, celle des courants de maille. Elle comporte 6
étapes.

i) Attribution a chaque branche d' un courant orientél,1,, I, €tc.

i) Définition et orientation des mailles indépendantes (o), (B), (y), €tc.

iii) Affectation achacune des mailles, d' un courant de maillefictif i etc.

o IB! IX ’

iv) Etablissement des relations entre les courants | et les courant de maillei . Par
exemple:
'1:ia‘iy lo=-i+ig 13=i, |4:iﬁ+ia
V) Ecriture de laloi des mailles et remplacement des | par leurs expressionseni:
-E; + Ryl; -E, -Ryl, +Rgl3 +E5 -Ryl, +E, =0
-Eq + Ry(i - iv) By -Ro(-l +ig) +rreiiiin, =0
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vi) Résolution des N équations a N inconnues donnant lesi et déduction des|.

C'est une méthode systématique, d'autant plus simple que vos machines a calculer
résolvent directement les équations linéaires. La difficulté est de choisir le bon nombre de
mailles indépendantes. 11 est fonction du nombre de noeuds et de branches.....mais ¢a devient
une affaire de spéciaiste. Dans les cas que nous traiterons il sera assez évident.

4Q 30
10V N I AY/
2Q —T T 05Q

1Q 20

60

Déterminer a |'aide de cette méthode les courants circulant dans les différentes
branches du circuit ci dessus.

V1 Courants surfaciques

Nous avons vu plus haut que I'intensité du courant électrique est liée au déplacement
de charges et se définit comme la quantité de charge qui franchit une surface par unité de
temps.

En fait, pour étre plus précis, nous aurions di parler de courants volumiques puisgue
ce sont des charges de volume qui se déplacaient. Nous avons défini le vecteur densité de
courant (volumique) comme le produit de la densité de charge volumique p et de leur vitesse

jii=pv.

Nous savons cependant que les charges peuvent étre localisées en surface avec
densité o. Le déplacement de ces charges conduit a un nouveau courant dit courant
surfacique.

Le courant surfacique est égal ala quantité de charge qui traverse uneligne L, définie
dans le plan des charges, pendant I'unité de temps. Laligne L vient se substituer ala surface
S traversée par les courants volumiques (par simplicité, nous ne considérons que des lignes
perpendiculaire au sens de déplacement des électrons).

Les dN électrons qui franchissent la ligne (1) pendant le temps At sont ceux qui étaient
contenus al'instant t dans le rectangle délimité par leslignes (1) et (2) séparéesdel = v dt.
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Leur nombre est égal adN = n L v, 6t
etlachargetraversée dQ=n,qL vgdt=ov L dt.
L'intensité de courant surfacique est 1= ovgl

et le vecteur densité de courant surfacique est défini par:

| Js= NsqQVs = O Vs |

Il faut bien noter que si les courants volumiques traversaient des surfaces, les
courants surfaciques traversent des lignes.
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CHAPITRE VIII |

L e champ magnétique

| L esaimants

[-1 L es aimants sources de champ magnétique
On distingue deux types de sources de champ magnétique: les aimants et les
circuits électriques parcourus par des courants.

Un aimant est caractérisé par un p6le nord et un pdle sud. Les lignes de champ
magnétique B se dirigent du pdle nord vers le pdle sud.

e
Sy >

-

—-

Les pbles d'un aimant sont indissociables. L'aimant brisé produit deux aimants
avec chacun son pole nord et son pble sud. C'est une différence fondamentale avec
I'électrostatique. On ne peut isoler et manipuler indépendamment des entités qui seraient
detype plus et des entités qui seraient du type moins.

N S

[-2 Interaction entre les aimants

Des pbles de naturse différentes sattirent alors que des pdles de méme nature se

repoussent.

De fagon générale un aimant soriente dans un champ magnétique de telle sorte
gue la direction sud-nord de cet aimant soit dans la direction du champ magnétique local
et donc des lignes de champ créées par |les autres aimants.

Ou le pdle nord magnétique de la terre se trouve-t-il ?
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LI Champ magnétique créé par les courants: |oi de Biot et Savart
[1-1 Loi deBiot et Savart

Nous avons vu en électrostatique que laloi de Coulomb permettait de calculer en
un point M les éléments de champ électrique dE créés par les éléments de charge dq
distribués dans I'espace.

