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1 INTRODUCTION

L’analyse mathématique est I’étude approfondie du calcul différentiel et
intégral. Ce cours porte sur le calcul intégral. Il se divise en trois parties. La
premiere présente la définition et les propriétés de l'intégrale d’une fonction
continue d’une variable réelle. La seconde utilise cet outil pour introduire
les fonctions analytiques élémentaires (les fonctions logarithmique, exponen-
tielle, trigonométriques directes et inverses, eulériennes). La derniére, enfin,
porte sur la représentation de ces fonctions par des séries de Taylor et des
séries de Fourier.

Il s’agit d’un cours de mathématique formel, avec des démonstrations
rigoureuses et completes de tous les théoremes présentés. Les exercices pro-
posés sont de méme nature et exigent de I’étudiant qu’il en compose des
solutions rigoureuses et completes. Ce cours est un deuxieme cours d’ana-
lyse et suppose que ’étudiant connait déja les propriétés des fonctions conti-
nues ainsi que celles des fonctions dérivables. Rappelons quelques-unes de
ces propriétés.

On note [a, b] un intervalle compact (c’est-a-dire fermé borné),
la,b] = {x | a <z < b},
]a, b un intervalle ouvert,
la,b[={z|a <z <b}
et (a,b) un intervalle quelconque. (Ces notations présument que a < b). Un

intervalle compact peut étre caractérisé par la propriété suivante :

e Toute suite {z;, },>1 de points de [a, b] contient une suite partielle {zy, }r>1
qui converge vers un point de [a, b] (théoréeme de Bolzano-Weierstrass).

Soit f : (a,b) — R une fonction. Elle est dite continue sur (a,b) si elle
est continue en chaque point xg de (a,b), c’est-a-dire si en chaque point xg
de (a,b),

lim f(z) = f(zo).

T—X(
Un fonction continue jouit des propriétés suivantes :

e [’image d’un intervalle quelconque par une fonction continue est un in-
tervalle (propriété des valeurs intermédiaires).

e [’image d’un intervalle compact par une fonction continue est un intervalle
compact (propriété des valeurs extrémes).



Une fonction f continue et strictement monotone sur un intervalle y
admet une fonction inverse f~! qui est elle aussi continue et strictement
monotone.

Exemple.

Sin € N, la fonction 2 — z'/™ est définie et continue pour z > 0 si n est
pair et pour tout x si n est impair.

La fonction f : (a,b) — R est dite dérivable sur (a, ) si elle est dérivable
en chaque point zg de (a,b), c’est-a-dire si en chaque point g de (a,b), la

limite suivante
z)— f(x
L 1) = Jo)
T—xo T — Xg
existe. On écrit alors
z)— f(x
T—xo T — X
La fonction f est dite contintiment dérivable si sa dérivée f’ est continue.
Le théoréeme fondamental du calcul différentiel est le théoréme des ac-
croissements finis (quelquefois appelé théoreme de la moyenne ou encore
théoreme de Rolle lorsque f(a) = f(b) =0) :
e Si f:[a,b] — R est continue sur [a,b] et dérivable sur ]a,b[, il existe un
nombre ¢ €la, b[ tel que

fb) = fla) = f'(c)(b - a).

L’inverse d’une fonction dérivable est dérivable aux points y correspon-
dant aux points z ol f'(x) #0 (y = f(x) et x = f~1(y)) et alors

Exemple.
Un polynome de degré n,

Po(z) = ag + a1 + agx® + - - + apz",
est dérivable sur tout 1’axe réel et
1

P! (z) = a1 + 2a2x + -+ - + naa™ .

Une fonction rationnelle,




est dérivable aux points ou elle est définie (c’est-a-dire aux points ou le
dénominateur @,,(z) ne s’annule pas) et

B (2)@m(x) — Po ()@, ()
Q7 () '

R(x) =

SipeQ, 4
— P =paP~t 2 >0.
dx

1.1 Exercices 1

Justifier completement toutes ses affirmations.

1. Vérifier que la suite de points de [—1, 1] définie par

14+ (=)™
" 14+n

ne converge pas. En exhiber une suite partielle convergente.

2. Montrer qu’une fonction continue sur un intervalle fermé peut toujours
étre prolongée a une fonction continue sur R tout entier. Cela reste-t-il
vrai pour un intervalle quelconque ?

3. Donner un exemple d’une fonction continue sur un intervalle fermé qui
n’y est pas bornée ou qui n’y atteint pas ses bornes. Méme question
pour un intervalle borné.

4. Montrer qu’une fonction dérivable sur un intervalle fermé peut toujours
étre prolongée a une fonction dérivable sur R tout entier.

5. Les fonctions suivantes sont-elles dérivables en tous les points de leur
domaine de définition :

1/2

V2 g

L R
6. Soient 0 < a < b. Déterminer le point ¢ du théoreme des accroisse-
ments finis pour la fonction f(z) = 2. Méme question pour la fonction

f(x) =23



2 INTEGRATION DES FONCTIONS CONTINUES

L’intégration des fonctions continues repose sur une propriété supplémentaire
de ces fonctions lorsqu’on les considere sur des intervalles compacts.

2.1 La continuité uniforme

Dire d’une fonction f : (a,b) — R qu’elle est continue, c’est dire qu’elle
est continue en chaque point zy de (a,b), c’est-a-dire qu’a chaque point xg
et a chaque € > 0 correspond ¢ > 0 tel que

|z — x| < & et x € (a,b) impliquent |f(x) — f(z0)| < e.
Le nombre § dépend a la fois de x( et de € :
d = d(zo,€).
Lorsqu’il peut étre choisi indépendamment du point z,
5 = d(e),

on dit que la fonction est uniformément continue sur l'intervalle (a,b).
En d’autres termes, une fonction f : (a,b) — R est uniformément
continue sur (a,b) si a chaque € > 0 correspond ¢ > 0 tel que

|z —y| < d et z,y € (a,b) impliquent |f(x) — f(y)| <e.

Exemples.
— La fonction f(z) = 22 est uniformément continue sur [0, 1] puisque :

2% = 9| = (2 + y)(x — y)| < 2lz —y).

— La fonction f(x) = y/x est uniformément continue sur [1,+oo[; en
vertu du théoreme des accroissements finis en effet, il existe z entre x
et y tel que :

|z —y| |z —y|
— — < .

— La fonction f(x) = x* n’est pas uniformément continue sur [1,+o0[;
soient en effet x,, = (n+1/n) et y, = n. On a toujours

2

Fe) = fom)] =2+ 5 > 2

bien que

S |-

|Zn — Yn| =

Aucun nombre d ne peut correspondre a € = 2.



— La fonction f(x) = y/z est uniformément continue sur l'intervalle [0, 1],
en vertu du théoreme suivant.

Théoréme 1 Une fonction f : [a,b] — R continue sur un intervalle com-
pact y est uniformément continue.

Démonstration. Supposons que le théoreme est faux. Il existe alors € > 0 tel
que, quelque soit § > 0, on peut trouver deux points z,y de U'intervalle [a, b]
pour lesquels :

|z —yl <4 et [g(z) —g(y)| > e

Choisissons successivement § = 1,1/2,1/3,1/4,... On obtient deux suites
de points z,, et y, de [a,b] tels que

1
|xn - yn‘ < E et |g(33n) _g(yn)| > €.

Par compacité, la suite {x,},>1 contient une suite partielle {zy, }r>1 qui
converge vers un point z de [a, b]. Comme

1
|.’Enk, _ynk| < nik;j

la suite partielle {yy, }x>1 correspondante converge aussi vers z. Par conti-
nuité, on a donc

Jim (gwa,) = 9(ym)) = 9(2) = 9(z) = 0

ce qui est absurde puisque 'on a toujours

19(zn,,) — 9(yny)| > €
C.Q.E.D.

2.2 Définition de l’intégrale

Soit f : [a,b] — R une fonction continue sur un intervalle compact. A
chaque partition P de l'intervalle,

P ={x0,x1,T2,...,Tp} OU a=x9<x] < < Ty =0>,

associons avec Riemann une somme supérieure S(P, f),

S(P, f) = sup{f(z) | w1 <z < ap}(z — 251),
=1

8



et une somme inférieure s(P, f),

n

s(P,f) = Zinf{f(x) | 21 < @ < zp}(ap — Tp—1)-

k=1

Lorsque la fonction est positive, ces sommes majorent et minorent respec-
tivement 'aire déterminée par I’axe des abscisses, les droites x =a et x = b
et le graphe de la fonction (figure (1) — les points de la partition ne sont
pas nécessairement équidistants).

y
y = f(x)

Fi1G. 1 — Sommes de Riemann

Il est clair que 'on a
inf{f() | a <@ < bh(b-a) < s(P, f) < S(P, ) < sup{f(2) | a < = < b}(b—a)

pour toute partition P. Observons maintenant que, si Q est une partition
plus fine que P, c’est-a-dire si P C Q, on a

S(Q. ) <SP, f)  s(P.f)<s(Q, ) (1)

En effet, il suffit de vérifier ces inégalités lorsque Q s’obtient de P par adjonc-
tion d’un seul point, @ = PU{x*} ; or si j est I'indice tel que z;_1 < z* < xj,
on a

sup{f(z) | zj1 <z < z;}(x; — 1)
=sup{f(z) | zj—1 <a <xj}(z; —ax) +sup{f(z) | zjo1 <z <zj}(r* —xj_1)
> sup{f(z) | wx < @ < @;}(x; — ax) +sup{f(z) | zj—1 < @ < wx}(2 * —xj1)

et les autres termes de la somme S(P, f) restent inchangés. De ceci découle
la premiere des inégalités (1). L’autre inégalité s’obtient de facon similaire.



On déduit de ces relations que, quelles que soient les partitions P et Q, on
a

s(P,f) <s(PUQ, f) <S(PUQ, [) <5(Q,[),

c’est-a-dire que toute somme inférieure est plus petite que toute somme
supérieure. Ainsi

sup s(P, f) < inf S(P, f).
P P
En fait, on a toujours

sup s(P, f) = inf S(P, f). (2)
P P

Cela est une conséquence de la continuité uniforme d’une fonction continue
sur un intervalle compact. Démontrons la relation (2). Soit € > 0 arbitraire.
Soit § > 0 un nombre tel que

[w =yl < & et 2,y € [a,b] impliquent |f(z) — f(y)| <

b—a

Soit aussi
P ={xo,x1,22,...,2n}

une partition pour laquelle
T — Tp_1 < 0 pour tout k.
Soient enfin wug, vy € [rr_1, 2] tels que, pour tout k,
flug) =inf{f(2) | wp—1 <z <k}, flog) =sup{f(z) | 2p—1 <@ < i}
(propriété des valeurs extrémes). Alors
S(P,f)—s(P,f)

=Y (sup{f(2) | wp—1 < @ <y} —inf{f(2) [ po1 < @ < ap}) (@ — 2p-1)
k=1

€

= Y (F(0n) = flu))(ar = wxo1) < 37— (on —wpo1) = €
k=1 k=1

ce qui démontre la relation (2).
On exprime ’équation (2) en disant que la fonction f est intégrable sur
I'intervalle [a, b], d’intégrale :

b
/ f(z)dx =sups(P, f) =inf S(P, f).
a P P

10



Lorsque f est positive, I'intégrale est donc exactement le nombre qui donne

I’aire déterminée par ’axe des abscisses, les droites © = a et £ = b et le
graphe de la fonction.

La signification de l'intégrale ayant été bien établie, nous pouvons main-
tenant donner avec Darboux une fagon plus commode de la calculer (fi-
gure (2) — les points ou la fonction est évaluée ne sont pas nécessairement
équidistants).

AT
RN

F1G. 2 — Sommes de Darboux

Théoréme 2 (Darboux) Quels que soient les nombres

k—1 k
n 76_ ) 7b_ )
Tip € [a+ - (b—a),a+ n( a)l

on a

n—+oo N

/bf(x) dr = lim b—a Zn:f(a;kn)
a k=1

Démonstration. Soit
1 2
n — ) - b - ) - b - ety b
P {aa+n( a)a—i—n( a) }

la partition uniforme de [a,b]. On a

$(Pu ) < 28N fn) < S(Pus 1)

n k=1
et ,
(P f) < / f(@)dz < S(Pa, ).

