
2/05/03 1

CHAPITRE I

Champs  électriques créés

 par des distributions de charges ponctuelles

I Loi de Coulomb

I-1 Charges électriques

La nature présente 2 types de charges électriques que par commodité on note
négatives et positives (On aurait pu les appeler vertes et rouges).

Les charges de même signe se repoussent.
Les charges de signes contraires s'attirent.

I-2 Direction et sens des forces électriques.

Si deux charges de même signe (toutes deux positives ou toutes deux négatives)
sont situées aux points A et B, la charge située en A est soumise à une force FBA dirigée
selon le vecteur BA. Cette force est notée avec les indices BA pour rappeler qu'elle
s'applique sur la charge placée en A, et est due à la présence de la charge placée en B.

La charge située en B est soumise à une force FAB dirigée dans le sens du vecteur
AB. Les forces FBA et FAB sont égales et opposées.

+ +

- -
A B

FBA FAB-

Si les charges sont de signes contraires, la charge située en A est soumise à une
force FBA dirigée de dans le sens du vecteur AB  alors que  la charge située en B est
soumise à une force FAB dirigée dans le sens du vecteur BA.

- -
A B

FBA FAB+

De nouveau, les forces FBA et FAB sont égales et opposées.
Dans un cas comme dans l'autre, il faut bien noter que les forces sont radiales, c'est

à-dire portées par l'axe qui joint les deux charges.

I-3 Intensité des forces électriques

Des expériences maintes fois répétées ont montré que les intensités des forces
auxquelles sont soumises les charges situées en A et B sont:

-Inversement proportionnelles au carré de la distance rAB séparant les charges
(doubler la distance entre les charges conduit à une diminution des forces d'un facteur 4).

-Proportionnelles à deux grandeurs qA et qB qui quantifient les charges. On
appelle ces grandeurs charges électriques.
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I-4 Expression de la loi de Coulomb

Ces assertions, déduites d'un grand nombre d'expériences et de mesures, se
synthétisent par une expression mathématique appelée loi de Coulomb:

 F AB = 1
4π ε0

 
qA  qB 

rAB
2

  uAB 

où:
uAB est le vecteur unitaire (de norme 1) parallèle au vecteur AB. Ce vecteur sert à

indiquer la direction et le sens de la force FAB, sans en affecter l'intensité:

uAB  =  AB
AB

1/4π ε0 est un coefficient de proportionnalité adapté aux unités. Dans le système
international (SI), la force est exprimée en Newtons (N), la charge en Coulombs (C), les
distances en mètre (m) et la quantité ε0

ε0 = 1
36 π 109

 

 La constante ε0 est appelée permittivité du vide.

1-5 Le Coulomb

Le Coulomb est la quantité de charge électrique apportée par un courant électrique
de 1 ampère en 1 seconde.

La valeur absolue de la charge élémentaire de l'électron IeI est égale à 1.6 10-19 C

-A quelles forces sont soumises deux charges de 10-6 Coulomb séparées de 1m,
1cm,1mm?

-2 microbilles sont séparées de 1cm. Quelles charges identiques doivent-elles
porter pour qu'elles soient soumises à une force de 1N?

-Considérons une bille de cuivre de 1mm de diamètre. Déterminer le nombre
d'électrons contenus dans une telle bille électriquement neutre. Quelle fraction
d'électrons faut-il retirer pour amener sa charge à 10-6 Coulomb?

(le numéro atomique du cuivre est 29, sa masse atomique 63.5 et sa densité 8.93)

I-6 Loi de gravitation

Vous avez déjà rencontré un exemple de force exercée à distance sur un corps
(sans lien "matériel" tel qu'une corde reliant ce corps à l'extérieur).

C'est la force d'attraction universelle entre deux masses mA et mB. Elle est
toujours attractive (il n'y a pas deux sortes de masses) et s'écrit:

FAB =  - G  mA  mB 

rAB
2

  uAB

Une telle force est formellement équivalente à la loi de Coulomb avec ses deux
caractéristiques fondamentales: elle est radiale et inversement proportionnelle au carré de
la distance entre les corps.

Ici les charges sont remplacées par les masses et le coefficient de proportionnalité
G, appelé constante d'attraction universelle, est égal à 6.67 10-11 SI.
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Déterminer l'intensité de la force d'attraction universelle s'appliquant sur deux
billes de cuivre de 1 mm de diamètre séparées de 1 cm.

Quelle quantité d'électrons faut-il déplacer d'une bille à l'autre pour créer une
force électrique équivalente?

Le rayon de la première orbite de Bohr de l'atome d'hydrogène est de 5.29 10-2
nm. Comparer les intensités des forces électriques et gravitationnelles entre l'électron et
le proton dont les masses sont repectivement 0.91 10-30 kg et 1.672 10-30 kg .

II Composantes de la force

De temps à autre, nous ferons un petit détour mathématique. Voici le premier il
concerne les composantes d'un vecteur dans un repère cartésien.

II-1 Repère cartésien

C'est celui que vous connaissez et sur lequel vous avez travaillé à 2 dimensions.
Le repère est défini par un point origine 0 et trois axes (0x,0y,0z) perpendiculaires

entre eux. Les vecteurs unitaires portés par les axes sont: ex,ey,ez.
(Bien noter la disposition relative des directions  (0x, 0y, 0z). Telles qu'elles sont

placées, elles définissent un trièdre direct. Dans un tel trièdre, un bonhomme transpercé
des pieds à la tête par 0y,  regardant la direction 0z, a la direction 0x à sa gauche. On peut
noter aussi que 0x, 0y et 0z sont respectivement orientés selon les directions du pouce, de
l'index et du majeur de la main droite.

M

0

x

y

z

ex

ez ey

M'

xM

yM

zM

r

Un point M de l' espace est repéré par les trois composantes du vecteur r joignant
0 à M.  r = 0M:

r (xM, yM, zM) = xM ex +  yM ey + zM ez

M' est la projection de M dans le plan (x0y) les composantes xM et yM de r sont
les coordonnées du point M' dans ce plan.

La composante zM est obtenue en traçant la parallèle à 0M' passant par M.
On dira indistinctement qu'un objet se trouve au point M ou en r.
Les composantes du vecteur AB joignant deux points A à B s'écrivent:

rA   =   
xA

yA

zA

      rB   =   
xB

yB

zB

         rAB   = rB - rA  =  
xB  - xA

yB - yA

zB - zA

Les modules des vecteurs sont:

rA = xA
2  + yA

2   +zA
2      ou    rAB = xB- xA 2 + yB- yA 2  + zB- zA 2
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En exprimant la distance entre A et B par les composantes du vecteur AB,
l'expression de la force devient:

 FAB = 1
4π ε0

   
qA  qB 

xB- xA 2 + yB- yA 2  + zB- zA 2
  uAB 

II-2) Expression des forces par leurs composantes

De même que le vecteur AB joignant le point A au point B, le vecteur unitaire uAB
et les vecteurs forces peuvent être exprimés par leurs composantes:

 

uAB  =   
uAB x
uAB y
uAB z

       F AB =  

1
4π ε0

   
qA  qB 

xB- xA 2 + yB- yA 2  + zB- zA 2
  uAB x

1
4π ε0

   
qA  qB 

xB- xA 2 + yB- yA 2  + zB- zA 2
  uAB y

1
4π ε0

   
qA  qB 

xB- xA 2 + yB- yA 2  + zB- zA 2
  uAB z

 

Dans un repère cartésien, où l'unité de longueur est le centimètre, deux  charges
qA = 10-7 C et qB = -2.10-7 C sont situées  respectivement en A (2,-1,3) et B (-1,2,0).
Déterminer les composantes de la force qui s'applique sur la charge située en A.

III Principe de superposition

Considérons trois points de l'espace 01, 02 et M. Plaçons en M une charge q. Puis
effectuons trois opérations successives:

i) Plaçons la charge q1 en 01. En l'absence de charge en 02, Il s'exerce sur la
charge q située en M une force F01M  dont le sens et l'intensité sont donnés par la loi de
Coulomb.

+

+

+
01 M

F M

F01M

02

F
0 2

M

ii) Retirons la charge q1 et plaçons en 02 la charge q2. Il s'exerce sur la charge q
située en M une force F02M donnée elle aussi par la loi de Coulomb.

iii) Tout en conservant la charge q2 en 02, replaçons la charge q1 en 01. Il s'exerce
sur M une force FM.

 On observe alors que, en présence simultanée de q1 en 01 et de q2 en 02, la force
FM qui s'exerce sur q est la somme géométrique (vectorielle) des forces F01M et  F02M

qui exerçaient sur q lorsque les charges q1 ou q2 étaient seules présentes.
Cette observation se généralise à une distribution de charges q1, q2, q3,...,.etc.
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La force exercée sur une charge q située en M, par une distribution de charges q1,
q2, q3 etc.  situées en 01, 02, 03, etc. , est égale la somme des forces F01M, F02M, F03M,
etc. qu' exercerait sur q chacune des charges, si elle était seule.

Cela se symbolise par une expression mathématique:

 FM = F0iM∑
i

 =  1
4 π ε0

   q  qi

r0iM
 2∑

i

  u0iM 

Cette régle est appelée principe de superposition.

Considérons 4 charges qA, qB, qC, q situées dans un même plan muni d'un
repère orthonormé. Ces charges sont placées respectivement en A(0,2) ,  B(-1,0),  C
(1,0) et M (2,2). (les nombres entre parenthèses représentent les coordonnées exprimées
en cm).

Déterminer par construction graphique la force FM appliquée sur M

a) si les 4 charges sont de +10 -7C
b) si q= qB=qC=+10 -7C   qA=-2.10 -7C

Déterminer dans chaque cas en quel point M' il faut placer une nouvelle charge
q' pour que la résultante des forces s'appliquant sur M soit nulle.

IV Notion de champ électrique.

Reprenons la distribution de charges q1, q2, q3, etc. situées aux points 01,
02, 03, etc.. et penchons nous sur les valeurs des forces qui s'exercent sur différentes
charges placées successivement en un point M de l'espace.

Si nous plaçons en M une charge q , il s'exerce en M une force:

FM = F01M + F02M + F03M = 1
4π ε0

 
q1  q 

r01M
 2

  u01M  +  1
4π ε0

 
q2  q 

r02M
 2

  u02M + 1
4π ε0

 
q3  q 

r03M
 2

  u03M

ou encore:

FM =  q  1
4π ε0

 
q1  

r01M
 2

  u01M  +  1
4π ε0

 
q2   

r02M
 2

  u02M + 1
4π ε0

 
q3   

r03M
 2

  u03M 

FM =  q    1
4 π ε0

    qi

r0i M
  2∑

i

  u0i M

Sans modifier la distribution de charge q1, q2, q3 remplaçons la charge q située en
M par une nouvelle charge q'. Une nouvelle force F'M s'applique en M:

FM =  q'    1
4 π ε0

    qi

r0i M
  2∑

i

  u0i M

Il apparait que le remplacement de q par q' n'a pas modifié l'expression vectorielle
entre parenthèses. Cette grandeur vectorielle EM, due aux charges extérieures, est
indépendante de la charge que l'on place en M

EM  est le champ électrique en  M créé par les charges qi.
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 EM  =    1
4 π ε0

   
 qi

r0i M
  2

∑
i

  u0i M 

Etant donné une distribution qi de charges, considérées comme extérieures, il est
donc toujours possible de définir, en chaque point r de l'espace, une grandeur vectorielle
E(r) appelée champ électrique.

Le champ électrique est tel que la force exercée sur une charge ponctuelle q placée
en r est:

 F r   =  q E r

On peut déterminer le champ électrique au point r en y plaçant une charge test
unité de 1 Coulomb. Le champ électrique en ce point n'est alors autre que la force qui
s'exerce sur une charge unité de +1 Coulomb.

L'unité de champ électrique est le volt par mètre (V/m). Un champ électrique de 1
V/m crée sur une charge de 1 C une force de 1 N.

A l'instar des forces électrostatiques, le champ électrique obéit au principe de
superposition (Ces grandeurs ne sont séparées que par le coefficient de proportionnalité
q).

Deux charges électriques A et B de même charge q=10-6C sont placées en (-1,0)
et (1,0), l'unité est 2.5 cm. Déterminer et tracer sur papier millimétrique (avec une
échelle adaptée) le champ électrique en un nombre raisonnable de points. Utiliser au
mieux les symétries du problème.

V Notion de champ vectoriel

V-1 Le champ électrique, une nouvelle grandeur physique

A la distribution de charges, qui étaient localisées en certains points 01, 02, etc. de
l'espace, nous avons fait correspondre un champ électrique vectoriel E(r) défini en chaque
point r de l'espace.

On peut  alors distinguer deux manières de calculer la force qui s'exerce sur une
charge q placée en M:

1re façon: On considère les charges électriques extérieures q1, q2 etc ..placées en
01, 02 etc.

On écrit la loi de Coulomb et on fait usage du principe de superposition.

2ème façon; on considère le champ électrique E(r) situé en M (dû bien sûr aux
charges extérieures)

 Et on écrit F=qE.

Si le résultat est équivalent, la deuxième méthode tend à faire oublier les charges
extérieures et à ne retenir que la présence du champ électrique

Cette démarche conduit à substituer aux charges électriques extérieures une
nouvelle grandeur physique: le champ électrique E.

V-2 Description d'un champ vectoriel

Connaître un champ électrique E, c'est connaître le vecteur champ électrique en
chaque point de l'espace, en direction, en sens et en intensité. Dans quelques cas simples,
il est donné par une relation algébrique. Dans des cas plus complexes, il peut être calculé
en des points de maillage suffisamment fin. Avec les moyens informatiques actuels, il est
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très facile d'écrire un programme tel que, entrant les charges et leurs positions, l'ordinateur
fournisse en chaque point M demandé une petite flèche dont le sens, la direction et la
longueur renseignent sur le champ électrique en ce point.

Pour avoir un aperçu visuel rapide du champ électrique, il suffit de tracer en des
point uniformément distribués un ensemble de telles petites flèches. C'est ainsi qu'on
visualise et ressent le mieux ce qu'est un champ électrique. C'est ce que vous avez fait dans
l'exercice du paragraphe précédent.

(Une image vous renseigne sur une propriété physique dans sa globalité spatiale.
N'hésitez pas à utiliser ce moyen de communication. Il vaut largement une formule
déchiffrable par les seuls spécialistes).

V 3 Les lignes de champ

Un champ de vecteurs tel que E étant donné, une ligne de champ est par définition
une courbe tangente en chaque point au vecteur champ défini en ce point. On y ajoute de
petites fléches pour rappeler le sens du champ.

Les lignes de champ du champ électrique ne se coupent pas. Elles partent des
charges positives (ou de l'infini) et aboutissent aux charges négatives (ou à l'infini).

+ +

-

V-4 Lignes de champ d'un système formé d'une charge ponctuelle placée à
l'origine

Une charge q est placée en 0, origine des coordonnées. Tracer les lignes de
champ.

VI Le dipôle électrique

VI-1) Définition

On appelle dipôle électrique un ensemble formé de deux charges -q (en N) et +q
(en P) de mêmes  valeurs absolues et de signes contraires.

L'ensemble formé des deux charges reste globalement  neutre.
Le dipôle est défini par la charge q et par le vecteur NP qui joint les deux charges.

On appelle moment dipolaire le vecteur  p = q NP

Nous verrons en travaux dirigés que, dans la limite où la distance NP est
suffisamment petite, le moment et la force exercés par un champ électrique extérieur sur
un dipôle ne dépendent que de p et sont indépendants des valeurs individuelles de q et de
NP.
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N P
-q +q

p

VI-2) Importance du dipôle électrique dans les matériaux

Lorsque dans une molécule globalement neutre, les barycentres des charges
positives et négatives ne se superposent pas, on peut considérer que la molécule forme un
dipôle.

Une telle molécule induit en son voisinage un champ électrique caractéristique qui
va lui permettre d'interagir avec les autres charges électriques et les autres dipôles du
système.

Ex : molécule d'eau , d'acide chlorhydrique, d'ammoniac etc...

Voir aussi une animation montrant le champ créé par un dipôle électrique sur le site

http://www.colorado.edu/physics/2000/applets/forcefield.html
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CHAPITRE II

Potentiel électrique  créé par

une distribution de charges ponctuelles

I Potentiel électrique

I-1 Introduction du champ scalaire potentiel électrique

Le champ électrique est un champ vectoriel, c'est-à-dire qu'il est caractérisé en
chaque point r de l'espace par un vecteur E(r) dont il faut connaître la direction, le sens et
l'intensité. Dans un repère orthonormé, il est repéré par ses trois composantes scalaires
Ex(r), Ey(r) et Ez(r).

Nous avons vu en outre que pour déterminer le champ électrique total en un point
de l'espace, il faut, en vertu du principe de superposition, faire la somme vectorielle de
champs électriques élémentaires dus à chacune des charges.

Tout serait tellement plus facile si chaque point de l'espace était caractérisé non pas
par un vecteur mais par un scalaire V(r), et  si à partir de ce scalaire on pouvait calculer
simplement le champ électrique et la force exercée sur une charge q située en ce point.

Eh bien, ce champ scalaire existe, il s'appelle le potentiel électrique.

Dans un repère orthonormé cartésien, les composantes du champ électrique sont
liées à ce potentiel électrique par trois relations:

 Ex = - ∂V
∂x

         Ey = - ∂V
∂y

         Ez = - ∂V
∂z

  

I-2 Dérivées partielles

V(r) signifie que V est une fonction de trois variables x, y et z.
 ∂V/∂x est la dérivée partielle de V par rapport à x. Cette dérivée s'obtient en

supposant, le temps du calcul, que y et z sont des constantes.
Tout cela, vous le retrouvez en thermodynamique et vous le notez:

Ex = -   ∂V
∂x

  
 y,z

   

 avec y et z en indice, pour bien vous rappeler que lors de la dérivation, y et z sont à
considérer comme des constantes.

Ici nous estimons qu'il n'y a pas d'ambiguïté, aussi, pour ne pas alourdir les
formules, nous ne mentionnons pas les variables qui doivent être considérées comme des
constantes lors de la dérivation.

Soit la fonction f(x,y,z) = 2x2y2- z2x2 + xy; calculer les fonctions dérivées
partielles de f par rapport à x,y puis z. Calculer ensuite les différentes dérivées partielles
des premières dérivées partielles. Que constatez vous?
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I-3 Potentiel électrique dû à une charge ponctuelle

Soit une charge électrique qA placée au point A: rA (xA, yA, zA).
Montrons que le potentiel électrique en un point M: r (x,y,z)

V (r) = V(x,y,z) = 1
4 π ε0

  
qA

x-xA
2 + y-yA

2 + z-zA
2

conduit à l'expression du champ électrique donné par la loi de Coulomb.
La dérivation de V par rapport à x, changée de signe, s'écrit:

-  
∂V(x,y,z)

∂x
  = 

qA

4 π ε0
   

  x-xA

x-xA
2 + y-yA

2 + z-zA
2

   1
x-xA

2 + y-yA
2 + z-zA

2

où le terme entre crochet n'est autre que la composante selon x du vecteur unitaire
uAM.

La répétition du calcul sur y et z permet de montrer que les composantes de E
s'obtiennent à partir de la forme de potentiel donné ci dessus.

Si on appelle r la distance qui sépare le point M du point A, le potentiel électrique
créé en M par la charge qA placée en A est simplement:

  VM  =  
qA

4 π ε0 r
    

I-4  ....à  une constante près

En fait, le le potentiel électrique est déterminé à une constante près.
Il est bien évident que si vous ajoutez une constante quelconque à l'expression de

V, le champ électrique E(r), et donc les forces qui s'exerceront sur des charges placées en
r, sont inchangés (les dérivées d'une constante sont nulles).

Puisque en fin de compte les forces représentent les seules grandeurs accessibles à
l'expérimentateur, il est bien égal d'ajouter ou de ne pas ajouter une constante au potentiel.

C'est tout de même plus simple de ne pas l'ajouter.

Un système de charges qi crée dans l'espace un champ électrique E(r) et un
potentiel V(r). A l'origine 0, les composantes du champ électrique sont, exprimées en
volts par mètre: E(0)=(-30, 20,10) et le potentiel V(0) est de 8 volts. Estimer la valeur du
potentiel en r( 2,-1,0). préciser les hypothèses de calcul.

Un système de charge qi crée en chaque point de l'espace un champ V. (les
distances étant exprimées en cm)  V(-1,0,0) = 16V,  V(1,0,0) = 12V, V(0,-1,0) = - 15V,
V(0,1,0) = -9V,  V(0,0,-1) = -6V , V(0,0,1) = 8V. Estimer le champ électrique à l'origine
et au point r(0.5, 0.5, 0.5)

II principe de superposition

Nous avons vu dans le chapitre précédent que le champ électrique créé par une
distribution de charges était égal à la somme vectorielle des champs électriques créés par
chacune de ces charges si elle était seule.

De même, le potentiel électrique créé par une distribution de charges est égal à la
somme algébrique des potentiels électriques créés par chacune de ces charges si elle était
seule.

Cette propriété découle de la propriété de dérivation d'une somme qui est
simplement égale à la somme des dérivées.



2/05/03 11

Si le champ électrique total E(r) en un point r est la somme vectorielle des champs
EA(r) et EB(r) créés par des charges placées en A et B:

Ex r  =    EA x r   + EB x r    =  -  ∂VA

∂x
  -  ∂VB

∂x
  = -  ∂V

∂x
 

où:
 V(r) = VA(r) + VB(r)

Restons cependant modestes. Nous avons présenté comme une avancée le passage
du champ électrique au potentiel en disant: "cette fois-ci ,nous n'aurons plus à ajouter des
vecteurs; nous n'ajouterons que des scalaires". C'est vrai.

Mais ce serait un peu trop beau si un scalaire apportait la même information qu'un
vecteur à trois composantes.

En effet, si la connaissance du champ électrique en un point r nous permet de
déterminer la force qui s'applique sur une charge q placée en ce point r par la relation:

F(r) = q  E(r)

La connaissance du potentiel en cet unique point r ne permet pas à lui seul de
déterminer la force qui s'applique sur la charge q. Il nous faut savoir aussi comment V
varie au voisinage de ce point, puisque c'est des dérivées partielles de V que sont déduites
les composantes de E et finalement de F.

III-Topologie

III-1 Equipotentielles

Si la topologie d'un champ vectoriel est donnée par les lignes de champ, la
topologie d'un champ scalaire est donnée par des courbes de niveau. Dans le cas d'un
potentiel électrique, les courbes de niveau s'appellent les équipotentielles. Ce sont les
courbes joignant les points de même potentiel.

Une charge q=10-6 C est placée à l'origine. Tracer quelques équipotentielles.
Comment se situent-elles par rapport aux lignes de champ?

III-2 Propriétés des équipotentielles.

Les équipotentielles sont des lignes fermées (se fermant éventuellement à l'infini).
Elles entourent les charges.
Elles sont perpendiculaires aux lignes de champ.

III-3 Exemple d'un système de lignes de champ et d'équipotentielles.
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T r a c é  à  p a r t i r  d u  l o g i c i e l  Y P  C h a m p  é l e c t r i q u e
http://www.ncf.carleton.ca/~ch865/champelectrique.html

III-4 Détermination graphique de champs électriques

A partir  des quelques équipotentielles du schéma ci-dessous, tracer à la même
échelle les vecteurs champs électriques aux endroits indiqués par des points.

 

40V

30V

20V

10V

III-5 Analogie cartographique

Vous avez tous effectué des promenades en montagne avec des cartes présentant
des lignes de niveau. Ces lignes rejoignent les points situés à la même altitude. Ce sont
des lignes fermées entourant les sommets et les fonds. Elles sont strictement équivalentes
aux équipotentielles.

Les lignes équivalentes aux lignes de champ ne sont pas représentées. Pour ce
faire, il faut prendre en chaque point la perpendiculaire aux lignes de niveau. Les nouvelles
lignes indiquent la direction de la pente au point considéré (sens d'écoulement de l'eau).

Plus les lignes de niveau sont serrées, plus la pente est importante. La pente locale
est le pendant du champ électrique.

cartes empruntées à :     http://perso.wanadoo.fr/jmlt/orien2.htm

IV le gradient

IV-1 Une diversité de démarches complémentaires

Dans votre métier, vous aurez à résoudre des problèmes pratiques et concrets.
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C'est la démarche que nous avons pratiquée dans les exercices ci-dessus. Il y a peu
de mathématique mais il faut avoir compris la physique du problème et faire preuve
d'initiative. Nous disposons d' informations limitées en nombre ou sous forme graphique.

Il existe des démarches beaucoup plus mathématiques qu'il faut aussi savoir
utiliser parce qu'elles représentent des moyens très puissants de résolution de problèmes
(pourvu qu'ils soient bien posés). Les mathématiques conduiront à des solutions, qu'il
faudra interpréter physiquement et dont il faudra s'assurer de la cohérence en examinant
quelques cas limites. Il ne faut pas utiliser l'arsenal mathématique "tête baissée et a priori"
mais il ne faut pas non plus y renoncer par crainte du calcul. Vous l'aurez compris: la fin
de ce chapitre se dirige vers un développement plus mathématique des champs et
potentiels électriques.

