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      Préface.
Ce cours est un résumé  d’électricité1 qui a été rédigé à l’intention des étudiants
de première année de la licence dans les domaines des ‘’ Sciences de  la Matière
Physique et  Sciences de la Matière Chimie’’  est conforme au programme officiel
adopté dés l’entrée universitaire 2014-2015.
Le Module 8  «électricité1 » fait partie des cours enseignés en semestre 2, dont le
programme se  compose de trois parties essentielles :

Le chapitre I présente les notions et les calculs du champs et potentiel électriques
crées  par  des  charges  électriques  distinctes  ou  des  distributions  linières,
surfaciques ou volumiques. Notion de la symétrie et application du théorème de
Gauss.
L’étudiant, qui a déjà pris connaissance de certain de ces notions  au lycée, doit
les assimiler durant ce cours, à l’aide des outils mathématiques plus performant
et des calculs plus avancés. 

Le chapitre II présente les  définitions et les lois régnantes dans le domaine   des
conducteurs   en  équilibre  ou  un  système  de  conducteurs  en  équilibre  et  les
méthodes des calculs  des champs et potentiels dans ces cas.

Le chapitre III traite les lois et les théorèmes généraux de l’électrocinétique.
L’étudiant trouve à la fin du document des exemples d’exercices et contrôles des
années passées.

Il est possible que cette édition comporte quelques imperfections, nous serions 
reconnaissants à tous ceux qui nous feraient part de leurs remarques et 
suggestions.

   

  F. BENABDELOUAHAB
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CH  I  

CHAMP ELECTROSTATIQUE DANS LE VIDE
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A) LOI DE COULOMB
La charge électrique existe sous deux formes :

Charge positive 
Charge négative.

En général les charges de même signe se repoussent et les charges de signes opposées 
s’attirent.  
On peut mesurer la charge électrique portée par un corps en mesurant la force électrique 
qu’elle engendre. 
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B) DISTRIBUTION DE CHARGES ELECTRIQUES.
On distingue trois  types de distribution de charges électriques :
Charges ponctuelles
Distribution de charge  linéaire (distribution linéique).  Fig2.a
Distribution de charge  surfacique. Fig2.b
Distribution de charge  volumique. Fig2.c

C) CHAMP ELECTRIQUE
1)  Champ électrique cèe par une charge ponctuelle 
Une charge électrique ponctuelle au point O crée au point M à une distance r le vecteur 
champ électrique E


. L’expression de E


 est donnée par la formule suivante :
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2) Champ électrique crée par plusieurs charges ponctuelles.

Fig2.a

Fig2.b

Fig2.c
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3) Champ crée par une distribution de charges continue.
Champ crée par un fil uniformément chargé.
a) Champ crée par un ségment uniformément chargé AB de longueur 2L.

Champ crée en un point M appartenant à l’axe médiane passant par O.
dydq .   élement de charge électrique de l’élement dy.

jdEidEEd yx


.. 

   yx dEdEdEE  et par raison de symétrie   0ydE
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On en déduit alors : 
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K
E   est l’expression du champ électrique crée par le ségment AB chargé 

d’une densité linéaique   au point M.

Si on veut exprimer E en fonction de a et L, on remplace sin .  
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b) Champ crée par un fil infini uniformément chargé.

Pour le fil infini uniformément chargé, On utilise les mêmes calculs du segment  AB en 

tendant simplement
2

  . Alors l’expression de )(ME


en M devient 
02

.2




aa

K
E 

Remarques : Il est conseillé de voir le calcul de

1) Champ électrique crée par une boucle uniformément chargée en un 
point de son axe.

2) Champ électrique crée par un disque uniformément chargé en surface en
un point de son axe.

D) POTENTIEL ELECTRIQUE.
1) Définition. Par définition le potentiel d’une charge q de point O en un point M s’écrit :

cte
r

qK
V 

.

2) Energie potentielle.
L’énergie potentielle d’une charge Q au point M qui est soumise à l’action du potentiel 
électrique V(M) crée par la charge q qui se trouve au point O, s’écrit :

cteQ
r

qK
QMVEP 

.
).(

3) Travail d’une force électrique.
Le travail de déplacement de la charge Q soumise à l’action du potentiel électrique V(M) 
entre les points A et B, s’écrit :
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B
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4)  Propriété du potentiel.
Potentiel crée par une distribution de charges discrètes ou continue.
 Distributions discrètes.

L’expression du potentiel dû à l’ensemble des charges s’écrit : cte
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 Distributions continue.
L’expression du potentiel d’une distribution continue de charges électrique s’écrit :

 r

dq
KMV .)(

Exemple de calcul de potentiel
Potentiel électrique crée par une boucle uniformément chargée en un point de son axe.

r

dq
KdV   avec  dRdldq ...  .
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5)  Travail d’une force électrique  entre deux points AB.

Le travail élémentaire de Q sous l’action de E


S’écrit : ldFldEQdW

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Le travail entre A et B s’écrit :
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
B

A

B
A ldEC


. est la circulation entre les points A et B.

)( ABBA
B
A VVVVC  .

Si A et B appartiennent au même plan équipotentiel alors 0 BA
B
A VVC  car BA VV  .

E) RELATION ENTRE  E


 ET V.
On revient sur certain relations présentées au dessus :

 
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Exemple : Calcul de potentiel et déduction du champ
 électrique. Potentiel électrique crée par un disque 
chargé (densité surfacique de charge  constante.

ds=.d.d et dq=.ds=..d.d
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Si x > 0 alors  xRx  22
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Si x< 0 alors  xRx  22
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

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dV
E(M)  A partir de cette relation on peut 

déduire les deux expressions du champ électrique.
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Conclusion :
Le champ électrique lors de la traversé d’une surface chargée

 subit une discontinuité de valeur  
0


F) THEOREME DE GAUSS.
1) Flux de champ à travers une surface.
Le champ électrique E


 est crée par la charge ponctuelle q au point M.
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d  est le flux du champ E


à travers l’élément de surface Sd


.
d  est l’angle solide élémentaire à travers lequel, on voit Sd


 à partir du point O.

222

cos.
.