11



Ainsi

b _al
[ 1@ =205 )| < SCPu.g) - s(Pas
@ k=1

n

Or, en utilisant la continuité uniforme de la fonction f et la propriété des
valeurs extrémes, on voit comme précédemment que

nETm(S(an f) - S(Pm f)) =0.
C.QFD.

Exemple.
On a

n

1
1 k 1 1
/xd:z: lim —E — = lim nt = —.
0 n—-+oon il n—+4oco  2n 2

2.3 Propriétés de l’'intégrale

Les trois propriétés essentielles de I'intégrale d’une fonction continue sont
la linéarité, la positivité et 'additivité.

Théoréme 3 (Linéarité de ’intégrale) Soient fi, fo : [a,b] — R des
fonctions continues et c1,co € R des nombres. Alors

b b b
/(clfl(x)—i—chg(:n))dx—cl/ fl(x)dx+02/ fo(x) dx.

Démonstration. En utilisant les sommes de Darboux-Riemann, on obtient :

:nll)r_i{loob;a; <le1 <a+:(b—a)) + cafo <a+i(b—a)>>

: b—a k . b—a < k
ot S (o o) et S )

b b
:cl/ fl(x)dx+02/ fa(z) dz.

C.Q.F.D.

12



Théoréme 4 (Positivité de ’intégrale) Soient fi, fo : [a,b] — R des
fonctions continues telles que

fi(z) < fa(z) pour a <z <b.

Alors
b b
/fl(a:)dxg/ fa(x) dzx.

Démonstration. En utilisant les sommes de Darboux-Riemann, on obtient :

b _b—ag k
/afl(:z;)da;—nllgloo - %fl <a+n(b—a)>

— n b
SHEIEOObna;*ﬁ <a+§(ba)> :/a f2(£€>d§ﬂ

C.Q.F.D.
L’application de ce théoreme aux fonctions f; = +f et fo = |f| conduit
a ’inégalité du triangle pour les intégrales :

/ab f(z) da

Théoréme 5 (Additivité de I’intégrale) Soient f : [a,b] — R une fonc-
tion continue et a < ¢ < b. Alors

/abf(x)d:v: /acf(m)d:v+/cbf(x)dx.

Démonstration. Soient P, P" et P” des partitions des intervalles [a, b], [a, c] et [c, b]
respectivement. On a donc :

< [V@ia

PU{c} =P UP".

En utilisant les inégalités (1), on voit d’une part que

b
/ f(x) dz = sups(P, f) <sups(P U{c}, f) = sup (s(P', f) + s(P". 1))
a P P PIUPY

c b
< sups(P', f) + sups(P", f) = / f(@)de + / f() da

P! P

13



(exercice (11)) et d’autre part que
PIUP"

/ fla)dz=inf S(P, f) > inf S(PU{c}, f) = inf (S(P, 1)+ S(P". f))

Zi7r>1,f5(77',f)+1nf5’ (P", f /f dw—i—/ f(z

C.Q.F.D.

Il commode de poser

/baf(x)dx: —/abf(:c)dx
/abf(x)dac

est ainsi définie quelle que soit la position relative des bornes d’intégration
a et b — mais la propriété de positivité ne vaut que si a < b.

L’intégrale

Exemple.
Si f :[0,400[— R est continue et lim, .1 f(x) = L,

xT

En effet, quelque soit € > 0,

/f Hdt— I ': /(f(t)—L)dt‘
sxAlﬂ L+ /\f L)t

Yy -y
<Y sup|ft) -+ = sup |f(t) — L
T >0 T >y
y rT—y €
< =
- Stgplf() — 3

des que y = y. est assez grand puis, y ainsi fixé,

1 [* € €
— t)dt — L -4+ =
x/o f(t) '<2+2<e
des que
2y supo () = L
€

14



24

Exercices 2

Justifier complétement toutes ses affirmations.

1.

Montrer qu’une fonction f : (a,b) — R admettant une dérivée bornée
est uniformément continue.

En déduire qu'une fonction rationnelle R : R — R bornée est uni-
formément continue sur R.

Montrer qu’une fonction f : (a,b) — R qui est uniformément continue
sur (a,c] et sur [c,b) lest aussi sur (a,b).

. En déduire que la fonction f(z) = /= est uniformément continue sur

R.

La fonction f(z) = 1/z est-elle uniformément continue sur l'intervalle
]0,1] ? sur 'intervalle [1,+oo[?

Les sommes supérieures et les sommes inférieures de Riemann peuvent
étre calculées pour toute fonction bornée f : [a,b] — R mais il n’est
plus certain que la fonction soit intégrable, c¢’est-a-dire que 1’équation
(2) soit vraie. Considérer avec Dirichlet la fonction indicatrice des
nombres rationnels :

1 size@Q

0 sinon .

Montrer qu’elle n’est intégrable sur aucun intervalle.

Démontrer 'inégalité de Cauchy-Schwarz : si f,g : [a,b] — R sont
continues, alors

/a " fa)a(a) de < \/ / () dx\/ / 2 (a) de.

(Suggestion : choisir le nombre A de facon optimale dans 'inégalité :

b
0< / ((z) + Ag(x))? dx.)

En déduire I'inégalité de Minkowski :

\//ab(f(fC) +9(x))? de < \//abf(x)deJr \//abg(w)gdév-

15




10.

11.

12.

Soit f : [a,b] — R une fonction continue. Montrer qu'il existe ¢ € [a, b]

tel que \
/ f(x)dz = f(e)(b— a).

(Premier théoréme de la moyenne).

Soit f : [a,b] — [0, 4o00[ une fonction continue et positive telle que

/abf(x)dx:().

Montrer qu’elle est identiquement nulle.

Vérifier les relations suivantes :

sup (a+b) <supa +supb,
a€A,bEB acA beB

inf (a+0b)> inf a + inf b.
a€A,beB a€A beB

Soient f : [a,b] — R une fonction continue et {a,},>1 une suite de

nombres convergeant vers a, a, > a. Montrer que

/abf(:r)dx: lim /aif(:n)dm.

n—-+00

16



3 THEOREME FONDAMENTAL DU CALCUL

Le théoréme fondamental du calcul constitue la fagon habituelle d’évaluer
une intégrale. Il en fait aussi apparaitre des propriétés supplémentaires.

3.1 Le théoréme fondamental du calcul

Faisant le lien entre le calcul différentiel et le calcul intégral en montrant
que la dérivation et 'intégration sont les opérations inverses 'une de 'autre,
le théoreme fondamental du calcul a deux facettes.

Théoréme 6 (Théoréme fondamental du calcul I) Soit f : [a,b] — R
une fonction continue. Alors, pour tout x € [a,b],

4 / "y dt = f(a).

Démonstration. Posons .
I(m):/ ft)dt.
a

Soient a < x < b et h > 0 assez petit pour que les points x + h soient dans
[a,b]. On a, en vertu des propriétés de linéarité et d’additivité de 'intégrale,
que

I(x+h) — I(x) 1

et que

I(x —h)—I(z) 1/m
xz—h

de telle sorte que, en vertu cette fois de la positivité,

‘I(:Hh}zf(ﬂﬁ) — f(@)| <sup{|f(t) — f@)] |z <t <ax+h}
et que
‘I(m—fi)h— I(z) — f(2)| <sup{|f(t) — f(@)| |z —h <t <z}

En utilisant la continuité de la fonction f au point x, on voit donc que

lim I(x + h) — I(2)
h—0 h

= f(=).

17



Les cas ou x = a et ou x = b sont similaires. C.Q.F.D.

Remarque.
b x b
/NW:/ﬂWH/ﬂWt

Puisque
d b
| 10 =—fa).

on a aussi

Théoréme 7 (Théoréme fondamental du calcul II) Soit F : [a,b] — R
une fonction continiment dérivable. Alors

b
/ F'()dz = F(b) — F(a).
a
Démonstration. Considérons la fonction
xr
J(z) = / F'(t) dt.
a
En vertu du théoreme précédent, on a
J' (z) = F'(x).

Les fonction J(z) et F(x) — F(a) admettent donc la méme dérivée sur l'in-
tervalle [a,b]. Comme elles s’annulent toutes les deux pour x = a, elles
coincident partout sur U'intervalle [a,b] :

C.Q.F.D.

En vertu de ce théoreme, il suffit donc, pour évaluer

[ rwa

de trouver une fonction F(z) telle que F'(z) = f(x). On a alors tout sim-
plement

b
/ f(x)dx = F(b) — F(a).

(Pour abréger I’écriture, on écrit



Une telle fonction F' se nomme primitive de f (puisque que f est sa dérivée)
ou encore intégrale indéfinie de f. On la dénote par

/ (@) da.

F(z) = / f@)ds & F'(z) = f(z).

En d’autres mots,

Une primitive n’est définie qu’a I’addition d’une constante pres.
Toute fonction continue f admet une primitive, nommément la fonction
définie par I’équation

F(z) = /zf(t) dt

(en vertu du théoreme (6)) mais si cela s’avere étre la seule représentation
disponible de F', elle n’est guere utile pour évaluer l'intégrale « définie » de
f. Cette situation se présente cependant quelquefois. Et, en regle générale,
le calcul des primitives est beaucoup plus difficile que le calcul des dérivées.

Exemple.

pt+1
/a:pdaz: v
p+1

d
%mpﬂ =(p+1)zP.

puisque

On a donc, si 0 < a < b,

b +1 +1
pptl _ op
/:vpdas:a .
a p+1

3.2 Propriétés supplémentaires de l’'intégrale

Le théoreme fondamental du calcul met en lumiere deux autres propriétés
de l'intégrale : I'intégration par parties qui correspond a la regle de dérivation
d’un produit et la formule de changement de variable qui correspond a la
regle de dérivation en chaine (exercice (7)).
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Théoréme 8 (Intégration par parties) Soient F,G : [a,b] — R des fonc-
tions continiment dérivables. Alors

b

a

b b
/Fma@m_ﬂmmg—/pum@m. (3)

Démonstration. Puisque

2 P@)G() = P @)Cla) + Fla)C(a),

F(z)G(z) = /F’(m)G(w) dm+/F(m)G’(x) dx

c’est-a-dire
/Fmdmm:F@qm—/Fma@w

donc

b b

= F(z)G(x)

a

a a

Zﬁ@@@mz/pwg@m

b
a

/F@m@mxb

b
= F(z)G(x) / F'(z)G(z) dx.

C.Q.F.D.
L’utilisation de la formule (3) pour évaluer une intégrale

/ab h(z) dx

repose sur une factorisation judicieuse de la fonction h(z) sous la forme
h(z) = F(z)G'(x).

Exemple.

Soit a évaluer

1
/ vz + ldz.
0

Posant F(z) = z et G'(z) = vz + 1, ona F'(z) = Let G(z) = 2(z + 1)3/2/3.
Ainsi

/m\/x+1dx: gx(a:—l—l)g/z—/;(:r—l—l)?’/de
_2 32 4 52 _ 2 320
= 3x(:n+1) 15(1‘4—1) = 15(:E—|—1) 3z —2)
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et (\/§+1)'

/ xﬁdm——<23/2+2> 15

Théoréme 9 (Changement de variable) Soit ¢ : [¢,d] — R une fonc-
tion continiment dérivable strictement monotone et telle que ¢([c,d]) =
[a,b]. Pour toute fonction continue f : [a,b] — R, on a

/f d:n—/f (t)| dt. (4)

Démonstration. Soit F' une primitive de f. Alors

/ﬂwmd@ﬂszm»

La fonction ¢ effectue une bijection de 'intervalle [e, d] sur Uintervalle [a, b].
Si ¢ est croissante (c’est-a-dire si ¢’ > 0), on a

d
/fwmwwwszw>

b
=P - Fa) = [ f@)ds
d _ _d ’ b
[ rems = —rew)| = -r@+ 7o) = [ j@) i
C.QF.D.

L’utilisation de la formule (4) pour évaluer une intégrale

/f

repose sur sur un choix approprié de la nouvelle variable ¢t = ¢! (x).
Exemple.
Soit a évaluer

1
/ v/ 22 4+ 1dzx.
0

On pose t = 2% + 1 de telle sorte que
dt
dx
I'intervalle 0 < x < 1 correspondant a 'intervalle 1 < ¢ < 2. On a

2 _
/x\/xQ dx—/ \/%fdt t3/21:m1.