IV-2 Vecteur gradient

De façon générale, à partir d'un champ scalaire, il est possible de construire un
champ vectoriel dont les composantes en coordonnées cartésiennes sont données par les
relations:

Ex = - ∂V
∂x

         Ey = - ∂V
∂y

         Ez = - ∂V
∂z

 

Un vecteur défini ainsi est appelé ( au signe près) un gradient:

 E  = - grad  V 

Nous verrons plus tard que le gradient peut être considéré comme un être
mathématique avec ses propriétés propres.

Dans le cadre de ce qu'on appelle l'analyse vectorielle, on sera appelé à manipuler
cette grandeur (et quelques autres) en oubliant, comme pour tout vecteur, ses composantes
dans un repère particulier.

Nous voulons ici donner simplement les composantes du gradient dans deux
repères appelés cylindrique et sphérique.

V- Coordonnées cylindriques

V-1 Repérage d'un point en coordonnées cylindriques

En coordonnées cylindriques, un point M de l'espace est repéré comme un point
de cylindre (droit, à base circulaire) dont l'axe 0z est généralement confondu avec l'axe 0z
du repère cartésien.

x

y

z

M'

rθ

er

eθ

Μ

Ο

ez
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M (ou r) est repéré par le rayon  r du cylindre sur lequel il s'appuie, z sa cote par
rapport au plan  de référence x0y et θ l'angle (0x, 0M') où M' est la projection de M sur le
plan x0y.

La notation r(r,θ,z) vient se substituer à r(x,y,z) du repère cartésien. Vous pouvez
facilement vérifier que, pour un point donné, les composantes cartésiennes et cylindriques
sont liées par:

x = r cosθ        y = r sinθ       z = z

V-2 Repérage d'un vecteur en coordonnées cylindriques

Nous nous posons la question de repérer un vecteur dont le point d'application est
situé au point M, r( r,θ,z)

Pour cela nous attachons à M un repère orthonormé local. Nous l'appelons local
par ce qu'il n'est pas le même pour tous les points M de l'espace.

Ce repère local est fait de 3 vecteurs unitaires de base orthogonaux :
er est un vecteur parallèle à 0M'
eθ est parallèle au vecteur tangent en M' au cercle de rayon 0M' contenu dans le

plan x0y
ez est parallèle à l'axe oz
Dans ce repère, le vecteur champ électrique a 3 composantes:

 E  =   
Er
Eθ
Ez

Ecrire dans ce repère les composantes des vecteurs unitaires ex, ey, ez du repère
cartésien.

Noter  qu' en coordonnées cartésiennes le même repère (ex, ey, ez) est attaché à
chaque point de l'espace.

V-3 Gradient en coordonnées cylindriques

Lorsque le potentiel V(r) est exprimé à l'aide des trois variables (r,θ,z) les
composantes du champ électrique dans le repère cylindrique attaché au point M sont
données par:

 E  = - grad  V  =  

Er

Eθ

Ez

 =  

- ∂V

∂r

- 1
r
  ∂V

∂θ

- ∂V

∂z

VI Coordonnées sphériques

VI-1 Repérage d'un point en coordonnées sphèriques

En coordonnées sphériques, un point M (r) est considéré comme point d'une
sphère.

M est repéré
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- par le rayon r de la sphère à laquelle il appartient

- L'angle θ entre la direction 0z et la direction 0M.
θ = (0z, 0M)

- l'angle ϕ entre la direction 0x et la direction 0M' où M' est la projection de
M dans le plan x0y:

ϕ = (0x, 0M')
Un point M(r) étant donné, montrer que ses coordonnées cartésiennes s'écrivent

en fonction des coordonnées sphériques; ainsi:

x= r sinθ cosϕ       y = r sinθ sinϕ       z= r cosθ

x

y

z

M'

r

θ

ϕ

er

eθ

eϕΜ

Ο

M''

En géographie, où on est amené à repèrer un point sur la sphère terrestre, l'angle θ
indiquerait la latitude par rapport au pôle nord et l'angle ϕ longitude est par rapport au
méridien de référence.

VI-2 Repérage d'un vecteur en coordonnées sphériques

En coordonnées sphériques, un vecteur E(r) attaché au point r est repéré par trois
composantes ( Er, Eθ,  Eϕ)  dans un repère orthonormé local (er, eθ , eϕ):

E = Er er + Eθ  eθ  +  Eϕ eϕ,

er est parallèle à la direction 0M

eθ est tangent en M au cercle de rayon r décrit dans le plan qui contient à la fois
les directions 0z, 0M et 0M'

eϕ est tangent en M au cercle de centre M'' et de rayon M''M contenu dans le plan
perpendiculaire à 0z.

Considérons les champs et potentiels électriques créés par une charge ponctuelle
q placée à l'origine 0. Exprimer V puis les composantes de E en coordonnées
sphériques.
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VI-3 Gradient en coordonnées sphériques

Lorsque le potentiel V(r) est exprimé à l'aide des trois variables (r,θ,ϕ) les
composantes du champ électrique dans le repère sphérique attaché au point M sont
données par:

 E  = - grad  V  =  

Er

Eθ

Eϕ

 =  

- ∂V

∂r

- 1
r
  ∂V

∂θ

-  1
r sinθ

  ∂V

∂ϕ

Tout cela vous semble sans doute bien compliqué! Cela se clarifiera à l'usage.
Pour vous rassurer, déduisez le champ électrique E  créé par une charge

ponctuelle à partir de l'expression du potentiel V(r,θ,ϕ) exprimé en coordonnées
sphériques.

VII Le rotationnel du champ électrique

Considérons un champ de vecteur E(x,y,z) et ses composantes Ex(x,y,z), Ey(x,y,z)
et Ez (x,y,z).

On appelle rotationnel de E  le vecteur rot(E) dont les composantes en
coordonnées cartésiennes sont:

rot  (E)   =    

 
∂Ez

∂y
 - 
∂Ey

∂z

 
∂Ex

∂z
 - 
∂Ez

∂x

 
∂Ey

∂x
 - 
∂Ex

∂y

 

Si le champ de vecteur E  dérive d'un potentiel scalaire V selon la relation
E = - grad V,  alors rot E = 0:

  E = - grad V   ⇒   rot E = 0  

(0 en caractère gras signifie vecteur nul)
Le rotationnel est un nouvel être mathématique de l'analyse vectorielle.
Retenons pour l'instant qu'un champ de vecteur dont le rotationnel n'est pas nul ne

peut pas être un champ électrique. Dans ce cas en effet il ne dériverait pas d'un gradient.

VIII Le "vecteur" nabla

Le "vecteur nabla" noté ∇ est largement utilisé dans les ouvrages anglo-saxons. Ce
n'est pas un vrai vecteur mais seulement un vecteur symbolique, c'est-à-dire qu'on peut
(moyennant quelques précautions) le manipuler comme un vecteur. Il s'écrit:

∇ =  e x  
∂
∂x

 + ey  
∂
∂y

  ez  
∂
∂z

et en coordonnées cartésiennes, ses composantes sont:
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∇  =   

∂
∂x
∂
∂y
∂
∂z

  

Le rotationnel du vecteur E apparaît comme le produit vectoriel de nabla et de E:
rot E = ∇ ∧ E 

Le gradient de V apparaît comme le produit de nabla et de V:

grad V = ∇ V 

Attention: l'utilisation de ce "vecteur" comporte quelques pièges!!
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 CHAPITRE III

Champs et potentiels créés

par des distributions de charges non ponctuelles

I- Introduction

Jusqu'ici, nous avons admis que les charges étaient ponctuelles, c'est-à-dire
localisées en des points de dimension "infiniment petite".

Cela est correct lorsque l'on considère la charge de particules élémentaires telles
que l' électron ou le proton.

Cela reste raisonnable lorsque les objets chargés sont de dimension petite
comparée à la distance qui les sépare de l'observateur.

L'approximation devient médiocre lorsque au moins une des dimensions de l'objet
portant la charge électrique devient significative devant la distance objet-observateur.

Elle devient totalement irréaliste lorsque cette dimension est plus grande que la
distance objet-observateur.

Nous allons examiner les effets d'extension spatiale de l'objet portant la charge
électrique en procédant en trois étapes:

  i) La taille de l'objet est importante dans une seule des dimensions et reste faible
dans les deux autres dimensions. L'objet est typiquement un fil, linéaire ou curviligne. Les
charges sont distribuées suivant une ligne.

ii) L'objet est étendu suivant deux directions. C'est une feuille plane ou "ondulée".
Les charges sont distribuées sur une surface.

iii) L'objet est étendu dans les trois directions. C'est un volume au sein duquel les
charges sont continûment réparties.

II Répartition des charges sur un objet filiforme

II-1 Densité de charge linéique:

Considérons un fil AB, rectiligne ou curviligne, de longueur L portant une charge
électrique Q uniformément répartie.

On appelle densité de charge linéique ou charge par unité de longueur la quantité
λ= Q / L

Déterminer la charge linéique d'un fil de 4m chargé uniformément d'une charge
de 10-3 C.

Dans le cas général, la charge n'est pas uniformément répartie et la densité de
charge linéique varie de point en point.

Sur un tel fil, un point P est repéré par sa coordonnée curviligne l. Cette
coordonnée l représente la distance que doit parcourir un mobile partant d'un point 0
choisi comme origine pour rejoindre le point P.

Soit un point P' ,voisin de P, de coordonnée curviligne l+dl
L'élément de fil PP' de longueur dl porte un élément de charge dq.
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.
P

.d l
d qA l

l + d l 

B

(Γ)P'

.

On appelle densité de charge linéique en l la limite lorsque P' se rapproche de P de
la grandeur de dq/dl

λ(l)  =  lim dl →0    
dq
dl

 

 La densité de charge linéique s'exprime en Coulombs par mètre.
Il est bien clair que dans l'expression ci-dessus, dq et dl tendent vers 0

simultanément mais que le rapport des deux tend vers une limite finie.
Pour déterminer la charge totale connaissant λ(l), découpons le fil en éléments de

longueurs ∆li situés entre les cotes  li et li+1.

A Bl l

λ(l)

ll li i+1

λ(l )i

Affectons une densité de charge uniforme λ(li) à l'élément de fil compris entre li et
li+1. L'élément de charge ∆qi portée par l'élément de longueur ∆li= li+1 - li est égal au
produit  λ(li) ∆li c'est-à-dire à l'aire du rectangle grisé sombre.

La charge totale portée par le fil est alors égale à la somme des aires de tous les
rectangles.

Q = ∆ qi∑
i

  = λ  li ∑
i

  ∆li

Cette valeur n'est qu'approximative puisqu' on a affecté la même densité de charge
entre li et li+1. Elle devient plus proche de la réalité si on affine le pas de la découpe. Elle
tend vers l'aire comprise entre l'axe des abscisses, la courbe λ(l) et les deux droites
verticales élevées en A et B

Comme vous l'avez vu, cette aire est égale à l'intégrale de λ(l) entre lA et lB,
abscisses curvilignes des points A et B.
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Q = λ (l) dl
lA

lB

   = λ (l) dl
A   (Γ)

B

La deuxième notation signifie intégrale curviligne effectuée en suivant la ligne (Γ).

II-2 Exemple de charge portée par un fil

Considérons un fil de longueur L d'origine A de coordonnée curviligne l.
Supposons que la densité de charge linéique de ce fil soit fonction de l'abscisse l et
s'écrive λ(l) = 10-4 l.

Entre les points  d'abscisse l et d'abscisse l + dl, l'élément de charge est
dq= λ(l) dl =10-4 l dl.
La charge totale est donc:

Q = 10-4 l dl
0

L

 = 10-4  l
2

2
  

O

L
 =  5.10-3 L2 

La charge totale portée par un fil de longueur L est de 10-6C. Sachant que la
répartition de charge est de la forme l(l) =A l 2, déterminer le coefficient A.

III Calcul du potentiel électrique créé par un fil chargé

III-1 Approximation par discrétisation

Considérons un fil curviligne AB. Ce fil est chargé avec une densité linéique λ(l).
Notre objectif est de calculer le potentiel créé par les charges portées par ce fil en un point
quelconque M de l'espace.

Pour cela, divisons le fil AB en segments AA1, A1A2, Ai-1Ai, etc. assez petits
pour que l'on puisse considérer:

i) que tous les points appartenant au même ségment élémentaire Ai-1Ai
sont à la même distance  ri de M.

ii) que la  densité de charge linéique λi dans l'intervalle Ai-1Ai est
uniforme.

Dans ces conditions, la charge portée par le segment  AA1 est l1 ∆l1. La charge
portée par le segment Ai-1Ai est li ∆li.

A

A

A

B

M

r
1

A

A

A

A

2

3

4

5

6

1

4
r

1
2 3

4 5
6 7

(1/ 4 π ε0 ) λ /r

A A1 BA2 A3 A4 A5 A6

L'élément de potentiel potentiel créé par le segment ∆l1 = AA1 est:
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∆ V1 =  1
4 π ε0

  λ1  ∆l1
r1

Le potentiel créé par le segment ∆li= Ai-1Ai est:

∆ Vi =  1
4 π ε0

  λi  ∆li
ri

Traçons un diagramme faisant figurer en abscisse les distances ∆li, et en ordonnée
les grandeurs (1/4π ε0) λi/ri,  etc.

Le potentiel ∆Vi peut être considéré comme l'aire du rectangle i, de largeur ∆li et de
hauteur (1/4π ε0) λi/ri.

En vertu du principe de superposition, le potentiel total est la somme des aires de
tous les rectangles soit:

V =  1
4 π ε0

  λi  ∆  li
ri

∑
i=1

i=7

III-2 Limite continue

Le calcul ci-dessus ne constitue qu'une première approximation. Pour effectuer un
calcul plus précis, il nous faut de nouveau affiner le maillage et faire tendre la courbe en
escalier vers une courbe continue.

Le potentiel total est l'aire sous la courbe représentant (1/4πε0)λ/r en fonction de l

A

B

M
r

A B

l

l / 4 π ε0 r

dl
P

Soit:

 VM = 1
4 π ε0

  
λ(l) dl
r (l)

A  (Γ)

B

L'intégration est alors plus ou moins facile à effectuer selon la forme de λ(l) et de
r(l).

On peut donc dire que l' élément de potentiel dV créé en M par la charge électrique
dq=λ(l) dl localisée au voisinage du point P entre les abscisses curvilignes l et l+dl et
située à la distance r(l) s'écrit:

d V = 1
4 π ε0

  
λ(l)  dl

r (l)
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et que le potentiel total est la somme (au sens de l'intégrale) des éléments dV.
C'est un type de calcul infinitésimal que nous serons très souvent amenés à répéter

en physique.

III-3 Coordonnées du point source et de l'observateur

Lors du calcul d'un élément de potentiel, nous avons deux points à considérer: le
point source P où se trouve l'élément de charge et le point M, où se situe l'observateur, et
en lequel on cherche à calculer le potentiel V.

Chacun de ces points est décrit par ses propres coordonnées. Lorsqu'il y a
confusion possible, nous noterons avec un ' r'(x',y',z') les coordonnées du point source et
r(x,y,z) les coordonnées du point M.

Pour calculer le potentiel, on devra intégrer sur les variable x',y',z' et on obtiendra
une fonction V(x,y,z). Le champ électrique en r sera déduit du gradient de V, en dérivant
par rapport à x,y,z.

Dans bien des cas, il n'y a pas de confusion possible, et nous ne prendrons pas la
peine d'ajouter des ' .

III-4 Exemple de calcul de potentiel

Examinons le fil rectiligne de longueur L=2a uniformément chargé, centré en 0 et
dirigé le long de l'axe 0y. Calculons le potentiel en un point M situé sur l'axe 0x à la
distance x du fil.

Les coordonnées de P sont (x',y',z') et celles de M sont (x,y,z)

O
x

a

-a

M

y' +dy'
r

y'
P

Considérons un élément de longueur dy' compris entre y' et y'+dy'. La charge
portée par cet élément est égale à λ dy'. La distance entre cet élément  de longueur et le
point M est égale à (x2 + y'2) 1/2.

La contribution  dV de cet élément dy' au potentiel en M est donc:

d V = 1
4 π ε0

  
λ  dy'

y' 2 + x2 

et par intégration sur les y' entre -a et +a, nous avons:
(Pour ce qui est de l'intégration, voyez un cours de mathématique ou consultez les tables)
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 V (x,0)  = λ
4 π ε0

  
  dy'

y' 2 + x2 
-a

+a

 =  λ
4 π ε0

  ln y'  + y' 2 + x2   -a
 +a

 = λ
4 π ε0

  ln a  + a2 + x2 
-a  + a2 + x2 

 

C'est un résultat exact.
De  façon similaire, on peut calculer V(x,y) en tout point du plan x0y de la figure.
Le potentiel en un point (x,y,z) quelconque de l'espace se déduit de V(x,y) par

rotation autour de l'axe Oy.

Un fil rectiligne de longueur 10cm porte une charge de 1µC uniformément
répartie sur sa longueur. Représenter l'évolution du potentiel le long de l'axe ox.

III-5 Examen du comportement asymptotique

Il est toujours heureux, après un tel calcul, d'examiner si le comportement à grande
distance, ou à petite distance, ou encore en des points particuliers de haute symétrie, sont
physiquement raisonnables.

Ainsi, dans l'exemple précédent, on s'attend à ce que l'expérimentateur placé à
grande distance du fil (comparé à sa longueur  2a) ne se rende plus tout à fait compte de
son extension spatiale et le voie comme une charge ponctuelle Q= 2aλ dont il serait à la
distance de x. Ainsi on attend à grande distance un comportement du potentiel de la
forme:

V(x,0) ≈ 2 a λ
4 π ε0 x 

On retrouve effectivement ce comportement en écrivant:

  ln a  + a2 + x2 
-a  + a2 + x2 

    =   ln  1+ 1
 1 + x

2

a2
 

   -   ln  1- 1
 1 + x

2

a2
 

En tenant compte du développement limité (pour ε petit) du logarithme au
voisinage de l'unité:

ln (1+ε)  ≈  ε
où ici:

ε  =  1
1 + x

2

a2

 

et en tenant compte du fait que (x2/a2) >>1
On obtient pour x>>a:

V(x,0) ≈  λ
4 π ε0

  2 a
x   ≈ 

Q
4 π ε0x

  

Il est clair que nous avons négligé a devant x aux moments "opportuns".
Vous allez sans doute vous demander ce que sont ces moments opportuns.
Pour les déceler, il y a deux conditions:
i) Il faut connaître les développements limités les plus courants,
ii) Il faut pratiquer et faire un certain nombre de telles approximations.

Nous n'insisterons jamais assez pour vous inciter à examiner ce que deviennent
des formules trouvées par de longs calculs, dans des cas particuliers simples ou dans des
conditions extrêmes.
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IV Champ électrique créé par un fil

IV-1 Champ électrique, dérivée du potentiel

Le calcul du champ électrique en un point r à partir du potentiel électrique
nécessite en principe la connaissance du potentiel au voisinage de ce point et cela dans
toutes les directions (suivant x, y et z). On utilise alors la relation:

 E= - grad V.
Toutefois, par des arguments de symétrie, la détermination du champ électrique en

des points, le long de lignes ou sur des plans particuliers peut ne nécessiter qu'une
connaissance partielle du potentiel.

C'est le cas dans l'exemple du fil uniformément chargé, si l'on veut déterminer le
champ électrique en des points situés sur l'axe 0x ou plus généralement dans le plan x0z.
Par symétrie, il est clair qu'en tout point M du plan bissecteur du fil, le champ électrique
est dirigé dans la direction 0M. Cela signifie que si M est sur l'axe 0x, le champ électrique
n'a de composante ni suivant y ni suivant z. La seule composante du champ est donc:

Ex = - ∂V

∂x
qui ne requiert que la connaissance de la variation de V en fonction de la variable

x.

Montrer que la composante Ex du champ électrique en un point de l'axe ox
s'écrit:

Ex 0,x  = 
Q

4 π ε0
 . 1

x a2 + x2

Discuter son comportement à grande distance

IV-2 Formule générale du champ électrique créé par un fil

Reprenons la découpe du fil curviligne et déterminons le champ électrique ∆Ei
créé par chaque élément de longueur ∆li compris entre Ai-1 et Ai et placé à la distance ri
du point M.

A

A

A

B

M

r
1

A

A

A

A

2

3

4

5

6

1

4
r

∆E1

∆E4

Chaque élément de fil Ai-1Ai crée en M un élément de champ qui est un vecteur:

∆ Ei =  λi  ∆ li 
4 π ε0 ri

 2
  ui

où ui est le vecteur unitaire joignant le milieu du segment de droite Ai-1Ai au point
M.

Le champ électrique total E est la somme vectorielle des champs élémentaires
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E =  λi  ∆ li 
4 π ε0 ri

 2
  ui∑

i

ce qui signifie que composante par composante: (nous écrivons ici la composante
cartésienne x, nous pourrions le faire sur toute autre composante):

Ex =  λi  ∆ li 
4 π ε0 ri

2
  u i,x∑

i

Par passage à la limite continue on obtient pour Ex

Ex = 1
4 π ε0

 
λ (l) dl 
 r2(l)

  ux (l)
A

B

Le même calcul peut être répété pour les deux autres composantes:
 ce que nous récapitulons formellement par:

 EM = 1
4 π ε0

 
λ (l) dl 
 r2(l)

  u (l) 
A

B

Cette équation entre vecteur est formelle en ce sens qu'on ne peut pas intégrer
directement. Il faut faire la somme vectorielle des éléments de champ électrique. Cette
relation ne fait que synthétiser trois intégrales scalaires définissant chacune les
composantes du champ éléctrique.

IV- 3 Exemple de calcul

Reprenons le calcul du champ électrique E(x,0) créé par un fil de longueur 2a,
uniformément chargé.

O

-a

M
r

θ

−θ x

y'

a

y' + dy' P

dE

dEx

L' élément de fil de longueur dy' compris entre y' et y'+dy', situé à la distance
(x2+y'2)1/2 de M, porte une charge λdy'. La composante ux du vecteur unitaire est :

ux = cos θ   = x
x2 + y' 2

 Il vient:
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 Ex x,0  = λ x
4 π ε0

 1

x2+y' 2  3/2
  dy' 

-a

+a

Soit:

 E x (x,0) = λ x
4 π ε0

  
y'

x2 x2 + y' 2
 y' = -a

  y' = +a

Soit encore en tenant compte de Q=2al:

Ex x,0  = 
Q

4 π ε0
 . 1

x a2 + x2

Reprendre plusieurs fois et en détail l'ensemble du calcul. Il a valeur d'exemple.

On peut voir aussi sur la figure ci-dessus que des éléments de fil symétriques par
rapport à l'axe 0x produisent des éléments de champ dont la résultante est orientée suivant
0x. Cela justifue qu'en tout point M du plan bissecteur du fil, le champ électrique est
dirigé suivant 0M.

Montrer par le calcul que Ey (x,0) est nul.

V Charge surfacique

V-1 Densité de charge surfacique

Considérons une surface S (non nécessairement plane) portant une charge Q
uniformément répartie. On appelle densité de charge surfacique la quantité σ= Q/S.

Tout comme le fil, la surface peut ne pas être chargée uniformément. Dans ce cas il
faut préciser la charge surfacique en chaque point de la surface, à l'aide d'un repère adapté
à la forme de la surface.

Si la surface est plane, on choisira un repère cartésien ou polaire. Si la surface est
en forme de calotte sphérique, on penchera plutôt pour pour un repère sphérique. Si la
surface est gauche..., ce sera beaucoup plus complexe et il faudra se tourner vers des
méthodes numériques.

V-2 Densité de charge surfacique en coordonnées cartésiennes

x x+dx

y

y+dy

O

dx

dy

a

b

Le repère cartésien est particulièrement bien adapté lorsque la surface est
rectangulaire et plane.
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Dans le repère (x0y), un élément de surface, dont l'abscisse est compris entre entre
x et x+dx, et l'ordonnée entre y et y+dy, présente un élément d'aire  dS= dx dy (en gris
foncé sur la figure ci-avant) et porte un élément de charge d2q(x,y)= σ(x,y) dx dy.
 ( Pour les notations, voir la note sur les infiniments petits au paragraphe suivant).

Le calcul de la charge totale de la plaque peut alors s'effectuer en deux étapes :

i) Détermination de l'élément de charge dq portée par un élément rectangulaire de
longueur a et de largeur dy (élément en gris clair) compris entre y et y+dy. Cet élément de
charge est une fonction de la variable y et s'obtient en faisant la somme des éléments de
charge dq selon x (dans ce calcul y est une constante).

d q(y) = dq(x,y)
x = 0

x = a

 =  σ(x,y) dy  dx
x = 0

x = a

 = dy σ(x,y)  dx
x = 0

x = a

 = λ(y) dy

Il s'agit d'un calcul tout à fait équivalent à celui de la charge d'un fil rectiligne de
longueur a, portant la charge linéique σ(x,y) dy. 