OM

dS

OM

nudS

OM

Sd
ud


  


 .

Exemple : Calcul de l’angle solide pour pouvoir voir le demi-espace 

  
222

)0cos(.
.

R

ds

R

neds

R

sd
ed r

respacedemi





2R

ds
 en coordonnées sphérique l’élément du surface

    
2/

0

2

0
2

2

2
.sin..sin

..sin  


dddd

R

ddR

R

ds
Espacedemi

      221.cos 2
0

2/
0  Espacedemi

Pour voir  l’espace complet 
      422.cos 2

00 Espace

2)Théorème de Gauss. 

00

int

2
  surfqq

 A travers une surface fermée quelconque

dont  la  normale  est  positivement  vers
l’extérieur.  Le  flux  du  champ crée par 
une distribution de charge  est donné par
l’expression au dessus.

Exemple :
1) Calcul du champ électrique crée par le fil indéfini de charge linéique  .

On choisi comme surface fermée de Gauss un cylindre
 dont l’axe coïncide avec le fil. 
Le flux du champ E


à travers la surface de Gauss s’écrit :

21 BBLATERALTOTAL 
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
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
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
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
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0,0 21  BB  car EdSetEdS BB


 21 .

LATERALE

LATERAL

LATERALTOTAL SESdE


..   .

= hRE ...2. 
.hqINT 

000 2 
  INTSURINT

LATERALTOTAL

qqq

hRE ...2.  =
0

.


h

On déduit alors que 
0

.2


h

E 

Remarque : Il s’agit du même résultat trouvé par le calcul direct.

Il est conseillé de faire le calcul en utilisant le théorème de Gauss pour :
1) un plan infini de densité constante  .
2) Une sphère chargée en surface par une densité constante  .
3) Une sphère chargée en volume par une densité volumique constante  .
4) Un cylindre chargée en surface par une densité constante  .

G) CONSEQUENCES DU THEOREME DE GAUSS.
Formulations mathématiques.
Equation de Poisson, Equation de Laplace.

Le flux d’un champ de vecteurs B


à travers une surface fermée S est égale à l’intégrale 
de la divergence de B


 sur le volume délimité par S.

 
S VOLUME

dBdivSdB ..


 avec 
z

B

y

B

x

B
Bdiv zyx
















Cas particulier : Champ électrique.

 
S VOLUME

d
q

SdE 


.
1int

.
00


 = 

VOLUME

dEdiv .


d’où l’identité  
0


Ediv


 Equation de Poison.

Equation différentielle locale.
Si on utilise la relation VgradE 



)( VgraddivEdiv 


= 
0


VVolume :

B
d

S
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On sait que : 2

2

2

2

2

2

z

f

y

f

x

f
ffgraddiv














Alors : 
0


V  Equation de Poisson.

En analyse vectorielle, l'équation de Poisson (ainsi nommée en l'honneur du 
mathématicien et physicien français Siméon Denis Poisson) est l'équation aux dérivées 
partielles du second ordre suivante :      
où     est l'opérateur Laplacien et     est une fonction généralement donnée.
Sur un domaine borné de et de frontière régulière, le problème de trouver   à partir 
de  et satisfaisant certaines conditions aux limites appropriées est un problème bien 
posé : la solution existe et est unique.
Ce problème est important en pratique :
- En électrostatique, la formulation classique exprime le potentiel électrique associé à 
une distribution connue de charges   (dans le vide)  par la relation
                                                          

 
Dans une région de l’espace où il n’a pas de charges électrique 0  donc :
                                                      0Ediv

  E  est un flux conservatif   0
0





V  alors  

                                           0V  Equation de Laplace.

Exercice : Equation de Poisson.
Une distribution volumique à charge de symétrie sphérique de centre O créant en M un 

potentiel  de forme rke
r

c
V ..  avec c et k des constantes.

1) Calculer le champ électrique E  en M.
2) Calculer la densité de charge   en M.

Corrigé :
1) L’opérateur gradient en coordonnées sphériques :




 e
f

r
e

f

r
e

r

f
rfgrad r













sin

11
),,(

On utilise la relation VdagrE


  en coordonnée sphériques à une seule variable r 

dr

dV
E   avec krkrkr ekr

r

c
e

r

ck
e

r

c

dr

dV   ).1(
22  

r
kr eekr

r

c
E .).1(

2
 .

2) Expression local du théorème de Gauss ou Equation de Poisson

                                                     
0


Ediv

L’opérateur divergence en coordonnées sphériques :

M

 
re

er 
O

r

x
y

z
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









e

E

r
e

E

r
e

r

Er

r
Ediv r

r














sin

1)sin(

sin

1)(1 2

2

A une seule variable        r
r

r e
r

Er

r
Ediv





)(1 2

2

krekrcEr  ).1(2

krkrkr
kr

r crekekrkckce
dr

ekrcd

dr

Erd 





 2
2

)1(
)).1(()(

krkrr e
r

ck
crek

rdr

Erd

r
Ediv  

2
2

2

2

2

1)(1   et   
0


Ediv            kre
r

ck 
2

0

Exemple : Calculer le flux du champ de vecteurs ),,( zyxE


.

Montrer que le flux du champ zyx exyeezzyxE


.2.3.2),,(   sortant à travers 
l’hémisphère (O,R) est le même que le flux rentrant à travers la base, surface du 
disque (O,R). 

On peut parvenir à ce résultat si on peut montrer que le flux 
à travers la surface totale fermée est nulle.

On utilise alors l’égalité  
S VOLUME

dEdivSdE ..


 sachant que

z

E

y

E

x

E
Ediv zyx
















 dans notre cas 0Ediv


 .

Alors 0..  
S VOLUME

dEdivSdE 


0.../   HémisphDisque

HémisphDisqueS

SE SdESdESdE 


HémisphDisque  



z

x y

r

O

dr

rd

hémisphèreldeSurface '

disqueduSurface
x

y

z
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Exercice : ddp d’une membrane.