=2z > 0,

3
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3.3 Exercices 3

Justifier complétement toutes ses affirmations.

1. Déduire le théoreme fondamental du calcul (théoréme (6)) du premier
théoreme de la moyenne (exercice (9) du chapitre 2).

2. Soient f : R — R une fonction continue et a,b : R — R des fonctions
dérivables telles que a(x) < b(x). Calculer

b(z)
4™ vy ar.
)

dx a(x

3. Soit f : R — R une fonction continue. Calculer

d 1

4. Soit f : R — R une fonction continue et périodique de période 2p
(f(t+2p) = f(t) pour tout t). Montrer que, quel que soit le nombre
:1:7

T+2p 2p
/ fyde= [ ft)adt.

0

5. Soit f : [0,400[— R une fonction continue. Posons

o) =+ /0 " f(t)dr.

X

Montrer que ¢ est croissante si f l’est.
6. Soit p > 0. Calculer
nggloo Z npt1’

7. Déduire la regle de dérivation d’'un quotient de la regle de dérivation
d’un produit.

8. Soit p > 2. Calculer
" knP2
lim

n—-+oo P (k‘ + n)p'

9. Soit f : [-A,A] — R une fonction continue. Montrer que si f est
impaire (c’est-a-dire f(—x) = —f(x) pour tout x),
A
/ f(z)dx =0
—A
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10.

11.

12.

et que si f est paire (c’est-a-dire f(—z) = f(z) pour tout z),

/_1]“(:5) do = 2/0Af(x) da.

Soit f :[0,a] — R une fonction continiment dérivable. Montrer que

af(a) = /0 f(z)do + /Oaxf’(x) dz.

Donner une interprétation géométrique de cette relation dans le cas
ou f'(x) >0et f(0)=0.

Soient F' : [a,b] — R une fonction contintment dérivable, positive et
décroissante et g : [a,b] — R une fonction continue. Montrer qu’il
existe ¢ € [a, b] tel que

/abF(x)g(x) dz = F(a) /:g(x) dz.

(Deuxiéme théoréme de la moyenne — comparer avec le premier (exer-
cice (9) du chapitre 2)). (Suggestion : introduire la fonction

et intégrer par parties.)

Soit p > 0. Montrer qu’il existe un nombre ¢ € [0, 1] tel que

L gp cpt1
[
0 $p+1 p+1
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4 LOGARITHME ET EXPONENTIELLE

Les fonctions logarithmique et exponentielle sont étroitement associées
a I’étude des phénomenes de croissance.

4.1 Le logarithme

On sait que la fonction = — 1/z n’admet pas de primitive rationnelle.
Le logarithme est la fonction log :]0, 400[— R définie par
T dt
logz = —.
1t
(figure (3)). En vertu du théoréme fondamental du calcul (théoreme (6)), le
logarithme est une fonction dérivable et

1
— logz = —.
x

dx

Autre notation : Inz.

y

0.5 1 1.5 2 2.5 3

Fia. 3 — Définition du logarithme

Théoréme 10 (Equation fonctionnelle du logarithme) On a

log xy = logx + logy (5)
et si f:]0,400[— R est une fonction dérivable telle que

flxy) = f(z) + f(y), (6)
il existe un nombre c € R tel que

f(x) =clogx.
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Démonstration. Pour démontrer la premiere affirmation, introduisons la
fonction

¢(x) = logzy — logy

(en fixant arbitrairement y > 0). Comme

#(2) =~ = Lloga

T dx
et comme
¢(1) =0=logl,
on doit avoir
o(x) = log .

Si, d’autre part, f satisfait ’équation fonctionnelle (6), on aura, en dérivant
par rapport a x que, quelque soit y > 0,

yf'(zy) = f'(x)

donc

En passant aux primitives,

fly) = f'(1)logy + K

ot K est une constante. Puisque 1’équation fonctionnelle entraine que f(1) = 2f(1),
f(1) =0 donc K = 0 et on a bien

f(x) =clogz
en posant ¢ = f’(1). C.Q.F.D.

Comme conséquences de I’équation (5), on a

1
log — = —logx,
x
et
logz"™ = nlogx pour tout n € N
donc aussi 1
log at/m = — logx pour tout m € N
m
c’est-a-dire

log 2P = plogz quelque soit p € Q.
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Puisque, de plus,
d? 1
W IOgZE = —? < 0,

le logarithme est une fonction strictement concave qui croit (stricte-
ment) de —oo & 400 lorsque son argument croit de 0 & +oo. Ces données
permettent de tracer son graphe (figure (4)).

La concavité d’une fonction entraine pour cette fonction d’importantes
conséquences. (Exercices (7), (8), (9)).

Fia. 4 — Graphe du logarithme

Remarque.

Le logarithme tend vers +oo avec son argument mais plus lentement que
toute puissance (si petite soit-elle) de cet argument. En vertu de la regle de
I’Hospital, on a en effet, que quel que soit p > 0 :

log . x 1 1

lim = lim = lim — =0.
r—+oo P r—-+00 p;L‘p_l r——+400 pq}p

Exemple.
On estime le nombre N d’atomes dans 'univers visible &

N = 10000000000000000000000000000000000000000
0000000000000000000000000000000000000000.

Le logarithme de ce nombre est

log N < 240.
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Théoréme 11
loge = 1.

Démonstration. Le nombre e est défini par
1 n
e= lim (1 + ) .
n—-+oo n
En utilisant les propriétés du logarithme, on obtient :

1\" 1\"
loge = log < lim <1 + ) ) = lim <log <1 + > >
n—-+o00o n n—-—+o0 n

1 log (1+1) —log1l
= lim nlog <1 + ) = lim og( i ”) o8
n——+00 n n—-+00 1/n

=1.

=1

= log

C.Q.F.D.

4.2 La fonction exponentielle

La fonction exponentielle est la fonction inverse du logarithme, exp : R —]0, +o0],
définie par la relation

expxr =y & x =logy,
autrement dit
exp(logy) =y siy >0, log(expx) =z pour tout z € R.

L’équation fonctionnelle (5) du logarithme se traduit donc par ’équation
fonctionnelle suivante pour I’exponentielle :

exp(z1 + x2) = exp x1 exp Ta.

Théoréme 12 (Equation différentielle de I’exponentielle) On a

d
—exXpx = expx
dzx

et si f: R — R est une fonction dérivable telle que

f'(z) = af(z)

avec a € R, il existe un nombre c € R tel que

f(z) = cexp(azx).
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Démonstration. En vertu de la regle pour dériver une fonction inverse, on a

bien
1 1
—expr=—— =-— =y = expu.
dx diylogy 1/y

D’autre part, introduisant la fonction

g'(x) = f'(x) exp(—azx) — af (z) exp(—az) = (f'(x) — af(z)) exp(—azx) = 0

ce qui entraine
g(x) =c
pour une constante ¢ appropriée. C.Q.F.D.
Comme pour toute fonction inverse, le graphe de la fonction exponen-
tielle (figure (5)) est le symétrique de celui du logarithme relativement a la
bissectrice y = x. Il s’agit d’'une courbe strictement convexe qui croit

(strictement) de 0 & +oo lorsque 'abscisse croit de —oo a 400 et ce, plus
rapidement que toute puissance de cette abscisse (exercice (13)).

20t}
15;

10}

Fi1G. 5 — Graphe de 'exponentielle
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4.3 Exposants irrationnels

Si n € N est un entier naturel, ™ est égal au produit de x par lui-méme
n fois et, lorsque = # 0, 27" est égal & celui de ™! par lui-méme n fois. Si
m € N, la fonction z +— z/™ est la fonction inverse de 2™ (elle est définie
pour tout x € R si m si impair et pour tout > 0 si m est pair). On convient
enfin de poser 2 = 1 lorsque = > 0.

La fonction = — 2P est donc bien définie sur I'intervalle ]0, +o00[ pour
tout exposant p € Q. Observons que 'on a

exp(plogz) = exp(loga?) = zP.

Cette propriété permet d’introduire des exposants irrationnels.
Soit @ € R un nombre réel quelconque. La fonction z — z% est la fonction
10, +00[ — 10, +o00] définie par 1’équation

x* = exp(alogx).
Observons que, en vertu du théoreme (11), 'on a en particulier :
e? = expa pour tout a € R.
Les regles de calcul avec les exposants restent encore vraies.

Théoréme 13 (Reégles des exposants) Soient a,a1,a2 € R et x,y > 0.
Alors

a) (zy)* =ty
b) p1ta2 — 201,02

C) $a1a2 —4 (xal)az

Démonstration. En vertu de la définition que nous avons posée, on a succes-
sivement

a) (xy)a _A ealogmy — ealongralogy — ealogzealogy — $aya;

b) xaﬁ-ag —_ 6(a1+a2)logac — ™ logz+azlogx _ eallogmeag logz _ xa1$a2;

c) (z™)% = exp(azlogx®) = exp(azlog(exp(ailogz))) = exp(agay logx) =

2,
C.Q.F.D.
Une conséquence en est que la formule de dérivation
d a a—1
— % =ax
dx
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reste toujours valable.
Fixons maintenant b > 0, b # 1, et considérons la fonction g : R —]0, +o00|
définie par
g(z) =0b".

Puisque

— g(z) = b"log b,

77 9(@) g
elle est strictement monotone (croissante si b > 1, décroissante si b < 1).
Son inverse est le logarithme de base b, dénoté par log,. Autrement dit

x=logyy < y=>".

4.4 Les fonctions hyperboliques

Le cosinus hyperbolique et le sinus hyperbolique sont les fonctions R — R
définies par les relations

coshz = —5 sinhz =
respectivement.

Théoréme 14 Les fonctions hyperboliques jouissent des propriétés suivantes :
a) cosh?z —sinh?z = 1;
b) cosh’xz = sinhx , sinh’z = coshz ;

c) cosh(z +y) = coshz coshy + sinh x sinh y,
sinh(z + y) = sinh x cosh y + sinh y cosh x.

Démonstration. En vertu des définitions que nous avons posées, on a
successivement
a)
6290 92+ 67290 62:1: —24 672:1:

cosn- simn- xr 4 4 N

b)
et —e eX+e*

/ . : /
cosh’ x = =sinhz , sinh'z = — = cosh x;
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cosh z cosh y + sinh z sinh y

em+y + ezfy + efery + 67277:9 + ez+y — exfy — 671‘+y + efmfy

4 4
e:ery + ef:rfy

=y = cosh(z + y),

sinh z coshy + sinh y cosh

ea:—l—y + eT™Y e—ac—l—y —e Ty p eac+y — ey + e—ac+y —e Ty
B 4 4
ea:—i—y — e Ty )
= f = Slnh(l’ + y)

C.Q.F.D.

Les graphes des fonctions hyperboliques se déduisent de celui de 1’expo-
nentielle.

Fi1G. 6 — Les fonctions hyperboliques

Sa dérivée étant strictement positive, le sinus hyperbolique est une fonc-
tion strictement croissante et admet une fonction inverse partout dérivable,
I’arcsinus hyperbolique, arcsinh : R — R.

En résolvant ’équation quadratique

e —1=2ye"

a l'aide de la formule de Viete, on trouve

e =y+1+1y2
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c’est-a-dire
arcsinhy = log(y + /1 + y?).

En dérivant cette derniere relation ou en utilisant la formule pour la dérivée
d’une fonction inverse, on obtient enfin

1
VTP

Le graphe de I’arcsinus hyperbolique s’en déduit.

— arcsinhy =

dy

3t

2L

-10 -5 5 10

Fiag. 7 — L’arcsinus hyperbolique

4.5 Exercices 4

Justifier complétement toutes ses affirmations.
1. Soit

n
T, = — —logn.
n L g
k=1
Montrer que la suite {z;, },en est décroissante et minorée par 1 —log 2
— sa limite est la constante d’Euler-Mascheroni, dénotée ~.