Laloi équivalente de la magnétostatique doit nous permettre de déterminer en
chaque point M de I'espace les éléments de champ magnétique dB créés par les éléments
de courant dI distribués danstout I'espace. C'est laloi de Biot et Savart.

Dans un cas comme dans |'autre, le champ total est obtenu en effectuant par
intégration la somme des @ éments de champ.

Considérons au voisinage du point P un élément de circuit dl parcouru par un
courant |I. Le vecteur dl est orienté dans le sens de circulation du courant. Soit r la
distance séparant I'éément dl du point M ou I'on cherche a déterminer le champ
magnétique. Soit up,,; le vecteur unitaire paralléle au vecteur PM.

Laloi deBiot et Savart nous enseigne que I'élément de champ magnétique dB créé
au point M par I'élément defil dl parcouru par le courant | sécrit:

_ uoldl A upy
47 r2

dB

En vertu du principe de superposition des champs magnétiques, le champ total créé
par I'ensemble des circuits contenus dans |'espace sécrit:

upl dl A u

B =
42

Circuits

Une telle écriture vectorielle est formelle. Elle est égquivalente a trois relations
semblables, une par composante.
Si dx, dy et dz sont les composantes de dl, et u,, Uy, et u, cellesdeu, B, prend la

forme:

uo! (uzdy - uy dz)
o 4712
Circuits

Il sSagit d'une intégration le long de circuits, ce qui implique que dy et dz ne sont
pas indépendants. L e calcul nécessite donc un paramétrage que I'on effectuera cas par cas,
au vu des symétries du probléme.

By =

2/05/03 96



[1-2_Champ magnétique créé par un fil rectiligne

[+dl
dl o
|
d
0 B
r dB
I A -

Considérons un fil rectiligne vertical parcouru par un courant |.

Soit un éément defil dl situé autour du point P entre les cotes| et |+dl.

Cet élément, comme toute autre partie du fil, crée en M un éément de champ
dB tangentiel au cercle de rayon OM. Cela signifie que dans un repére cylindrique les
composantes totales B, et B, de B sont nulles.

Seule lacomposante By, et différente de 0. Soit:

dB, = uo |l dl cos 8
. 4 nt d?
(en effet sina =cosp)
Pour sommer tous les ééments de champ, il faut tenir compte du fait quel et § ne
sont pas indépendants mais sont liés par larelation: | =r tanp soit dl = rz dp
cos? f3

Puisquer= d? cos 2B , on arrive &
| cospd
dg, = 0 nrﬁ p
Pour un fil infini, on integre § de - w/2 &+ n/2:
p=+m/2

B = uo | cosﬁd[S: uo | [si }B:m/z: uo |
0 Aur 4ur p=-nl2 = 2py

p=-n/2

Onretrouve ainsi |'expression du champ magnétique créé par un fil rectiligne que
vous avez rencontré en classe de terminale.

Nous pouvons déterminer par la méme méthode, en modifiant seulement les
bornes dintégration, le champ magnétique crée par un fil linéaire de longueur finie.

11-3 Autre facon de calculer |e champ magnétique créé par un fil

Nous allons maintenant déterminer le champ magnétique créé par un fil de
longueur finie en utilisant I'expression cartésienne de laloi de Biot et Savart.
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Az

d TP(x,y,z)

X M X,V,2)
a1

L es composantes des vecteurs entrant dans cette relation sont:

0 X -ydz'
d=| o Upm = 1 y dl aupy= 1 xdz'
dz Vx2+y2+z2 | 72 Vx2+y2+272 0

Et on a pour lacomposante de B selon Ox:

B, = Mol -ydz
An (x24y2472)3?

X et y sont les coordonnées de M, point en lequel on cherche le champ magnétique,
ils sont donc fixes avec x2+y2 = r2,

Le seul paramétre est ' sur lequel on peut faire porter 'intégration dea a b.

b
B, = MOI -y dz' — MOI [ 7 }leb
.= =
4 a (r2+72)3? an 2 (12422 | ;o4

Lalimitedu fil infini est obtenue en faisant tendre avers - infini et b vers + infini
0it:

_ ol -y _ uol

| |

sno ., By = 2n 2 2mr

21 2 2mr

cos6 , Bz=0

ce qui montre bien que le champ magnétique est radial.
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L1l Lepotentiel vecteur

[11-1 Définition

Nous avons vu en électrostatique que le champ électrique dérivait d'un potentiel
V(r) par E=-gradV. Nous nous étions fortement réouis de cette propriété qui nous
permettait de calculer le champ éectrique par le biais d'une grandeur scalaire souvent plus
facile a déterminer. Nous avons vu ensuite le role de cette grandeur dans le calcul du
travail desforces électriques et dans celui de I'énergie potentielle.