Réponse
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CH  II

CONDUCTEUR EN EQUILIBRE ELECTROSTATIQUE
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I) CONDUCTEUR EN EQUILIBRE

a) Equilibre électrique d’un conducteur en régime permanent.
Les conducteurs sont en général des métaux, constitués d’atomes, d’ions  et 
d’électrons  libres.
La vitesse moyenne d’un électron en régime 

pérmanent est : 0.
1

1


 





nj

j
jj V

n
V .

b) Champ E


 dans un conducteur.
Dans le conducteur, un électron sous l’action d’un champ électrique E


est  soumis à deux 

forces.
  Eq


.  : action de E


sur l’électron.

Vk


  : force de frottement de l’électron avec le milieu.
La vitesse moyenne du conducteur en régime permanent 
Est nulle 0


V .

P.F.D  
extérier

mf 


.  avec m : la masse de e- et


 : l’accélération.

Dans notre cas  0..


 mVkEq   0.


 VkEq  VkEq


.

En régime permanent 0


V   0.


 VkEq .

 En conclusion 0


E .
En régime permanent, le champ électrique )(ME


 est nul en toute point intérieur du 

conducteur.

c) Potentiel et répartition de charges dans un conducteur.
Le champ électrique nul dans le conducteur, 0


E , entraîne :

1- Potentiel du conducteur.
VgradE 


 puisque E=0  V, le potentiel est constant en tout point du conducteur. 

2- Charge du conducteur.

Si on applique le théorème de Gauss sur un conducteur en équilibre 0
0

int
int/  


q

E  

car le champ électrique E=0 à l’intérieur de conducteur.

 par conséquence 0
0

int
int/ 


q

E  et 0int q .

La charge intérieure d’un conducteur en équilibre est nulle, pourtant l’électroscope 
montre qu’un métal en cuivre s’électrise par simple frottement. La charge de ce 
conducteur ne peut se trouver qu’en surface. 

 :L’électroscope est un appareil simple  pour mesurer la charge électrique d’un conducteur.

e
Eq


.

Vk



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3) Lignes de champ.
Pour imaginer les lignes de champ dans un conducteur, il faut revenir sur les dérniers 
résultats du paragraphe b).
A l’intérieur du conducteur en équilibre le champ électrique 0


E . En surface le champ

E


 peut être différent de zéro, mais son vecteur doit être perpendiculaire à la surface du 
conducteur. 
Si on suppose qu’une composante de 0LETANGENTIELE


 alors les e- seront en mouvement 

superficiel. Ceci est contraire aux conditions de l’équilibre d’un conducteur.

d) Relation entre la charge et le potentiel d’un conducteur.
V est le potentiel d’un conducteur et  la densité superficielle.

 
CONDUCTEUR r

dSM
KdVV

).(
.



Si on multiplie la densité par une constante, elle devient  .' , alors le potentiel 
devient VV .'   et la charge électrique QQ .'  .
On en déduit alors que la charge et le potentiel d’un conducteur sont proportionnels : 

VCQ .

C : capacité d’un conducteur est mesurée en Farad.

Exemple : Capacité d’un conducteur sphèrique.
Q : charge portée par la sphère.
S=4.R2 : surface de la sphère de rayon R.

2.4 R

Q

S

Q


   : densité superficielle de la sphère.

La charge Q crée un potentiel V au centre O.

 L’expression de V s’écrit : 
R

Q
V

04

1


 .

La relation de proportionnalité VCQ .  peut être comparée avec celle de dessus

RVQ .4 0  alors la capacité C s’écrit : R
V

Q
C .4 0

e) Champ en surface d’un conducteur.
dSESdEd .. 


  les deux vecteurs sont colinéaires 

dSE
dSdq

d SURFACE .
.2

.

.2 00







 .

Conducteur en équilibre

E


E


E


E


z

y
x

O

M Sd


E


()

Surface de Gauss
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On déduit alors le champ électrique sur la surface d’un conducteur 
0.2 


E  ou sous 

forme vecteur uE


0.2 


 .

Au voisinage de la surface 

00

.
..







dSdq
dSESdEd INTERIEUR 


.

Alors le champ électrique au voisinage de la

 surface d’un conducteur s’écrit : 
0


E .

Théorème :
Le champ E


est discontinu à la traversée de la surface du conducteur. Le champ passe 

d’une valeur nulle dans le conducteur à 
0.2 


E  sur la surface puis 

0


E  au 

voisinage immédiat de la surface.

II) Théorèmes généraux pour l’étude d’un système  de conducteurs.

Dans le cas d’un ensemble de conducteurs, chaque conducteur est en équilibre.
- le champ électrique E est nul à l’intérieur de chaque conducteur.
- les lignes de champ sont  aux  surfaces des conducteurs.

- Le potentiel est constant dans chacun des conducteurs,  avec uE


0


  au 

voisinage immédiat.

a) Théorème d’unicité.
n conducteurs chacun a un potentiel : V1, V2, …, Vn.
On prends comme conditions aux limites le potentiel à l’infini est nul , V .

)(rV


 en tout point de l’espace est solution de l’équation de Laplace.
0V  ( 0 ) avec les conditions aux limites      V1 conducteur 1

V2 conducteur 2
             

Si on connaît le potentiel )(rV


en tout point de l’éspace, on peut en déduit la densité 

sur tout conducteur pa r la relation nVgradE


0


 .

M Sd


E


()

Surface de Gauss

dq

E
1

E
2

E
3

Lignes de champ

Cond. 1

Cond. 2

Cond. 3

V
2

V
1 V

3







Charge positive
Charge positive
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On peut aussi en déduire la charge Q = Q1+Q2+ +Qn

On peut démontrer que )(rV


est solution unique.

b) Théorème de superposition.
 
Soit un système de conducteurs. Dans un premier état sa charge est Q’ et dans un 
deuxième état sa charge est Q’’. Les densités correspondantes au point P du système 
sont )(' P pour le premier état et )('' P  pour le deuxième état. Si la charge du système 
devient ''.'''.' QQ   , la  nouvelle répartition de charge au point P sera ''.'''.'   . Nous
obtenons ainsi un nouvel équilibre dit par superposition d’état d’équilibre. Le potentiel du
système devient alors VVV  ''.'''.'  .

c) Théorème des éléments correspondants.