2. Déterminer toutes les fonctions |0, +00, [ — |0, +00[ dérivables qui sa-
tisfont ’équation fonctionnelle

flzy) = f(2)f(y)-

3. Tracer le graphe de la fonction

Fz) = log:L"

X
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. Calculer les limites suivantes :

a)

lim 2% log x
r—0

b)
lim z*
x—0
c)
lim /%
x—0
d)
lim z!/*.
T——+00

. Soient 0 < a < b. Lequel des deux nombres suivants est le plus grand :
a® ou b*?
. Calculer
T\ "
lim (14"
n

n—-+4o0o

. Soit f :]a, b[— R une fonction deux fois dérivable et telle que f”(x) > 0.
Montrer qu’elle satisfait I’inégalité de convexité suivante :

o — I3 r3 — I1

f(z2)

1 <23 < Ty = f(l'g) <

f(x1) +

T2 — I T2 — T

qui exprime que son graphe est situé sous n’importe laquelle de ses
sécantes (figure (8)). (Suggestion : utiliser le théoreme des accroisse-
ments finis.)

. Vérifier que I'inégalité précédente peut s’écrire
Jaz1 + Aawa) < Ay f(z1) + Ao f (22)

avec
A >0,2>0 et Ay +X=1

(une combinaison convexe de deux nombres). La généraliser a une
combinaison convexe de n nombres

n n
f <Z )\kl’k> <> Mef ()
k=1 k=1
par récurrence sur n (inégalité de Jensen).
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9. Soit f :]a, b[— R une fonction deux fois dérivable et telle que f”(x) > 0.
Montrer que quel que soit xy €]a, b|, le graphe de f est situé au-dessus
de sa tangente en xg :

f(x) > f(xo) + f'(x0)(x — x0)

(figure (8)).(Suggestion : utiliser le théoreme fondamental du calcul.)

| e graphe de f

une sécante

\< une tangente

F1G. 8 — Une fonction convexe

10. Démontrer 'inégalité entre la moyenne arithmétique et la moyenne
géométrique de n nombres positifs x1,xo,..., 2y :

1
Yarws o < (1@t T,

11. Démontrer I'inégalité entre la moyenne géométrique et la moyenne
harmonique de n nombres strictement positifs x1, 2o, ..., 2y :

n
< Yzixo Ty

o1+ 1 xo+ -+ 1/xy —

12. Montrer que
loge <z —1.

13. Montrer que
e >z +1.

En déduire directement (c’est-a-dire sans utiliser la regle de ’'Hospital)
que, quel que soit n € N,

x?‘L

lim — =0
r——+o00 et
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14.

15.

16.

17.

18.

(Suggestion :
z _ z/2 1

et T ex/2 pu/2’

raisonner par récurrence sur n.)

Déterminer toutes les fonctions R — R qui satisfont I’équation différentielle
fl(@) = —af(2).
Déterminer la solution de I’équation logistique :

fl(@)=af(x)(b= f(z)), x>0

ona>0etb>0si0< f(0)<b.

Montrer que
logy
logh’

log, y =

La fonction tangente hyperbolique est définie par

Vérifier qu’elle satisfait ’équation différentielle
fla) =1~ f*(x).

Exprimer tanh(z+y) en terme de tanh z et de tanh y. Tracer le graphe.

Vérifier que la tangente hyperbolique admet une fonction inverse, I’arc-

tangente hyperbolique, arctanh :] — 1, 1[ — R. Montrer que
1 1
arctanh y = — log + g
2 1—y

Calculer la dérivée de cette fonction et tracer son graphe.
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5 FONCTIONS TRIGONOMETRIQUES

Les fonctions trigonométriques sont étroitement associées a 1’étude des
phénomenes périodiques.

5.1 Définition des fonctions trigonométriques

Le nombre 7 est, par définition, égal a I'aire du disque de rayon unité :
1
7r=2/ V1—22dx.
—1
Pour —1 <y <1, posons

1
arccosy=2/ V1=12dt +y\/1—y>?
y

(figure (9) — arccosy représente 'aire du secteur (pour vérifier cette affir-
mation, distinguer suivant que y est positif ou négatif)).

F1G. 9 — Définition de ’arccosinus

La fonction ainsi définie est continue sur [—1, 1] mais dérivable seulement
sur | — 1,1[ ou
-1

— arccosy =
dy y
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Elle est strictement décroissante, de 7w a 0 lorsque son argument y croit de
—1 a 1. Donné 0 < x <, il existe donc un et un seul nombre —1 <y <1
tel que

arccosy = .

Les fonctions trigonométriques cosinus et sinus sont définies pour 0 < x < 7

par les relations

cosz =y, sinx =+/1—1y2.

Elles sont prolongées a ’axe réel R tout entier en posant d’abord, pour
-1 <x <0,
cosz = cos(—x) , sinz = —sin(—x)

et ensuite, pour n € Z,
cos(z + 2mn) = cosx , sin(x + 27n) = sinx.

Observons les valeurs remarquables

0=1 us 1 0 0 37 1 1
cos0=1, cos—=—,cos—=0, cos— =——=, cosT = —
NG 2 4 V2
et 3
sinO:O,sinE: sinzzl,sin—ﬂ-: , sinm = 0.

1 1
42 T2 42
Observons aussi que la relation

cos’z +sin’x =1

reste valable sur tout 'axe réel.
Les fonctions périodiques de période 27 ainsi obtenues sont continues :
ainsi, pour le cosinus,

lim cosx = lim cos(—z) = lim cosz = cos0

z—0— z—0— z—0+
et
lim cosx = lim cos(z —27) = lim cosz
T—T+ T—T+ z——7+
= lim cos(—z) = lim cosw = cosm.
z——7+ W—T—

Elles sont méme dérivables et satisfont les relations

— cosz = —sinz , d—sinm:cosm. (7)
x

dzx
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i nus
. 5¢
-6 \-4 \ - 2 4 6
-0./5
cosi nus
_1,

Fi1G. 10 — Le sinus et le cosinus

Vérifions par exemple, la premiere de ces relations. Lorsque 0 < z < 7
tout d’abord, on a :

d 1 1 .
g COsT = FA— =——=—-V1—-y>=—snzx
dy Y /1—y2

Considérons ensuite les points de raccordement. En z = 0, on a, en utilisant
le théoreme des accroissement finis — dans ce qui suit 0 < hy < h,

h—1
lim 2V lim —sinhy = —sin0
h—0+ h h—0+
et
—h)—1 h—1
lim M = lim SR 2 lim sinhj =sin0 = —sin0.
h—0+ —h h—0+  —h h—0+
Enz=mw
—h) -
lim cos(m — h) — cosm = lim —sin(m —hy) = —sin7
h—0+ —h h—0+
et
. cos(m+h)—cosm . cos(—m+h) —cosm
lim = lim
h—0+ h h—0+ h
cos(m — h) —cosm L . .
= lim = lim sin(m — hy) =sin7m = —sin .
h—0+ h h—0+
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Ces diverses relations permettent de tracer les graphes des fonctions
trigonométriques sinus et cosinus (figure (10)).

La fonction tangente est la fonction définie par la relation

Si 2 1
tang = oL & g %+ M, €.
0s T 2
Son domaine de définition « naturel » est l'intervalle | — 7/2,7/2[. Elle
satisfait la relation J
s tanz = 1 + tan® (8)

comme il est aisé de le vérifier a partir de la définition. On en déduit 'allure
de son graphe (figure (11)).

1.5 -1 - 0.5 1 1.5

F1a. 11 — La tangente

5.2 Propriétés des fonctions trigonométriques

Théoreme 15 (Equation différentielle de sinus et cosinus) Les fonc-
tions sinus et cosinus sont deux solutions de l’équation différentielle

f'(@) + fx) = 0. 9)

Si, réciproquement f : R — R est une fonction deux fois dérivable qui
satisfait I’équation précédente, il existe deux nombres a,b € R tels que

f(x) =acosx + bsinx.
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Démonstration. La premiere affirmation suit des relations (7). Pour démontrer
la seconde, posons a = f(0),b = f(0) et considérons la fonction
g(z) = f(x) —acosz — bsin .

Elle satisfait I’équation différentielle

g"() +9(z) =0

sous les conditions initiales

9(0) = g'(0) = 0.

Introduisons alors la fonction

h(z) = g*(x) + ¢'*(x).

Comme
h(z) = 2¢'()(9(z) + ¢"(x)) = 0,
on doit avoir
h(z) = h(0) =0 pour tout x

c’est-a-dire que

g(z) =0 pour tout x.
C.Q.F.D.

Théoréme 16 (Formules d’addition) Quelques soient x,y € R, on a :

sin(z + y) =sinz cosy + siny cos x

cos(z + y) =cosz cosy — sinzsin y.

Démonstration. La fonction f(z) = sin(x + y), (y fixé), satisfait '’équation
différentielle (9) et est donc de la forme f(x) = acosz + bsinz. Puisque
f(0) =siny et que f/(0) = cosy, il faut que a = siny et que b = cosy ce qui
démontre la premiere formule.

La démonstration de la seconde est similaire. C.Q.F.D.

Les relations suivantes sont un cas particulier fréquemment utilisé :

2 2

cos2x = cos” x —sin“x , sin2x = 2sinx cosx.

La formule d’addition pour la tangente suit du théoreme : si z,y et = +
y # (2k 4+ 2)7/2 avec k € Z,

tan(z + y) tanx 4 tany
n(x =
Y 1+ tanztany
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Théoréme 17 (Relations d’orthogonalité) Quelques soient m,n € Ny,
on a :

+7
/ cosmzx sinnx dr = 0

—Tr

- T Sim=mn

A 0 sim#n
cosmx cosnr dr =

- T Sitm=n.

T . 0 sim#n
sinm sin nx dx =

Démonstration. En vertu des formule d’addition, on a, par exemple,

+m +m
cos(m —n)x + cos(m +n)x
/ cosmx cosnr dr = / ( Jo + (m +n) dx.

- -7 2

Sim # n, on en tire

+7T 1 . _ 3 e
/ cosmx cosnx dr = — <s1n(m n)e + sin(m + n)x) =0

- 2 m—n m-+n -

alors que si m = n, on obtient
/‘HT 9 1 sin 2max \ |7
cos“mxdr = - x4+ ———— =T.
£ 2 2m -
Les autres cas sont similaires. C.Q.F.D.
5.3 Les fonctions trigonométriques inverses
La fonction arccosinus (figure (12)), arccos : [—1,1] — [0, 7], est définie

par la relation
1
arccosy = 2/ V1—1t2dt +yy\/1— 92
y

comme nous I’avons vu. Elle est continue sur [—1, 1] et dérivable sur |—1, 1],

avec
-1

— arccosy =
dy y
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C’est une fonction strictement décroissante et 1’on a
cos(arccosy) =y , y € [—1,1]

et
arccos(cosz) =z , x € [0, 7).

Cependant, la fonction cosinus étant une fonction paire et périodique de
période 27, elle n’admet pas d’inverse globale et de la relation cosz = y on
ne peut pas conclure que x = arccosy. En fait, on a

cosx =y < x = tarccosy + 2km avec k € Z.

3,
ar ccosi nus 2
1,

-1 -0.5 0.5 1
arcsi nus -1;

F1G. 12 — L’arcsinus et 1’arccosinus

La fonction sinus étant strictement croissante sur [—7/2,7/2], elle y

admet une fonction inverse continue mais dérivable seulement sur | — 1,1]
(parce que sin’(£7/2) = 0). La fonction inverse est 1’arcsinus (figure (12)),
arcsin : [—1,1] — [-7/2,7/2]. On a donc

sin(arcsiny) =y , y € [-1,1]
et
arcsin(sinz) =z , x € [1/2,7/2].
Comme cosz > 0 lorsque —7/2 < & < 7/2, on a pour tout y €] —1,1] :

. 1 1 1 1
— arcsiny = = = =
dy y

d o - ;
7z sz COs T V1—sin?z 1—y?

42



1.5¢

-10 -5 5 10

-1.5¢
Fia. 13 — L’arctangente

c’est-a-dire que la fonction arcsiny + arccosy est constante; calculant sa
valeur a l’origine, on obtient :

. ™
arcsiny + arccosy = 5

La fonction tangente croit (strictement) de —oco & oo lorsque son argu-
ment croit de —m/2 & 7/2. La fonction inverse est la fonction arctangente
(figure (13)), arctan : R —] — 7/2,7/2[. On a donc

tan(arctany) =y, y € R

et
arctan(tanz) =z , x €] — /2, 7/2[.