Nous avons sorti dy de l'intégration car il ne dépend pas de x.
dq(y) prend la forme  t(y) dy et représente l'élément de charge apporté par les

tranches dont l'ordonnée est comprise entre y et y+dy.

ii) Sommation des contribution de charge dq apportée par chaque tranche dy:

 Q = dq(y)
y = 0

y = b

 = t(y) dy
y = 0

y = b

Nous avons intégré sur x puis intégré sur y. Nous aurions pu faire l'inverse, c'est-
à-dire intégrer sur les y puis sur les x. Nous aurions alors fait la somme de contributions
de bandes verticales d'épaisseur dx.

Bien sûr, le résultat est indépendant de l'ordre d'intégration et l'on note:

Q =  
x=0

x = a

σ(x,y)
y = 0

y = b

 dx dy =  
y=0

y = b

σ(x,y)
x = 0

x = a

 dx dy 

Ceci est appelé intégrale double.

 V-3 Note sur les infiniments petits

- dx ou dy sont des infiniment petits du premier ordre.
- une expression renfermant le produit de deux infiniment petits du premier ordre

est un infiniment petit du deuxième ordre; elle se note en principe d2S = dx dy  ou d2q=
σ(x,y) dx dy.

--une expression renfermant le produit de trois infiniment petits du premier ordre
est un infiniment petit du troisième ordre. Par exemple, l'élément de volume d3τ= dx dy
dz.

L'exposant (2 ou 3) indiquant l'ordre de l'infiniment petit est généralement omis
lorsqu'il n'y a pas d'ambiguïté et l'on note souvent dS pour d2S ou dτ pour d3τ.)

V-3 Exemple de charge portée par une surface rectangulaire

Considérons une surface rectangulaire dont les abscisses sont situées entre x = a
et x = b et les ordonnées entre y = c et y = d. Supposons que cette surface soit chargée
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avec une densité surfacique σ(x,y) fonction de x et de y,  σ(x,y) = A (x2+y2).
Déterminons la charge totale de la plaque.

Procédons comme ci-avant et intégrons tout d'abord suivant les x:

dq(y) =   dy A( x2+ y2)  dx
x = a

x = b

 = dy  x
3

3
 + y2 x

 x = a

 x = b

=  dy   b
3 - a3

3
  + y2  b-a  

C'est la charge apportée par le rectangle gris clair situé entre y et y+dy.
Par intégration sur les y, on obtient la charge totale soit:

Q =     b
3 - a3

3
  + y2  b-a 

 y = c

 y = d

  dy

Terminer le calcul de Q

V-4 Densité de charges surfaciques en coordonnées polaires

Les coordonnées polaires sont les coordonnées naturelles d'objets circulaires. Un
point M est repéré par la distance r = 0M qui la sépare du centre 0 et l' angle orienté θ que
fait la direction OM avec l'axe des x.

Les coordonnées polaires sont équivalentes aux coordonnées cylindriques à la cote
z=0.

r

dr

2  π   r
d r

θ

dθ

rdθ

Une surface élémentaire du deuxième ordre est représentée en noir sur le dessin
ci-dessus. Dans la limite de dr et de dθ  petits, cette surface est un petit rectangle de cotés
dr et r dθ.

L'élément de surface d2S s'écrit:
d2S = r dr dθ
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Si l'on fait l'intégrale (somme) de cette expression sur tous les angles θ compris
entre 0 et 2π, on obtient un nouvel élément de surface représenté en gris. Ce nouvel
élément de surface ( maintenant infiniment petit du premier ordre) s'écrit:

dS  =  r dr dθ
 θ = 0

θ = 2π

  =  r dr  dθ
 θ = 0

θ = 2π

 =  r dr  θ  θ = 0
 θ = 2π

 = 2π r  dr

dS est bien l'aire d'un rectangle de largeur dr et de longueur 2π r = périmètre du
cercle de rayon r. On obtient ce petit rectangle en déroulant l'aire hachurée.

Vous allez dire que dérouler une couronne de cercle n'a jamais donné un rectangle.
Cela tend vers un rectangle dans la limite des dr petits, c'est-à-dire dans la limite où nous
travaillons.

D'ailleurs nous pouvons nous convaincre  du bien-fondé de la méthode en
terminant le calcul de l'aire S du cercle. Il reste à faire pour cela la somme de couronnes de
rayons r, c'est à dire intégrer dS sur la variable r entre 0 et R:

S    =  2π r  dr
 r = 0

 r = R

 =  π R2

ce qui est bien l'aire du cercle de rayon R.

En coordonnées polaires, la densité surfacique σ(r,θ) est une fonction de r et de θ.
Dans certains cas particuliers, elle n'est fonction que de θ. Dans des cas plus particuliers
encore, elle ne dépend d'aucune de ces variables et est uniforme.

Par un raisonnement tout à fait similaire à celui que nous avons suivi pour les
coordonnées rectangulaires, nous avons:

 Q    = d θ
 θ = 0

 θ = 2π

 σ( r, θ)  r  dr
 r = 0

 r = R

 =   r  dr
 r = 0

 r = R

 σ( r, θ) d θ
 θ = 0

 θ = 2π

On peut intégrer dans l'ordre que l'on veut. Ce n'est pas très compliqué, il faut juste
un peu de pratique.

 V-5 Exemple de charge portée par un disque

Considérons un cercle de rayon R chargé avec une densité de charge σ(r,θ) = A r
cos2θ . Ce n'est pas une densité de charge très habituelle. Elle est d'autant plus grande que
l'on s'éloigne du centre 0 du cercle et que l'on se rapproche de l'axe 0x. Disons qu'elle est
inventée pour illustrer le calcul de σ.

Représenter un cercle et y porter des charges dont la densité varie en r cos2θ 

 Q = d θ
 θ = 0

 θ = 2π

 A r2 cos2θ  dr
 r = 0

 r = R

  = A R
3

3
 cos2θ d θ

 θ = 0

 θ = 2π

  =  A  π R3

3

Faire en détail le calcul ci-dessus. Les tables donnent:

cos2u  du  =   u
2

 +  sin 2u
4

Reprendre le calcul en intégrant d'abord sur θ.
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VI  Potentiel électrique créé par une surface

VI-1 Expression générale

Un élément de surface dS' portant une charge d2q= σ dS' placé à la distance r du
point M produit en ce point une contribution au potentiel:

d2 V  = 1
4 π ε0

  σ  dS'
r

nous avons représenté deux éléments dS'.
Le potentiel total créé en M est la somme de toutes les contributions élémentaires

et s'écrit formellement:

 VM  = 1
4 π ε0

   σ  dS'
r   

M

dS'

r

dE

où les deux signes intégral signifient qu' il faut faire une intégrale double. Il s'agit
d'un calcul  souvent difficile puisque les éléments de surface ne sont pas en général sur un
même plan.

Il faut paramétrer l'élément de surface (c'est-à-dire l'exprimer en fonction de
variables), exprimer r et σ en fonction de ces paramètres  puis intégrer sur ces paramètres.

VI-2 Expression du potentiel créé par un rectangle chargé

Considérons le rectangle ABCD placé dans le plan (y0z), chargé avec une densité
de charge surfacique dont la valeur dépend des paramètres naturels du problème y' et z'
(ici x'=0)

Un élément de surface dS'= dy' dz' localisé au point (y',z') porte une charge
élémentaire dq= σ(y',z') dy' dz'. Cet élément de surface est placé à une distance r (y',z')
d'un point M (x,y,z) dont on veut connaître le potentiel. r s'exprime en fonction de y et z
selon la relation:

r (y',z')  =  x 2 +  y -  y' 2 +  z -  z' 2

L'élément de potentiel en x, y, z s'écrit:

d V = 1
4 π ε0

  
σ(y',z')  dy' dz'

x M
 2  + y   - y'  

  2 + z   - z'  
  2

et le potentiel total en M:



2/05/03   32

 V  x, y, z   =  1
4 π ε0

  
 y' = yA

y' = yC

 

 z' = zA

 z' = zB

 
σ(y',z')  dy' dz'

x  2 + y   - y'  
  2 + z   - z'  

  2

M

A

B

C

D

x

y

z

Le calcul peut être plus ou moins complexe mais il est en principe faisable.

VI-3 Potentiel créé par un disque en un point son l'axe

Les coordonnées naturelles d'un disque chargé sont les coordonnées polaires. Un
élément de surface du disque  rdr dθ placé en (r,θ) ( élément en noir) porte une charge
d2q= σ(r,θ) rdr dθ. Il est placé à la distance d = (r2 + x2) 1/2 du point M. Sa contribution
au potentiel est donc:

d2 V  = 1
4 π ε0

  
σ(r, θ)  r dr dθ

x2 + r 2  

(Nous notons d la distance entre l'élément de charge et le point M (au lieu de
l'habituel r) pour éviter toute confusion avec le rayon r de la couronne élémentaire choisie
sur l'objet circulaire)

r
xO M

d
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Reste à intégrer en θ ( entre 0 et 2π) pour avoir la contribution au potentiel due à la
couronne en gris de rayon r et d'épaisseur dr. Puis en r (entre 0 et R) pour avoir la
contribution de toutes les couronnes, c'est-à-dire la contribution totale.

VI-4 Potentiel créé par un disque uniformément chargé, en un point de son l'axe

Si le disque est uniformément chargé, σ(r,θ) = σo:

 V  = σ0
4 π ε0

    
 r = 0

 r = R

 r dr 
x 2 + r 2  

 dθ
 θ = 0

 θ = 2π

  =  2π  σ0
4 π ε0

    
 r = 0

 r = R

 r dr 
x 2 + r 2  

(on peut intégrer directement en q avec comme résultat 2π lorsque σ ne dépend
que de la variable r)

En utilisant la relation

 
 

 u du 
u 2 + a 2  

  =  u 2 + a 2

on arrive très facilement à :
V  =  σ

2 ε0
 R 

2 + x 2  - I xI

Faire le calcul en détail, c'est un cas classique.

VII Champ électrique créé par une surface

VII-1 Calcul à partir du potentiel

Vous pouvez reprendre mot à mot le paragraphe consacré au calcul du champ
électrique créé par un fil à partir du potentiel. Ici aussi, nous tirerons au maximum
avantage des symétries du problème.

Calculer le champ électrique créé en un point M de l'axe d'un disque
uniformément chargé.

VII-2 Expression formelle

De façon tout à fait similaire à ce que nous avons fait pour le calcul direct du
champ électrique créé par un fil chargé, nous pouvons écrire formellement le champ
électrique créé par une surface chargée.

Chaque élément de surface dS', de charge surfacique σ, placé à la distance r de M
et dont la direction le joignant à M est repérée par le vecteur unitaire u, apporte une
contribution d2E au champ électrique:

d2E = 1
4 π ε0

 σ  dS'  

 r2
  u 

Le champ électrique total s'écrit:

 EM = 1
4 π ε0

 σ  dS'  

 r2
  u  

S

Le champ électrique total est la somme sur toute la surface S des champs
électriques élémentaires créés par les éléments de surface dS' portant des charges d2q= σ
dS'
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Cette relation se décompose en trois nouvelles relations valables pour chacune des
composantes:

 Ex = 1
4 π ε0

 σ  dS'  

 r2
  u x

S

Comme précédemment pour le potentiel, il est possible d'effectuer le calcul de Ex
en paramètrant σ, r, ux et dS' à l'aide de coordonnées cartésiennes, polaires, cylindriques
ou sphériques.

Calculer par méthode directe le champ produit en un point M de l'axe d'un
disque chargé uniformément.

VIII Densité de charge volumique

VIII-1 Distribution de charge volumique

Si un solide de volume τ' porte une charge Q uniformément répartie, la densité de
charge volumique est  ρ = Q / τ'.

Quelle est la densité de charges volumiques dans une sphère de 1cm3

uniformément chargée portant 10-6C?

Dans le cas général, la charge n'est pas uniforme et la densité volumique ρ(r')
dépend du point r' que l'on considère. L'élément de charge dans le volume dτ' localisé
autour du point r' est d3q= ρ(r') dτ'.

VIII-2 Distribution de charges volumiques en coordonnées cartésienne

En coordonnées cartésiennes, un élément de volume s'écrit:
dτ' = dx' dy' dz'

La densité de charge ρ(x',y',z') est fonction de x', y' et z:'
L'élément de charge contenu dans un volume dτ' entourant le point r' est:

d3q = ρ(x',y',z') dx' dy' dz'

La charge totale Q est une intégrale triple sur les trois variables, prises dans
l'ordre que l'on veut. Elle s'écrit:

Q =   ρ (x',y',z') dx' dy' dz'
τ'

 

τ' figurant en bas du signe intégral signifie que l'intégration porte sur tout le
volume du solide.

Déterminer la charge électrique portée par un cube de côté a centré à l'origine
des axes et dont la densité de charge volumique s'écrit  ρ(x',y',z')'= A(x'2+y'2+z'2)

VIII-3 Distribution de charges volumiques en coordonnées cylindriques.

Comme leur nom l'indique, les coordonnées cylindriques sont particulièrement
bien adaptées à un solide cylindrique de rayon R et de hauteur H.

Dans un tel repère, l'élément de volume s'écrit dr rdq dz. Ce n'est pas immédiat à
voir ni à représenter. Pour bien vous en persuader, il n'y a pas de secret, il faut représenter
plusieurs fois vous-mêmes cet élément de volume.
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Reprenons le trièdre en coordonnées cylindriques:
L'élément de volume dτ est un parallélépipède dont les axes sont selon er, eθ et ez.

x

y

z

M'

rθ

er

eθ

Μ

Ο

ez

Passer de r à r+dr ( à θ et z constants) déplace le point M de dr le long de er. dr
est le premier coté du parallélépipède élémentaire.

Passer de θ à θ+dθ déplace le point M le long de eθ . Le déplacement est de rdθ.
rdθ représente le second côté du parallélépipède élémentaire.

Passer de z à z+dz déplace M de dz le long de ez. dz représente le troisième côté.
L'élément de volume dτ est donc dτ= rdr dθ dz.

Reste à intégrer selon les trois coordonnées, dans l'ordre que l'on veut. L'ordre le
plus naturel consiste à intégrer tout d'abord selon θ de 0 à 2π, ce qui génère un volume
sous forme de couronne de rayon r (et  donc de périmètre 2π r) d'épaisseur dr et de
hauteur dz. La deuxième intégration porte, selon r, de 0 à R. Cette intégration génère un
disque de rayon R et de hauteur dz. La troisième intégration selon dz génère le cylindre
dans son entier.

La charge totale est donc:

Q =   ρ (r, θ,z) r dr d θ dz
τ

Déterminer la charge portée par un cylindre de hauteur H de rayon R, d'axe de
révolution 0z, posé sur le plan x0y et dont la densité de charge est ρ(r,θ, z)= A r

VIII-4 Distribution de charges volumiques en coordonnées sphériques

Les coordonnées naturelles d'un corps apparaissant sous forme de sphère sont les
coordonnées sphériques. Les coordonnées sont r, θ, ϕ . L'élément de volume est  dτ =
r2dr sinθ dθ dϕ. Plus encore ici, vous ne serez convaincus que si vous-mêmes, vous
dessinez l'élément de volume dτ et les volumes engendrés par les intégrations successives.
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x

y

z

M'

r

θ

ϕ

er

eθ

eϕΜ

Ο

L'élément de volume dτ est le parallélépipède rectangle dont les côtés sont selon er,
eθ, eϕ.

Passer de r à r+dr déplace le point M de dr le long de l'axe er. dr est le premier
côté du parallélépipède.

Passer de θ à θ+dθ déplace M de r dq dans la direction de eθ. r dθ est le second
côté du parallélépipède.

Passer de ϕ à ϕ+dϕ déplace les points M' et M dans la direction eϕ de  0M' dϕ.
Or  0M'= r sinθ. Le déplacement dans la direction de eϕ est donc  r sinθ dϕ.

L'élément de volume est :
dτ = r2 dr sinθ dθ dϕ

L'élément de charge  porté par le volume dt situé au voisinage du point de
coordonnées (r, θ, ϕ) s'écrit :

d3 q =   ρ (r, θ,ϕ)  r2 dr  sinθ   dθ   dϕ

Et la charge totale s'écrit:

Q =   ρ (r, θ,ϕ)  r2 dr  sinθ   dθ   dϕ
τ

Si on intègre successivement selon ϕ, θ, r, ce qui est la façon naturelle de procéder:
L'intégration selon ϕ ( de 0 à 2π) engendre une couronne d'axe 0z, située à la cote

r cosθ, de rayon  r sinθ et dont les deux autres dimensions sont r dθ et dr.
L'intégration selon θ, engendre une  couronne sphérique de rayon r et d'épaisseur

dr.
L'intégration selon r (de 0 à R) engendre la sphère tout entière.

Représenter les surfaces engendrées successives.

Déterminer par intégrations successives la charge portée par une sphère de
rayon R chargée uniformément avec la densité volumique ρ0.



2/05/03   37

IX Potentiel et champ créés  par un volume chargé.

IX-1 Potentiel électrique

L'élément de volume dt' entourant le point r' et portant l'élément de charge ρ(r') dτ'
crée au point M situé en r un élément de potentiel d3V:

d3V  =  1
4 π ε0

  
ρ (r')  d τ'

 r  - r' 

Le potentiel total en M est la somme de ces contributions soit:

V (r) =  1
4 π ε0

  
ρ (r')  d τ'

 r  - r' 
τ'

  

Comme précédemment, il faut paramétrer chacune des grandeurs et intégrer sur les
paramètres. Ce peut être compliqué!!

IX-2 Champ électrique

Il peut être déduit du potentiel par dérivation à l'aide de la relation  E= -grad V.
Alternativement, on peut déterminer l'élément de champ dE créé en M par la

relation:

 d3E  =  1
4 π ε0

  
ρ (r')  d τ'

 r  - r'   2
  u

où le vecteur unitaire u est porté par la direction joignant l'élément de volume
portant la charge dq au point M.

Soit en intégrant sur le volume:

 E(r)  =  1
4 π ε0

   
ρ (r')  d τ'

 r  - r'   2
  u 

τ'
  

relation valable composante par composante.

X Symétries de distribution de charges et champ électrique

Dans bien des situations, et nous en avons rencontré, des considérations de
symétrie permettent de simplifier considérablement les calculs.

La régle de symétrie la plus courante est celle-ci: le champ électrique en un point
d'un plan de symétrie de la distribution de charges est un vecteur dont la direction est
contenue dans ce plan.
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+

+

q

E

E( ∏ )

q

E

A

A

B

B

Il est clair sur le schéma ci-dessus que deux charges qA et qB égales et
symétriques par rapport au plan (∏) produisent des champs électriques EA et EB
symétriques par rapport à ce plan. Leur résultante est située dans le plan de symétrie. En
répétant le raisonnement sur toutes les charges symétriques deux à deux, on trouve bien
sûr une résultante totale de champ électrique contenue dans le plan.

Si un point est situé à l'intersection de deux plans de symétrie de la distribution de
charge, alors le champ électrique est dirigé suivant la droite d'intersection des deux plans.

Si un point est situé à l'intersection de trois plans de symétrie, le champ électrique
en ce point est nul.

X Ce qu'il faut savoir

Ce chapitre est long et sans doute difficile.
Il vous faudra un certain temps pour bien voir dans l'espace les éléments de

volume, et les formes engendrées par les différentes intégrations.
Mais vous devez arriver à manipuler ces méthodes d'intégration, non seulement

parce qu'elles apparaissent en électricité, mais parce que vous les rencontrerez dans
différentes autres matières telles que la mécanique.
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CHAPITRE IV

Flux du champ électrique et théorème de Gauss

I) Enoncé du théorème de Gauss

I -1 Cas particulier du théorème de Gauss

Considérons une charge q placée en 0. Traçons trois sphères S1, S2, S3.
concentriques de centre 0 de rayon r1, r2 et r3.

E1 E2 E3q
SSSS1111

SSSS3

SSSS2

En tout point de la sphère S 1 , le champ électrique E 1  est dirigé
perpendiculairement à la surface de la sphère. Son intensité est donnée par la loi de
Coulomb:

E1 = 1
4 π ε0

  
q

r1
 2

On vérifie aisément que le produit de la surface S1 = 4 π r1
2 de la sphère S1  par

le champ électrique E1= E (r1) est égal à la constante q/ε0  et ne dépend pas de r1. Le

même raisonnement peut être reproduit sur les sphères S2 et S3.
Le produit du champ électrique créé en un point M par une charge ponctuelle

placée en 0, et de la surface de la sphère de rayon 0M, est une constante q/ε0,
indépendante du point M considéré.

Ceci est un cas particulier d'un théorème plus général qu'on appelle théorème de
Gauss.

La raison de la constance de ce produit tient de toute évidence au fait que la surface
de la sphère croît comme 0M2 alors que le champ électrique en un point de cette sphère
décroît comme 1/0M2.
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I-2 Enoncé général du théorème de Gauss

Dans toute sa généralité, le théorème de Gauss s'énonce ainsi:

Le flux total du champ électrique sortant d'une surface imaginaire fermée est égal à
la somme des charges intérieures divisée par ε0.

Ce théorème doit vous laisser un peu perplexes.
En relisant le paragraphe précédent, vous devez penser que le flux était le produit

de la surface de la sphère imaginaire par le champ électrique en chaque point de cette
surface. C'est vrai dans le cas particulier considéré.

Vous vous dites peut-être encore que, pour que cet énoncé soit valable aussi bien
pour les charges négatives que pour les charges positives, le signe du flux doit changer
avec celui de la charge. Pour cette raison, on décrète que le flux est positif lorsque le
champ électrique est dirigé vers l'extérieur de la sphère et qu'il est négatif si le champ
électrique est dirigé vers l'intérieur. C'est une convention.

En fait,ce théorème ne parle pas de sphère;  il ne parle que de surface fermée. Il ne
précise pas la position de la charge, il ne dit pas non plus si la charge est ponctuelle,
étendue ou même s'il y a plusieurs charges. Il ne parle que de charges intérieures à la
surface fermée.

Il ne fait  nullement allusion aux charges extérieures à la surface fermée.
Ce théorème sépare les charges en deux groupes: celles qui sont intérieures à la

surface fermée et celles qui lui sont extérieures.

Tout cela mérite précision. C'est l'objet de ce chapitre

I-3  Modèle

Nous allons montrer la validité du théorème de Gauss en raisonnant sur un
système physique imagé que nous appellerons du "tireur fou"  et qui possède bien des
aspects du champ électrique.

Le système physique à partir duquel nous allons raisonner n'est toutefois pas un
champ électrique et il ne présente donc pas toutes ses caractéristiques. Pour cette raison, il
faudra rester prudent.

Mais sur les aspects qui nous intéressent, les choses sont plus "matérielles" et
donc plus faciles à appréhender.

En fait nous avons hésité à développer cette image de "tireur fou" parce qu'une
telle image risque toujours de compliquer les choses plutôt que de les simplifier.

Nous n'y avons finalement pas renoncé pour deux raisons:

i) Il vous faut apprendre à aborder des problèmes par transposition. Dans votre vie
professionnelle, vous serez amenés à transférer des modes de raisonnement et des
résultats d'un sujet à l'autre ou d'un problème à l'autre. La comparaison que nous allons
développer est un apprentissage au décloisonnement.

ii) Le modèle que nous allons mettre en oeuvre fait apparaître les choses sous un
aspect de bilan. Dans votre formation d'ingénieur matériaux, vous aurez souvent à
effectuer de tels bilans.

Alors tentons cette comparaison. Avec un peu de recul, vous nous direz si nous
avons compliqué les choses ou si nous avons aidé à comprendre le théorème de Gauss.
Au vu de vos appréciations, nous rectifierons (pour les prochaines années) notre façon de
présenter ce problème géométriquement délicat.
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II La charge électrique et le tireur fou

II-1 Le modèle du tireur fou

Imaginons qu'une charge électrique placée à l'origine 0 soit émettrice de
projectiles.

Disons que c'est un tireur fou qui mitraille sans discernement dans toutes les
directions de l'espace et émet un nombre QT de projectiles par seconde.

Un tireur fou émet 100 000 projectiles par seconde. Combien de projectiles un
homme "parallélépipédique" de 1.8 m de hauteur, 0.4 m de largeur et 0.25 m
d'épaisseur, placé à 100m ( puis à 1000m) recevra-t-il (en moyenne) de projectiles par
seconde?

II-2 Loi de "Coulomb" du tireur fou

Il est clair que le tireur placé à l'origine affecte chaque point r de l'espace par le
nombre de projectiles qu'on peut y recevoir par seconde.

Chaque point M(r) de l'espace peut être caractérisé par le nombre de projectiles
ETF(r) qu' une surface unité test s0=1m2

  placée  en ce point, bien perpendiculairement au
faisceau de projectiles, reçoit par seconde (la surface test est toujours placée
perpendiculairement au sens de déplacement des projectiles).

Si le tireur fou émet isotropiquement QTF projectiles par seconde, le nombre ETF
de projectiles reçus par la surface test placée en r est égal à QTF s0/4πr2:

ET F = s0

4 π r2
  QT F 

s0/ 4πr2 est la fraction de surface de la sphère de rayon r couverte par la surface
test.