La surface fermée   composée de T ( surface latérale) et 1  à l’intérieur de S1 et 2  à 
l’intérieur de S2, coupe S1 en dS1 et S2 en dS2.

Le champ E


est nul en 1 et 2  et tangent en tout point du tube T. Le flux sortant de la 
surface fermée  = 1 + T+ 2  est nul.
Dq1 et dq2 étant les charges des élément dS1 et dS2.
Si on applique le théorème de Gauss sur la surface fermée  , on écrit :

0)(
1

0 21
0

 dqdq
   0)( 21  dqdq

dS1 et dS2 sont des élément correspondants.
Enoncé : Deux éléments correspondants portent des charges opposées.

d) Théorème d’influence.

Définition :En présence de plusieurs conducteurs, si des lignes de champ de
l’un des conducteurs vont sur un autre, on dit qu’il y’a influence.                      

T
E


1Sd


(
1
)

(
2
)

2Sd


E


E


1dq
2dq
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1) Coefficient d’influence.
V est le potentiel du système de composant du système, de composants V1, V2, V3, …Vn. Q 
est la charge de système de composantes Q1, Q2, Q3, …Qn.
  P un point pris sur le système S. Il y’a unicité de la répartition d’équilibre )(P  pour la 
charge du système Q donnée.
D’où la relation   Q= C . V

























































nnnnn

n

n

n V

V

V

CCC

CCC

CCC

Q

Q

Q

⋮

⋯

⋮⋮⋮⋮

⋯

⋯

⋮

2

1

21

22221

11211

2

1

.

C11,C22, …, Cnn représentent les coefficients de capacité de chaque conducteur en présence
des autres.
Cij : représentent les coefficients d’influence du conducteur  j sur le conducteur i.
 Les coefficients Cii  0 et les coefficients Cij  0.

2) Propriétés des coefficients d’influence

Cas de trois conducteurs C1, C2 et C3. C1 est porté au potentiel V1 et V2 et V3 sont reliés au 
sol, ( V2 =V3=0).
Le conducteur C1 prend la charge Q1. 


















































0

0.
1

333231

232221

131211

2

1

3

V

CCC

CCC

CCC

Q

Q

Q

Q1= C11 . V1.
C2 et C3 sont chargés par influence.
Q2 = C21 . V1 et Q3 = C31 . V1.

Les lignes de champ sortent des charges + pour arriver sur des charges -.
D’après le théorème des éléments correspondants les conducteurs C2 et C3 sont de

charges négatives.
Certains lignes de champ issus du conducteur C1 peuvent s’éloigner vers l’infini et 

ne pas rencontrer d’autres conducteurs

C11  C21 + C31 + …+Cn1

C
1

C
2

C
3

Lignes de champ

V
1









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3) Cas de deux conducteurs en influence totale.

V1 est le potentiel du conducteurA1 de charge Q1 répartie sur la surface S1.
V2 est le potentiel du conducteurA2 de charge Q2 .
Q2 = Q2’ + Q2’’

1  er   cas : Si V2  = 0

On relie A2 au sol.


























0

. 1

2221

1211

2

1 V

CC

CC

Q

Q

On en déduit que 1111 .VCQ   et 1212 .VCQ  .
Les conducteurs sont en influence totale 21 QQ  . Le champ et le potentiel à l’extérieur 
sont nuls.
Il n’y a pas de charge sur S2’’ ce qui implique que Q2’’ =0.
Par conséquence Q2 = Q2’+ 0 = Q2’ = -Q1. 

Q2 = -Q1      et  







1212

1111

.

.Q

VCQ

VC
          il en résulte  C11 = - C21.

C11 est positif et C21 est négatif.

2  eme   cas : Si V1  = V2   0.
 
Le potentiel de la cavité est uniforme, c’est une propriété d’un conducteur en équilibre, 
alors le champ électrique est nul 0E


. 

On en déduit que A1 n’est pas chargé (Théorème de Gauss)
Q1=0 en même temps que Q2’=0.



























1

1

2221

1211

2

1 .
V

V

CC

CC

Q

Q








22212122

12111121111

..'

'0..Q

VCVCQQ

CCoùdVCVC

Dans le 1er cas on a montré que : C11 = - C21.
Et dans ce cas on montre que :    C11 = - C12.
Donc les deux  coefficients  C12 = C21  sont égaux.

On montre d’une manière générale que Cij = Cji.

Dans ce cas l’ensemble se comporte comme un conducteur unique isolé de charge Q2’’ de

capacié C’ défini par 
2

''
2'

V

Q
C   avec Q2’’ = ( C21 + C22). V2.

S
2
’ S

2
’’A

1
A

2
Q

1

S
1 Q

2
’ Q

2
’’

S
2
’

S
2
’’

A
1

A
2 S

1

Q
2
’=0

Q
2
’’

V
1

V
1

Q
1
=0
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C’ = C21 + C22 = C22 – C11.
III) Condensateurs.
a) Définition : 
Un condensateur est un ensemble de deux conducteurs A1 et A2 en état d’influence 
totale.

La capacité C d’un condensateur désigne le coefficient C11 de l’armature A1 en présence
de A2.
La charge Q=Q1 est la charge de A1 et en même temps la charge du condensateur.



























2

1

2221

1211

2

1 .
V

V

CC

CC

Q

Q
      








2221212

2121111

VCVCQ

VCVCQ

2121111 VCVCQQ             influence totale              211211 CCC 

)( 21 VVCQ     




22

22

arg:"

intarg:'

AdeextérieureechQ

AdeérieureechQ

222 "' QQQ 

12212 )(' VCVCVVCQQ  .
)()(''" 222212221222212122 CCVVCVCVCVCQVCVCQQQ 

22 '" VCQ     avec    C’ = C22 – C 
La charge extérieure de l’armature externe est indépendante de V1 et de la forme des 
surfaces S1 et S’2. 
Pour un condensateur, la matrice capacité conduit à 






























2

1

2

1 .
' V

V

CCC

CC

Q

Q

b) Groupement de condensateurs
1) association en parallèle.