En vertu de 'équation (8), la dérivée de cette fonction est une fonction
rationnelle :

— t = .
a arctany = 7 T

5.4 La notion d’angle

Les fonctions trigonométriques introduites précédemment via le calcul
intégral sont bien les mémes que celles introduites en trigonométrie pour
I’étude des triangles. C’est qu’en effet la définition correcte de la notion
d’angle repose sur la fonction arccosinus.
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Soit P; le point de coordonnées cartésiennes (z;,v;) du plan (i = 1,2, 3).
L’angle u formé par les segments P, P, et P; Ps est, par définition,

(x2 — 1) (z3 — 1) + (Y2 — v1)(y3 — v1)
V(2 —21)2 4+ (y2 — y1)2/ (w3 — 1)% + (y3 — 11)?

(figure (14), exercice (13)).

U = arccos

F3

P>

F1G. 14 — Angle entre deux droites

Introduisant la distance d(P;, P;),

AP, By) = /(@i — 27)% + (i — vj)?,
cette définition peut s’écrire
d?(Py, P3) = d*(Py, Py) 4+ d*(Py, P3) — 2d(Py, Py)d(P, P3) cosu
(loi des cosinus), ce qui se réduit a
d*(Py, P3) = d*(Py, Py) + d*(Py, P3)

lorsque u = 7/2 (théoreme de Pythagore).
Ces équations entrainent les relations suivantes pour un triangle rec-
tangle (figure (15)) :

A2y c?-B2 A 1 A? .
cosu=—————=—  sinu= —— =—, tanu= —.
2AC C cz C A
Ces relations sont bien celles que l'on utilise en trigonométrie pour définir
les fonctions trigonométriques.
Il y a une autre fagon de calculer un angle : en utilisant la longueur d’arc.
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A

Fia. 15 — Le triangle rectangle

Une courbe plane simple C est définie par un paramétrage
z=z(t), y=yt), t€(ab),
ou z(t) et y(t) sont des fonctions continiiment dérivables telles que
()2 + 9 (t)* >0
(ce qui signifie qu’elle admet une tangente en chaque point) et
x(t1) = x(t2) , y(t1) = y(t2) et ty,ts €la, bl = t1 =t

(c’est-a-dire qu’elle ne se recoupe pas). La courbe est fermée si

Si t = t(s) est une fonction contintiment dérivable de s € (¢, d) telle que
t'(s) # 0, les équations

= a(t(s)) = a1(s) , vy = y(t(s) = 11(s) , 5 € (c,d),

représentent la méme courbe C, parcourue a une vitesse différente, dans le
méme sens si t'(s) > 0 et dans le sens contraire si t/(s) < 0.
La longueur L¢ de la courbe C est, par définition, le nombre

Le = L
c=)\Na Ta



Comme il se doit, ce nombre ne dépend pas du paramétrage retenu pour la
courbe :

b lda?  dy? b lda(t(s))?  dy(t(s))? | ds
/a\/a +$d’f—/a is T ds  |dt

doy? | dy? |ds do®  dy®

dt

en vertu de la formule du changement de variable (théoreme (9)).

De plus, il redonne bien, dans le cas d’un segment de droite, la distance
entre les extémités : un paramétrage possible pour la droite D d’extrémités
Py et P, est en effet

r=(1=-t)x1+tre, y=1—t)y1 +ty2, 0 <t <1,

ce qui conduit a

1
Lp = /0 V(e —21)2 + (42 —y1)2 dt = /(22 — 21)% + (2 — 1)

F1a. 16 — Angle et longueur d’arc

Calculons alors la longueur d’un arc C; du cercle de rayon unité. En vertu
des propriétés des fonctions trigonométriques, un paramétrage possible est

x=cost, y=sint, 0<t<wu (ou0<u<2m).
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(figure (16)). On a donc

Le, = / V(= sint)2 + (cost)2 dt = u.
0

Chacune des définitions présentée ci-dessus permet d’étendre la notion
d’angle & une situation différente; celle avec I'arccosinus permet de définir
l’angle dans un espace & un nombre quelconque (éventuellement infini) de
dimensions, celle avec ’arc de cercle permet d’introduire la notion d’angle
solide dans I’espace usuel.

5.5 Exercices 5

Justifier complétement toutes ses affirmations.

1. Montrer que .
sin x
lim =1.
z—0 X

2. Vérifier que la fonction sinus est concave sur l'intervalle [0,7/2]. En
déduire que :

T 2z .
0<z<—- == — <sinzx <.
2 ™

3. Est-il vrai qu’une fonction dérivable est périodique si et seulement si
sa dérivée 'est 7

4. Vérifier que la fonction f : [0,1] — R définie par :

.1 .

sin= siz#0,
flz) = T

0 si =0

est discontinue mais possede quand méme la propriété des valeurs in-
termédiaires.

5. Obtenir la solution générale I’équation différentielle suivante :
f'(x) + Wi f(z) = €.
6. Montrer que la solution générale de ’équation différentielle

f'(@) = flz) =0

est
f(z) = acoshzx + bsinh .
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7.

10.

11.

12.
13.

Exprimer sin3z en terme de sinz. En déduire la valeur de sinn/3.
Calculer sin7/5 par la méme méthode.

Montrer que, quels que soient les coefficients aq, b1, . . ., an, by, ’équation
ajcosT +bysinz + .-+ apcosne + b,sinnz =0
possede toujours au moins une racine dans l'intervalle | — , 7].

Montrer que si

1 n
T(x) = -ag+ Z(ak cos kx + by sin kx),

2
k=1
on a
1 [t
ak:/ T(x)coskxdx , (k=0,1,...,n)
™ —T
et
I
bk:/ T(z)sinkxdx , (k=1,2,...,n)
™ —T

(formules de Fourier pour les coefficients d’un polynéme trigonométrique).
Soient —m < 1 < x9 < w3 < 7 et Y1, Y2, y3 des nombres quelconques.
Déterminer un polynome trigonométrique de degré un,

1
T(x) = 50 +aicosz + by sinz,

tel que
T(z;))=vyi, (i=1,2,3).
Montrer que la fonction f(y) = cos(narccosy) est un polynoéme de
degré n en y. (Suggestion : raisonner par récurrence sur n).
Montrer que la fonction arctan n’est pas une fonction rationnelle.
Si
x = (21,22,...,%n) € Yy = (Y1,Y2,- -, Yn),

soient
n
Xy = Z TkYk
k=1

et

IIx|| = Vx . x.
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Démontrer 'inégalité de Cauchy-Schwarz :

.y < x|yl

et discuter le cas d’égalité (comparer avec I'exercice (7) du chapitre
2). Vérifier aussi la relation

e = yII* = [Ix[* + [ly[* = 2x. y.

14. Montrer que la somme des angles intérieurs d’un triangle est égale a
7. (Suggestion : commencer par un triangle rectangle.)

15. Calculer I'aire déterminée par ’ellipse

Le calcul de sa longueur est-il aussi facile ?
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6 CALCUL DES PRIMITIVES

La famille des fonctions introduites est fermée sous I'opération « calcul
de la primitive ». En particulier, elle permet de trouver une primitive a toute
fonction rationnelle.

6.1 Primitives des fonctions analytiques usuelles

Les entrées de la petite table suivante peuvent étre vérifiées en dérivant
le membre de droite. Elles ont été obtenues soit directement, soit par une
intégration par parties,

[ t@ydo=ap(@) - [af (@) ds,

et/ou par un changement de variable simple (y = 1 + 2%, y = arcsinz,
y = arcsinh ).

L op+l
/xpdx: sip#—1 pour x>0
p+1
2. )
/dm:logx pour z > 0
x
3.
/exdx:ex
4.
/logazdazleogm—x pour = >0
5.
/cosxd:v:sin:c
6.
/sinxdx:—cosa:
7.

T
/tanxdm = —logcosz pour |z| < 5
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/arccosxdx = xarccosz — /1 — 122 pour |z| <1
9.
/arcsinxdx = zarcsinz + /1 — 22 pour |z| <1
10.
/arctanw dr = xarctanx — log /1 + 22
11.
/ coshz dz = sinhz
12.
/ sinh x dr = coshx
13. .
/ V1—22de = §(arcsinx +zv1—22) pour |z| <1
14. .
/ V1+22de = g(arcsinh x+ a1+ 2?)
15. S
———dx = arcsinz pour |z| <1
| = pour |z
16.

dx = arcsinh z

/ 1
V14 22

On utilise quelquefois des « formules de réduction » pour calculer cer-
taines primitives par récurrence. En voici un exemple.

Soit N > 2 un entier naturel. Alors

/sinNa?dw = /sinN2 rdr — /sinN2 x cos® x dx
= /sinN_2 xdx — </(SimN_2 X cosx) cosxdm)

: N—1 - N-1
3 s
= /sinN2xdx— (bljli]_lzcos:c—i— % sinxdm)

S N-1 N
. N— sin
:/smN 2rde —

X COS X sin® x
N -1 N -1

dx
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de telle sorte que

1 i N—1
/Siandl' (1+]V—1> :/Sil’lNQl’dLIj‘— w

Autrement dit :

L N—-1
N -1
/siand:z: -2 ]\f T+ ~ sin® "2 z dz. (10)

La formule de Wallis est une belle application de cette derniére relation.

Théoréme 18 (Le produit de Wallis)

. 2-2:4-4-6-6---2n-2n
lim .
n—4001-3-3:5-5---(2n—-1)-(2n—1)-(2n+1)

NN

Démonstration. En vertu de I’équation (10), on a

/2 N —1 /2
/ sinV pdr = ——— sinV 2 ¢ dx
0 N 0

de telle sorte que, par récurrence sur n,

/ sin® z dx = i n 3/ dx
0 2n 2n -2 2 Jo

c’est-a-dire

/2 1-3-5-7---(2n—1)m
:.2n

dr — -z

/0 S e 2.4-6---2n 2

et que

/ sin?"t x dzx = noanTe / sinz dz
0 2n+12n—-1 3 Jo

c’est-a-dire

(11)
Ainsi

x [TPsin® e dy 2.2-4-4-6-6---2n-2n

2 [Pt gy 1-3-3-5-5--(2n—1)- (20 —1)- 2n + 1)’
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Le résultat suit donc des inégalités

L < foﬁ/2sin2”xdm 2n+1 fgr/Qsin%a:d:v - 2n +1 1+ 1
N fOW/2 sin?"t! x dx 2n fOW/Z sin?" lypdy = 2n 2n’
C.QF.D.
Remarque.

On utilise souvent la forme équivalente plus simple

T 2:4-6---2n

= lim
2 n>403.5-7---(2n—1)y2n+1

du produit de Wallis.

(12)

6.2 Primitives des fonctions rationnelles

Les entrées de la petite table suivante peuvent étre vérifiées en dérivant
le membre de droite. Elles ont été obtenues soit par une décomposition
en fractions partielles ou soit par un changement de variable simple (apres
complétion du carré).

1.
dx 1 T
= 1 b
e e e
2.
o 1 r+ A
= t _ 'B_A2 0
/$2+2Ax—|—B marcanm si >
3.
xdx a b
= 1 o 1 b )
/(LU—a)(:E—b) a_bog’$ al a_b0g|$ | pour x # a,
4.

z+ A
arctan

/xdx Clog Va2t 9Ar 1 B — — A _rra
5 VB _ A2 VB _ A2

24+ 2Ax + B
siB—A%2>0
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La primitive d’une fonction rationnelle R = P/Q quelconque peut s’ob-
tenir en factorisant son dénominateur (),

Q) = [[(@ = ap [[(=* + 24,2 + B;)%,
i j

(dans un cours d’analyse complexe, on montre que tout polynéme a coeffi-
cients réels admet une telle factorisation) puis en la décomposant en fractions
partielles :

o M Bj
e A e — y
il = A zz: (@—a) ' z]: (22 + 24,2 + Bj)*s’

(A est un polynéme, identiquement nul si le degré du numérateur P est stric-
tement plus petit que celui du dénominateur ). Une formule de réduction
peut ensuite s’avérer nécessaire.