Cette relation n'est pas sans rappeler la formule du champ électrique créé par une
charge ponctuelle.

Poussons encore un peu la comparaison. Remplaçons s0 par t0=1/s0 et faisons de
ETF un vecteur qui, outre le nombre de projectiles reçus par seconde sur la surface test,
indique le sens de déplacement des projectiles.

Pour cela, introduisons le vecteur unitaire u dont le sens est le sens de déplacement
des projectiles. ETF s'écrit:

ETF  = 1
4 π t0

  
QT F

r2
 u

Ce vecteur ressemble alors comme un frère au vecteur champ électrique. Il possède
ses deux caractéristiques essentielles: il est radial et décroît en 1/r2.

Ainsi, même s'ils n'ont pas la même signification physique, le champ électrique E
et le vecteur ETF sont mathématiquement identiques: les propriétés mathématiques de l'un
seront les propriétés mathématiques de l'autre. C'est ce que nous allons mettre à profit.

III Théorème de Gauss du tireur fou

III-1 Définition du flux de projectiles

Considérons un élément de surface dS appartenant à une surface imaginaire
fermée S. Nous définissons l'élément de flux d2φTF de ETF à travers dS comme le
nombre de projectiles que reçoit cette surface pendant 1 seconde.
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dS n'est pas la surface test et n'est donc pas nécessairement placée
perpendiculairement à la direction de déplacement des projectiles.

Le nombre de projectiles reçus va donc dépendre de la position de l'élément de
surface dS mais aussi de son orientation.

Si l'élément de surface dS est parfaitement perpendiculaire à la trajectoire des
projectiles:

dφTF  = ETF  dS

Si au contraire l'élément de surface dS se présente de profil,  il ne reçoit aucun
projectile et dφTF = 0 ( dφTF est un infiniment petit du second ordre).

Il paraît clair que la grandeur à prendre en compte n' est pas l'élément de surface
dS mais sa projection sur le plan perpendiculaire au faisceau de projectile. L'élément de
flux est alors:

d φTF  = ETF  dS cosθ
où θ est l'angle entre un vecteur perpendiculaire à dS et la direction des projectiles.

E

dS

θ

EE

dS

dS

Dans quelle situation géométrique le flux de E est-il le plus élevé.

Cette relation peut en fait s'écrire comme un produit scalaire. Pour cela,
définissons un élément de surface dS comme un vecteur dont l'intensité est égale à
l'élément d'aire dS, et le sens celui de la normale sortante par rapport à la surface fermée
sur laquelle s'appuie l'élément de surface dS. Il vient alors:

d φ  =  ETF. dS

Par intégration, le flux à travers la surface fermée est la somme de tous les élément
de flux obtenus lorsque dS parcourt toute la surface soit:

φ =  ETF dS

III-2 Flux de projectiles dus à des tireurs fous

Si il y a 3 tireurs fous, chacun fournit son propre ETF  (ETF1 ETF2, ETF3 ) et le
flux total à travers une surface dS n'est autre que la somme des flux individuels.

 φ =  φ1 +  φ2  +  φ3

Il est évident que le nombre de projectiles reçus par seconde par dS est la somme
des projectiles provenant de chacun des tireurs.

On peut définir   ETF  = ETF1 +  ETF2 + ETF3

dφ =  ETF. dS   =  ETF1 .dS +  ETF2.dS  + ETF3.dS  =   dφ1 +  dφ2  +  dφ3

C'est le théorème de superposition du tireur fou.

Comme on peut le voir sur la figure ci-dessous, certains éléments de flux peuvent
être positifs alors que d'autres sont négatifs. Tout dépend de la position des tireurs à
l'intérieur et à l'extérieur de la surface fermée.
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dS

dS
dS

E

E

E

III-3 Equation bilan

Le flux total φ est égal au nombre de projectiles qui quittent le volume délimité par
la surface totale S pendant 1 seconde.

Il est bien clair que ce nombre est égal au nombre de projectiles émis depuis
l'ensemble des points sources intérieurs à la surface.

En régime stationnaire, le nombre de projectiles émis pendant 1 seconde à
l'intérieur du volume V délimité par la surface S doit être égal au nombre de projectiles qui
quittent ce volume et donc franchissent la surface S dans le sens sortant.

S'il y a en outre des tireurs extérieurs, les projectiles qu'ils émettent ne font que
passer. En 1 seconde, ils sont autant à pénétrer dans le volume qu'à en sortir. Le flux dû à
ces projectiles tirés de l'extérieur est localement positif, localement négatif mais
globalement nul.

Si la distribution des tireurs fous n'est pas très simple, l'expression des éléments
de flux ETF.dS doit être assez inextricable. Mais le bilan global doit être inchangé et la
somme sur toute la surface fermée des ETF.dS est égale à QTF,i/t0 , où QTF,i est le
nombre de projectiles émis par seconde à l'intérieur de la surface fermée.

III-4  Résultat mathématique:

Oublions l'image des tireurs fous et la notion de déplacement qui est associée aux
projectiles qu'ils émettent. Et ne retenons que l'aspect mathématique.

Nous avons montré par des arguments physiques que,si à un point source 0, on
faisait correspondre en chaque point de l'espace M un vecteur radial ETF(r) dont
l'intensité décroissait comme l'inverse du carré de la distance 0M, alors le flux de ce
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vecteur à travers une surface imaginaire fermée de forme quelconque entourant 0 était une
constante.

Les flux étant des grandeurs scalaires, le flux total créé par une distribution de
points sources 0i est égale à la somme des flux dus à chacun des points sources.

Appliquons ce résultat à l'être mathématique qu'est le champ électrique E et qui
possède les mêmes propriétés mathématiques que ETF.

On pourrait aussi l'appliquer au champ de gravitation

Formuler le théorème de Gauss du champ de gravitation.

IV Théorème de Gauss du champ électrique

IV-1) Flux  du champ électrique

Si dans la notion flux on ressent communément une idée de mouvement, c'est sans
doute parce que l'on parle du flux et du reflux de l'eau. C'est aussi parce que les flux que
l'on introduit en physique sont souvent ceux de vecteurs auxquels sont associées des
déplacements d'objets ou de fluides comme dans l'image du tireur fou.

En fait le flux est une définition mathématique n'impliquant a priori aucun
mouvement.

Etant donné un champ de vecteur E(r) et un élément de surface orienté dS placé
en r, un élément de flux  dφ est défini par:

dφ  =  E(r)  dS
Le flux total à travers une surface fermée est égal à la somme de ces éléments de

flux.
Le champ électrique est un champ de vecteur et, comme tel, des éléments de flux

lui sont associés.
Mais, vous voyez, nous sommes incorrigibles puisque, pour nous convaincre des

propriétés du flux du champ électrique nous avons fait appel au champ de vecteur ETF
auquel est associée l'idée de mouvement.

IV-2 Théorème de Gauss

Le flux total du champ électrique sortant d'une surface fermée est égal à la somme
des charges intérieures divisée par ε0. C'est une simple transposition de théorème de
Gauss du tireur fou.

Nous espérons que ce théorème vous laisse moins perplexes. Si vous n'êtes pas
vraiment convaincu par notre démarche, consultez le livre de R. Feynmann, ou le cours de
Berkeley: vous y trouverez des approches complémentaires.

Nous allons  maintenant nous tourner vers l'utilisation de ce théorème.

V Application à certains calculs de champ électrique

V-1 Calcul direct du champ électrique créé par une sphère  chargée uniformément
en surface

Considérons une sphère de rayon R, centrée en 0, chargée en surface avec une
densité de charge uniforme σ et essayons de déterminer le champ électrique qu'elle crée
en un point r de l'espace.
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2π  ρ    =    2π  R sin θ 

d
r

Sur la figure ci-dessus, l'ensemble des points de la sphère situés à la distance d du
point M décrit un cercle de rayon ρ= R sinθ.

L'ensemble des points d'une couronne de sphère, d'aire 2π R sinθ Rdθ (Rdθ est la
largeur de la couronne), porte un élément charge:

dq= σ 2 π R2 sinθ dθ

Ces points sont situés à la distance d de M telle que:
d2 = r2 + R2 - 2 Rr cosθ

Une telle couronne contribue au potentiel V par l'élément dV:

dV = σ
4 π ε0

  2π R 2 sin θ  dθ

R 2 +r 2 - 2 r Rcos θ  

Le potentiel total est la somme (intégrale) sur les θ de 0 à π de l'expression ci-
dessus:

V (r)  = 1
4 π ε0

  σ 2π R 2 sin θ  dθ

R 2 +r 2 - 2 r Rcos θ  θ = 0

θ = π

Le champ électrique est dirigé suivant la direction Ox et s'obtient par dérivation du
potentiel ainsi calculé.

Par symétrie de rotation, le champ électrique peut être déterminé en un point
quelconque de l'espace
.

Ce calcul est faisable. On peut imaginer qu'il vous effraie.

V-2 Application du théorème de Gauss

En fait, ce champ électrique peut être calculé simplement par application du
théorème de Gauss.

Nous avons tracé sur la figure ci-après trois sphères, de rayon R, ri et re.
La sphère de rayon R est la sphère physique, chargée en surface avec la densité de

charge σ.
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Les sphères ri et re sont deux sphères imaginaires appelées aussi sphère de Gauss
qui sont des surfaces fermées sur lesquelles on va appliquer le théorème de Gauss. Les
indices i et e viennent rappeler qu'elles sont respectivement intérieures et extérieures à la
sphère chargée.

Remarquons maintenant que, par symétrie, le champ électrique E(r) en tout point
distant de r du point 0 (r plus grand ou plus petit que R) est radial et ne dépend que de r.

Son flux φ à travers une sphère de Gauss de rayon r s'écrit donc simplement φ=
4πr2E(r). Il est égal à Qi/ε0 où Qi est la charge intérieure à la sphère de rayon r.
Deux cas se présentent:

i) r = ri< R
Il n'y a pas de charges intérieures à la surface de Gauss, Qi=0 et donc E(ri)=0.
Le champ électrique à l'intérieur de la sphère chargée uniformément en surface est

nul.
ii) r= re>R

La charge totale Qi= σ 4πR2 se trouve à l'intérieur de la sphère de rayon re. Le
théorème nous dit que:

φ = 4π  re2 E(re)  = 4π σ R2

ε0
 Soit:

E(re)  =  σ 
ε0 

 R
2

re2

Le champ électrique à l'extérieur de la sphère est identique à celui qui serait créé
par une charge ponctuelle Qi placée au centre de celle ci.

Si nous étions allés jusqu'au bout du calcul du paragraphe précédent, c'est ce que
nous aurions trouvé, ... mais à quel prix !!

Tracer le profil du champ électrique E(r) en fonction de r. Quelle discontinuité
subit-il lors du franchissement de la surface de la sphère?

V-3 Conditions d'applications du théorème de Gauss

Il faut bien voir que si le théorème de Gauss est d'une grande généralité, il n'est
utilisable en pratique que si le système présente un degré de symétrie élevé. C'est parce
que le champ électrique était toujours normal à la surface de la sphère de rayon r et qu'il
était a priori d'intensité constante que l'expression du flux fut particulièrement simple et
utilisable.
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Dans la pratique, il faut pouvoir définir une surface de Gauss fermée sur laquelle
le champ électrique est constant et radial, ou non constant mais tangentiel.

V-4 Champ électrique créé par un fil infini chargé uniformément

Un calcul direct peut être effectué comme au chapitre précédent mais utilisons
plutôt le théorème de Gauss.

Par symétrie, le champ électrique en tout point r est radial et orthogonal à l'axe du
fil.

Considérons la  surface de Gauss constituée d'un tronc cylindrique droit de rayon
r de hauteur h, et des deux disques de rayon r couvrant  ses extrémités.

A cette surface fermée appliquons le théorème de Gauss.

La charge intérieure à cette surface est égale à Qi = λ h.

E(r)E(r)
h

r
+
+
+
+
+
+
+
+
+
+
+
+

Le flux de E  à travers la surface fermée peut être décomposé en trois
contributions:

Le flux de E à travers le disque supérieur, le flux de E à travers le disque inférieur
et le flux de E à travers le tronc cylindrique.

Les flux de E à travers les disques sont nuls car le champ électrique leur est
tangent.

Le flux de E à travers la surface du tronc de cylindre est simplement égal à 2π r h
E(r). (E(r) est constamment perpendiculaire à la surface.

Le théorème de Gauss s'écrit:

φ = 2π  r h E(r)  =  λ h
ε0

soit:

 E(r)  =  λ 
2π ε0 r

Le champ électrique créé par un fil infini, uniformément chargé, décroît en 1/r.
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V-5 Quand peut-on considérer un fil comme infini?

Un fil sera considéré comme infini si la distance r entre l'observateur (placé
suffisamment loin des extrémités du fil) et le fil est beaucoup plus petite que la longueur
du fil, c'est-à-dire lorsque r<< a.

Dans le chapitre précédent (paragraphe IV-3) nous avions montré que le champ
électrique radial en un point du plan bissecteur du fil uniformément chargé était radial et
s'écrivait (vous remplacerez aisément les notations dans leur contexte):

E(r) =  
Q

4 π ε0
  1
r r2 + a2

 La limite r<< a s'obtient en négligeant r2 devant a2 dans la racine carrée. Soit:

E(r) =  
Q

4 π ε0
  1
r  a =  λ

2 π ε0 r
  

ce qui est exactement l'expression trouvée par le théorème de Gauss.

VI) Franchissement d'une surface chargée

VI-1 Champ créé par un plan infini chargé uniformément

Considérons le plan x0y chargé uniformément avec la densité de charge σ.
Déterminons le champ électrique créé à la distance z de ce plan.

x

y

zEE

Par symétrie, le champ électrique est dirigé suivant 0z, vers les z positifs ou
négatifs selon que l'on se trouve à droite ou à gauche du plan chargé.

Considérons la surface de Gauss fermée constituée d'un cylindre d'axe z'z fermé
par les  deux disques hachurés de surface S placés de part et d'autre du plan chargé aux
cotes +z et -z.

Le champ électrique est tangent au cylindre et perpendiculaire aux deux disques
hachurés.

Le flux de E à travers la surface fermée  se compose du flux à travers le cylindre,
du flux à travers le disque de droite et du flux à travers le disque de gauche.
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Le flux à travers le cylindre est manifestement nul puisque le champ électrique est
tangentiel à ce cylindre.

Le flux à travers le disque de droite est S E(z). Il est positif puisque dirigé suivant
la normale sortante.

Le flux à travers le disque de gauche est S E(-z) = S E(z). Il est aussi positif
puisque à la fois le champ et la normale sortante ont changé de sens.

L'égalité entre E(z) et E(-z) est due à la symétrie.
Le flux total à travers la surface fermée est donc:

φ  =  2 S E(z)   
La charge Qi à l'intérieure de cette surface fermée est celle portée par le disque

central de la figure précédente, soit:
Qi = S σ0

L'application du théorème de Gauss donne:
E (z)  =  σ

2 ε0
   

Le champ E(z) est indépendant de la cote z.
Toutes les positions situées à distance finie d'un plan infini sont équivalentes.

VI-2 Discontinuité du champ électrique lors de la traversée d'une surface chargée

Nous allons utiliser le résultat ci-dessus pour déterminer la modification du champ
électrique lors de la traversée d'une surface chargée. Nous voulons connaître la différence
de champ électrique entre deux points A1 et A2 infiniment proches situés de part et d'autre
de cette surface.

Pour ce faire, nous nous appuyons sur deux arguments:
-Un élément rectangulaire de plan, de longueur a et de largeur b finies, peut être

considéré comme infini si la distance d séparant l'observateur du plan chargé est
suffisamment petite. (d << a et b)

- Une surface quelconque de rayon de courbure rc, peut localement être considérée
comme plane par un observateur qui se trouve à une distance d << rc (c'est la vision que
l'on a de la terre à proximité du sol).

Cela signifie qu'un élément de surface quelconque portant localement une densité
de charge σ crée en son voisinage immédiat ( d << rc) un champ électrique σ/2ε0 normal à
la surface.

+++ +++

- +

+
+

+

+

+
+

+
+

+
+

+

+

E2

E1

Eσ1

Eσ2

Ea
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A2
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t
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En présence d'autres charges, les champs électriques totaux E1 et E2 en des points
A1 et A2 très proches de la surface est alors la somme de deux composantes:

-Le champ Eσ du aux charges de surface ( σ/2ε0 ).
-Le champ Ea dû aux autres charges situées trés loin comparée à la

distance qui sépare les points  A1 et A2 :

E1 = Ea + Eσ1      et      E2 = Ea + Eσ2

Le franchissement de la surface n'affecte pas Ea qui est créé par des charges
"éloignée". La distance infime qui sépare deux points situés de part et d'autre de la surface
ne conduit à aucune modification de Ea. C'est pour cela que le même Ea apparaît dans E1
et E2.

Au vu du paragraphe précédent, les champs Eσ  sont égaux, opposés et
perpendiculaires à la surface (et n'ont pas de composante tangentielle suivant t). Il est
assez évident que si on définit n12 le vecteur unitaire perpendiculaire à la surface et dirigé
dans le sens du milieu (1) vers le milieu (2), on a la relation

algébrique Eσ2 - Eσ1  n12  = σ
ε0

 . Et donc puisque seule la composante Eσ est différente:

 E2 - E1  n12  = σ
ε0

Il s'en suit que lors de la traversée d'une surface chargée:

- La composante tangentielle du champ électrique total est continue  Et1 = Et2
- la composante normale subit une discontinuité En2 - En1= σ/ε0

avec  Et1 = E1.t   Et2 = E2.t    En1 = E1.n12   En2 = E2.n12    

VII) Forme locale du théorème de Gauss

VII-1 Equation globale et forme locale

Le théorème de Gauss, tel que nous l'avons présenté, est  apparu sous une forme
globale. Le flux à travers une surface fermée est reliée à la quantité de charges intérieures
à ce volume indépendamment du détail de leur distribution .

Une équation locale relie deux grandeurs en un point r.
E = -gradV est une équation locale en ce sens que le champ en r est lié à la

dérivée du potentiel en ce même point r.

Il existe une forme locale du théorème de Gauss. Elle s'écrit:

  
∂Ex

∂x
 + 

∂Ey

∂y
 + 

∂Ez

∂z
 =  

ρ
ε0

Elle relie, en chaque point de l'espace, la somme des trois dérivées partielles écrites
ci-dessus à la densité de charge volumique en ce même point.

(Les charges surfaciques et ponctuelles doivent être traitées à part.)

Un vecteur E étant donné, on a pris l'habitude de noter:
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 div E  =   
∂Ex

∂x
 + 

∂Ey

∂y
 + 

∂Ez

∂z
  

La forme locale du théorème de Gauss s'écrit alors:

 div E  =   
ρ
ε0

 

La divergence (div) d'un vecteur est un scalaire. Cet être mathématique vient
rejoindre le gradient et le rotationnel dans ce que l'on appelle l'analyse vectorielle.

Dans le vide, ρ = 0  et  div E = 0

Comme le gradient et le rotationnel, la divergence présente une expression en
coordonnées cartésiennes, cylindriques et sphériques.

VII-2 Bilan sur un volume élémentaire

Considérons un petit parallélépipède rectangle centré en un point d'abscisse x0, y0,
z0 et de côtés a,b et c.

Les deux faces perpendiculaires à la direction 0x sont situées en x= x0-a/2 et x =
x0-a/2. Les côtés de ces faces sont b (parallèlement à 0y) et c (parallèlement à 0z). L'aire
de ces deux faces est égale au produit bc.

Reproduire le même raisonnement pour les autres faces.

L'ensemble des 6 rectangles (tels que ABCD) forme une surface fermée entourant
le volume V= abc du parallélépipède rectangle.

x0 - a/2

x0 + a/2

x

y

z

y0 - b/2 y0 + b/2

z0 - c/2

z0 + c/2

A

G

F

C

H

E

D

B

S2

S1

S5

S6

S3

S4

( x0, y0, z0)
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Les vecteurs S1, S2, S3, S4, S5, S6 représentant les surfaces des rectangles sont
orientés vers l'extérieur du volume et s'écrivent:

S1 = 
 bc
0
0

    S2 = 
 - bc

0
0

    S3 = 
 0
a c 
0

   S4 = 
 0

-a c 
0

   S 5 = 
 0
0 
ab

   S 6 = 
 0
0 
-ab

Le flux total de E à travers la surface parallélépipédique fermée s'écrit:

φ = E1S1 + E2S2  + E3S3 +E4S4  + E5S5 +E6S6   = φ12 + φ34 + φ56

Déterminons φ12, c'est-à-dire la somme des flux du champ électrique à travers les
surfaces S1 et S2. Pour cela, faisons figurer ces deux surfaces de profil.

E1 est le champ électrique Ε en x0+ a/2. E1 =  Ε ( x0+ a/2, y0, z0)

A, B

xx0,y0,z0

x0- a/2 x0+a/2

S2 S1

C, D

E, F

G, H

E2
E1

z

Puisque bc est l'aire du rectangle ABCD, et au vu de l'orientation de S1 qui n'a de
composante que suivant l'axe 0x, le flux de E à travers la surface S1 s'écrit: (-bc) Ex(x0-
a/2,y0,z0). Nous avons donc:

φ12 = (bc) Ex(x0+a/2, y0, z0) + (-bc) Ex(x0- a/2, y0, z0 )
= (bc) [ Ex(x0+a/2, y0, z0)  - Ex(x0-a/2, y0, z0]

Puisque a est très petit et tend vers 0, on peut faire un développement limité autour
de x0, y0, z0:

Ex x0+a/2, y0, z 0   =  Ex x0,y0, z0   + 
∂Ex

∂x
  x0,y0, z0    +a

2

Ex x0-a/2,  y0, z 0   =  Ex x0,y0, z0   + 
∂Ex

∂x
  x0,y0, z0    -a

2
d'où:

   φ12  = a b c  
∂Ex

∂x
 x0, y0, z0

où le produit abc n'est autre que le volume V du parallélépipède rectangle.

Les flux φ34 et φ56 peuvent être calculés de la même façon, ce qui conduit à:

   φ =  V      ∂Ex

∂x
 + 

∂Ey

∂y
 + ∂Ez

∂z
  

où les dérivées partielles sont à prendre en (x0, y0, z0)
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La charge à l'intérieur du volume est la densité locale de charge ρ(x0, y0, z0)
multipliée par le volume du parallélépipède: Qi  =ρV.

L'application du théorème de Gauss donne:

  
∂Ex

∂x
 + 

∂Ey

∂y
 + 

∂Ez

∂z
 =  

ρ
ε0

C'est la forme locale de ce théorème que nous annoncions au paragraphe
précédent:

div E  =   
ρ
ε0

VIII Equation de Poisson

La combinaison de la  forme locale du théorème de Gauss  div E =ρ/ε0 et de la
relation E=- grad V conduit à l'équation de Poisson.

En effet:

 div E = 
∂Ex

∂x
 + 

∂Ey

∂y
 + 

∂Ez

∂z
  =  -  

∂
∂V
∂x
∂x

  -  
∂
∂V
∂y
∂y

 -  
∂
∂V
∂z
∂z

  =  
ρ
ε0

entraîne:
∂2V

∂x2
 + 

∂2V

∂y2
 + 

∂2V

∂z2
   +  

ρ
ε0

 = 0

ce qui est l'équation de poisson. Elle se synthétise en:

∆ V   +  
ρ
ε0

 = 0

où:

∆ = 
∂2

∂x2
 + 

∂2

∂y2
 + 

∂2

∂z2
   

Est un nouvel être d'analyse vectorielle appelé laplacien scalaire.

IX Relation de Green-Ostrogradsky

IX-1 Enoncé général

 Nous avons montré ci-dessus que le flux de E à travers la surface (orientée
normale sortante) qui délimite un petit cube est égale à la divergence de E multipliée par le
volume de ce cube.

Ceci se généralise à toute surface fermée et à tout vecteur U.
Soit U un champ de vecteur, Σ une surface fermée dont les éléments de surface dS

sont orientés dans le sens de la normale sortante, V le volume délimité par la surface
fermée.
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Σ

V

dS

dS

dS
On a de façon générale:

 U .  dS
Σ

  =    div U  dτ
V

 

 VIII-2 Exemple

L'application de ce théorème sur un volume quelconque et pour un champ de
vecteur non trivial est très vite compliquée.

Nous nous contenterons de le vérifier sur un champ radial de composante:
ax = x    ay = y    az = z   

et pour un volume délimité par une sphère de rayon R centrée à l'origine.

a est un vecteur radial de norme r. div a vaut 3 en tout point de l'espace. Le flux de
a à travers la sphère de rayon R est donc:

R x 4 π R2 = 4 π R3

L'intégrale de la divergence de a dans la sphère est:
3 x 4

3
 π R3 = 4 π R3

X Notion d'angle solide

X-1 Angle du plan

Considérons le centre O d'un cercle de rayon r.
Soit un arc de cercle de longueur AB. (AB est l'arc, qu'il ne faut pas confondre avec la
corde)

La mesure de l'angle α est en radian: α= AB/r

α A

B

dldα
r

r
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L'angle α peut être défini à partir d'un cercle de rayon 2r. Dans ce cas, l'arc
intercepté est de longueur double et la mesure de α est inchangée. L'angle α est une entité
en soi indépendante du cercle qui a servi à en déterminer la mesure.