Un tel potentiel scalaire n'existe malheureusement pas en magnétostatique.

Il existe par contre un champ de vecteur A(r) a partir duquel le champ magnétique
peut étre déduit par larelation:

| B=rotA |

Le champ de vecteur A(r) est appelé potentiel vecteur.

[11-2 calcul du potentiel vecteur

Un éément de fil dl situé au voisinage du point P, parcouru par un courant I,
produit au point M un éément de potentiel vecteur dA défini par:

da = Mol d

n

dl

-

dA M

Le potentiel vecteur est obtenu par intégration des ééments dA:

_ Mol dl
A 4x f o r
circult

Du point de vue pratique, A semble plus simple a calculer que B puisque
I'expression de dA ne contient pas de produit vectoriel. Il faut néanmoins faire suivre le
calcul de A de celui de son rotationnel, ce qui peut étre lourd. Le choix entre le calcul
direct de B et un calcul indirect via A, se fera en général au vu des difficultés
mathématiques rencontrées. Du point de vue physigue et en particulier pour ce qui est de
I'énergie, le potentiel vecteur joue un role similaire acelui du potentiel scalaire.
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[11-3 Application au fil rectiligne

Verifier que le champ de vecteur A(x,y,z) tel que A,=0, Ay:O et A,=-uql/4n

In(x?+y2) est le potentiel vecteur du champ magnétique créé par un fil rectiligne parcouru
par un courant dirigé suivant oz.

[11-4 L adivergence de B

Si vous reprenez les définitions de la divergence et du rotationnel, vous vous
apercevrez facilement que la divergence du rotationnel d'un vecteur est toujours nulle.
Puisgue B est un rotationnel:

B =rotA = dvB =0

C'est une nouvelle équation locale. Notons que si la divergence de B est toujours
nulle, c'est que son flux a travers une surface fermée est nulle (revoir pour cela la
démonstration de laforme locale du théoréme de Gauss):

dvB =0 = #BdSZO

Il Sensuit qu'un champ de vecteur ne peut pas représenter un champ magnétique si
sadivergence n'est pas nulle.

111-5 Exemple

Vérifier que ladivergence du champ magnétique créé par un fil infini est nulle.

V- Champs électrigues et champs magnétiques

div B = 0 est arapprocher de: rot E=0. Ladivergence de B est nulle parce que B
dérive d'un potentiel vecteur.
Lerotationnel de E est nul parce que E dérive d'un potentiel scalaire.

On peut résumer les propriétés des champ électriques et magnétiques en relation
avec les potentiel dont ils découlent par |e tableau ci-dessous:

Electrostatique Magnétostatique
Relation avec |e potentiel E=-grad V B=rot A
Equation locale rot E=0 divB=0

Forme intégrale

*E.dl =0

ﬁB.dS =0

Ce tableau sera complété par une second tableau indiquant les relations dues au

fait que les champs décroissent en 1/r2.
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CHAPITRE IX

Théorémed' Ampere

| Théorémed'Ampere

[-1 lHlustration du théoréme d'’Ampére sur un cas trés particulier

Nous avons vu en électrostatique que I'édlément de circulation du champ électrique
E sur un élément de chemin dl se définissait par:
dC=E .dl
De la méme facon, nous définissons un éément de circulation du champ
magnétique B par:
dC=B.dl
Lacirculation totale en suivant une ligne (I') sécrit:

C=§ B .dl
()

A I

o D

B

Considérons le chemin T' fermé, constitué du cercle de centre O et de rayon r
orienté comme indiqué sur la figure ci-dessus. En chaque point du cercle, B et dl sont
colinéaires et de méme sens. L'é@ément de circulation est donc smplement 8C = B.dl.

Puisque B est constant sur tout le cercle et ne dépend que du rayon r, la
circulation totale du champ magnétique sur le cercle est 2rr B(r).
Vu l'expression de B(r), lacirculation le long du cercle sécrit:

c:f B.dl = ol
(T)

Lacirculation de B est indépendante du rayon du cercle. Elle est égale au produit
de ug par le courant |
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V-2 Origine du théoréme d Ampére.