En vertu du théoréeme du binéme, on a

[ - [t 5 (-

Par suite, si 1 <k <n—2,

/ z* dx i _;(x—a)ytt y
~—————— pourx #a
(x —a)™ t—n—+1 P

=0
alors que
lEnildiL‘ n—2 n—1 . Zx—a’"+1
[ =2 (7 ) e —a) pouwa >
i=0
On a
/ dx  VB- A& / dy
(22 +2Ax+ B)» (B — A?)n | (y2 4 1)»
en posant

o+ A
YT UB_ &
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De plus,

/ <x2d+$1>n :/ (gﬂ(;t iﬁi)dx:/ (a2 ﬁ)nl ‘/ "”U(:fjm

= / @ fi)nl + 2(n1— ) <(a:2 +$1)nf1 _/ S fﬁ)nl)

c’est-a-dire
/ dzx _ 1 T p 2n — 3 / dx (13)
2+ 1) 2(n—1)(@2+ 1)1 2p—2 ) (224 1) !
et,sil<k<2n-—1:

/ z* dx —/wk_l xdx

(1‘2+1)n U (x2+1)n

1 k=1 k—1 / 22 dg
(

2D @+ 1 T am-1) @+

Exemple.

1,401 _ )4
/ 35(12 x) da:ZQ_m (14)
0 441 7

En effet, en divisant le numérateur par le dénominateur, on trouve

4 4
1- 4
u =% — 425 + 50t — 42 + 4 —
w2 +1 22 +1
ce qui conduit, par intégration, a la relation (14). Cette derniére entraine en

particulier
1

0< 22 </1 Y1 -x)td
— -7 x(l—x) dr = —
0 630

7
d’ou D'estimation
3,141 < w < 3,143.

6.3 Exercices 6

Justifier complétement toutes ses affirmations.
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. Calculer

/ tanh x dzx.

. Calculer
/ arctanh x dx.
. Montrer que
1 w/2 -
/ 2™(1—2)"dx = 2/ sin2™t 4 cos2t pdp — ™
0 0 (m+n+1)!

. La probabilité d’observer autant de piles que de faces lors de 2n lancers
d’une piece de monnaie non-biaisée est

2n\ 1
D n ) 22n°

Montrer que

nEIJPoo pn =0

. Calculer
23 dx

m , T > 1.
. Calculer

/ 23 dx

(.%'2 + 1)2 :

. Calculer

/ 23 dx
(2424 1)2

F1G. 17 — Une substitution
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. Soit 0 < y < 1. On considere le triangle rectangle de cotés 1 — y2, 2y
et 1+ y2. Montrer que 'angle = opposé au coté 2y vaut 2 arctany. En
déduire que la substitution x = 2 arctan y entraine

1—y? . 2y
et sinx = .
+ y? 14 y?

COST —

. Calculer

1+ cosx T
—dr, || < =.
1+sinz 2
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7 INTEGRALES IMPROPRES

La définition de l'intégrale d’une fonction continue sur un intervalle n’a
plus de sens si ce dernier n’est pas compact.

7.1 Généralisation de I’intégrale

Soit f : (a,b) — R une fonction continue (—oo < a < b < 400). Elle est
donc intégrable sur tout intervalle compact [a, §] entiérement contenu dans
(a,b). Par définition,

/abf(x)da:: lim /jf(a:)dm

a—at, B—b—

si la limite existe (c’est-a-dire si I'intégrale est convergente — elle peut étre
divergente). On généralise ainsi la notion d’intégrale (exercice (12) du cha-
pitre 1) au cas ou l'intervalle d’intégration ou la fonction & intégrer (ou les
deux) ne sont pas bornés.

De fagon explicite, dans le cas par exemple de Uintervalle (0, +00), dire

que
+oo
/ flz)de =1
0

signifie qu’a chaque € > 0 correspondent § > 0 et M > 0 tels que

B
/ f(x)dx—[‘<e

0<a<d et B> M impliquent

ou, de maniere équivalente, que pour toutes suites {ay, nen et {Bn}tnen de
nombres positifs,

Bn
lim a,=0 et lim [, =400 impliquent lim f(z)de = 1.
F n—+o0 n—+oo J,
Exemples.
/+oo dx . /B dx
—5— = lim -
o 22+1  Botoofy 2241
= lim arctanx’ = lim arctang = E;
+o0 Jéj 8
/ e Pdr= lim e %dr= lim —e % =1—eP"=1.
0 B——+o0 0 B——+o0 0

o8



Exemple. Soient 0 < o < . Puisque
/5 dzx B
log:r
a T
B dx Pt 3 gptl o~ P+l
[%- {

o —p+l —p+1l
I'intégrale impropre

=logf — loga

et que, si p # 1,

L da
o P

diverge si p > 1 et

Ldx 1 .
— = si p<l1
o 2 1=p

T dy
e
diverge si p < 1 et que

/+°°dx 1 oS
—_— = S1 .
1 xP p—l p

T dg
o P

est divergente quelque soit p > 0.
Les propriétés de linéarité, de positivité et d’additivité (théoremes (3),

(4) et (5)) restent valables pour les intégrales impropres. Par exemple, si les

intégrales
b b
[ hwdn et [ falwde

sont convergentes et a;,as € R,

ap /b fi(z)dz + as /be(IE) dx

B
=a lim / fi(z)dz + ay lim / fo(x) dx

a—a+, f—b— a—a+, B—b— J,

alors que l'intégrale impropre

Ainsi, I'intégrale

a—a+, B—b—

b
~  lm / (@12(2) + a2fofa)) da = [ (@ file) + arfa(a)) da
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De méme, la formule du changement de variable et celle de I'intégration
par parties (convenablement adaptées) (théoremes (8) et (9)) sont encore
vrales (exercice (1) ).

L’étude de la convergence des intégrales impropres est semblable a I’étude
de la convergence des séries infinies.

Lorsque la fonction intégrée est positive, il n’y a que deux possibilités, a
savoir, la divergence vers 400 :

/abf(:v)d:r:: +o0

ou la convergence vers un nombre fini, ce que 'on dénote par

b
/ f(z)dr < +o0.

/jn f(z)dx

croissent lorsque oy, | a et B, T b (exercice (2)).

En conséquence, le critere de comparaison entre intégrales impropres de
fonctions positives est applicable. De méme, la convergence absolue d’une
intégrale impropre entraine sa convergence simple (exercice (3)).

En effet, les nombres

Exemple.
L’intégrale

+oo
/ sin 22 dx
1
est convergente. En effet,

/ﬂ a2 d /52 sinyd —Ccos Y
sinz® dx = Yy =
1 12V 2y

B2 B /52 cosy dy
de telle sorte que

+o0o 1 +oo
sinz? dr = s _ it A dy
1 2 1 4 y3/ 2

(cette derniére intégrale est absolument convergente). Cet exemple illustre
le fait qu’une intégrale impropre peut converger sans que la fonction intégrée
f(x) ne tende vers 0 lorsque x — +00 — a la différence des séries.
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Théoréme 19 (Test intégral) Soit f : [1,+oo[— R une fonction conti-
nue, positive et décroissante. Alors la série Y ;25 f(k) et lintégrale f1+oo f(z)dzx
convergent ou divergent simultanément.

Démonstration. Les inégalités

k+1
Fl+1) < /k f(@)dx < f(k)

entrainent les inégalités

+o0 400 +oo
SUCEN INIOTES ST}
k=2 1 k=1
C.Q.F.D.
f (k) Feo
f (k+1)
k k+1
Fia. 18 — Comparaison de séries et d’intégrales
Exemple.
La série
+oo
1
kp
k=1

converge si et seulement si p > 1, par comparaison avec l'intégrale
T dy
P

e}

On a de plus 'estimation

1
— <

1 Sp
-

1
114:1” p—1

M+

i



7.2 La fonction gamma

+oo
/ t* et dt
0

converge si et seulement si x > 0. En effet, puisque

L’intégrale

lim t*Tle~t =0,
t——+oo

on a, pour une constante positive A, appropriée, que

S pour tout ¢ > 1

de telle sorte que, quel que soit z,
+oo +oo dt
/ t*~lemtdt < Az/ 7 < Foo.
1 1

D’autre part, lorsque x < 1, l'intégrale est aussi impropre a 0 et elle y
converge si et seulement si z > 0 puisque

Lt a 't
/ uﬁ/txletdtﬁ/ =
eJo t 0 ot

La fonction gamma (ou fonction eulérienne de seconde espece) est la
fonction I' : ]0, +-00[— R définie par la relation

+o0o
I(z) = / t* et at.
0

(La fonction eulérienne de premiere espece ou fonction béta est une fonction
de deux variables

1
B(x,y):/ "Y1 -t tdt, >0, y>0.
0

(exercice (3) du chapitre 6)).

Théoreme 20 (Equation fonctionnelle de la fonction gamma)

Iz +1) =a'(x). (15)
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Démonstration. Il suffit d’intégrer par parties :

“+o00

+oo
T(zx+1) = / et dt = tx(—e_t)‘o
0

+o00
+ :v/ t* et dt = 2T (z).
0

C.Q.F.D.
La relation (15) jointe au fait que

ra=1
montre que la fonction gamma interpole les factoriels :
I'n+1)=n! pourn=0,1,2,3,...

Lue a ’envers,

I(z) = F(m+1)’

T

elle permet de prolonger la fonction gamma & R\ {0,—1,-2,-3,...}. Le
tracé du graphe de la fonction gamma est assez complexe et nous allons
omettre sa justification dans ce cours (figure (19)).

20

10

-1

-20

Fia. 19 — La fonction gamma

Théoréme 21 (L’intégrale de Gauss)

r <1> = /7. (16)
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Démonstration. La démonstration de cette formule repose sur la convexité
de I'exponentielle. En vertu de 'exercice (13) du chapitre 4, nous avons

e® > 1-+x pour tout z.
D’ou
e >1—z2, e > 14 22
c’est-a-dire y
1422

En faisant le changement de variable ¢ = 22,

1 oo T
r <> :/ t 12t gt = 2/ e " dx.
2 0 0

Or, en utilisant les inégalités précédentes, on a

1 1 2 1 dx
/(1—m2)"d:n§/ e ™ d:ng/ v
0 0 o (1+22)

c'est-a-dire (on a posé y = zy/n dans l'intégrale du milieu de la ligne
précédente)

1 dx
1— <— —y° dy < _—
/0( . / erdy< /o 1+ 22

Donc, d’une part, en vertu de la relation (11) (et en posant z = cosy dans
I'intégrale de gauche de la ligne précédente),

l—22<e® <

nous voyons que

/2
1/ﬁey2dy>//sin2"+1ydy: 2.4.6---2n

et (équation (12))

/+°° 2:4-6---2nn 7
0

Py > i — VT
© W= 35T (2n+1) 2

D’autre part, en vertu de la relation (13),

1 vV (2n —3)(2n —5)---1 [t® dz
/ e ¥Vdy < /
v Jo “@2n-2)2n—4)---2 ), 22+1
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et (équation (12) encore une fois)

+oo .3.5... —
/ Ay < i L350 =3)Va

N3

2

7-‘-_
&

C.Q.F.D.

Remarque.

Dans le calcul des probabilités, on rencontre plutot I'intégrale de Gauss
sous la forme équivalente

L +OOe*tz/Zdt—l
V2T J o QO

Théoréme 22 (La formule de Stirling)
|

n.
lim ——e— = /2r.
n—+oo \/n(Z)"

Démonstration. La démonstration de cette formule repose sur la concavité
du logarithme. En vertu de l'exercice (7) du chapitre 4, nous avons d’abord

O0<k<z<k+1l = logz>(k+1—2x)logk+ (x —k)log(k +1)

c’est-a-dire

k+1
k

O<k<zxz<k+1l = logx >logk+ (x —k)log

ce qui, par intégration, entraine

k+1
/ logzdz >
k

En vertu de I’exercice (9) du chapitre 4, nous avons aussi

(log(k + 1) + log k).

DN |

1
logz <logk + %(x — k) ( pour tout x).

Nous en déduisons tout d’abord que la suite de nombres
Vn(g)"
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est décroissante. En effet, apres simplifications,

(n + 1)! n! 1 /n+1
—lo = —(log(n+1)+logn)— logzdx < 0.
Vi 1Byt 08 () 5 (log(n+1)+logn) | logwde <

Toute suite décroissante de nombres positifs étant convergente, posons

log

|
A= lim —0v

o VR

Cette limite est strictement positive :

logn!:ZbngZ/ (logac—k> dx
k=2 k=2 k1

I -1 L~ (M da
:nlogn—n+1+2kzzkznlogn—n+1+2k22/k —

1
=nlogn—n+1+ i(log(n—i— 1) —log2)

de telle sorte que
n\" e
n! > (*) vVn+1—
e V2
et A > e/+/2. Nous avons finalement (équation (12)),

T 2:4-6---2n ) 22112

i = 1 =

2 niﬁloog.g,.?...@n_l)\/m n—to0 (2n!)v2n +1

92n < nl >2\/%(2")2” no AT\
Vn(g)"

—
n—rtoo /20 F 1
C.Q.F.D.