)( 2111 VVCQ 
)( 2122 VVCQ 
)( 2133 VVCQ 

la somme totale devient 
))(( 32121321 CCCVVQQQQQ i  

Q total =  iCVV )( 21  = (V1 – V2) C total.

 iCC

A
1

A
2

S
1

S’
2

S’’
2A

2
A

1

BA

C
1

C
2

C
3
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2) association en série.

)(1 BA VVCQ 

)(2 CB VVCQ 

)(3 DC VVCQ 


321 C

Q

C

Q

C

Q
 (VA-VB+VB-VC+VC-VD) = (VA-VD)

Q(  
iC

1
)= (VA-VD)


iCC

11

IV) Energie électrique.
1) Energie d’une charge ponctuelle. 

En un point M de Potentiel V(M), une charge q placé sous l’action  un champ électrique E 
posséde une énergie potentiel :

Ep(M) = q . V(M)

Le déplacement de cette cherge entre
 deux points A et B effectue un travail 

)()( BEAEW PP
B

A     =    q
r

QK
q

r

QK

BA

.
.

.
.



2) Energie d’un système de charges.
Pour deux charges ponctuelles , on écrit :

111
12

2 ..
.

)1( qVq
r

qK
EP     avec V1 est le potentiel en 1 et V2 le potentiel en 2.

222
12

1 ..
.

)2( qVq
r

qK
EP 

)1(PE  = )2(PE , on écrit le résultat sous forme symétrique :

2211 .
2

1
.

2

1
)2,1( qVqVEP  .

a)  Forme générale
Sous la forme générale l’énergie potentielle d’un système 
de charges s’écrit :

                                     





ni

i
iiP VqnE

12

1
),...2,1(

BA

C
1

C
2

C
3

C D

q
1

q
2

q
4

q
n

V
1

V
2

V
n

V
4

V
3

q
3

A

B
Q

r
A

r
B

M

r

KQ
E 


q
r
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b) Distribution continue.
Dans le cas d’ine distribution de charge  continue, l’énergie potentielle de cette 
charge 

s’écrit :                                                dqVEP .
2

1

Dans le cas d’un conducteur en équilibre, la charge électrique est en surface alors 

  Q
V

ds
V

dsVdqVEP 22
.

2

1


2

. VQ
Ep 

Pour un système de conducteurs en équilibre, l’énergie potentielle est la somme des 
énergies individuelle des conducteurs.

 iip VQE .
2

1

3) Application aux condensateurs.

Un condensateur est un ensemble de deux armatures
(V1, Q)
(V2, Q’2 + Q’’2) = (V2 , -Q+ (C22-C)V2) .
l’énergie du système :
Ep = ½ Q V1  +  ½ [-Q+ (C22-C)V2]V2 = ½ Q V1  +  ½ [-Q+ (C’)V2]V2. 

 C’est l’énergie totale du condensateur.
En général Q’’2 est négligeable.

Alors Ep = ½ Q V1  +  ½ [-Q]V2 =  ½ Q (V1 - V2).

Ep =  ½ Q (V1 - V2).

Exercice (1)
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Exercice (2)
Un câble coaxial infini chargé et constitué d’un cylindre central de rayon R1 portant une 
densité de charge uniforme i et d’une gaine extérieure dont les limites R2 et R3 portant 
une densité  de charge uniforme e (cf. fig. 1).

1) A partir de la symétrie de la distribution des charges, trouver
 la direction du champ électrique E


  ainsi  que  les    variables 

pertinentes du problème.
2) Calculer le champ électrique E


 total en  tout  point  M(r,,z) 

de l’espace.
3) Donner l’allure de E  en  fonction  de  la  variable  pertinente.
4) Calculer  l’énergie   électrostatique   portée   par   le  cylindre 

centrale  du câble  pour  une  longueur  L sachant que i =-e.


i


e

R
1

R
2 R

3

z

fig. 1
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CH III  

 ELECTROCINETIQUE
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A) Courant électrique 
A l’instant t et pendant le temps dt à travers la section d’un fil électrique traverse la 
charge dq.
La définition du courant électrique est :

dt

dq

tdtt

dq
I 


  unité MKSA est l’ Ampère     (1 Ampère = 

onde

Coulomb

sec1

1
).

a) Courant continue.

En régime permanent, on maintient en permanence une différence de potentielle entre 
deux point d’un circuit (VA-VB>0).
L’écoulement des charges est continue   le temps. On dit que le courant est continue ou
stationnaire.
Exemple : Pile chimique, générateur électrique continue.

b) Courant variable.
Si la ddp entre A et B change périodiquement de sens , on dit que le courant est 
périodique.
Si la ddp entre A et B change de valeur aléatoirement en fonction de temps, on dit que le 
courant est variable.
B) Loi d’Ohm.

a) Conducteur Ohmique
 Un conducteur est Ohmique si la conduction des e est dû seulement à un champ 
électrique E


 obtenu en appliquant une ddp VA - VB 0.

b) Relation fondamentale Ohm – Kirchhoff.

En régime permanent   0F


  et 0..  VEe


     E
e

V


.




λ : constante de frottement,  ρ : charge de l’électron.

On démontre la relation relative à la densité du courant :
VenJ


..  Démonstration à chercher.
Avec, n.e : la densité volumique de charge mobile

Sachant que : 
dS

dI
J   et  SdJI


. .

Si on remplace V


par sa valeur , E
e

V


.


 .

Section du fil S

V
A
-V

B
 >0

A B

V
A
-V

B
=0

A B
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VenJ


..  = E
e

en


...


= E
e

n


..
2


 = E


.  

avec  



2. en

   la conductivité électrique,  EJ


.  la relation d’Ohm Kirchhoff.

            

          JE


.  avec   est la résistivité  


 1
  .

Quelques exemples : mCu .10.69,1)( 8  , mOr .10.44,2)( 8  ,
                                 mVerre .10)( 14  et mteurSemiconduc .1)(  .

c) Résistance d’un conducteur.

Le rapport R
I

VV BA 


 représente la résistance entre les points  A et B.

La résistance R est une constante. 
BA VetV  sont les potentiels correspondants aux points A et B.

Remarque : La conduction dans un conducteur est dû seulement au champ E


.

Cas d’un conducteur cylindrique.