L 'origine du théoréme d'’Ampeére apparait nettement sur ce cas particulier. Il tient au
fait que le champ créé par un fil décroit comme 1/r alors que le périmétre du cercle sur
lequel on effectue la circulation de B croit commer. Le produit de B et du périmétre du
cercle est constant.

Or, si on remonte un peu plus haut, la décroissance en 1/r du champ magnétique
créé par un fil rectiligne infini est la conséquence directe de la décroissance en 1/r2 qui
appardit danslaloi de Biot et Savart.

L e théoreme d'’Ampére est en magnétostatique le pendant de ce qu'est |e théoreme

de Gauss en électrostatique. Tous deux tiennent au fait que les champs décroissent en 1/r2
avec ladistance qui les sépare de leur source.

Comme nous avions généralisé le théoréme de Gauss a une surface et a une
distribution de charges quelcongue, nous allons généraliser le théoreme d'/Ampére a un
circuit et a une distribution de courants quel conque.

[V-3) Théoreme dAmpére sous saforme générale

Considérons le circuit fermé ABCDEFA dans un plan perpendiculaire au fil. AB
est un arc de cercle derayonr, et dangle 6;. BC ( comme DE et FA) sont des segments

radiaux. BD est un arc de cercle de rayon r, et d'angle 6,. EF est un arc de cercle de
rayon r et d'angle 6.
Quelles que soient les positions de A,B,C,D,E ou F, |a somme des angles 6, +6,
+04 = 2.
3

F
Lacirculation de B sur un arc de cercletel que AB est:

La circulation de B le long d'un rayon est nul puisque en chaque point B est
perpendiculaire au déplacement:

Cgc = Cpe= Cra
Lacirculation totale, somme des circulations éémentaires est égale &
Puisque une chemin quelconque d'un plan peut toujours étre assimilé a une

succession d'arcs de cercle et de segments radiaux, on peut dire que lacirculation de B sur
un circuit fermeé contenu dans un plan perpendiculaire au fil et entourant le courant | est
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ugl. On peut étendre cette propriété a un circuit non contenu dans le plan puisque la

composante de B suivant ladirection du fil est nulle. Tout éément de circulation de B le
long d'un chemin paralléleal est nulle.

En fait le théoreme d'’Ampere est beaucoup plus général. Il sadresse a toute courbe
fermée et est vaable pour toute sorte de distribution de courant.
Il sénonceains:

La circulation du champ magnétique B le long d'une courbe fermée qui embrasse des
courants|y, Ip, 13... est égaleaugl ol | est lasomme algébrique des courants.

L es courants sont comptés positivement sils coupent la surface soutendue par le
circuit selon le sens positif tel qu'il résulte de I'orientation du circuit fermé.

Soit le systeme compose d'un ensemble de circuits parcourus par les courants | 4,
PR
2013 14,
Considérons un circuit dAmpére (non physique) T" orienté. Le sens positif du
circuit " implique le sens positif de la surface (en gris) qui Sappuie sur le circuit orienté.

Les courants |4, |, 13 coupent la surface qui sappuie sur I'. Lescourants |1 et 15

sont comptabilisés positivement puisqu'ils coupent la surface fermée selon son sens
positif et |, est comptabilisé négativement puisqu'il traverse la surface dans le sens

opposé. (Les points d'intersection entre la surface supportée par le circuit et les boucles de
courant correspondent aux extrémités des fléches).

Remarque: la surface sous-tendue par le circuit (I') est quelconque. Elle n'a nul
besoin d' étre plane. (I') n'est d'ailleurs pas nécessairement lui-méme contenu dans un
plan.

LI Application du théoréeme d'Ampére a la détermination d'un champ magnétique

11-1 Principe d'application du théoréme d'’Ampére

Si lethéoreme d’Ampere est toujours valable, il n'est defait utilisable que dans des
cas géomeétriques tres particuliers.

Il est essentiellement utilisable sur des circuits e long desquels B est constant "par
morceaux” et se trouve orienté le long du chemin ou perpendiculairement a ce chemin.
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[1-2 Champ créé par un solénoide infini

Considérons un solénoide infini an, tours'metre, parcouru par un courant I.

Nous savons apriori et par suite de considérations de symétrie que, al'intérieur du
solénoide, le champ B est uniforme et orienté suivant I'axe. Nous savons par ailleurs que
B est nul al'extérieur.