2n)!  Von2m  2X 2

7.3 Exercices 7

Justifier complétement toutes ses affirmations.

1. Enoncer et démontrer la formule de changement de variable pour les
intégrales impropres.

2. Si f:]0,400[ est continue et positive, pour montrer que
“+oo
| -1,
0
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il faut montrer que
Bn
lim flx)yde =1

n—-—+o00 0
pour toute suite {3, }nen telle que

lim g, = 4o0.

n—-+o0o

Montrer qu’il suffit de considérer les suites {3, }nen monotones.

. Montrer que la convergence absolue implique la convergence simple,
c’est-a-dire que la convergence de l'intégrale

/ @) d

/ab f(z) da.

(Suggestion : on a 0 < |f| — f < 2|f]).

. Pour quelles valeurs des parametres p > 0 et ¢ > 0 l'intégrale suivante
est-elle convergente

entraine celle de 'intégrale

T dg
—7
/0 Y1+ 2P
. Montrer qu’une fonction rationnelle R = P/Q est intégrable sur R si

et seulement si son dénominateur () ne s’annule pas et le degré de @)
excede le degré du numérateur P par au moins deux.

o0 gin2 ¢
5 dzx
0 xT

+oo o3
sin
dx
0 X

est convergente. (Suggestion : intégrer par parties.)

. Montrer que I'intégrale

est convergente.

. Montrer que I'intégrale
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10.

11.
12.

Montrer que I'intégrale

sin x

dzx

/+oo
0

xT

est divergente.

Calculer
+oo
/ e P cosxdx
0
(p > 0). (Suggestion : intégrer par parties.)
Déterminer les valeurs du parametre p > 0 pour lesquelles la série

> o
4 kP log k

est convergente.
Calculer I'(n + 1).

Calculer
2 2
/ zhe=@=17/20% gy

—00

pour k =0,1,2 (¢ > 0).
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8 SUITES ET SERIES DE FONCTIONS

Si des fonction f,, convergent vers une fonction limite f lorsque n — +o00,
des propriétés telles que la continuité, la dérivabilité ou 'intégrabilité ne sont
pas nécessairement préservées.

8.1 La convergence uniforme

On peut considérer une suite de fonctions f,, : (a,b) — R comme une
famille de suites numériques dépendant d’un parametre x € (a, b) ou comme
une suite de courbes indexées par un indice n € N. Le premier point de vue
conduit naturellement a la notion de convergence simple (ou ponctuelle), le
second conduit & celle de convergence uniforme.

Les fonctions f, : (a,b) — R convergent simplement (ou ponctuelle-
ment) vers la fonction f : (a,b) — R sur Uintervalle (a,b) si, pour chaque
x € (a,b), la suite numérique {f,(x)}nen converge vers le nombre f(z),
c’est-a-dire si a chaque = € (a,b) et & chaque € > 0 correspond un indice
N € N tel que

n > N implique |f,(x)— f(z)] <e.

Exemple.

Les fonctions
_ 1—nx

fn(@) = 1+ nx

convergent simplement sur 'intervalle [0, 1] vers la fonction

f(x):{l siz =0,

—1 sinon.

Dans cet exemple, bien que les fonctions f,, soient continues, la fonction
limite f ne l'est pas.

L’indice N de la définition précédente dépend de x et de ¢,
N = N(z,e€).
Lorsqu’il peut étre choisi indépendamment du nombre z € (a,b),

N = N(e),
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on dit que les fonctions f, : (a,b) — R convergent uniformément sur
(a,b) vers la fonction limite f : (a,b) — R. En d’autres mots, les fonc-
tions fy, : (a,b) — R convergent uniformément sur (a,b) vers la fonction
f:(a,b) — R si a chaque € > 0 correspond un indice N € N tel que

n > N implique |fn(z) — f(z)| < € pour tout x € (a,b).
Exemple.

Les fonctions .
sinnz

fa(z) =

convergent uniformément sur R vers la fonction f = 0 puisque

n

@) — f(2)] < % pour tout z € R,

Exemple.

Les fonctions 1
—nx
fn(x) 1 4nzx

ne convergent pas uniformément sur [0, 1] vers leur limite f puisque

fn <1> —f(1>' =1 pour tout n € N.
n n

Aucun indice N ne peut correspondre a ¢ = 1. Cette absence d’uniformité
dans la convergence est responsable de la discontinuité de la fonction limite.

Théoréme 23 (Continuité d’une fonction limite) Soient f, : (a,b) — R
des fonctions continues qui convergent uniformément sur (a,b) vers une
fonction f : (a,b) — R. Alors f est continue sur (a,b).

Démonstration. Soit xg € (a,b) un point arbitraire. Montrons que f est
continue en xg. Soit € > 0. La convergence uniforme entraine l’existence
d’un indice N € N tel que

n > N implique |f,(z) — f(x)| < % pour tout = € (a,b).

La continuité de la fonction fy en xg entraine d’autre part I’existence d’un
nombre § > 0 tel que

|z —x0| < 6 et x € (a,b) impliquent |fn(z) — fn(zo)| < %
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Donc, si | — xg| < J et = € (a,b), on aura

[f (@) = fzo)| < [f(2) = In(@)[ + [fn(2) = fn(2o)| + [fn(20) — flxo)| < e
C.Q.F.D.

Théoréme 24 (Intégration d’une fonction limite) Soient f, : [a,b] — R
des fonctions continues sur un intervalle compact [a,b] qui convergent uni-
formément sur [a,b] vers une fonction f : [a,b] — R. Alors

/abf(a;)dw— lim /abfn(ac)dx.

n—-4o00

Démonstration. On a

/abf(a:) dw — /: fu() da

Donné € > 0, soit N € N tel que

b
< [ 11@) - fulo)] da.

n > N implique |[f(z)— fo(z)| < ﬁ pour tout x € [a,b].

Alors ) )
n > N implique / f(x)dx — / fo(z)dz| < e.
C.Q.F.D.
Remarque.

Le théoreme précédent n’est pas vrai si I'intervalle d’intégration n’est
pas compact (exercice (5)).

Théoréme 25 (Critére de Cauchy) Les fonctions f, : (a,b) — R convergent
uniformément sur (a,b) vers une fonction f : (a,b) — R si et seulement si
elles satisfont la condition suivante : a chaque € > 0 correspond un indice

N e N tel que :

m, n> N implique |fm(x)— fn(z)| <€ pour tout x € (a,b).

Démonstration.
La condition est nécessaire. Si les fonctions f,, convergent uniformément
vers la fonction f sur (a,b), il existe N € N tel que

n > N implique |f,(x)— f(x)] < % pour tout x € (a,b).
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Alors, si m, n > N, on aura

[fm(2) = fa(@)] < [fm(2) = f(2)[+f(z) = fu(z)| <€ pour tout z € (a,b).

La condition est suffisante. Si elle est satisfaite, en vertu du critere de Cauchy
pour les suites numériques, pour chaque x € (a,b),

lim f,(x) existe,
n—-+00

définissant ainsi une fonction f : (a,b) — R vers laquelle les fonction de la
suite convergent :

Cette convergence est uniforme. En effet, donné ¢ > 0, il existe N € N tel
que l'on ait

|fm(x) - f(x)‘ = nEI—iI-loo |fm($) - fn(x)| < € pour tout z € (avb)

des que m > N. C.Q.F.D.

Théoréme 26 (Critére de Weierstrass) Soient fi : (a,b) — R des fonc-

tions. La série
+oo
> fulx)
k=0

converge uniformément sur (a,b) pourvu qu’il existe une série numérique

convergente
“+o0o

Z M, < +o0,
k=0

telle que
|fx(z)| < My pour tout = € (a,b).

Démonstration. Posons

n

Sn(x) = frlx), Sn=">_ M.
k=0

k=0

On a
1Sn(z) — Sm()| < [Sn — Sl

et le résultat suit du critere de Cauchy. C.Q.F.D.
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En vertu du théoréme (24), une série uniformément convergente de fonc-
tions continues sur un intervalle compact peut y étre intégrée terme a terme :

b +o0 b n
/ka diﬁ—nggloo > fulw)dz

¢ k=0
n
note i 5 k=0

Exemple.
En vertu du critere de Weierstrass, la série
+oo .
sin kx
k2
k=1
est uniformément convergente sur R et

+o0o

smkm 2
/0 x—,; (2] + 1

k=1

Dans le cas de fonctions continues sur un intervalle compact, les définitions
et les théoremes précédents peuvent s’énoncer élégamment a ’aide de la no-
tion de norme, qui joue pour les fonctions un roéle analogue a celui que joue
la notion de valeur absolue pour les nombres. La norme || f|| d’une fonction
continue sur un intervalle compact f : [a,b] — R est définie par la relation

[fII' = sup{lf ()] | 2 € [a,b]}.

On peut reformuler les énoncés précédents a l'aide de cette notion. Les
fonctions f,, convergent uniformément vers la fonction f si et seulement si

gim[lf - Il =0,

Le critére de Cauchy affirme qu'une condition nécessaire et suffisante pour
que les fonctions f,, admettent une limite uniforme est que

lim ||fm — fal =0

m,n—-+00

et le critere de Weierstrass dit que la condition
“+oo
D Il < oo
k=0
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est suffisante pour assurer la convergence uniforme de la série

+oo
2 fi(a)
k=0

Remarque.
Lorsqu’une série de fonctions converge en vertu du critere de Weierstrass,
on dit qu’elle converge normalement.

8.2 L’approximation des fonction continues

Les polynoémes sont les plus élémentaires des fonctions continues. Ils
peuvent aussi servir a approximer toutes les autres.

Théoréme 27 (Weierstrass) Soit f : [a,b] — R une fonction continue.
Alors il existe une suite de polynomes { P, }nen qui convergent uniformément
vers f sur [a,b].

Démonstration.

On peut supposer que [a,b] = [0,1] et que f(0) = f(1) = 0 (en sous-
trayant si nécessaire un polynéme de degré un de f). Prolongeons la fonc-
tion f en posant f(x) = 0 si x ¢ [0,1]. Nous obtenons ainsi une fonction
f : R — R uniformément continue.

F1a. 20 — Quelques fonctions Qy, ()

Considérons le polynéme (de degré 2n)
Qn(x) = cu(1 — 2B
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ou le nombre ¢, est défini par

/_11 On(z) do = 1.

(figure(20)). Observons que quelque soit 6 > 0, on a
0< Qnl(a) <cpn(1—06%)" si 6< [z <1

De plus, en vertu de la convexité de la fonction u — (1 —u)™, on a

1 1/v/n 1/y/n 4
22/ Qn(m)dl‘22/ (1—na?)de = ——
0 0

Cn

c’est-a-dire que
cn < V/n.

Introduisons maintenant le polynéme (de degré 2n)

1
Py(x) = /0 F(5)Qu(z — 5) ds.

Lorsque 0 < z < 1 et puisque f est nulle & extérieur de 'intervalle [0, 1],

T 1
Py(x) = / = 0Qu(tydt = / @ = 0Qulat

Lorsque 0 < z < 1 et quelque soit § > 0, on a donc
1 1
|Pr(z) — fz)] = '/_l(f(fv —t) — f(2))Qn(t) dt‘ < / |z —1t) — f(2)|Qn(t) dt

-1

_ /| M- - @@+ [ it @i

<l <1

Un nombre € > 0 étant donné, choisissons, en vertu de la continuité uniforme
de la fonction f, un nombre § = d(e) > 0 tel que

[ Wa-n-s@lmd<s [ Qupd<s,
[t|<d

[t]<é

On a alors

[Pule) = f@)] < 5 +2[Fl1 260 (1= 8" < 5+ 4] ]| v (1= 8"
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En utilisant le fait que

lim /n(1—0%)" =0,

n—-+o00

nous pouvons choisir un entier n. tel que

n > ne implique |P,(z) — f(z)] < % 4 % —¢

pour tout z € [0,1]. C.Q.F.D.