I

VV
R BA   avec   ldEVV BA


. =  dlE .  =  dlE  = E .l

 SdJI


.  =  dSJ .  =  dSJ  =  J . S

Alors  
SJ

lE
I

.

.
   et  EJ .

On remplace J dans R, on obtient : 
SE

lE
R

..

.


  = 

S

l ,     la résistivité du conducteur.

R

l
R 

d) Association des résistances.
1) Résistances en série.

I

VV DA   = 
I

VV BA  +
I

VV CB  + 
I

VV DC  = RAB + RBC + RCD=R1+R2+R3.

La résistance totale s’écrit :  RS = R1+R2+R3.

2) Résistances en parallèles.

Sur le noed A :  I = I1+I2+I3.

I = 
1R

VAB  + 
2R

VAB  + 
3R

VAB  = 
équ

AB

R

V
 = 

P

AB

R

V
.

A B C D
R

1
R

2
R

3

Section du filS

Courant I

A B

  l

A B

R
1

R
2

R
3

I
1

I
2

I
3

I
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On en déduit que  
PR

1
=

1

1

R
 + 

2

1

R
 + 

3

1

R
   

3) Théorème de Kenelly.
Ce théorème permet de transformer la structure d’un réseau sous forme triangulaire en 
forme étoile.

cba

ba
x




.
 ,  

cba

cb
y




.
  et  

cba

ca
z




.

D) Effet Joule
a) Energie électrique ou travail.
Le déplacement d’une charge Q entre deux points A et B avec VA et VB les potentiels 
correspondants, s’accompagnent du travail électrique :

).( BA
B

A VVQW 
b) Puissance électrique.

Si le déplacement se fait à travers une résistance R.

I

VV
R BA      IRVV BA .

Q = I . t
tIRIRtIW B

A ..... 2                Loi de Joule.

tIRW B
A .. 2

Le travail par unité de temps est la puissance  
R

V
IRP

2
2. 

E) Théorèmes généraux relatifs aux réseaux linéaires
Circuit constitué uniquement de composants linéaires ; les composants pour lesquels la 
tension et l’intensité sont reliés soit par une relation affine soit par une équation 
différentielle linéaire
Réseau de conducteurs.
Un réseau de conducteur est constitué de branches, nœuds et mailles.

- Nœud : point de contact de plus de deux branches.
- Branches : portion de circuit entre de nœuds.
- Maille : un ensemble de branches formant un circuit fermé.

a) Lois de Kirchhoff.
Le calcul des courants d’un réseau se fait à l’aide de deux groupes de lois. 

A

B

C

x

yz
a b

B

c
A C
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 Loi de nœuds : la somme algébrique des courants d’un nœud est nulle .

      0
1




n

i
iI

exemple : I1 - I2 - I3 - I4 + I5 = 0

 Loi de maille :  la somme algébrique des tensions d’une maille est nulle

0
1




n

i
iV

Exemple : E2 – r1.I –R.I – E2 – r2.I =0  Loi dePouillet.

b) Théorème de Thevenin.
Le théorème consiste à remplacer un circuit électrique en deux parties :

- Une partie ative comportant un génerateur de f.e.m équivante  ETh et une 
résistance équivalente RTh.

- Une autre partie  quelconque.
Ce théorème permet de remplacer un circuit complexe par un circuit équivalent simple.

Exemple :
On propose de calculer le courant I de la branche AB du schéma en desous, en utilisant le 
théorème de Thevenin.

La partie quelconque est la branche AB. Le reste représente la partie active. 

Nœud   A

I
1 I

5

I
2

I
3

I
4

R 

I 

A

B

Partie quelconque qui sera 
gardée du circuit d’origine

figure 2a

++

R 
E

1

r
1

I 
E

2

A

r
2

B

figure 1

++

figure 2b

A

B

E
1

r
1

E
2

r
2

Partie active qui sera remplacée
 par ETh et RTh

I

R . I

E
1

 r1 

R

I . r
1

I . r
2E

2

r
2

+

+
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Le résultat du remplacement donera le schéma équivalent suivant :
Pour utiliser ce schéma équivalent, nous somme invités à calculer ETh et RTh.

۩ Calcul de RTh.
D’abord, on court-circuite les générateurs de tension et on ouvre les générateurs de 
courant.
Dans notre cas, on court-circuite les générateurs E1 et E2 de la figure 2b pour obtenir le 
schéma de la figure 4.
 

RTh = r1 // r2 =  
21

21 .

rr

rr



21

21
Th

.
R

rr

rr




۩ Calcul de ETh.
A partir du schéma de la figure 2b, on mesure la tension UAB = ETh qui représente la f.e.m 
de Thévenin. Pour cela, on propose un courant i quelconque circulant dans le circuit.

D’après la loi de Pouillet, le courant  
21

21

rr

EE
i




 (fig 5). Pour déterminer ETh, il suffit de 

calculer la tension UAB sur l’une des branches sur le circuit de la figure 5.   UAB = E2 + r2i ou 
UAB = E1 – r1i

ETh = UAB = E2 + r2
21

21

rr

EE




 = 
21

1221 ..

rr

rErE




Notre but est de calculer le courant I de la branche AB en utilisant le circuit de la figure 3 
construit à partir du théorème de Thevenin.

r
1

A

B
r

2

figure 4

++

E
1

r
1

E
2

r
2

figure 5

A

B

i U
AB

 = E
Th

+

E
Th

R
Th

R 

I 

A

B

figure 3

+

E
Th

R
Th

R 

I 

A

B

figure 3
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UAB = R . I = ETh – RTh .I     I = 
Th

Th

RR

E


 =

21

1221 ..

rr

rErE




.
ThRR 

1
=

21

1221 ..

rr

rErE




.
21

21 .
1

rr

rr
R


  =

2121

1221

.).(

..

rrrrR

rErE




2121

1221

.).(

..

rrrrR

rErE
I






c) Théorème de Norton.
De la même façon que le théorème de Thévenin, ce théorème permet de remplacer un 
circuit complexe en un autre plus simple :

- Une partie active entre deux points choisis A et B.
- Un autre partie quelconque.