Vous pouvez découper dans le plan d'une feuille de papier un angle α . Vous visez
une région du plan en plaçant votre oeil au sommet de l'angle et en regardant la région
délimitée par les deux demi-droites qui définissent l'angle.

La fraction des directions que vous voyez, rapportée à 2π, est la valeur de l'angle.
Un élément d'angle dα  est simplement défini par dl/r
La somme des éléments d'angle qui permettent de viser le plan tout entier est 2π.

X-2 Angle solide

Prenez maintenant une feuille de papier et enroulez-la en formant un cône.
Si vous visez par le petit trou placé à la pointe de ce cône,  vous avez une vision

d'une fraction des directions de l'espace un peu comme avec l'angle vous aviez une vision
d'une portion du plan.

u

dS

dΩ

S
Ω

Vous pouvez déformer ce cône en appuyant sur ses côtés et vous avez une vision
d'une fraction différente de l'espace.

La fraction des directions de l'espace que vous apercevez, rapportée à 4π est ce que
l'on appelle l'angle solide.

Pour déterminer la valeur d'un angle solide Ω,  traçons une sphère de centre 0 et de
rayon r. La surface du cercle interceptée par le cône est S.  La division de S par r2 est la
valeur de l'angle solide Ω.

L'angle solide est sans dimension. On dit qu'il est en stéradian. Le stéradian vient
se substituer au radian de l'angle d'un plan.

La valeur maximale de l'angle solide est 4π.

L' angle solide dΩ sous lequel un élément de surface dS  est vu depuis le point 0
est :

d Ω  =  d S  . u
r2

où u est le vecteur unitaire porté par le segment de droite joignant le point 0 à
l'élément de surface dS.

X-3 Relation entre le flux et l'angle solide

Le champ électrique créé en r par une charge q située au point 0 s'écrit:
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E  = 
q

4 π ε0
   u

r2

L'élément de flux dφ à travers l'élément de surface dS placé au point r s'écrit:

d φ = E .  dS   = 
q

4 π ε0
   u.  dS

r2
 =  

q
4 π ε0

 dΩ

Le flux total du champ électrique à travers une surface S de forme quelconque,
s'obtient en découpant cette surface en éléments  dS et en intégrant sur les éléments
d'angle solide. Il vient alors:

φ  =  
q

4 π ε0
  Ω

Le flux du champ électrique créé par une charge ponctuelle à travers une  surface
quelconque est égal à q/4 π ε0 multiplié par l'angle solide sous lequel on voit cette surface
depuis le point O.

Si la surface est fermée et entoure la charge q, l'angle solide est 4π et le flux est q/
ε0 .

Si la surface fermée n'entoure pas la charge q, l'angle solide est 0 (bien faire
attention aux signes des éléments de surface dS suivant la normale sortante au point
considéré) et le flux est nul.

C'est le théorème de Gauss.
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CHAPITRE V

Travail des forces électriques

Energie électrostatique

I Travail des forces électriques

I-1 Problème

Considérons une distribution de charges. Cette distribution de charges crée en
chaque point de l'espace un champ électrique E(r) et un potentiel V(r).

Plaçons en un point M(r) une charge q. Il s'applique sur cette charge une force
F(r) = q E(r)

Déplaçons la charge du point A au point B le long d'une ligne (Γ).
Le déplacement de la charge s'accompagne du déplacement du point d'application

de la force F(r) et donc d'un travail de la force électrique.

A

B

F
q

( Γ)

M

Questions:

i) Quelle est la valeur du travail de la force électrique lors de son déplacement de A
en B?

ii) Ce travail dépend-il du chemin suivi?

I-2 Réponse

La réponse à de telles questions passe généralement par une succession de
considérations et de démonstrations.

Ici, la réponse est tellement simple que nous la donnons d'emblée. Nous gardons
les considérations pour la suite.

Réponse

ii) le travail effectué par la force électrique lors de son déplacement de A à B  ne
dépend pas du chemin suivi.

i) le travail W de la force électrique est égal à  q(VA-VB), c'est-à-dire au produit de
la charge q multipliée par la différence de potentiel (VA-VB) entre les points A (origine) et
B (extrémité).

Soit  q0 = 1µC une charge placée à l'origine et q= 2µC une seconde charge
placée en A(2,0,0). Déterminer le travail de la force exercée sur q lors du déplacement
de cette charge de A à B (0,3,0) (unité de longueur: 1 cm).
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I-3 Travail de la force électrique sur un chemin simple

Considérons le système électrique constitué d'une charge centrale q0 placée à
l'origine. Cette charge crée dans l'espace un champ E et un potentiel V dont nous avons
étudié les caractéristiques dans les chapitres précédents.

Nous introduisons une nouvelle charge q sur laquelle s'exerce la force F(r) = q
E(r)

Calculons le travail W effectué par la force F lors d'un déplacement de la charge q
du point A au point B, en suivant le chemin composé de l'arc de cercle AC centré en 0,
suivi du segment radial CB.

q 0
A

B

C
D

E

F

.. ..

Le long de AC,  la force est toujours perpendiculaire au déplacement et donc le
travail effectué par cette force est nul.

A l'opposé, sur le segment de droite CB, la force se trouve toujours parallèle au
déplacement. L'élément de travail δW effectué par la force F(r) lors d'un déplacement
radial de r à r+dr est :

 δW = F(r) dr

Le travail total est la somme des travaux élémentaires. Il est obtenu par intégration
sur la variable r, soit:

 

W   =   F(r) dr 
rc

rb

   =  1
4 π ε0 

   
q q0

r2
 dr 

rc

rb

Puisque 1/r2 est la dérivée de -1/r, ce travail s'écrit:

W   =  1
4 π ε0 

   - 
q  q0

r rA

rB
  =   

q  q0

4 π ε0 rA
  -  

q  q0

4 π ε0 rB
  = q VA - VB

(il a été tenu compte du fait que rA=rc et VA=VC)

ce qui est l'expression du travail que nous avons annoncée.

I-4 Autres chemins

Plutôt que de suivre ACB, suivons maintenant le chemin ADEFB.
AD et EF sont des arcs de cercle sur lesquels le travail est nul. Les points A,D et

E,F sont au même potentiel: VA-VD , VE-VF.
DE et FB sont des chemins radiaux sur lesquels on peut reproduire le calcul du

paragraphe précédent.
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 soit :  W = q (VD-VE) + q (VF-VB)= q (VA-VB)

Pour aller de A à B, on peut imaginer bien d'autres chemins qui sont une
succession d'arcs de cercles et de segments radiaux. 

On peut aussi dire qu'un chemin quelconque menant de A à B (tel que celui
représenté en trait épais sur le schéma) peut être approché avec une précision aussi grande
que l'on veut par une succession d'arcs de cercle et de chemin radiaux. Dans tous les cas
le travail vaut W = q (VA-VB).

I-5 Généralisation à une distribution de charge

Soit un système électrique formé de deux charges q1 et q2 placées en 01 et 02.
Déterminons le travail résultant du déplacement d'une charge q  dans le champ créé par q1
et q2.

En vertu du théorème de superposition, la force totale appliquée sur q s'écrit:
F= q E = q E1 + q E2 = F1 +  F2

où E1 et E2 sont les champs créés indépendament par les q1 et q2 si elles étaient
seules.

Les travaux des forces  F1 et  F2 lors de leurs déplacements de A à B s'écrivent:
W1= q (V1A-V1B) W2= q (V2A-V2B)

où V1 et V2 sont les potentiels dus séparément à q1 et q2.

Or, lors d'un déplacement l, le travail d'une force F: W= F l est égal à la somme
des travaux de ses composantes F1l + F2l = W 1+W2 (distributivité du produit
scalaire).Il s'ensuit:

W= q [ (V1A+V2A) - (V1B+V2B)]

soit par application du théorème de superposition sur les potentiels, V =  V1+V2:
 W = q (VA-VB)

I-6 Lignes de champ et équipotentielles

En suivant les arcs de cercle et les chemins radiaux, nous avons en fait suivi une
succession d'équipotentielles et de lignes de champ.

Le long d'une équipotentielle, le travail est nul car la force parallèle à E, est
constamment perpendiculaire au déplacement.

Le long d'une ligne de champ, le déplacement est parallèle à la force. L'élément de
travail est δW= q E dl = q dV.

Lorsque le champ électrique est créé par une distribution de charges, les
équipotentielles ne sont plus des sphères et les lignes de champ ne sont plus des segments
de droites, mais il est toujours possible d'approcher une ligne joignant un point A à un
point B par une succession de lignes de champ et d'équipotentielles qui, on le sait, se
coupent à angle droit et forment un quadrillage déformé de l'espace.

Tracez un réseau imaginaire et compatible de lignes de champ et
d'équipotentielles. Montrez que le travail effectué pour joindre un point A à un point B est
W= q(VA-VB)

II Travail et différentielles totales exactes

Nous allons dans ce paragraphe revoir la notion de travail de façon plus générale
et examiner dans quelles conditions celui-ci ne dépend que de l'état initial et de l'état final
et se trouve indépendant du chemin suivi.
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II-1) Travail d'une force constante lors de son déplacement sur une trajectoire
rectiligne

Lors d'un déplacement rectiligne de A vers B,  le travail d'une  force constante F
(en direction et en intensité) est égal au produit  du déplacement AB par la composante de
la force le long de la trajectoire.

A B

F

θ

La composante de la force n'étant autre que F cosθ où θ est l'angle orienté (F,AB),
le travail s'exprime mathématiquement comme le produit scalaire de  la force F par le
vecteur déplacement AB.

W = F . AB =  F AB cosθ

II-2 Travail d'une force non constante lors de son déplacement sur une trajectoire
rectiligne.

Considérons le cas où la trajectoire AB est toujours rectiligne,  mais où la force
dépend de la position de son point d'application M. Si l'on suppose que AB est porté par
l'axe 0x, M est donné par son abscisse x, l'intensité de la force est une fonction F(x) et
l'angle qu'elle fait avec ox est donné par une fonction θ(x).

Il ne peut plus être question ici d'utiliser une formule globale telle que celle du
paragraphe précédent. Il  nous faut découper AB en ségments AA1, A1A2,.. Ai-1Ai, etc..de
taille suffisamment petite pour que l'on puisse considérer que s'exerce le long de chacun
d'eux une force F constante.

Nous admettrons par exemple que sur le segment délimité par les points Ai-1(xi-1)
et Ai(xi), la projection de la force sur la trajectoire est égale à :

Ficosθi=1 /2 [F(xi-1) cos θ(xi-1) +F(xi) cosθ(xi)]

Ainsi, lors du déplacement  de Ai-1 à Ai, le travail exercé par la force électrique est
égal à  ∆Wi= Ai-1Ai . Fi . cos θi

1
2 3

4 5
6

F cosθ

A

B

A1

A2

A3

A4

A5

θ 3 F3

A A1 A2 A3 A4 A5 B
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Il s'ensuit que le travail total de la force électrique lors de son déplacement de A à
B est la somme de tous les travaux élémentaires, soit:

W = ∆ Wi∑
i=1

n

 = Fi   Ai-1Ai  cos θ i ∑
i=1

n

  

Représentons dans un diagramme de type "histogramme" des petits rectangles
indicés 1,2,.. i,...n  dont les bases sont égales aux distances Ai-1Ai = ∆li= xi -xi-1 et dont
les hauteurs sont égales aux produits Fi cosθi.

Dans ce diagramme, l'aire du rectangle i n'est  autre que le travail ∆Wi.
Le travail total effectué lors du déplacement de A vers B est la somme de chacune

de ces aires, c'est à dire l'aire totale sous la courbe en escalier.

Avec l'affinement du pas, la courbe en escalier se rapproche d'une courbe continue
représentée par la fonction  g(x)=F(x) cosθ(x). Le travail tend vers l'aire hachurée sous
cette courbe.

A

B

Α Β

F cos θ

L'élément de travail δW produit par la force F(x) lors de son déplacement
élémentaire de x à x + dx est  égal à:

δW = F(x) cosθ(x) dx

W =   δW
XA

XB

     =  F(x) cos θ x    dx
XA

XB

Considérons trois points A, B, C et D placés sur un axe ox, aux
coordonnées xA=5m et xB= 12m et xC= 120m xD=0130m. Un mobile soumis à une
force F se déplace sur l'axe Au point M d'abscisse x, exprimé en mètre; l'intensité de la
force est en Newton F(x)=2x et l'angle θ vaut en degrés θ(x) = 30°+2x.

Déterminer le travail effectué par la force lors du déplacement de A en B, puis de
C en D. Montrer à quelles aires correspondent ces travaux.

Notez bien que l'intégration d'une fonction à une variable est a priori faisable. Tout
au plus faut-il consulter une table d'intégrales
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II-3 Cas général, travail d'une force variable se déplaçant sur un chemin curviligne.

Nous avons supposé jusqu'ici que le point M se déplaçait sur un ségment de
droite AB.

Dans le cas général le point M décrit une trajectoire curviligne quelconque (Γ).
Une origine étant choisie sur la trajectoire, la position de M est repérée par le scalaire l qui
indique la distance que doit parcourir un mobile pour  joindre 0 à M en suivant la courbe.

Lors du découpage par morceau, la courbe continue est transformée en une ligne
brisée joignant les points Ai-1Ai de la courbe réelle. L'élément de travail ∆Wi effectué par
la force Fi lors de son déplacement sur le segment  Ai-1Ai de longueur ∆li avec lequel elle
fait un angle θi , est égal à:

∆Wi= Fi cosθi  ∆li

A

B B

A

Ai-1

Ai

Fi

θ i

Lors du passage à la limite continue, nous dirons que l'élément de travail δW
effectué par la force F(l) lors d'un déplacement élémentaire dl est égal à:

δW= F(l)  cosθ (l) dl

Le travail total de la force lors de son déplacement le long de la ligne Γ est:

 W =   F(l) cos θ(l)   dl
Γ

Une telle intégrale est appelée intégrale curviligne le long du chemin Γ.

II-4 Expression vectorielle du travail élémentaire

 Considérons le vecteur Ai-1Ai  joignant les points  Ai-1 et Ai apparus lors de la
découpe de la courbe Γ. Appelons ce vecteur ∆ li. Le travail ∆Wi  effectué lors du
déplacement  ∆ li s'écrit aussi:

∆Wi = Fi . ∆ li
Lors du passage à la limite continue ∆l devient dl = u.dl où u est le vecteur

unitaire tangent à la courbe (Γ) au point d'abscisse curviligne l.
 L'élément de travail est:

δW= F dl
Le travail total s'écrit alors:

W =   F(l)   dl
Γ

dl est le vecteur infiniment petit joignant deux point M et M' de la trajectoire,
infiniment proches de la trajectoire.
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II-5 Expression du travail élémentaire dans un repère cartésien

Dans un repère cartésien les vecteurs F et dl peuvent être exprimés par leurs
composantes:

F  =  

Fx

Fy

Fz

                   d l = 

 dx 

 dy 

 dz 

Compte tenu de l'expression du produit scalaire, l'élément de travail effectué par la
force F lors du déplacement dl de son point d'application s'écrit:

δW  = Fxdx + Fydy + Fzdz

et le travail total devient:

W = Fx dx  + Fy dy  + Fz dz 
Γ

Insistons encore sur le fait que l'on calcule le travail en suivant la trajectoire (Γ).  Si
l'on se donne dx, alors dy et dz sont fixés.

W n'est pas la somme de trois intégrales suivant x, y et z. C'est une somme le long
du chemin, ce qui nécessite un paramétrage du chemin (Γ).

Considérons dans un repère cartésien trois points A (1,0,0), B(2,0,0) et C(2,1,0).
Déterminer les travaux effectués par les forces dont les composantes sont données ci
dessous lors des déplacements AB, BC et AC :

i)   Fx= x,  Fy=y,  Fz=z
ii)   Fx= xy,  Fy=yz,  Fz=zx
Le travail dépend-il du chemin suivi?

 III Travail et différentielles totales exactes

III-1 Formes différentielles

Soit X(x,y,z) ,Y(x,y,z) et Z(x,y,z) trois fonctions continues des trois variables x,y,z.
On appelle forme différentielle la quantité δg définie par:

δg = X(x,y,z) dx + Y(x,y,z) dy + Z(x,y,z) dz

De telles formes différentielles apparaissent en physique comme des
contributions infinitésimales δg à une grandeur g lors de variations élémentaires dx, dy et
dz des paramètres x y et z.

Ainsi une contribution élémentaire du travail des forces électriques apparaît comme
une forme différentielle.

III-2 Intégrale curviligne

Une intégrale curviligne est la somme des contributions infinitésimales δg
accumulées le long d'un chemin (Γ).

Le travail des forces électriques se présente sous forme d'une intégrale curviligne.
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Insistons encore sur le fait que, dans le cas général, le calcul d'une telle grandeur
implique la connaissance du chemin suivi.

III-3 Cas particulier de forme différentielle: les différentielles totales exactes

La définition d'une forme différentielle n'implique aucune relation entre les
fonctions X, Yet Z.

Il est néanmoins un cas particulier très important de forme différentielle: c'est celui
où les fonctions X, Y et Z ne sont pas indépendantes les unes des autres mais sont les
dérivées partielles d'une même fonction scalaire g:

X(x,y,z) = ∂g

∂x
       Y(x,y,z) = ∂g

∂y
     Z(x,y,z) = ∂g

∂z

Alors, dans ce cas particulier, l'intégrale curviligne le long d'un chemin (Γ) menant
du point A au point B  ne dépend pas du chemin suivi. Elle est égale à la différence des
valeurs de g en A et en B.  On écrit alors:

δ g 
Γ

=   dg  
A

B

  =  g(B) - g(A)

 
La forme différentielle δg se note alors dg (avec un d "droit"). dg s'appelle

différentielle de g ou différentielle totale exacte.
Si l'indication du chemin (Γ) est nécessaire pour effectuer la somme d' éléments

d'une forme différentielle il devient superflu pour effectuer la somme des éléments d'une
différentielle totale exacte. Il suffit de préciser les points de départ et d'arrivée, ce qui rend
l'expression proche de celle d'une intégrale.

Si Γ est une boucle fermée qui commence en A et finit au même point A:

d g   =  0
 

La boucle entourant le signe intégral signifie que le chemin d'intégration est un
contour fermé.

En remplaçant X,Y,Z par leur expression en fonction de g, il vient:

dg =  ∂g

∂x
     dx  +  ∂g

∂y
    dy +   ∂g

∂z
    dz

Rappel : les dérivées  "rondes"  ∂g/∂x sous-entendent que la dérivation s'effectue
par rapport à la seule variable x, les autres étant considérées comme des constantes, le
temps de la dérivation. Si il y a ambiguïté (en thermodynamique, il y a toujours ambiguïté)
il faut écrire:

dg =   
∂g
∂x

  
y,z

    dx  +   ∂g
∂y

 
 z,x

   dy +  ∂g
∂z

  
y,x

  dz

Ecrire la différentielle de la fonction g(x,y,z) = x2+y2+z2

III-4 Reconnaître une différentielle totale exacte

Au chapitre II, nous avons calculé les dérivées partielles d'une fonction g(x,y,z) =
2x2y2 -z2x2 +xyz. Si nous les appelons X(x,y,z) , Y(x,y,z)  et Z (x,y,z)  nous avons:

X(x,y,z) =   
∂g
∂x   = 4xy2 -2z2x +yz       et   Y(x,y,z) =   

∂g
∂y  =  4x2y +xz

En dérivant X par rapport à y et Y par rapport à x, il vient:
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∂X
∂y   =    8xy + z             

∂Y
∂x   =   8xy + z

Nous observons que 
∂X
∂y  et 

∂Y
∂x sont égales. Les dérivées secondes partielles par

rapport aux mêmes variables x puis y ou y puis x sont égales.

  
∂X
∂y

 est la dérivée par rapport à y de la dérivée de g par rapport à x . Elle se note:

   
∂X
∂y  =  

∂
∂y 

 



 

∂g

∂x =   
∂2g
∂x ∂y

et donc:  
∂2g
∂x ∂y  =   

∂2g
∂y ∂x

En étendant le raisonnement sur les trois fonctions X,Y,Z et les trois composantes
x,y,z, on reconnaitra si les fonctions X,Y et Z sont les dérivées partielles d'une même
fonction scalaire g si on a à la fois:

∂Z
∂y

 =  
∂Y
∂z

        
∂X
∂z

 =  
∂Z
∂x

       
∂Y
∂x

 =  
∂X
∂y

Lesquelles de ces formes différentielles sont des différentielles totales exactes:
δg = (x2+x) dx +  2y dy + z1/2 dz
δg = x2yz dx +  x y2z dy + xyz2 dz
δ g = (x2+y2+z2) dx + (x2+y2+z2) dy + (x2+y2+z2) dz
δ g  = (3x2+2y) dx + 2x dy + 2z dz
Déterminer la fonction g lorsqu'elle existe

III-5 Travail de la force électrique

L'élément de travail de la force électrique s'écrit comme une forme différentielle:

δW= F dl = Fxdx + Fy dy + F dz

Or les composantes Fx, Fy et Fz de la force, définie localement  à partir du champ
électrique E selon la relation F(r)= qE (r), sont les dérivées partielles de la fonction
scalaire -qV(r). il s'en suit:

δ W =  dW  = - q  
∂V
∂x

 dx  + 
∂V
∂y

 dy + 
∂V
∂z

 dz

Le travail effectué lors du déplacement de la charge q  de A vers B est, quel que
soit le chemin suivi:

WAB = - q ( VB- VA)  = q (VA - VB)
IV Circulation d'un champ de vecteur E

IV-1 Circulation de E

De même que l'on parle de l'élément de travail δW= F dl de la force F lors du
déplacement infinitésimal dl, on parle de l'élément  de circulation δC = E dl du champ
électrique lors du déplacement dl d'un "mobile"

Puisque F et E ne sont séparés que par un coefficient de proportionnalité q, ce qui
a été dit sur le travail de F reste valable sur la circulation de E.

L'élément de circulation d'un champ électrique E est une différentielle totale exacte
et s'écrit dC=-dV.
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La circulation de E sur une chemin (Γ) joignant le point A au point B est égale à la
différence de potentielle VA-VB:

E  dl   =  0

La circulation de E sur un contour fermé est nulle.

Cette relation est vraie parce que E dérive d'un gradient. Elle est à rapprocher de:

rot E = 0

qui était vraie pour cette même raison.

Il s'agit en fait de deux relations équivalentes. Mais l'une est vraie en chaque point,
c'est une équation locale, alors que l'autre est une forme intégrale qui nécessite un contour
fermé.

IV-2 Retour sur le gradient

La relation entre la variation de potentiel et de champ le long d'un chemin (Γ)
précisé s'écrivent:

dV = - E . dl

soit en coordonnées cartésiennes:

dV = - Ex . dx  - Ey . dy  -  Ey . dy

Choisissons un chemin parallèle à l'axe des x. Lorsque l'on suit ce chemin, y et z
sont constants et donc leurs variations dy et dz sont nulles:

 dV  à y et z constants  = - Ex . dx  

soit:

 Ex  =-  
∂V
∂x y,z

Et en répétant l'opération sur y et z:

 E  =-  grad  V

V Energie potentielle d'une charge

V-1 Définition

Il existe de nombreuses formes d'énergie. Vous connaissez l'énergie potentielle
mgh d'un corps de masse m placé à l'altitude h. Vous connaissez aussi l'énergie cinétique
due à la vitesse de déplacement d'un corps  E c =1/2 m v2. Il existe d'autres formes
d'énergies: l'énergie nucléaire, l'énergie calorifique (profondément liée à l'agitation
thermique des atomes dans un corps), etc.

L'energie potentielle est celle qui ne dépend que de la seule position du corps,
toutes choses étant égales par ailleurs.
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Par définition, l'énergie potentielle d'un corps est égale au travail fourni par
l'expérimentateur pour amener le corps à sa position. Cette énergie potentielle est restituée
à l'expérimentateur lors du retour de l'objet à sa position première, (les autres énergies
n'étant pas modifiées).

Pour effectuer un déplacement de l'objet soumis à une force F(r) (ici la force
électrique), l'expérimentateur doit appliquer à tout moment une force Fexp telle que la
résultante des forces : Fexp+ F  est nulle.

Energie potentielle =   Travail de Fexp =   - Travail de F

Vous allez peut-être objecter que, si la résultante des forces est nulle, l'objet ne
quittera pas sa position d'équilibre. C'est exact. L'expérimentateur doit appliquer au départ
une force légèrement plus importante pour accélérer le corps et lui donner de la vitesse. A
l'opposé, il doit appliquer une force légèrement réduite à l'arrivée pour ralentir l'objet et
l'immobiliser. Plus faibles seront les excédents de force, plus faible sera la vitesse de
déplacement de l'objet. Mais nous ne sommes pas pressés; nous avons un temps infini.
Les deux éléments perturbateurs peuvent être aussi petits que l'on veut et finalement être
négligés (Une analyse rigoureuse montrerait que de toute façon ils se compensent).