Considérons le circuit rectangulaire CDEF dont le sens de parcours est fléché.
Suivant laregle du tire bouchon, la surface qui Sappuie sur ce circuit est orientée vers
I'avant.

Appliguons le théoreme d’Ampere a ce circuit:

Lacirculation du champ magnétique seréduit aB I:

Lescirculationslelong de CB et EF sont nulles puisque |e champ magnétique est
en tout point perpendiculaire au déplacement.

Lacirculation lelong de DE est nulle puisgue al'extérieur le champ est nul.

Lelong de FC, B est orienté parallélement au circuit et est orienté dans le méme
sens.

L.a somme des courants traversant la surface rectangle est n,I I. De plus, comme
indiqué sur lafigure, ils coupent la surface dans un déplacement vers|'avant, c'est adire
selon le sens positif de cette surface.

L "application du théoréme d'’Ampere conduit &

B.l=ugngl | soit B= ugnl, cequiest laformule bien connue du champ
magnétique al'intérieur d'un solénoide infini.

LIl Théoreme d'Ampere sous sa formelocale
111-2 Forme locale du théoréme d Ampére

Considérons dans le plan x0y un circuit rectangulaire DEFG centré autour du
point de composantes (Xq,Yq). Les cotés du rectangle sont a et b. a et b sont infiniment
petits.

Le champ électrique B est noté B4, B, B3, B, sur les branches DE, EF,FG, GH
du circuit.

Un courant, de densité de courant j traverse ce cadre. Le vecteur j a comme
composante |y, jy i .

Imposons un sens positif au circuit DEFG, ce qui revient a orienter la surface S
selon larégle du tire-bouchon. Telle qu'est fixée I'orientation du circuit, le vecteur surface
Sest dirigé versl'avant, c'est-a-dire vers les z positifs.
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7
F - E

 y+hi2
(Xg ., Ygtb/2) y
Bg B
/ (xg Yo
(xgra2,yg) j (x+al2,y
o*ta2.Yp) 0
/ -
B z
‘r
G [ d
(XO y yo'b/Z) D
0
Sescomposantessont: S = |
ab
L'intensité de courant traversant le cadre est égale al=j.Ssoit 1= jab

L e théoreme d’Ampere nous apprend que :
B1.DE + By. EF + B3. FG + By. GE = uj.S=uyj,S

Déterminons B1.DE + B,.FG

Puisque DE est un vecteur de norme b orienté selon Oy:
B1.DE =B (Xg*a/2, yg) b

Puisque FG est un vecteur de norme b orienté selon- 0x:
B3.FG =- B, (xy-a/2, yg) b

a étant petit, on peut déterminer By(x0+a/2, Yo) a partir de By(xo, Yo) par le
développement de Taylor:

0B
By(XO"'%’ YO)= By (Xo, y0)+%7y (X0, Yo)

JX
Deméme
oB
By(XO'%1 YO): By (Xo, W)-%Txy (X0, Yo)
it :

0B
B,.DE +B3.FG = ba TXy(XO’ yo)
Le méme raisonnement reproduit sur les éléments de chemin EF et GH conduit &

B,.EF +B4,GD = -ba a(ilx (X0, Yo)

soit sur I'ensemble du circuit fermé et aprés smplification par S.

wojz =

WBy_an}
ax  ay

qui pour tout circuit infiniment petit se généralise a
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rotB = uo j

C'est laforme locale du théoreme d'Ampere. Danslevide =0 «t:
rooB =0

[11-2 Théoréme de Stokes-Ampere

Nous venons de montrer que lacirculation de B sur le circuit rectangulaire orienté
était égal au flux de ce vecteur atravers la surface orientée Sappuyant sur le circuit.

C'est un résultat tout afait général qui Sapplique atout champ de vecteur a.

Soit un champ de vecteur a.

Un circuit orienté (C)

Une surface orientée S sappuyant sur le circuit.

NSl

L e théoreme de Stokes-Ampeére nous apprend que lacirculation de ale long d'un
circuit (C) est égal au flux du rotationnel de a atravers toute surface sappuyant sur (C).