La partie active est remplacée par un générateur de courant en parallèle avec la 
résistance équivalente. Le courant I0 de court-circuit est trouvé par le court-circuit des 
points A et B.
Exemple : 
Cherchons le courant I de la branche AB du même circuit de l’exemple précédant en 
utilisant cette fois ci le théorème de Norton.

De la même façon qu’ au théorème de Thevenin, on sépare la partie active de l’autre 
quelconque.

۩ Calcul de RN. Résistance équivalente de la partie active.
D’abord, on court-circuite les générateurs de tension et on ouvre les générateurs de 
courant.
Dans notre cas, on court-circuite les générateurs E1 et E2 de la figure 2b pour obtenir le 
schéma de la figure 3.

RN = r1 // r2 =  
21

21 .

rr

rr



R 

I 

A

B

Partie quelconque qui sera 
gardée du circuit d’origine

figure 2a

Partie active qui sera remplacée
 par I0 et RN

+

figure 2b

A

B

E
1

r
1

E
2

r
2

+

R 
E

1

r
1

I 
E

2

A

r
2

B

figure 1

+ +

r
1

A

B
r

2

figure 3
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21

21
N

.
R

rr

rr


  

Même résultat qu’en Thévenin.
۩ Calcul de I0. Courant de court-circuit du générateur de courant.

Comme  il a été déjà dit au dessus,
On court-circuite les points A et B
Pour  calculer  le  courant  I0 du fil 
AB de court-circuit.
I0 = I1 + I2 

Avec 
1

1
1 r

E
I   et  

2

2
2 r

E
I 

 Alors 
21

1221

2

2

1

1
0 .

..

rr

rErE

r

E

r

E
I




۩ Circuit équivalent : 

۩ Calcul de I de la branche AB:

UAB = R . I = RN . I’
I0 = I + I’
I’ = I0 – I
UAB = R . I = RN . (I0 - I).

( R +  RN) . I =  RN. I0

0.I
RR

R
I

N

N


  = 

2121

021

.)(

..

rrrrR

Irr


 = 

2121

21

.)(

.

rrrrR

rr


.

21

1221

.

..

rr

rErE 

2121

1221

.).(

..

rrrrR

rErE
I






e) Association des générateurs de tensions.
*Association de tension en série

*Association de générateurs de courant en parallèle

R 

I 

A

B

figure 5
I

0

I’
R

N

Générateur de 
courant

Générateur de 
tension

E
1

r
1

E
2

r
2

figure 4

A

B

I
0

I
1

I
2

++
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f) Diviseur de tension

g) Diviseur de courant.

Pour deux résistances en //. 

          Cas particulier.

Exercice : Trouver les deux courants i1 et i2 en fonction de I0

                  , E1 E2 , r1et r2  dans le cas suivant.







i
n

n
nnn R

U
R

RRR

U
RiRU .

...
..

21

IR
RR

U
i e..

1

11
1  IR

RR

U
i e

kk
k ..

1


I
RR

R
I

RR

RR

RR

U
i ..

1

12

2

12

21

11
1 






i
1

r
1

r
2
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Rép :                                                 et 

f) Théorème de Millman (Loi des nœuds en termes de potentiels).
Le théorème de Millman est une réexpression de la loi des nœuds.
On va faire une application sur un circuit, c’est la loi des nœuds en termes de potentiels 
puis on va généraliser l’expression.

Le courant I1 sur la branche A1N.
UN-UA1=E - R1.I1    
I1=1/R1.(E+( UA1- UN))
              I1 = G1.(E1+( UA1  -  UN))     avec G1 = 1/R1. 

Le courant I2 sur la branche A2N.
UN - UA2= - R2.i     avec   I2=I0+i   et  i=I2 - I0.
UN - UA2= - R2.( I2 - I0) =  R2.I0 - R2.I2)
I2=I0+1/R2.( UA2  -  UN).
 
              I2=I0+G2.( UA2  -  UN)     avec G2 = 1/R2. 

Le courant I3 sur la branche A3N.
UN – UA3= - R3.I3     avec   I3 = 1/R3.( UA3  -  UN).

              I3=G3.( UA3 -  UN)     avec G3 = 1/R3.
on appliqué la loi des nœuds sur N      I1 + I2 + I3 = 0 et en général   IK =0.
I1 + I2 + I3 = 0 = G1.E1+ G1.( UA1  -  UN) + I0 + G2.( UA2  -  UN) + G3.( UA3 -  UN)

Pour généraliser on ajoute le terme k = 1 devant  E et I0.
k = +1 sens du courant de Ak vers N  et  k = -1 dans le sens opposé.

 IK = 0 =  Gk. k Ek+( UAk  -  UN) + k I0k

 0 = -   Gk.UN + Gk. k Ek+ UAk   + k I0k

  Gk.UN   =   Gk. k Ek+ UAk   + k I0k

 



k

0kkAkkkk
N G

 I   +     U+E  G 
   =     U


 

Entre deux points M et N

 


k

0kkkkk
MN G

 I   +   E  G 
   = U-    U



 
Exercice d’application : 
Déterminer  l’expression du potentiel UN puis faire l’application numérique
Avec :
 I0=2A,  E1=5V, E2=1V, E3=3V, E4=2V,
 E5=6V,    R0=2,     R1=2,  R’1=4,
 R2=2,   R3=2,    R4=2,  R5=10.
Réponse :

21

1202
1 rr

EEIr
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 .  
la méthode   de superposition    consiste   à   calculer les 
courants   produits   dans  chaque    branche  par chaque
f.é.m.   prise    individuellement, en  court-circuitant les
autres f.é.m.  Ensuite,   pour chaque branche, on  ajoute
les courants dus à chaque f.é.m. présente dans le circuit,
en  tenant     compte  de  leur  signe. Cette  méthode  est
justifiée par la linéarité  d'un  tel circuit qui ne comporte
que des résistances ohmiques.