V-2 Energie potentielle d'une charge dans un champ électrique

Soit un champ électrique E auquel est associé le potentiel V.  E et V sont créés par
les charges qi placées en 0i . On définit l'énergie potentielle Ep d'une charge q placée en r
comme le travail que doit fournir l'expérimentateur de l'infini au point r.

EP = 1
2

  charge qi   X  potentiel Vi  créé en ri par les autres charges∑
i =1

i =1

 (pour faire la distinction entre l'ensemble des charges qui créent le champ et celle qui le
subit, on peut appeler les premières ( les qi) charges actives et l'autre (q) charge passive)

Déterminer l'énergie potentielle d'un l'électron situé sur la première orbite de
Bohr d'un élément de numéro atomique Z. Quelle est cette énergie pour l'atome
d'hydrogène et du cuivre. (Donner l'énergie en électron volt). Quelles sont les longueurs
d'onde de photons de mêmes énergies?

VI Energie potentielle d'un ensemble de charges ponctuelles

VI-1 Définition

L'énergie potentielle d'un ensemble de charges qA, qB, qC, ..situées aux points rA,
rB, rC,... est égale au travail fourni par l'expérimentateur pour déplacer ces charges de
l'infini à leurs positions finales.

On fera bien la distinction entre l'énergie potentielle d'une charge (passive) dans le
champ de charges extérieures (actives) et l'énergie potentiel d'un système formé d'un
ensemble de charges.

VI-2 Energie potentielle d'un système de deux charges

Au départ, les deux charges qA et qB sont placées à l'infini: disons qA est à l'infini
à droite et qB à l'infini à gauche. Aucune de ces charges n'est soumise à une force (trop
éloignées les unes des autres, les charges ne se "voient" pas).

Déplaçons la charge qA de l'infini à sa position finale, le point rA. Durant ce
déplacement qA n'est soumis à aucune force (qB est trop loin). L'expérimentateur ne
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fournit aucun travail et ce déplacement n'apporte aucune contribution à l'énergie
potentielle.

qA étant en A, déplaçons la charge B de l'infini vers le point rB. Pour effectuer ce
déplacement, l'expérimentateur doit en permanence exercer sur qB une force égale et
opposée à la force électrique. Le travail de la force électrique est celui de déplacement
d'une charge qB dans le champ VAB créé par une charge qA, la distance entre A et B

variant de l'infini à rAB = I rB-rAI ,

Ep   = Wexp = - W =  - qB VAB  ∞  - VAB (rB )  =   qB  
  qA

4 π ε0 rAB
 

Nous aurions pu tout aussi bien amener d'abord B de l'infini puis déplacer A dans
le champ VBA de B. L'expression de l'énergie potentielle est inchangée puisqu'il suffit
d'intervertir A et B dans la relation ci-dessus (c'est heureux puisque nous avons défini
l'énergie potentielle comme provenant de la seule position des charges).

Nous pouvons symétriser l'expression de l'énergie potentielle totale d'un système
composé de deux charges en écrivant:

Ep   =    =   
qA  qB

4 π ε0 rAB
 =   1

2
 qA 

  qB

4 π ε0 rAB
 +1

2
 qB 

  qA

4 π ε0 rAB
 =  1

2
  qA VB A + qBVA B

 ou encore en repassant à une notation à un indice où VA est le potentiel en A (créé
par B) et VB est le potentiel en B (créé par A)

Ep   =  1
2

  qA V A + qBV B

VI-3 Energie potentiel d'un système de trois charges

Pour déterminer l'énergie potentielle totale d'un système de trois charges, qA, qB,

qC,  il faut procéder à trois opération successives:

-Amener qA de l'infini au point rA. Comme précédemment, le déplacement de la
première charge s'effectue sans travail:

Wexp,1=0

-Amener qB de l'infini en rB  dans le champ créé par la charge qA. Le travail est:
WExp, 2   =  qBVA B

-Amener enfin qc de l'infini à rc dans le champ créé par les charges qA et qB. En
vertu du principe de superposition, le potentiel  créé par A et B est égal à la somme des
potentiels créés par chacune de ces charges séparément et donc:

WExp, 3   =  qC VAC + VBC

L' énergie potentielle totale est donc:

Ep   =    =   
qA  qB

4 π ε0 rAB
  + 

qC  qA

4 π ε0 rAC
 + 

qC  qB

4 π ε0 rBC
 

ou en symétrisant:
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Ep  = 1
2

 qA    qB

4 π ε0 rA B

  +   qC

4 π ε0 rA C

 +  1
2

 qB    qA

4 π ε0 rA B

  +   qC

4 π ε0 rA C

 +  1
2

 qC    qB

4 π ε0 rBC

  +   qA

4 π ε0 rA C

 

Soit encore:

Ep  =  1
2

 qA  VA +   1
2

 qB VB +  1
2

 qC  VC 

où VA est le potentiel créé en A par toutes les charges du système autres que A
( ici qB et qC).

VI-4 Généralisation

Reproduire le raisonnement avec 4 charges et généraliser.

L'énergie potentielle totale d'un système de n charges qi situées aux points ri,
s'écrit comme:

EP = 1
2

  charge qi   X  potentiel Vi  créé en ri par les autres charges∑
i =1

i =1

Ep =   1 
2

  qi  Vi ∑
i =1

i =1

Dans le chlorure de sodium, les atomes de sodium sont sous forme Na+ et les
atomes de chlore Cl-. La structure est cubique de paramètre 0.564 nm. Les Na+ sont
placés au centre et sur les arètes du cube. Les Cl- sont situés sur les coins et les centres
des faces. Evaluer l'énergie potentielle par atome d'un tel système.

VII Energie électrostatique d'une distribution continue de charges

Imaginons un système dont la densité de charge finale est ρ(r) et dont le potentiel
électrique final est donné par V(r).

Si on divise uniformément (en tout point de l'espace) la densité de charge
électrique par un facteur 2, en vertu du principe de superposition, le champ électrique et le
potentiel seront eux aussi divisés uniformément par 2.

Plus généralement au lieu de diviser charges, champs et potentiels par 2, on peut
les multiplier simultanément et en tout point de l'espace par un coefficient λ quelconque,
positif ou négatif.
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V(r)

λ = 0.3 λ = 0.3

λ = 1 λ = 1

λ

λ + dλ

ρ (r)

λ + dλ

λ

0 r 0 rr+dr r+dr
Nous allons utiliser cette propriété pour amener le système d'un état initial sans

charge et à potentiel nul en tout point de l'espace à l'état final donné par la distribution de
charge finale ρ(r) et par le potentiel final V(r).

Imaginons que l'on est à une étape intermédiaire et que l' on a déjà apporté de
l'infini une quantité de charge telle que la densité de charge soit λρ (r) et que donc le
potentiel est  λ V(r).

Densité de charge Potentiel
Etat initial 0 0

Etat
intermédiaire

λρ (r)
(λ +dλ) ρ (r)

λ V(r)
(λ +dλ) V(r)

Etat final ρ(r) V(r)

Le potentiel étant λ V(r), apportons de l'infini une quantité de charge petite, telle
que la densité de charge en chaque point r de l'espace passe de λρ(r) à (λ+dλ)ρ (r).
L'accroissement de densité de charge est évidemment ρ(r)dλ.

L'élément de charge transféré de l'infini au volume dτ entourant le point r est égal à
ρ(r)dλ dτ. De façon similaire à ce que nous avons vu au chapitre III, l'élément de travail
fourni par l'expérimentateur pour transférer cet élément de charge dans le volume dτ,
depuis le potentiel nul à l'infini au potentiel λV(r) en r, est  δWexp,dτ = λ V(r) ρ(r) dλ dτ.
Ce n'est autre que V dq.

Puisque l'expérimentateur doit effectuer un transfert de charges élémentaires dans
tout l'espace, l'élément de travail qu'il doit fournir est la somme étendue sur tout l'espace
des éléments δWexp,dτ , soit:

δWexp =     ρ(r)  V(r)  dτ    λ dλ 

Il faut bien voir que le transfert de charge est infiniment petit et qu'il s'effectue à
potentiel pratiquement constant, même si après l'opération, le potentiel est passé de λ V(r)
à (λ+δλ) V(r).

Le travail total à fournir par l'expérimentateur pour amener le système de l'état où λ
= 0 à celui où λ=1 est la somme sur λ des travaux élémentaires, soit:

Wexp =      ρ(r)  V(r) dτ   
 λ = 0

 λ = 1
λ dλ 

Puisque le travail fourni par l'expérimentateur pour transférer les charges n'est
autre que l'énergie électrostatique, on obtient après intégration sur λ:
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Ep  = 1
2

      ρ(r)  V(r)  dτ 

C'est une formule assez proche de celle rencontrée au chapitre III. La somme Σ est
simplement remplacée par une intégrale qui s'adapte aux distributions de charge.

Cette relation se généralise à toutes les distributions de charge non ponctuelles et
s'écrit:

Ep  = 1
2

      ρ(r)  V(r)  dτ   + 1
2

      σ(s)  V(s)  dS   1
2

      λ(l)  V(l)  dl 

C'est la somme sur toutes les charges, du produit de la densité de charge par le
potentiel électrique total.

Application au condensateur plan

Le condensateur plan est constitué de deux surfaces chargées maintenues aux
potentiels VA et VB. La première surface porte la densité +σ et la seconde avec -σ.
L'intégration est immédiate:

Ep = 1/2 [ σ S VA - σ S VB] =  1/2 Q ( VA - VB ) =  1/2 C V2.

qui n'est autre que la relation trouvée au chapitre précédent en suivant un autre
chemin mais en déplaçant toujours les charges par quantités infiniment petites, sous le
potentiel des charges préalablement transférées.

VIII Densité d'énergie électrostatique

VIII-1 Densité d'énergie électrostatique dans le condensateur plan

Rappelons-nous:

- Le champ électrique à l'intérieur du condensateur plan est  égal à E= V/l  où V est
la différence de potentiel entre les armatures et l la distance qui les sépare. Le champ
électrique à l'extérieur du condensateur est nul.

- la capacité du condensateur est donnée par C= ε0 S/l.
En remplaçant C et V dans l'expression de l'énergie, il vient:

Ep  = 1
2

 ε0 E2V

où V=lS est le volume de l'espace dans lequel régne le champ électrique E.
L'énergie électrostatique apparait donc comme le produit du volume V par une grandeur
qui a la dimension d'une densité d'énergie par unité de volume.

VIII-1 Densité d'énergie électrostatique

Un calcul plus élaboré montre que, même dans les cas des distributions de charges
les plus complexes, on aboutit à la valeur de l' énergie potentielle finale, si on admet qu'il
régne en tout point r de l'espace une densité d'énergie électrostatique égale à:

d Ep
d τ

  = 1
2

 ε0 E2
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où E est le champ électrique en ce point.

Soit en intégrant sur tout l'espace:

Ep  =   1
2

 ε0 E2

tout l'espace

 d τ

IX Les deux façons de calculer l'énergie

IX-1 Deux calculs équivalents

Il y a donc deux façons équivalentes de déterminer l'énergie électrostatique d'une
distribution de charges.

1re façon : Faire la somme sur toutes les charges  de 1/2 ρ V.

2ème  façon : Faire la somme sur tout l'espace de la densité d'énergie
électrostatique.

Cette deuxième façon de procéder va bien au delà d'une simple équivalence de
calcul puisqu'elle semble montrer (et ce sera de plus en plus justifié par la suite) que le
champ électrique n'est pas un simple intermédiaire de calcul qui servirait à déterminer la
force s'appliquant sur une charge, mais une grandeur physique apportant sa propre
énergie.

IX-2 Exemple d'une sphère chargée en surface

Considérons une sphère de rayon R chargée en surface. déterminons l'énergie
électrostatique de ce système.

1refaçon de calculer:

Le potentiel auquel est porté la sphère est:

V (R) =  
Q

4 π ε0 R
Toutes les charges Q étant portées au même potentiel V(R). il vient:

Ep  =  1
2

 Q V  =  1
2

  
Q2

4 π ε0 R
2èmefaçon de calculer:

Le champ électrique est nul de 0 à R et vaut Q/ 4π ε0 r2 de R à l'infini. l' énergie
peut donc aussi s'écrire:

Ep  = r = R

r = ∞
 1
2

 ε0   
Q

4 π ε0 r2
 

 2
 4 π r2 dr

ce qui conduit aussi à:

Ep =  1
2

  
Q2

4 π ε0 R



2/05/03 73

CHAPITRE  VI

Les conducteurs en équilibre statique

I Conducteurs et isolants

I-1 Les charges dans les matériaux

Vous savez que la matière est composée de charges positives: les protons localisés
dans les noyaux des atomes et de charges négatives, les électrons, formant le nuage
électronique dont l'extension spatiale représente la taille de l'atome.

Vous avez appris aussi que l'on pouvait classer les électrons en deux groupes: les
électrons des couches profondes qui sont fortement liés aux atomes et les électrons des
couches périphériques qui peuvent passer d'un atome à l'autre, conduisent à la liaison
chimique et assurent la stabilité des molécules ou des solides.

Les isolants se distinguent des conducteurs par le type de liaison qui assure la
cohésion du solide et par la mobilité des électrons des couches externes.

I-2 Les isolants

Dans les isolants, les électrons des couches externes forment des liaisons
covalentes, ioniques ou plus généralement ionocovalentes. Dans ce type de liaison, un
électron ne s'éloigne jamais de l'atome dont il est issu, tout au plus s'en écarte-t-il pour
atteindre les atomes premiers voisins. Chaque électron reste localisé dans une région très
restreinte de l'espace. Il n'est pas mobile.

I-3 Electrons libres dans les conducteurs

Dans les conducteurs, au contraire, les électrons (au moins une partie d'entre eux)
qui assurent la cohésion du métal sont libres de se déplacer dans l'ensemble du matériaux.
Les électrons libérés par les atomes sont appelés électrons libres.

La valence d'un métal est égale au nombre d'électrons que libère chacun des
atomes.

Un métal peut alors être considéré comme un réseau d'ions positifs baignés par
une mer d'électrons libres.

I-4 L'échelle de l'électrostatique

En l'absence de sollicitation électrique extérieure, un métal est électriquement
neutre en chacun de ses "points".

Il y a en moyenne (localement) compensation entre les charges + des ions positifs
et les charges - des électrons libres.

Cela est vrai à condition de considérer un "point" comme un volume petit mais
légèrement supérieur à la taille de l'atome. C'est ce que l'on fait en électrostatique.

Dans le métal représenté ci-dessous, les électrons sont uniformément répartis et
viennent compenser en chaque "point" la charge électrique positive des ions. Du point de
vue de l'électrostatique, tout se passe comme si ce métal ne portait aucune charge
électrique.
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II Champ électrique dans un conducteur

II-1 Réponse d'un conducteur à une sollicitation extérieure

Considérons un métal non chargé dans lequel les charges positives fixes et
négatives mobiles (électrons libres) sont distribuées de façon uniforme. Ce métal est
électriquement neutre et ne fait apparaître aucune charge électrique résultante.

Approchons de ce métal un solide chargé positivement tel que celui représenté sur
la figure ci-dessous. Le solide chargé crée dans l'espace et en particulier dans le métal un
champ électrique E(r).

En fait, les électrons libres du métal vont réagir très vite à ce champ électrique et,
animés par la force de Coulomb, ils vont se déplacer en sens inverse au champ électrique.
Les électrons vont donc se diriger vers les charges positives portées par le solide extérieur.

Ne pouvant sortir du solide, des électrons vont progressivement s'accumuler sur la
face du métal située au voisinage de la charge extérieure positive et créer en ces points une
charge négative résultante. A l'inverse, une charge positive résultante va apparaître au
voisinage de la face opposée du solide par défaut d'électrons.
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le champ électrique à l'intérieur du métal
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Ce faisant, les charges résultantes apportent leur contribution au champ électrique
à l'intérieur et à l'extérieur au solide.

A l'intérieur du métal, ce nouveau champ viendra de toute évidence s'opposer au
champ créé par les charges extérieures et réduire le champ électrique total. Les électrons
libres ne cesseront leur mouvement de migration que lorsqu'ils ne seront plus soumis à
aucune force, c'est-à-dire lorsque le champ électrique total à l'intérieur du métal sera nul.

Ainsi à l'équilibre, à l'intérieur d'un conducteur, le champ électrique total est nul.
(situation d'électrostatique)

La situation ci-dessus ne doit pas être confondue avec celle où les extrémités du fil
conducteur sont maintenues à des potentiels V1 et V2 et reliées à des réservoirs de charges
positives et négatives. Cette connexion empêcherait l'accumulation de charges sur les
surfaces et ne conduirait à aucune modification du champ électrique à l'intérieur du métal.
Les électrons ne feraient que "passer" (situation d'électrocinétique que l'on verra au
chapitre suivant.)

II-2 Localisation des charges

Au vu de la description ci-dessus, les charges électriques (résultantes) semblent
s'accumuler vers les surfaces.

Montrons en effet que si le champ électrique à l'intérieur d'un corps est nul, alors
les charges électriques (s'il en porte) sont nécessairement des charges surfaciques.

Pour cela, considérons une surface fermée à l'intérieur de ce corps. Par hypothèse,
le champ électrique est nul en chacun des points de cette surface. Par application du
théorème de Gauss, la somme des charges électriques intérieures à cette surface fermée est
nulle.

Puisque le même raisonnement peut être reproduit sur toute surface fermée de
taille aussi petite que l'on veut, ne traversant pas les frontières du corps, alors on peut
conclure qu'il n'y a pas de charge électrique volumique à l'intérieur d'un corps au sein
duquel régne un champ électrique nul.

A l'équilibre, les charges électriques portées par un métal sont exclusivement
surfaciques.



2/05/03 76

II-3 Potentiel électrique dans un conducteur

Considérons deux points A et B situés à l'intérieur du métal au sein duquel règne
un champ électrique nul.

Déterminons la différence de potentiel entre deux points A et B.
Pour cela, considérons un chemin (Γ) à situé à l'intérieur du métal. La différence

de potentiel entre les points A et B ne dépend pas du chemin suivi. Elle peut s'écrire:

VA - VB  = E dl
A  (Γ)

B

Puisque E est nul sur tout le chemin suivi, la différence de potentiel entre A et B
est nulle.

A l'équilibre, tous les points d'un métal sont au même potentiel. Le métal constitue
une équipotentielle.

Là aussi, il faudra bien faire la distinction avec la situation rencontrée en
électrocinétique, qui n'est pas une situation d'équilibre statique et où le champ électrique à
l'intérieur du métal n'est pas nul.

II-4 Champ électrique à la surface externe d'un conducteur

Le champ électrique externe situé au voisinage immédiat d'un conducteur est
perpendiculaire à la surface. Ceci est dû au fait que la surface est une équipotentielle et
que les lignes de champ sont perpendiculaires aux équipotentielles.

Ce champ électrique est lié très directement à la densité de charge surfacique
locale.

Pour déterminer ce champ, il suffit de considérer une surface fermée, dont deux
faces parallèles S sont situées de part et d'autre de la surface du métal et dont les autres
éléments sont perpendiculaires à cette surface.

Puisque le champ électrique interne est nul et si nous appelons Es le champ
électrique externe immédiat, nous avons:

S  0  + Es  = σ S
ε0

      soit :    Es= σ 
ε0

 

La discontinuité de la composante normale du champ électrique est σ/ε0.

On peut résumer les propriétés d'un conducteur électrique  à l'équilibre statique:

-Le champ électrique est nul à l'intérieur du conducteur
-Le potentiel est constant sur l'ensemble du conducteur
-Les charges électriques sont localisées en surface.
-Le champ électrique externe au voisinage immédiat du conducteur est normal à la
surface et vaut σ/ε0.

III Le condensateur sphérique

III-1 rappels sur le condensateur plan

Vous avez rencontré en classe de terminale le condensateur plan. Ce condensateur
était constitué de deux plaques métalliques appelées armatures situées en vis à vis et
chargées de charges opposées Q et -Q.
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Vous avez aussi appris que ce condensateur est caractérisé par sa capacité C. Cette
grandeur était définie comme le coefficient de proportionnalité liant la différence de
potentiel VA- VB entre les armatures à la charge Q citée plus haut.

Q= C   VA - VB  
Vous avez peut-être vu aussi que la capacité C est liée à la surface S des armatures

et à la distance d qui les sépare par la relation:

C = ε0  S
d

Nous reviendrons sur ce condensateur en séance de travaux dirigés.
Dans ce chapitre, nous nous penchons sur un condensateur où les armatures

métalliques portées à des potentiels VA et VB ne sont plus planes mais sphériques.

III-2 Description géométrique du condensateur sphérique

Considérons une sphère (intérieure sur la figure ci-dessous) conductrice pleine, de
rayon R portant la charge Q.

Au vu des conclusions précédentes et vu la symétrie du problèmes, les charges Q
vont se répartir sur la surface avec la densité de charge

σ =  
Q

4 π R2

Entourons cette sphère d'une couronne sphérique conductrice de rayon intérieur Ri
et de rayon extérieur Re.

R

Ri

Re

+

+

+

+
+

+
+

+

Q
Qi

Qe

r

E

- -

-

-
-

-

-

-

L'ensemble constitué de la sphère interne (armature intérieure, qui pourrait être
creuse) et de la couronne sphérique (armature extérieure) est appelé un condensateur.
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III-3 Charge portée par la surface intérieure de la couronne sphérique

 Considérons une sphère de rayon r compris entre Ri et Re. Vu les propriétés des
conducteurs en équilibre, en tout point de cette sphère, le champ électrique est nul. Cela
signifie, par application du théorème de Gauss, que la somme des charges intérieures à
cette sphère est nulle.

Puisque les charges intérieures comprennent la charge +Q localisée sur la surface
de la petite sphère, il faut ajouter Qi= - Q sur la surface intérieure de la couronne
sphérique. Vu la symétrie du problème, la charge Qi se répartira uniformément en surface.

III-4 Champ électrique entre les deux armatures

Considérons maintenant une sphère de rayon r compris entre les armatures du
condensateur, c'est-à-dire entre R et Ri. Vu la symétrie du problème, le champ électrique
E(r) en chaque point de cette sphère est radial et constant. En appliquant le théorème de
Gauss sur la surface fermée que constitue cette sphère de rayon r, il vient:

  4 π r 2 E(r) =   
Q
ε0

 Soit:

E (r)  =  
Q

4 π ε0 r2
 =   σ R2

 ε0 r2

III-4 Différence de potentiel entre les deux armatures

La différence de potentiel entre les armatures s'obtient en intégrant dV = -E. dl le
long d'un rayon. Sur un tel rayon,  E et dl sont colinéaires et il s'ensuit:

VA - VB  =  
Q

4 π ε0 
  1

Ri
 - 1

R

III-5 Capacité du condensateur

Comme dans le condensateur plan, il y a proportionnalité entre la charge Q portée
par l'armature centrale (et - Q porté par la surface interne de l'armature externe) et la
différence de potentiel entre les armatures. Le coefficient de proportionnalité C, qui relie Q
à la différence de potentiel VA-VB selon:

Q= C   VA - VB  

est appelé la capacité du condensateur.
La capacité du condensateur sphérique est:

C  =  4 π ε0 R Ri
R - Ri

 

L'unité de capacité est le farad

III-6 Condensateur plan, limite du condensateur sphérique

Si la distance entre les armatures devient beaucoup plus petite que les rayons R et
Ri, le condensateur sphérique s'approche du condensateur plan.

Vérifier en  remplaçant Ri par R+d et en se plaçant dans le cas où d<<R que l'on
retrouve l'ensemble des expressions du condensateur plan.
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III-7 Charge portée par la surface externe de la couronne sphérique

La charge Qe portée par la surface externe de la couronne sphérique va dépendre
du potentiel VB de cette couronne par rapport à l'infini.

Deux  cas extrêmes apparaissent:

- La couronne sphérique est isolée

- L'armature externe est reliée à un réservoir de charge et est maintenue à un
potentiel V=0

Si l'armature externe est isolée, la somme des charges qu'elle contient doit être
nulle. Puisque la charge -Q se place sur la surface intérieure de cette armature, la charge
Qe = +Q doit se placer sur la surface extérieure.

Par application du théorème de Gauss sur une sphère de rayon r>Re, le champ

électrique en un point M(r) extérieur aux armatures est simplement Q/4πε0 r
2.  De Re à

l'infini, le potentiel vaut Q/4πε0r. Il est constant dans l'armature extérieure où il vaut
Q/4πε0 Re.

Si l'armature est maintenue à un potentiel nul, il n'y a pas de différence de potentiel
entre l'infini et les points situés à Re. Cela impose un champ électrique extérieur nul. Par
application du théorème de gauss Qe=0.

Le cas le plus fréquent reste celui où l'on impose un potentiel VB différent de 0 à
l'armature externe. On peut facilement montrer que la charge Qe est alors égale à
4πε0RVA.