%Adl = #rotA ds

111 3 Exemple d'application du théoréme de Stokes-Ampere

Considérons le champ de vecteur défini par A =0, Ay:O, A=4x. Vérifier le

théoréme de Stokes-Ampeére sur un circuit rectangulaire placé dans le plan (x0y), de
cotésa=2, b=3, centréen (x=1, y=0) et sur la surface plane que ce circuit définit.

|V Franchissement d'une nappe de cour ant

|V -1 Discontinuité du champ magnétique lors de la traversée d'une nappe de
courant.

C'est un probléme trés semblable a celui que nous avons abordé au chapitre V.
Nous avions montré que, lors de la traversée d'une surface chargée, la composante
tangentielle du champ électrique était continue alors que la composante normal e subissait
une discontinuité égale a o/,

Nous allons montrer ici que lors de la traversée d'une nappe de courant, la
composante normale du champ magnétique est continue alors que la composante
tangentielle subit une discontinuité égale aug) .
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Considérons un courant surfacique de densité j  sécoulant sur la surface grisée de
lafigure ci-dessous.

L es champs magnétiques B, et B, en deux points infiniment proches situés de part
et d'autre de la nappe de courant sont représentés par les fléches en trait gras. Ces champs
magnétiques sont dus a la fois ala nappe de courant . et a des courants externes a cette
nappe situés relativement loin. Cela signifie que lamodification de B lors traversée de la
nappe n'est due qu'a la nappe elleeméme. La modification due aux autres courants est
insignifiante puisgue les courants sont loin et que les points (1) et (2) sont infiniment
proches.

(1) -

B2
(2)

Appliguons le théoreme d'Ampeére au circuit EFGH orienté selon le sensindiqué.
Pour simplifier la démonstration, nous avons choisi un circuit particulier placé
perpendiculairement au vecteur densité de courant. Vu cette orientation, la surface grisée
sombre est représentée par un vecteur Sde sensparalléleaj .

L e théoreme d’Ampeére nous dit que la circulation de B le long d'une ligne fermée
est égale au courant embrasse par ce circuit multiplié par uy,.

Le courant embrasse est di au courant de surface. Ce courant entouré par le circuit
est ugjsL ol L =EF=HG.

La circulation de B sur les éléments de circuit FG et HE peut étre considérée
comme nulle car F et G sont infiniment proches; la distance FG=HE = 0.

Reste la circulation de B sur les éléments EF et GH. Le théoréme d'’Ampeére
conduit &

EF. By + GH. B,= pjsL

Pour repérer les vecteurs, nous avons introduit un triedre (Oxyz) direct, tel quela
normale sortante n,, soit orientée suivant |'axe des z, et la densité de courant j ; suivant Oy.

GH. B, est égal a- B, L ol B, est lacomposante de B, tangentielle ala surface

le long de la ligne perpendiculaire au déplacement du courant de surface. C'est la
composante de B2 suivant Ox.
EF. B, estéga a + By; L ol By, est lacomposante de B, tangentielle alasurface

lelong delamémeligne.
Soit aprés simplification: _
Bit-Bat =Uols

Dans le cas général ou la composante tangentielle de B n'est pas perpendiculaire
au courant de surface, cette relation se généraise &
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Byt -Bor =ugis A Nyg

B, et By, sont les vecteurs projection de B, et B, sur la nappe de courant. n,,
est le vecteur unitaire, normale sortante dirigé de (1) vers (2).

Vérifier que le cas particulier que nous avons considéré sinscrit bien dans le cas
général.

V Théoréme de Gauss et théoreme d'Ampere

Comme nous |'avons vu, ces théorémes tiennent & la forme en 1/r2 des champs
électrigues et magnétiques. Nous rassemblonsici leurs conséquences sous |'aspect global
(forme intégrale), local et de franchissement de surface. Les discontinuités de champs
électriques et magnétiques aux surfaces peuvent vous paraitre un peu difficiles et lourdes.
Elles joueront un réle prépondérant dans les matériaux magnétiques et diélectriques. Un
spécialiste d'ondes radio dans le vide pourrait les ignorer. Un ingénieur matériaux ne peut

pasy échapper

Consequence de la décroissance en 1/r 2 des champs électriques et magnetiques

Electrogtatique Magnétostatique
GAUSS AMPERE
Formeintégrae 2 Q
BdS = £0 fo“ :MOEH
i
Forme locale dvE = P rooB = ug]j
€9
Discontinuites
(les autres composantes sont 3 - O ) - ;
continues) (E2- E1)niz = © Bt2- Bt1 = MojsANg2
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