1ERE étape : Calcul des courants du générateur E1.
 Calculons      d'abord    les    courants    dus   à E1, en 
court-circuitant  E2, ce  qui   donne le circuit suivant :

Calcul de     i’1:
Il est plus simple de chercher d’abord  le courant  i’1. 
R en parallèle  avec  (R2+r2)  et   d’après   la  loi   des
nœuds i’1=i’+i’2.
Une seule maille alors un seule courant c’est la loi de 

Pouillet. 
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Pour calculer les autres courants i’2 et i’ , on utilise le théorème de Millman  afin de 
déterminer  d’abord UA-UB.
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 Calcul de     i’2 :

Alors 
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Calcul de     i’ :

Alors 
R
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2EME étape : Calcul des courants du générateur E2.
 Calculons      d'abord    les    courants    dus   à E2, en 
court-circuitant  E2, ce  qui   donne le circuit suivant :

Calcul de     i’’2:
Il est plus simple de chercher d’abord  le courant  i’’2. 
R en parallèle  avec  (R1+r1).
Une seule maille alors un seule courant c’est la loi de 

Pouillet. 
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Pour calculer les autres courants i’’1 et i’’ , on utilise de nouveau le théorème de Millman  
afin de déterminer  d’abord UB-UA.
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Calcul de     i’’1 :

Alors 
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Calcul de     i’’ :
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Calcul des trois courants i1, i2 et i :

Superposition des courants 

''' iii    puis  ''' 111 iii    et   ''' 222 iii  .

Le courant i :
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Le courant i1 :
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Le courant i2 :
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Conclusion :
Le nombre de courants à déterminer est de plus en plus important si le montage 
électrique compte un nombre important de générateurs.
Il faut déterminer le courant de chaque branche en gardant un seul générateur dans le 
montage à la fois.
 Finalement le courant de chaque branche est la superposition (en valeur algébrique) de 
l’ensemble des courants trouvés individuellement. 
Cette méthode devient lourde et compliquée si le nombre de générateurs est important.
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UNIVERSITE ABDELMALEK ESAADI         ANNEE UNIVRSITAIRE 2012/2013
FACULTE DES SCIENCES                    MODULE  PHY2,  SMPC
DEPARTEMENT DE PHYSIQUE   Avril 2011
TETOUAN

CONTROLE D’ÉLECTRICITÉ
Durée 1h

EXERCICE 1
On considère quatre charges ponctuelles disposées au sommet d’un carré dont la longueur de 

la diagonale est .  Calculer le champ  et le potentiel électrostatiques  au centre  du 
carré dans les 3 cas suivants :

EXERCICE 2
Dans un disque de centre O,  la densité électrique   constante, est répartie entre deux
rayons
  et    avec   voir la figure en dessous.

1) Calculer le potentiel électrique  en un point M de son axe .
2) Déduire le champ électrique .
3) Déduire le champ E(y) et le potentiel  en un point M de son axe crée par un

disque de rayon R et de densité  constante.
4) Tracer les allures de  et   du disque de rayon . Conclusion.
5) Déduire le champ créé par un plan de densité  constante.
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EXERCICE,    RATTRAPAGE  D’ÉLECTRICITÉ   juillet  2013
On veut déterminer les expressions littérales des quatre courants du circuit ci-dessous
moyennant la démarche suivante :
1) Appliquer le théorème de Norton pour calculer le courant i2.
2) Appliquer le théorème de Thevenin pour calculer le courant i1.
3) A l’aide de la loi des mailles,  en déduire les courants i et i3, en fonction de i1. 

EXERCICE  CONTROLE D’ÉLECTRICITÉ Mai  2014
1) Déterminer les trois courants i1, i2  et i circulant dans le circuit de la figure 1.
A l’aide du théorème de Thévenin,  on veut calculer le courant I sur le circuit de la figure 2.
Après avoir enlevé la branche AB du circuit, on procède à la détermination de  son  circuit 
équivalent de Thévenin .
2) Donner le circuit équivalent de Thévenin.
3) donner l’expression du courant I de la branche AB en fonction de ET, RT, E’ et r’.
4) Calculer RT la résistance équivalente de Thévenin.
5) A l’aide de la première question, calculer ET (force électromotrice) du générateur 
équivalent de Thévenin.
6) Déduire le courant I en fonction de E, r, E’ et r’.
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UNIVERSITE ABDELMALEK ESAADI                                                                            ANNEE UNIVRSITAIRE 2013/2014
FACULTE DES SCIENCES                                             MODULE  PHY2,  SMPC
DEPARTEMENT DE PHYSIQUE 01 juillet 2014
TETOUAN

CONTROLE RATTRAPAGE D’ÉLECTRICITÉ
Durée 1h

EXERCICE 1

Pour le circuit de la figure en dessous, déterminer le courant I circulant dans la 
branche AB en utilisant :

1. Le  théorème de Thévenin.
2. Le théorème de Norton.

EXERCICE 2

Pour tout l’exercice, l’origine des potentiels est prise à l’infini.
1. Calculer le potentiel V1  de la sphère métallique S1 de rayon R1 portant  la charge

Q1. 

La sphère  S1  est maintenant entourée d’une sphère conductrice creuse  S2 isolée,
concentrique  de  rayon intérieur  R2  (R2>R1)  et  de  rayon extérieur  R3.  La  charge
initiale de la sphère S2 est  - Q1.

2. Calculer le potentiel V2 de la sphère creuse S2.
3. Calculer le nouveau potentiel V’1 de la sphère S1.
4. Calculer la capacité C du condensateur formé  par S1 et S2.

On  branche  en  parallèle  à  ce  condensateur  Chargé  un  autre  de  capacité  3C,
initialement neutre :

5. Déduire la capacité équivalente.
6. Calculer la charge et le potentiel de chaque condensateur.
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Exercice  
Soit un fil infini uniformément chargée avec une densité linéaire λ.
1) En  utilisant  la méthode  directe  la méthode  de  Gauss, calculer 
le champ E  à une distance x de ce fil.
2) On  dispose   maintenant   d'un   deuxième    fil    infini   pourtant 
une   densité   linéaire   -λ   et   disposé   par  rapport  au  premier  fil  
comme  l'indique  la figure  ci-dessous.  En supposant  que  le point 
M   se   trouvant   dans   le plan   formé   par   les  deux   fils,  donner 
la valeur du champ au point M.
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