Dans la pratique, cette charge Qe est en général beaucoup plus faible que Q et sera
négligée.

IV énergie stockée dans un condensateur

IV-1 Charge directe d'un condensateur

Considérons deux armatures de condensateur non chargé. Au départ, la différence
de potentiel entre les armatures ∆V = VA- VB est égale à 0.

Nous allons charger le condensateur en extrayant la charge Q de l'armature A et en
la déposant sur l'armature B.

En fait, ce transfert doit être réalisé par étapes en prélevant sur l'armature A et en
déposant sur l'armature B des éléments de charge δq successifs.

Prélevons une charge δq à l'armature A et amenons la sur l'armature B. Ce premier
transfert ne requiert aucun travail puisque la différence de potentiel entre les armatures
était nul.

Après ce premier transfert de charge, l'armature A porte la charge δq et l'armature
B la charge  -δq. la différence de potentiel uA- uB est δq/C. (la lettre u est utilisée pour
noter les potentiels au cours de la charge du condensateur. u va varier de 0 à V).

Effectuons un deuxième transfert d' élément de charge δq. Le travail de la force
électrique est δq (uB-uA) et donc celui fourni par l'expérimentateur est δq (uA-uB)= δq
q/C = δq δq/C.

Après ce second transfert, la charge du condensateur est q= 2δq et la différence de
potentiel entre les armatures est uA-uB = q/C = 2δq/C.
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Le travail fourni par l'expérimentateur pour un troisième transfert est  δq (uA-uB)=
δq q/C = δq (2δq/C), etc.

Ainsi l'élément de travail fourni par l'expérimentateur pour transférer la charge δq
est δW = (uA-uB) δq = δq q/C où q est la charge qui a  été transférée préalablement et uA-
uB la différence de potentielle acquise par les transferts de charge précédents.

Le travail total fourni par expérimentateur pour transférer la charge Q est la somme
des travaux élémentaires soit:

W = 
q
C

 dq =  
Q2

2 C
 = 1

2
 C  VA- VB

 2  
q=0

q=Q

 IV-2 Energie potentielle d'un condensateur

Puisque l'énergie potentielle électrostatique est égale au travail fourni par
l'expérimentateur pour modifier la position des charges, et compte tenu des relations entre
V=(VA-VB), Q et C, on obtient les relations suivantes:

Ep  =  1
2 

  
Q2

C
   =  1

2 
  C V2  =  

Q V
2

 

VI Charge et décharge d'un condensateur à travers une résistance

V-1 Décharge d'un condensateur

Considérons un condensateur C portant à l'instant initial la charge Q. Relions à
l'instant t=0 ses armatures à une résistance R. Sa charge à l'instant t est notée q(t).

En choisissant le signe de charge et le sens positif du courant comme indiqués ci-
dessous, i(t) = -dq/dt  ( si le courant s'écoule dans le sens indiqué  par la flèche( i>0), q
décroît)

R

A B

+q -qi

i

La différence de potentiel V(t) = VA- VB s'écrit:
-En considérant la branche contenant la résistance:

VA- VB  = Ri = - R dq/dt
-En considérant la branche contenant le condensateur:

VA- VB  = q/C
ce qui conduit à :

R 
dq
dt

 + 
q
C

  = 0

C'est une équation différentielle du premier ordre à coefficients constants et sans
second membre.

La solution générale s'écrit:
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q t  = λ exp   -  t
RC

  

La constante λ se détermine en tenant compte du fait que q=Q à l'instant t=0. soit
λ=Q.

l'intensité instantannée di ciurant i = dq/dt =

i = - 
dq
dt

 = q t  =  
Q

 RC
  exp   -  t

RC
  

La puissance dissipée à l'instant t dans la résistance est:

P t   =  
d W(t)

dt
 =    R  i t   2 

Cela signifie que l'élément d'énergie dW(t) dissipé dans la résistance entre les
temps t et t+dt s'écrit:

d W(t) =    R  i t   2 dt

L'énergie totale dissipée dans la résistance lors de la décharge, est:

W  =  R
 t = 0

 t = ∞
    i t   2  dt  =  R  

Q
R C

2
  exp   -  2 t

RC
t = 0

 t = ∞

que l'on trouve facilement par intégration:

W = 
Q 2

2 C

L'énergie qui était contenue dans le condensateur est dissipée par effet joule.

V-2 Charge d'un condensateur

Considérons un circuit contenant une pile fournissant une tension E (à ne pas
confondre avec le champ électrique), une résistance R et un condensateur de capacité C.

A l'instant t=0, le condensateur n'est pas chargé et on ferme le circuit.
Avec les signes des charges et le sens du courant indiqués sur la figure ci dessous:

i= dq/dt . En effet si le courant s'écoule dans le sens de la flèche ( i >0) q croît.

R

A B

+q -qi

i

C
V

nous avons:

VA - VB = 
q 

 C
        VC - VA = R i        VC - VB  = V

ce qui conduit à l'équation différentielle:

V =  R 
dq
dt

  + 
q
C

qui est une équation différentielle à coefficients constants avec second membre.
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La solution est la somme d'une solution de l'équation sans second membre et d'une
solution particulière.

Comme vu plus haut, la solution de l'équation sans second membre est:
q t  = λ exp   -  t

RC
  

alors que q= CV est une solution particulière.
Il vient:

q t   =  C V  +  λ exp   -  t
RC

  

dont la solution, compte tenu de la condition initiale q(0)= 0 s'écrit:
q(t) = C V  1- exp - t

RC
 

l'intensité dans le circuit s'écrit:
i(t) =  V

R
 exp - t

RC

La puissance débitée par le générateur est:  P(t) = V i(t)
La puissance dissipée dans la résistance est  R i2(t)
La puissance fournie au condensateur est : q(t) i (t) / C

Montrer que l'énergie totale fournie par le générateur est QV où Q est la charge
finale du condensateur.

Montrer ensuite que l'énergie QV/2 est stockée dans le condensateur et que QV/2
est dissipée par effet joule.

Tracer dans chacun des cas q(t) et i(t).
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CHAPITRE  VII

Les courants électriques

I Le courant continu

I-1  Maintien d'un courant continu

Considérons un cylindre métallique conducteur, constitué d'ions positifs fixes et
d'électrons libres mobiles. Comme nous l'avons vu précédemment, en l'absence d'influence
électrique extérieure, il y a localement et en moyenne compensation entre les ions positifs
fixes et les électrons libres mobiles, ce qui assure la neutralité électrique locale du métal.

Plaçons sans contact, au voisinage de ses extrémités, deux plaques chargées
positivement et négativement.

- - - - - - - - -
- - - - - - - - -

E

Instant t=0. les électrodes créent un champ électrique qui va disparaître quasiment
instantanément.

A l'instant t=0 un champ électrique créé par les électrodes apparaît dans le cylindre.
Mais quasi instantanément les électrons libres du métal se déplacent sous l'influence

du champ en induisant un excédent de charges négatives au voisinage de la plaque positive et
un défaut d'électrons au voisinage de la plaque négative, ce qui a pour effet d' annihiler le
champ électrique à l'intérieur du cylindre qui, comme dans le chapitre précédent, devient une
équipotentielle.

- - - - - - - --
- - - - - - - --

E = 0

Excés d'électrons Défaut d'électrons

Cette situation n'assure pas de transfert de charge d'une électrode à l'autre et donc pas
de passage continu de courant.

Pour ce faire, mettons les électrodes et les extrémités du métal en contact et faisons en
sorte que des électrons puissent être librement fournis ou reçus par les électrodes
maintenues à leurs potentiels. Celles-ci se comportent comme des réservoirs de charges. Il
est clair que des électrons, attirés par l'excédent de charges positives localisées à l'extrémité
droite du barreau, passent de l'électrode négative au barreau pour de nouveau assurer la
neutralité électrique en cette extrémité. De le même façon, à extrémité gauche, les électrons
excédentaires quittent le barreau pour rejoindre l'électrode positive et assurer là aussi la
neutralité électrique.
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Cela a pour effet de rétablir le champ électrique initial et d'entretenir le déplacement
des électrons à l'intérieur du  barreau et un transfert de charge avec les électrodes.

- - - - - - - - -
- - - - - - - - -

E

I

v -
-

Le gradient de potentiel à l'intérieur du cylindre est rétabli.
Ce champ E qui assure le déplacement des électrons et la circulation du courant est

appelé champ électromoteur.

I-2 Intensité de courant électrique

Considérons une section droite du cylindre sur lequel nous avons fait figurer les
électrons libres. Les ions positifs qui  assurent la neutralité électrique n'ont pas été
représentés.

On appelle intensité de courant électrique la quantité de charge Q qui traverse la
section droite S en une seconde.

v dt

S I
vj

S' }S''
v

S'' S' S
j

Soit v la vitesse de déplacement des électrons, q = -IeI leur charge élémentaire, n la
densité d'électrons libres par unité de volume (pour le cuivre n est de 8.45 1028/m3), et ρ =
nq la densité de charge par unité de volume.

Les dN électrons qui traversent la section S pendant l'intervalle de temps dt compris
entre t et t+dt sont ceux qui se trouvaient à l'instant t dans le cylindre délimité par la section S
et la section S' distante de la précédente de dl = v dt. Ce nombre d'électrons est:

dN = n S dl

L'élément de charge dQ qui traverse S pendant le temps dt est:
dQ =n S l q = n q v S dt

Ainsi, l'intensité du courant électrique au temps t, égale à la charge qui traverse S
pendant l'unité de temps, est simplement:

I = dQ/dt = n q v S=  ρ v S

Par malchance historique, le sens positif du courant électrique a été choisi opposé au
sens de déplacement des électrons.

I-3 Densité de courant

Par définition, on appelle densité de courant électrique la grandeur vectorielle j:

 j  = n qv   =  ρv 

La densité de courant est un vecteur parallèle à la vitesse de déplacement des charges,
d'intensité d'autant plus importante que la charge des porteurs élémentaires est élevée et que
leur densité volumique est grande.
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L'intensité du courant électrique apparaît comme le produit scalaire de la surface S et
de la densité de courant j. L'intensité est le flux de j à travers S.

On peut tout aussi bien choisir une surface S1 qui ne soit pas une section droite du
barreau mais soit une section oblique orienté de telle sorte que le vecteur S1 fasse un angle θ
avec l'axe du barreau. Il s'en suit que l'aire S1= S/cosθ est supérieure à l'aire S.  Mais le flux
de j à travers cette surface reste identique. Le produit scalaire j.S1 reste égal à I = j.S.

Ainsi l'intensité du courant électrique est une grandeur scalaire. Pour la définir, il faut
se donner un circuit orienté fermé supportant une surface orientée. L'intensité de courant est
la quantité de charge qui franchit la surface par unité de temps.

I-4 Exemple d'intensité à travers un circuit
 

Reprenons l'exemple d'un cylindre au sein duquel règne une densité de courant j
uniforme. Représentons une coupe perpendiculaire vue de dessus.

CC

C

1 2

3jS

Le cercle en trait gras délimite le pourtour extérieur du cylindre.
j représente le vecteur densité de courant. Il est supposé uniforme dans tout le

conducteur.
Sur le pourtour extérieur du cylindre, nous avons figuré un circuit orienté (C1) auquel

correspond un vecteur surface S1 perpendiculaire au plan de la figure et dirigé vers l'avant.
Déterminons  l'intensité du courant qui traverse (C1). I1 est simplement le produit de

la surface S1 et de j   I1 = j S1.

Nous avons aussi représenté deux circuits (C2) et (C3).
Puisque la densité de courant sur la surface externe au conducteur est nulle, l'intensité

de courant qui traverse (C2) est identique à celle qui traverse (C1).
I= I1 = I2 est ce que l'on appelle communément l'intensité qui parcourt le conducteur.

L'intensité de courant qui traverse (C3) est de toute évidence égale à I3 = j S3. Cette
intensité est le flux de j à travers S3. I3 est inférieure à I.

I-5 Densité de courant non uniforme et intensité de courant

Dans l'exemple vu ci-dessus, la densité de courant a été supposée uniforme. En fait
dans un métal, la densité de courant j peut ne pas être constante, si par exemple la résistivité
du métal n'est pas uniforme.

Supposons simplement que la densité de courant varie avec la distance à l'axe du
cylindre selon une loi j(r).

Puisque tous les point situés à la distance r de l'axe central sont parcourus par la
même densité de courant j(r),  la contribution de la partie hachurée à l'intensité I du fil est:

dI =  j(r)2π r dr
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r

dr

et l'intensité totale qui parcourt le fil de rayon R est :

I = j(r) 2π r dr
 0

 R

II Lois d'écoulement des charges électriques

II-1 Etablissement d'un courant continu dans un supraconducteur

Plongé dans un champ électrique constant,

E = VA - VB
L

 où L est la longueur du fil aux extrémités duquel les potentiels VA et VB sont

maintenus, chaque électron de charge  q = - IeI est soumis à une force F= qE et obéit à la loi
fondamentale de la dynamique:

F = qE = m dv
dt

Puisque la dérivée de la vitesse est constant (mouvement uniformément accéléré), la
vitesse obéit à l'équation:

v  = 
q
m  E t  + v0  

où v0 est la vitesse initiale des électrons qui ici se trouve être nulle.
la densité de courant s'écrit alors:

j =  n qv  = 
 n  q2

m   E  t   

ce qui signifie que la densité de courant et donc l'intensité du courant croissent
linéairement avec le temps.

Vous savez que ce n'est pas vrai. En effet, si à l'aide d'un générateur vous établissez
une différence de potentiel entre les extrémité d'un  fil, l'intensité du courant est constante et
suit la loi U=RI. Vous avez par exemple mesuré qu'un fil de cuivre de 10m de longueur, de
0.1mm2 de section soumis à une différence de potentiel de 1V était parcouru par un courant
constant de 0.17A.

En fait, si la croissance linéaire de l'intensité du courant électrique n'est pas observée
sur le cuivre, elle est vérifiée sur le niobium en dessous de 10K ou sur un alliage d'yttrium,
de baryum, de cuivre et d'oxygène (YBaCuO) en dessous de 90K. Ces matériaux sont à ces
température des supraconducteurs. Pour stopper l'accroissement du courant, il est nécessaire
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de supprimer la différence de potentiel. Les électrons ne sont plus soumis à aucune force et
poursuivent leur déplacement à vitesse constante sans le moindre freinage. On peut ainsi
faire circuler indéfiniment un courant dans un anneau supraconducteur fermé dans lequel on
a lancé le courant.

II-2 Etablissement d'un courant dans un conducteur résistif

Dans les cas qui restent malheureusement usuels, la suppression de la différence de
potentiel et donc du champ électrique interne conduit à la disparition instantanée du courant.

Cela signifie donc que les électrons sont soumis à des forces de frottement. Les
frottements proviennent des interactions avec les ions positifs ou avec les impuretés
contenues dans le métal.

La forme la plus simple de force de frottement est f=-kv. C'est une force opposée au
sens de déplacement et proportionnelle à la vitesse.

Sous l'effet de la force électrique et de la force de frottement, la relation fondamentale
de la dynamique devient:

F = m dv
dt

 = qE - k v 
et  la vitesse obéit à l'équation différentielle suivante:

 m dv
dt

 + k v = qE  
 qui est une équation différentielle à coefficients constants avec second membre.

La solution est la somme:
- de la solution de l'équation  sans second membre:

m dv
dt

 + k v = 0  

v = A e
 - a

m
  t

- et d'une solution particulière:

v∞ = 
q
k

 E

La constante étant  déterminée par la condition initiale: à t=0, v=0, il vient:

v = v∞  1 - e  - t
τ

 

où τ = - (m/k) est une constante de temps caractéristique.

v
v

tτ 2τ 3τ 4τ

∞

lorsque t << τ ll'argument de l'exponentielle est très petit devant 1 et par
développement limité   ( pour e petit  e ε  ≈ 1+ ε)

v = v∞  t
τ

 

Lorsque  t >> τ  l'exponentielle tend vers 0 et v  tend vers sa vitesse limite  v∞
v est en fait très proche de v∞ lorsque t est supérieur à 3 ou 4τ.
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La densité de courant est  est alors:

   j  =   
n q2

k
 E  =   

n q2τ
m  E  =  σ E =  1

ρe
 E 

où σ est une grandeur caractéristique du matériau appelée conductivité électrique. Son
inverse ρe est la résistivité électrique.

L'intensité du  courant électrique s'écrit:

I  =  j S  =   S
ρe

 E  =  S
ρe

  VA - VB
L

note:

La résistivité électrique se note généralement ρ. Nous l'avons notée ρe afin d'éviter

toute confusion avec la densité de charge volumique notée elle aussi ρ.

III La résistance électrique

III-1 Définition

La formule donnant l'intensité du courant se réécrit:

VA - VB = 
ρe L

S
 I  =  R I

R est déduit de la connaissance du courant et de la différence de potentiel. Ainsi de la

connaissance de la résistance R et des dimensions géométriques du fil on peut déduire la

résistivité ρe du matériau.  Connaissant ρe, la charge de l'électron et sa masse on en déduit k

et τ .
A l'aide des valeurs numériques données ci-dessus, déterminer la résistivité du

cuivre et montrez que pour ce métal τ est de l'ordre de 10-14s. Déterminer la vitesse v de
déplacement des électrons.

Cette très faible valeur de τ dans les métaux montre pourquoi l'évolution du courant
lors de l'établissement de la différence de potentiel n'est pas observable. L'intensité du
courant atteint quasi instantanément sa valeur limite .

III-2 La force électromotrice

Considérons un circuit contenant un générateur maintenant entre les extrémités d'un
fil métallique une différence de potentiel V= VA-VB. Les électrons circulent dans le métal
sous l'effet du champ électrique E et de la force F avec:

VA - VB = E .  dl
 A

 B

  =  E
q  .  dl

 A

 B

Dans la dernière expression,  nous avons remplacé E par F/q où F est la force qui
s'applique sur les charges q.

Sans doute parce que la force intervient à ce niveau et par abus de langage, on note V
la force électromotrice entre A et B. Dans les circuits électriques, elle est souvent notée E et
ne doit pas être confondue avec un champ électrique.

Ainsi la force électromotrice entre A et B apparaît comme la circulation, entre ces
points, de la force rapportée à la charge, qui s'applique sur les charges mobiles et assure leur
mouvement.

Il faudra bien se souvenir de cette définition lors de l'étude de l'induction et de la
force électromotrice induite.
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III-3 Résistance électrique et loi de Joule

Comme nous l'avons vu plus haut, les forces de frottement conduisent à une vitesse
limite de déplacement des électrons et les freinent en un temps de 10-14 s lors de la
suppression du champ électrique. En régime continu, elles provoquent un dégagement de
chaleur.

La puissance dissipée par chaque électron est:
p = - f .v  = k v2 = k

n2 q2
  j2   

soit par unité de volume (on multiplie par la densité électronique):

P = n  k
n2 q2

  j2  = ρe j2

et pour l'ensemble du fil: (on multiplie par L S le volume total du fil):
W = R I2

C'est la loi de Joule.

La chaleur dissipée dans un conducteur électriques est due aux forces de frottement
des électrons lors de leur déplacement.

IV Calculs de circuits électrique

Ce paragraphe ne constitue qu'un rappel de ce que vous avez déjà vu sur les circuits
électriques simples. Nous proposons en IV-4, et sans la justifier, une méthode de résolution
systématique des circuits complexes. Vous pouvez trouver de longs développements dans
des livres d'électricité plus spécialisés.

IV-1 Loi des noeuds

Un circuit électrique simple est composé de générateurs et de résistances. Ces
éléments forment un réseau où apparaissent des branches et des noeuds. Une succession de
branches formant un circuit fermé est appelée une maille.

I3

I 1 I 2

S S

S

1 2

3

Les force électromotrices des générateurs et les résistances de chaque branche étant
données, les intensités peuvent être calculées à l'aide de deux lois simples appelées 1re et
2ème lois de Kirchhoff ou loi des noeuds et loi des mailles.

La première des lois est une loi de conservation. Un volume entourant un noeud et tel
que celui limité ci-dessous par les surfaces S1, S2 et S3 n'est le siège d'aucune accumulation
de charges. Cela signifie que, pendant l'unité de temps, il y a autant de charges pour entrer
dans ce volume que pour en sortir.
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Puisque la quantité de charge traversant les surfaces limitant le volume est égale au
produit du temps et de l'intensité du courant, il s'en suit pour l'exemple ci dessus:

I1 + I2=  I3

La somme des intensités des courants entrants est égale à la somme des intensités des
courants sortants.

Si par convention, on choisit comme positif de courant le courant se déplaçant vers
un noeud, la loi des noeuds s'écrit:

Ik ∑
k

  =  0 

IV-2 Loi des mailles

La loi des mailles constitue la synthèse de trois propriétés:

-Un générateur maintient entre ses bornes une différence de potentiel Ei (ne pas
confondre Ei avec un champ électrique Ei qui est ici une force électromotrice)

-La différence de potentiel entre les bornes d'une résistance est égale à RI.
-La somme des différences de potentiel d'un circuit fermé est nulle.

E1 R1

E3
R2R3

E4
R4

I3

E2

I2

I1

I4

I8 I5

I6I7

En choisissant un sens de parcours positif de la maille, selon lequel les courants sont
orientés et en plaçant les générateurs de telle sorte que le sens choisi comme positif l'atteint
par la borne - (la plus petite sur le schéma), on a pour chaque maille:

 R Ik - Ek  ∑
k

 = 0 

Si dans une branche le courant se trouve être orienté en sens contraire  du sens de
parcours, on fait précéder RIk du signe - et si le sens positif du parcours atteint le générateur
par la borne positive, on fait précéder Ek du signe +.
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V-3 Principe de résolution d'un circuit.

On dispose d'un circuit complexe dont on a représenté une maille ci-dessous. La
détermination des courants passe par 4 étapes:

-Définition d' un sens de courant arbitraire sur chaque branche. (Si le résultat final de
courant est positif, c'est qu'effectivement il circule dans ce sens, si le courant est trouvé
négatif, c'est qu'il circule en sens opposé.

-Ecriture de la loi de conservation du courant à chaque nœud (loi des nœuds), soit au
vu du schéma ci dessous:

I8-I1-I4=0    I3+I4+I7=0 -I6-I3-I2=0 etc.

-Définition d'un sens de parcours positif sur chaque maille. (cercle fléché de la
figure).

-Ecriture la loi des mailles de pour chacun d'eux, soit ici:
-E1 + R1I1 -E2 -R2I2 +R3I3 +E3 -R4I4 +E4 = 0

-Résolution du système d'équation

V-4 Méthode des courants de maille

La résolution des circuits électriquestelle qu' énoncée ci dessus est simple dans son
principe. Elle peut néanmoins conduire à des calculs longs et pénibles, souvent à la suite d'un
choix peu heureux d'élimination de variables.

E R

R

R

R

E

E

E
1 1

3

2

2

3

4

4

I

I

I

I

3

2

1

I

I
I

I
5

6
7

8

4β

i β

γ

α
δ

i

i

i

γ

δ

α

Vous pourrez trouver dans les livres spécialisés plusieurs méthodes de résolution
systématiques. Nous vous en proposons une, celle des courants de maille. Elle comporte 6
étapes:

i) Attribution à chaque branche d' un courant orienté I1,I2, I3 , etc.

ii) Définition et orientation des mailles indépendantes (α), (β), (γ), etc.

iii) Affectation   à chacune des mailles, d' un courant de maille fictif iα, iβ, iχ , etc.

iv) Etablissement des relations entre les courants I et les courant de maille i . Par

exemple:
I1 = iα- iγ I2 = -iα+ iδ I3 = iα I4 = iβ+ iα

v) Ecriture de la loi des mailles et remplacement des I par leurs expressions en i:
-E1 + R1I1 -E2 -R2I2 +R3I3 +E3 -R4I4 +E4 = 0

-E1 + R1( iα- iγ ) -E2 -R2(-iα+ iδ ) +...................... = 0
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vi) Résolution des N équations à N inconnues donnant les i et déduction des I.

C'est une méthode systématique, d'autant plus simple que vos machines à calculer
résolvent directement les équations linéaires. La difficulté est de choisir le bon nombre de
mailles indépendantes. Il est fonction du nombre de noeuds et de branches.....mais ça devient
une affaire de spécialiste. Dans les cas que nous traiterons il sera assez évident.

4Ω 3Ω

1Ω 2Ω

6Ω

2Ω 0.5 Ω

10V 2V

Déterminer à l'aide de cette méthode les courants circulant dans les différentes
branches du circuit ci dessus.

VI Courants surfaciques

Nous avons vu plus haut que l'intensité du courant électrique est liée au déplacement
de charges et se définit comme la quantité de charge qui franchit une surface par unité de
temps.

En fait, pour être plus précis, nous aurions dû parler de courants volumiques puisque
ce sont des charges de volume qui se déplaçaient. Nous avons défini le vecteur densité de
courant (volumique) comme le produit de la densité de charge volumique ρ et de leur vitesse
j : j= ρ v.

Nous savons cependant que les charges peuvent être localisées en surface avec
densité σ. Le déplacement de ces charges conduit à un nouveau courant dit courant
surfacique.

j v ∆t

v
a

L

s

(1) (2)

Le courant surfacique est égal à la quantité de charge qui traverse une ligne L, définie
dans le plan des charges, pendant l'unité de temps. La ligne L vient se substituer à la surface
S traversée par les courants volumiques (par simplicité, nous ne considérons que des lignes
perpendiculaire au sens de déplacement des électrons).

Les dN électrons qui franchissent la ligne (1) pendant le temps ∆t sont ceux qui étaient
contenus à l'instant t dans le rectangle délimité par les lignes (1) et (2) séparées de l = vs dt.
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Leur nombre est égal à dN = ns L vs δt

et la charge traversée  dQ = ns q L vs dt = σ vs L  dt.

L'intensité de courant surfacique est I= σvsL

et le vecteur densité de courant surfacique est défini par:

 js =  ns q vs  =  σ vs 

Il faut bien noter que si les courants volumiques traversaient des surfaces, les
courants surfaciques traversent des lignes.



2/05/03 94



2/05/03 95

CHAPITRE VIII

Le champ magnétique

I Les aimants

I-1 Les aimants sources de champ magnétique

On distingue deux types de sources de champ magnétique: les aimants et les
circuits électriques parcourus par des courants.
 Un aimant est caractérisé par un pôle nord et un pôle sud. Les lignes de champ
magnétique B se dirigent du pôle nord vers le pôle sud.

NS

Les pôles d'un aimant sont indissociables. L'aimant brisé produit deux aimants
avec chacun son pôle nord et son pôle sud. C'est une différence fondamentale avec
l'électrostatique. On ne peut isoler et manipuler indépendamment des entités qui seraient
de type plus et des entités qui seraient du type moins.

N S

N NS S

I-2 Interaction entre les aimants

Des pôles de naturse différentes s'attirent alors que des pôles de même nature se
repoussent.

De façon générale un aimant s'oriente dans un champ magnétique de telle sorte
que la direction sud-nord de cet aimant soit dans la direction du champ magnétique local
et donc des lignes de champ créées par les autres aimants.

Où le pôle nord magnétique de la terre se trouve-t-il?
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II Champ magnétique créé par les courants: loi de Biot et Savart

II-1 Loi de Biot et Savart

Nous avons vu en électrostatique que la loi de Coulomb permettait de calculer en
un point M les éléments de champ électrique dE créés par les éléments de charge dq
distribués dans l'espace.

La loi équivalente de la magnétostatique doit nous permettre de déterminer en
chaque point M  de l'espace les éléments de champ magnétique dB créés par les éléments
de courant dI distribués dans tout l'espace. C'est la loi de Biot et Savart.

Dans un cas comme dans l'autre, le champ total est obtenu en effectuant par
intégration la somme des éléments de champ.

Considérons au voisinage du point P un élément de circuit dl parcouru par un
courant I. Le vecteur dl est orienté dans le sens de circulation du courant. Soit r la
distance séparant l'élément dl du point M où l'on cherche à déterminer le champ
magnétique. Soit uPM le vecteur unitaire parallèle au vecteur PM.

dl

dB

u
M

P
r

PM

I

La loi de Biot et Savart nous enseigne que l'élément de champ magnétique dB créé
au point M par l'élément de fil dl parcouru par le courant I s'écrit:

  dB   = 
 µ0 I dl ∧ uPM

 4 π r2
   

En vertu du principe de superposition des champs magnétiques, le champ total créé
par l'ensemble des circuits contenus dans l'espace s'écrit:

B   =   
 µ0 I dl ∧ u

 4 π r2

Circuits

 

Une telle écriture vectorielle est formelle. Elle est équivalente à trois relations
semblables, une par composante.

Si dx, dy et dz sont les composantes de dl, et ux, uy, et uz celles de u, Bx prend la
forme:

Bx  =   
 µ0 I  uz dy - uy dz 

 4 π r2
Circuits

 

Il s'agit d'une intégration le long de circuits, ce qui implique que dy et dz ne sont
pas indépendants. Le calcul nécessite donc un paramétrage que l'on effectuera cas par cas,
au vu des symétries du problème.
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II-2  Champ magnétique créé par un fil rectiligne

dl

u
dB

α

r
β

d

P

M0

I

l

l+dl

Considérons un fil rectiligne vertical parcouru par un courant I.

Soit un élément de fil dl situé autour du point P entre les cotes l et l+dl.
Cet élément, comme toute autre partie du fil, crée en M un élément de champ

dB tangentiel au cercle de rayon 0M. Cela signifie que dans un repère cylindrique les
composantes totales Br et Bz de B sont nulles.

Seule la composante Bθ est différente de 0. Soit:

dBθ  = 
 µ0 I dl cos β

 4 π d2
 

(en effet  sin α = cos β)
Pour sommer tous les éléments de champ, il faut tenir compte du fait  que l et β ne

sont pas indépendants mais sont liés par la relation: l = r  tanβ  soit  dl = r
cos2 β

 dβ

Puisque r2 =  d2 cos 2β , on arrive à:

d Bθ  =  
 µ0 I  cos β dβ

4 π r
 

Pour un fil infini, on intègre β de - π/2 à + π/2:

Bθ  =  
β = - π/2

β = + π/2

 
 µ0 I  cos β dβ

 4 π r
 = 

 µ0 I 
 4 π r

   sin β  β = - π/2

 β = + π/2
 = 

 µ0 I 
 2 π r

On retrouve ainsi l'expression du champ magnétique créé par un fil rectiligne que
vous avez rencontré en classe de terminale.

Nous pouvons déterminer par la même méthode, en modifiant seulement les
bornes d'intégration, le champ magnétique crée par un fil linéaire de longueur finie.

II-3 Autre façon de calculer le champ magnétique créé par un fil

Nous allons maintenant déterminer le champ magnétique créé par un fil de
longueur finie en utilisant  l'expression cartésienne de la loi de Biot et Savart.
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P ( x', y', z' )

M  x, y,z )

θ

x

y

z

dl

 a 

b

dB

Les composantes des vecteurs entrant dans cette relation sont:

dl = 
0
0

dz'
    uPM = 1

 x2 + y2 + z' 2
  

x
y

 -z'
    dl ∧ uPM =  1

 x2 + y2 + z' 2
   

 -ydz'
xdz'

0

Et on a pour la composante de B selon 0x:

dBx  =  
µ0 I
4 π

  
- y dz'

( x2 + y2 + z' 2 ) 3/2

x et y sont les coordonnées de M, point en lequel on cherche le champ magnétique,
ils sont donc fixes avec x2+ y2 =  r2.

Le seul paramètre est z' sur lequel on peut faire porter l'intégration de a  à  b.

Bx  =  
µ0 I
4 π

  
- y  dz'

( r2 + z' 2 ) 3/2

a

b

 = - y  
µ0 I  
4 π

  z'

r2  r2 + z' 2  
  

 z' = a

 z' = b

La limite du fil infini est obtenue en faisant tendre a vers - infini  et b vers + infini
soit:

Bx =  
µ0 I  
2 π

  
 - y

r2
  = - 

µ0 I  
2 π r

  sin θ   ,  By  =  
µ0 I  
2 π

  x
r2

 = 
µ0 I  
2 π r

 cos θ   ,  B z = 0

ce qui montre bien que le champ magnétique est radial.
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III Le potentiel vecteur

III-1 Définition

Nous avons vu en électrostatique que le champ électrique dérivait d'un potentiel
V(r) par E=-gradV. Nous nous étions fortement réjouis de cette propriété qui nous
permettait de calculer le champ électrique par le biais d'une grandeur scalaire souvent plus
facile à déterminer. Nous avons vu ensuite le rôle de cette grandeur dans le calcul du
travail des forces électriques et dans celui de l'énergie potentielle.

Un tel potentiel scalaire n'existe malheureusement pas en magnétostatique.

Il existe par contre un champ de vecteur A(r) à partir duquel le champ magnétique
peut être déduit par la relation:

 B = rot A 

Le champ de vecteur A(r) est appelé potentiel vecteur.

III-2 calcul du potentiel vecteur

Un élément de fil dl situé au voisinage du point P, parcouru par un courant I,
produit au point M un élément de potentiel vecteur dA défini par:

  dA   = 
 µ0 I
 4 π 

  dl
r   

I

dl

dA M

P
r

Le potentiel vecteur est obtenu par intégration des éléments dA:

A  = 
 µ0 I
 4 π 

   dl
r

circuit

 

Du point de vue pratique, A semble plus simple à calculer que B  puisque
l'expression de dA ne contient pas de produit vectoriel. Il faut néanmoins faire suivre le
calcul de A de celui de son rotationnel, ce qui peut être lourd. Le choix entre le calcul
direct de B  et un calcul indirect via A , se fera en général au vu des difficultés
mathématiques rencontrées.  Du point de vue physique et en particulier pour ce qui est de
l'énergie, le potentiel vecteur joue un rôle similaire à celui du potentiel scalaire.
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III-3  Application au fil rectiligne

Vérifier que le champ de vecteur A(x,y,z) tel que Ax=0, Ay=0 et Az=-µ0 I/4π

ln(x2+y2) est le potentiel vecteur du champ magnétique créé par un fil rectiligne parcouru
par un courant dirigé suivant oz.

III-4 La divergence de B

Si vous reprenez les définitions de la divergence et du rotationnel, vous vous
apercevrez facilement que la divergence du rotationnel d'un vecteur est toujours nulle.
Puisque B est un rotationnel:

 B = rot A  ⇒  div  B = 0 

C'est une nouvelle équation locale. Notons que si la divergence de B est toujours
nulle, c'est que son flux à travers une surface fermée est nulle (revoir pour cela la
démonstration de la forme locale du théorème de Gauss):

 div  B = 0   ⇒  B dS = 0 

Il s'ensuit qu'un champ de vecteur ne peut pas représenter un champ magnétique si
sa divergence n'est pas nulle.

III-5 Exemple

Vérifier que la divergence du champ magnétique créé par un fil infini est nulle.

IV- Champs électriques et champs magnétiques

 div B = 0 est à rapprocher de: rot E=0. La divergence de B est nulle parce que B
dérive d'un potentiel vecteur.

Le rotationnel de E est nul parce que E dérive d'un potentiel scalaire.

On peut résumer les propriétés des champ électriques et magnétiques en relation
avec les potentiel dont ils découlent par le tableau ci-dessous:

Electrostatique Magnétostatique

Relation avec le potentiel E = -grad V B = rot A

Equation locale rot E = 0  div B = 0

Forme intégrale
E. dl   = 0 B . dS    = 0

Ce tableau sera complété par une second tableau indiquant les relations dues au
fait que les champs décroissent en 1/r2.
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CHAPITRE IX

Théorème d'Ampère

I Théorème d'Ampère

I-1 Illustration du théorème d'Ampère sur un cas très particulier

Nous avons vu en électrostatique que l'élément de circulation du champ électrique
E sur un élément de chemin dl se définissait par:

δC = E . dl
De la même façon, nous définissons un élément de circulation du champ

magnétique B par:
δC = B . dl

La circulation totale en suivant une ligne (Γ) s'écrit:

C = B  . dl 
( Γ ) 

 

I

r O

B

Considérons le chemin Γ fermé, constitué du cercle de centre O et de rayon r
orienté comme indiqué sur la figure ci-dessus. En chaque point du cercle, B et dl sont
colinéaires et de même sens. L'élément de circulation est donc simplement  δC = B.dl.

 Puisque B est constant sur tout le cercle et ne dépend que du rayon r, la
circulation totale du champ magnétique sur le cercle est 2πr B(r).

Vu l'expression de B(r), la circulation le long du cercle s'écrit:

 C = B  . dl 
( Γ )

 

  =  µ0 I 

La circulation de B est indépendante du rayon du cercle. Elle est égale au produit
de  µ0 par le courant I
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IV-2 Origine du théorème d'Ampère.

L'origine du théorème d'Ampère apparaît nettement sur ce cas particulier. Il tient au
fait que le champ créé par un fil décroît comme 1/r alors que le périmètre du cercle sur
lequel on effectue la circulation de B croît comme r. Le produit de B et du périmètre du
cercle est constant.

Or, si on remonte un peu plus haut, la décroissance en 1/r du champ magnétique
créé par un fil rectiligne infini est la conséquence directe de la décroissance en 1/r2 qui
apparaît dans la loi de Biot et Savart.

Le théorème d'Ampère est en magnétostatique le pendant de ce qu'est le théorème
de Gauss en électrostatique. Tous deux tiennent au fait que les champs décroissent en 1/r2
avec la distance qui les sépare de leur source.

Comme nous avions généralisé le théorème de Gauss à une surface et à une
distribution de charges quelconque, nous allons généraliser le théorème d'Ampère à un
circuit et à une distribution de courants quelconque.

IV-3)  Théorème d'Ampère sous sa forme générale

Considérons le circuit fermé ABCDEFA dans un plan perpendiculaire au fil. AB
est un arc de cercle  de rayon r1 et d'angle θ1.  BC ( comme DE et FA) sont des segments
radiaux.  BD est un arc de cercle de rayon r2 et d'angle θ2. EF est un arc de cercle  de
rayon r3 et d'angle θ3.

Quelles que soient les positions de A,B,C,D,E ou F, la somme des angles θ1 +θ2
+θ3 = 2π.

A

B
C

DE

F

θ1

θ2

θ3

La circulation de B sur un arc de cercle tel que AB est:
CAB= r1 θ1 B1 = r1 θ1 µ0I/2π r1= θ1 µ0 I/2π

De même: CCD= θ2 µ0 I/2π    CEF= θ3 µ0 I/2π

La circulation de B le long d'un rayon est nul puisque en chaque point B est
perpendiculaire au déplacement:

CBC = CDE= CFA

La circulation totale, somme des circulations élémentaires est égale à:
C = ( θ1+ θ2+ θ3)  µ0I/2π = µ0I

Puisque une chemin quelconque d'un plan peut toujours être assimilé à une
succession d'arcs de cercle et de segments radiaux, on peut dire que la circulation de B sur
un circuit fermé contenu dans un plan perpendiculaire au fil et entourant le courant I est
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µ0I. On peut étendre cette propriété à un circuit non contenu dans le plan puisque la
composante de B suivant la direction du fil est nulle. Tout élément de circulation de B le
long d'un chemin parallèle à I est nulle.

En fait le théorème d'Ampère est beaucoup plus général. Il s'adresse à toute courbe
fermée et est valable pour toute sorte de distribution de courant.

Il s'énonce ainsi:

La circulation du champ magnétique B le long d'une courbe fermée qui embrasse des
courants I1, I2, I3,...  est égale à µ0I où I est la somme algébrique des courants.

Les courants sont comptés positivement s'ils coupent la surface soutendue par le
circuit selon le sens positif tel qu'il résulte de l'orientation du circuit fermé.

Γ
I1

I2
I3

I4

S

I3

Soit le système composé d'un ensemble de circuits parcourus par les courants I1,
I2, I3, I4.

Considérons un circuit d'Ampère (non physique) Γ orienté. Le sens positif du
circuit Γ implique le sens positif de la surface (en gris) qui s'appuie sur le circuit orienté.

Les courants I1, I2, I3 coupent la surface qui s'appuie sur Γ. Les courants I1 et I3
sont comptabilisés positivement puisqu'ils coupent la surface fermée selon son sens
positif et I2 est comptabilisé négativement puisqu'il traverse la surface dans le sens
opposé. (Les points d'intersection entre la surface supportée par le circuit et les boucles de
courant correspondent aux extrémités des flèches).

Remarque: la surface sous-tendue par le circuit (Γ) est quelconque. Elle n'a nul
besoin d' être plane. (Γ) n'est d'ailleurs pas nécessairement lui-même contenu dans un
plan.

II Application du théorème d'Ampére à la détermination d'un champ magnétique

II-1 Principe d'application du théorème d'Ampère

Si le théorème d'Ampère est toujours valable, il n'est de fait utilisable que dans des
cas géométriques très particuliers.

Il est essentiellement utilisable sur des circuits le long desquels B est constant "par
morceaux" et se trouve orienté le long du chemin ou perpendiculairement à ce chemin.
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II-2 Champ créé par un solénoïde infini

Considérons un solénoïde infini à n1 tours/mètre, parcouru par un courant I.
Nous savons a priori et par suite de considérations de symétrie que, à l'intérieur du

solénoïde, le champ B est uniforme  et orienté suivant l'axe. Nous savons par ailleurs que
B est nul à l'extérieur.

Considérons le circuit rectangulaire CDEF dont le sens de parcours est fléché.
Suivant la règle du tire bouchon, la surface  qui s'appuie sur ce circuit est orientée vers
l'avant.

B

(Γ)

 Ι C

DE

F

l

Appliquons le théorème d'Ampère à ce circuit:

La circulation du champ magnétique  se réduit à B l:
Les circulations le long de CB et EF sont nulles puisque le champ magnétique est

en tout point perpendiculaire au déplacement.
La circulation le long de DE est nulle puisque à l'extérieur le champ est nul.
Le long de FC, B est orienté parallèlement au circuit et est orienté dans le même

sens.
La somme des courants traversant la surface rectangle est n1l I. De plus, comme

indiqué sur la figure, ils coupent la surface dans un déplacement vers l'avant, c'est à dire
selon le sens positif de cette surface.

L'application du théorème d'Ampère conduit à:
B . l = µ0 n1I l   soit  B =  µ0 n1I , ce qui est la formule bien connue du champ

magnétique à l'intérieur d'un solénoïde infini.

III Théorème d'Ampère sous sa forme locale

III-2 Forme locale du théorème d'Ampère

Considérons dans le plan x0y un circuit rectangulaire DEFG centré autour du
point de composantes (x0,y0). Les côtés du rectangle sont a et b. a et b sont infiniment
petits.

Le champ électrique B est noté B1, B2, B3, B4 sur les branches DE, EF,FG, GH
du circuit.

Un courant, de densité de courant j traverse ce cadre. Le vecteur j a comme
composante jx, jy, jz .

Imposons un sens positif au circuit DEFG, ce qui revient à orienter la surface S
selon la régle du tire-bouchon. Telle qu'est fixée l'orientation du circuit, le vecteur surface
S est dirigé vers l'avant, c'est-à-dire vers les z positifs.
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x

y

0j

D

EF

G

(x0+a/2 , y0)(x0-a/2 , y0)

(x0 , y0-b/2)

(x0 , y0+b/2)

B2

B1

B4

B3

z

(x0 , y0)

Ses composantes sont: S =  
0
0

 ab

L'intensité de courant traversant le cadre est égale à I= j.S soit I= jzab
Le théorème d'Ampère nous apprend que :

B1.DE + B2. EF + B3. FG + B4. GE = µ0 j.S = µ0 jz S

Déterminons B1.DE + B2.FG

Puisque DE est un vecteur de norme b orienté selon 0y:

B1.DE = By(x0+a/2, y0) b

Puisque FG est un vecteur de norme b orienté selon- 0x:

B3.FG = - By(x0-a/2, y0) b

a étant petit, on peut déterminer By(x0+a/2, y0) à partir de By(x0, y0) par le
développement de Taylor:

By x0 + a
2

 , y0  = By x0 , y0  + a
2

 
∂By

∂x
  x0 , y0  

De même:

By x0 - a2
 , y0  = By x0 , y0  - a

2
 
∂By

∂x
  x0 , y0  

soit :

B1.DE + B 3.FG   =  b a  
∂By

∂x
 x0 , y0

Le même raisonnement reproduit sur les éléments de chemin EF et GH conduit à:

B2.EF + B 4.GD    =  - b a  
∂Bx

∂y
 x0 , y0

soit sur l'ensemble du circuit fermé et après simplification par S:

µ0 j z  =     
∂By

∂x
  -  

∂Bx

∂y
  

qui pour tout circuit infiniment petit se généralise à:
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 rot B  =  µ0  j 

C'est la forme locale du théorème d'Ampère. Dans le vide j=0 et:

rot B  =  0

III-2 Théorème de Stokes-Ampère

Nous venons de montrer que la circulation de B sur le circuit rectangulaire orienté
était égal au flux de ce vecteur à travers la surface orientée s'appuyant sur le circuit.

C'est un résultat tout à fait général qui s'applique à tout champ de vecteur a.
Soit un champ de vecteur a.
Un circuit orienté (C)
Une surface orientée S s'appuyant sur le circuit.

(C)

dl

dS

Le théorème de Stokes-Ampère nous apprend que la circulation de a le long d'un
circuit (C) est égal au flux du rotationnel de a à travers toute surface s'appuyant sur (C).

A dl  =   rot A   dS

III 3 Exemple d'application du théorème de Stokes-Ampère

Considérons le champ de vecteur défini par Ax=0, Ay=0, Az=4x. Vérifier le
théorème de Stokes-Ampère sur un circuit rectangulaire placé dans le plan (x0y), de
côtés a=2, b=3, centré en (x=1, y=0) et sur la surface plane que ce circuit définit.

IV Franchissement d'une nappe de courant

IV -1 Discontinuité du champ magnétique lors de la traversée d'une nappe de
courant.

C'est un problème très semblable à celui que nous avons abordé au chapitre IV.
Nous avions montré que, lors de la traversée d'une surface chargée, la composante
tangentielle du champ électrique était continue alors que la composante normale subissait
une discontinuité égale à σ/ε0.

Nous allons montrer ici que lors de la traversée d'une nappe de courant, la
composante normale du champ magnétique est continue alors que la composante
tangentielle subit une discontinuité égale à µ0js.
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Considérons un courant surfacique de densité js s'écoulant sur la surface grisée de
la figure ci-dessous.

Les champs magnétiques B1et B2 en deux points infiniment proches situés de part
et d'autre de la nappe de courant sont représentés par les flèches en trait gras. Ces champs
magnétiques sont dus à la fois à la nappe de courant js et à des courants externes à cette
nappe situés relativement loin. Cela signifie que la modification de B lors traversée de la
nappe n'est due qu'à la nappe elle-même. La modification due aux autres courants est
insignifiante puisque les courants sont loin et que les points (1) et (2) sont infiniment
proches.

E

G

H
js

F

B1
B2

(2)

(1)

js

Appliquons le théorème d'Ampère au circuit EFGH orienté selon le sens indiqué.
Pour simplifier la démonstration, nous avons choisi un circuit particulier placé
perpendiculairement au vecteur densité de courant. Vu cette orientation, la surface grisée
sombre est représentée par un vecteur S de sens parallèle à js.

Le théorème d'Ampère nous dit que la circulation de B le long d'une ligne fermée
est égale au courant embrassé par ce circuit multiplié par µ0.

Le courant embrassé est dû au courant de surface. Ce courant entouré par le circuit
est µ0 js L où L =EF=HG.

La circulation de B sur les éléments de circuit FG et HE peut être considérée
comme nulle car F et G sont infiniment proches; la distance FG=HE ≈ 0.

Reste la circulation de B sur les éléments EF et GH. Le théorème d'Ampère
conduit à:

EF. B1 + GH. B2= µ0 js L

Pour repérer les vecteurs, nous avons introduit un trièdre (Oxyz) direct, tel que la
normale sortante n21 soit orientée suivant l'axe des z, et la densité de courant js suivant 0y.

GH. B2 est égal à - B2t L où B2t est la composante de B2 tangentielle à la surface
le long de la ligne perpendiculaire au déplacement du courant de surface. C'est la
composante de B2 suivant 0x.

EF. B1 est égal à  + B1t L où B1t est la composante de B1 tangentielle à la surface
le long de la même ligne.

Soit après simplification:
B1t - B2t   = µ0 js

Dans le cas général où la composante tangentielle de B n'est pas perpendiculaire
au courant de surface, cette relation se généralise à:
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B1t - B2t = µ0 js  Λ  n21

B2t et B1t sont les vecteurs projection de B2 et B1 sur la nappe de courant. n21
est le vecteur unitaire, normale sortante dirigé de (1) vers (2).

Vérifier que le cas particulier que nous avons considéré s'inscrit bien dans le cas
général.

V Théorème de Gauss et théorème d'Ampère

Comme nous l'avons vu, ces théorèmes tiennent à la forme en 1/r2 des champs
électriques et magnétiques. Nous rassemblons ici leurs conséquences sous l'aspect global
(forme intégrale), local et de franchissement de surface. Les discontinuités de champs
électriques et magnétiques aux surfaces peuvent vous paraître un peu difficiles et lourdes.
Elles joueront un rôle prépondérant dans les matériaux magnétiques et diélectriques. Un
spécialiste d'ondes radio dans le vide pourrait les ignorer. Un ingénieur matériaux ne peut
pas y échapper

Conséquence de la décroissance en 1/r2 des champs électriques et magnétiques

Electrostatique
GAUSS

Magnétostatique
AMPERE

Forme intégrale
E dS   

 

 

  =  

Qi∑
i

ε0 B dl
 

 

   =  µ0 Ii∑
i

 

Forme locale
div E   =   

ρ
ε0

rot B   =   µ0  j

Discontinuités
(les autres composantes sont

continues)
E2  -  E1  n12  =  σ

ε0
Bt 2  -  B t 1   =  µ0 js ∧ n12
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