Remarque.
Le polynéme P,, du théoréme précédent est la convolution de la fonction
donnée f avec le « noyau » @, sur 'intervalle [—1, 1]. La représentation

1
Pu(x) = / (6)Qu(a = ) ds

montre qu’il est, comme le noyau, un polyndéme alors que la représentation

1
Py(x) = / = 0Qu(ty e

montre qu’il constitue une moyenne pondérée des valeurs de la fonction f
sur l'intervalle, un poids plus grand étant accordé aux valeurs pres de =,
d’ou la convergence vers f(x).

8.3 Les séries entiéres

Les séries de fonctions les plus simples sont les séries entieres (ou séries
de puissances), qui sont des séries de la forme

“+o00
E akwk
k=0

— les coefficients a; sont donnés. La plus simple des séries entieres est
la série géométrique, pour laquelle ces coefficients sont tous égaux a 1.
Puisque, si x # 1,

1— xn—f—l

n

k

r = —/——
Dot =
k=0
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(comme il est aisé de le vérifier en multipliant les deux membres de ’équation
par 1 —x), la série géométrique de raison = converge si et seulement si |z| < 1
auquel cas

—+00 1
k
d akb=—r 1.
x T |z| <
k=0

Dans le cas général, les coefficients aj déterminent les valeurs de x pour
lesquelles la série entiére converge, via la notion de rayon de convergence. Et
le calcul de ce rayon de convergence se fait au moyen d’une limite supérieure.

Soit {uk }ren une suite bornée. La suite
M, = sup{ug | k = n}

est décroissante et bornée, donc elle est convergente. Sa limite est la limite
supérieure de la suite {uy}ren :

limsupur = lim sup{ug | k > n}.
k n—-+00

De méme, la suite
my, = inf{u | k > n}

est croissante et bornée, donc convergente. Sa limite est la limite inférieure
de la suite {ug}ren :

liminfug = lim inf{u | &k > n}.
k n—-400
Si la suite n’est pas bornée supérieurement, on convient de poser
lim sup up = +00
k
et si elle n’est pas bornée inférieurement, on pose
lim inf u = —oc.
k
Ainsi, pour toute suite {ug}ren, on a
—o0o < liminf u; < liminf u;, < 4o00.
k k

Exemple.
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(~Dkk _

—1)k
limsup( )k A

k k+1
puisque M,, =1 et m,, = —1 pour tout n € N.

=1, liminf
k

Un nombre u est une valeur adhérente (ou un point d’accumulation)
de la suite {uy }ren 8’1l existe une suite partielle qui converge vers u :

u= lim wug,.
j—too
En convenant que +oo est une valeur adhérente d’une suite qui n’est pas
bornée supérieurement et que —oo est une valeur adhérente d’une suite qui
n’est pas bornée inférieurement, toute suite admet au moins une valeur
adhérente.
Exemple.
La suite
Up = sink‘gﬁ ol p,q €N,

ne contient qu’un nombre fini de valeurs distinctes, ceux des nombres

sin 277, sin 2 Bﬂ', ...,sin(2¢ — 1) B?T, sin 2¢ Pr

q q q q
qui sont distincts. Ces valeurs sont toutes des valeurs adhérentes. La plus
grande de ces valeurs est la limite supérieure de la suite, la plus petite, sa
limite inférieure.

Théoréme 28 La limite supérieure d’une suite {u}ren est €gale a sa plus
grande valeur adhérente et sa limite inférieure, a la plus petite.

Démonstration. Si les valeurs adhérentes sont en nombre infini, leur borne
supérieure est encore une valeur adhérente (exercice (15)), c’est elle la plus
la plus grande dans ce cas.

La suite n’est pas bornée supérieurement si et seulement si sa limite
supérieure est +o0o0 mais aussi si et seulement si +o0o en est une valeur
adhérente.

Si la suite est bornée supérieurement, soit « sa plus grande valeur adhérente.
Soit € > 0 arbitraire. Puisque 'on a u; < a4 € pour tout k assez grand, on
a aussi

limsupu, < a.
k
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Réciproquement, puisque sup{uy | k& > n} < limsup, ux + € pour tout n
assez grand, on a aussi
a < lim sup ug.
k

La démonstration pour la limite inférieure est semblable. C.Q.F.D.

Théoréme 29 (Formule de Cauchy pour le rayon de convergence)
Donnée une série entiére,

+oo
> k',
k=0

soit
_ 1
 limsupy, |ag|2/*
donc 0 < R < +oo. Alors la série converge sur lintervalle | — R, R[, de

fagcon uniforme sur tout sous-intervalle compact [—r,+r] et elle diverge si
|z| > R.

Démonstration. Si R = 0, la série diverge pour tout = # 0. En effet, quel
que soit x # 0, il y a un nombre infini d’indices k pour lesquels

1
|z

|ak|1/k >

et la série
+oo
Z apz®
k=0
ne peut converger puisque que son terme général ne tend pas vers 0.
Si0 < R < +o0, solent 0 < r < R arbitraire et |z| < r. Pour tout k
suffissamment grand, on a

2
R+r

apx
g R+r

et la série, éventuellement majorée par une série géométrique de raison
inférieure a 1, est uniformément convergente en vertu du critere de Weiers-
trass. Si x| > R par contre, il y a un nombre infini d’indices k pour lesquels

1
|z

’akll/k <

donc

‘ak‘l/k >
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et la série diverge pour la méme raison que précédemment.

Si R = 400 enfin, le raisonnement sur la convergence du paragraphe
précédent s’applique quelques soient les nombres R > r > 0 et la série
converge pour tout x € R. C.Q.F.D.

Remarque.
On ne peut rien conclure aux extrémités de l'intervalle de convergence,
les points ou |z| = R, comme le montre 'exemple des séries

+o0 +o0 1 +o0o 1
Z:ck, Z Eazk, et Z ﬁxk
k=1 k=1 k=1

qui ont toutes 1 pour rayon de convergence et qui convergent exactement

sur les intervalles | — 1,1, [—1,1[ et [—1, 1] respectivement.
Exemple.
La série exponentielle
+oo
1k
k!
k=0

converge pour tout x € R. En effet,

1\ V/k LN\ 1k
hmksup (k') = kBToo (k‘) =0

puisque, en vertu de la formule de Stirling, on a

1/k .
im (—) = lim — .
e <k:'> koo k (2k)1/2k

Théoréme 30 (Dérivation terme & terme d’une série entiére) Soient
R le rayon de convergence de la série entiére

—+00
Z apa®
k=0
et f:(—R,R) — R sa somme :
“+oo
flx) = Z apz®.
k=0
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Alors la fonction f est dérivable sur l'intervalle ouvert | — R, R| et
+oo
f(z) = Zk’akxk_l, |z| < R.
k=1

Démonstration. Le rayon de convergence de la série Z;;’(i kajx*~' est encore
égal a R. Posons

+oo
k—1
g(x) = Zkakx , |zl < R.
k=1
L’intégration terme a terme étant permise, on a que

x
| sttt = 1) = a
0
et le théoreme fondamental du calcul (théoréme (6)) montre que

g(x) = f'(z).

C.Q.F.D.

Remarque.

En répétant ce raisonnement, on voit que la somme d’une série entiere
est une fonction indéfiniment dérivable et que

1
ar = 1 1(0)

(formule de Taylor pour les coefficients d’une série entiere).

8.4 Exercices 8

Justifier compléetement toutes ses affirmations.

1. Déterminer
1+ nx

im — 5
n—+oo 1 + nx

La convergence est-elle uniforme ?

z € R.

2. Déterminer .
lim log (1 n 7) . o> -1
n

n—-+4o0o
La convergence est-elle uniforme ?

3. Déterminer

lirf xe ™ x>0.
n—-+0oo

La convergence est-elle uniforme ?
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10.

11.

Montrer par un exemple approprié que la convergence uniforme de
fonctions dérivables f, vers une fonction dérivable f n’entraine pas
nécessairement la convergence des dérivées f) vers la dérivée f'.

Montrer par un exemple approprié que le théoreme (24) n’est pas
nécessairement vrai si I'intervalle d’intégration n’est pas compact.

Montrer que la série

o0
g ke " cos kx
k=1

converge uniformément sur tout intervalle [a, +o0o[ (a > 0) .

Montrer que la série

—+o00 .
sin kx

2 2
k:lk +x

converge uniformément sur R.

Montrer que la série
+o0
. T
Z S ﬁ
k=1
converge uniformément sur tout intervalle [—M, M].

Soient f, g :[0,1] — R des fonctions continues. Montrer que

L+ gll < 1[£1F+ gl

et que

gl < LA gl

Ces inégalités peuvent-elles étre strictes ?

Soit f :[0,1] — R une fonction continue telle que
1
/ 2" f(x)dr =0 pour tout n € Ny.
0

Montrer qu’elle est identiquement nulle.

Déterminer la limite supérieure et la limite inférieure de la suite
14 coskm\*
’ .
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12.

13.

14.

15.

16.

17.

18.

Déterminer les valeurs adhérentes, la limite supérieure et la limite

inférieure de la suite -
k cos k§

k+1
Déterminer les valeurs adhérentes, la limite supérieure et la limite
inférieure de la suite

11212312381
23344455556

Montrer, si elles sont vraies, les inégalités suivantes

lim sup(uy + vg) < lim sup uy + lim sup vy,
k k k

et
lim sup upve < limsup ug lim sup vg.
k k k

Ces inégalités peuvent-elles étres strictes 7 Restent-elles vraies si on y
remplace lim sup par liminfy ?

Montrer que si une suite admet un nombre infini de valeurs adhérentes,
leur borne supérieure est encore une valeur adhérente de la suite.

Soit {ay}ren une suite de nombres strictement positifs pour lesquels

la limite a
lim —+L

k—+oco ag

existe. Montrer qu’alors

li 1/k

existe aussi et que ces deux limites sont égales. Donner un exemple ou
la seconde limite existe mais pas la premiere. (formule de d’Alembert
pour le rayon de convergence).

Déterminer les valeurs de = pour lesquelles la série
“+oo

Z K2k

k=1
converge et calculer sa somme.
Déterminer les valeurs de = pour lesquelles la série
“+o0o
xk+l
Z k41
k=0 T

converge et calculer sa somme.

83



9 SERIES DE TAYLOR

Les puissances entieres de la variable peuvent servir a représenter toutes
les fonctions de 'analyse.
9.1 Développements limités

Le calcul différentiel repose sur 'observation que, localement, « toute »
fonction est presque linéaire. Soit f une fonction dérivable dans un intervalle
ouvert I contenant le point xg. Alors,

f(x) = f(xo) + f'(x0)(x — x0) lorsque z ~ .

En effet, la définition de f’(x¢) peut se mettre sous la forme

f(x) = fzo) + f(@o) (@ — xo) + r1(x) , x €T

ou
lim (@)
T—TO T — X

=0.

Cette approximation locale peut étre raffinée lorsque la fonction admet des
dérivées supplémentaires.

Théoréme 31 (Taylor) Soit f une fonction n+1 fois continiment dérivable
dans un intervalle I contenant un intervalle ouvert contenant le point xq(dans
un voisinage I de zq). Alors

(k) (o
0 =3 T o) wer
k=0

ou
lim @ _
z—xo (x — z0)"

Le reste r,, peut s’exprimer sous forme intégrale :

i) = | “@— 0 (1) e

Tl
n! Sz
ou sous forme différentielle :

FE)

(n - 1>! )n—i—l

rn(x) =

(x — zp
ot & est un point entre x et xg.
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Démonstration.

Premieére démonstration. En écrivant le reste sous forme intégrale, on
voit que la relation & démontrer se réduit au théoreme fondamental du calcul
(théoreme (7)) lorsque n = 0. D’ott le raisonnement suivant. En intégrant n
fois par parties :

)= )+ [ foyr
— flxo) + (—(x —0r @[+ /(m —0)f"(t) dt)
s [ a)
= fao) + ' (@o)(& ~ 20) + 3 " (o) — 70)°
+(—ﬁw—w%”wjJ@;A?x—w%W%ww)

T

_ En: M(w — )" + ;,/Z (z — )" fOD (1) dt.

0

:fuw+ﬂ@wu—zw+(—;w—w%%w

Seconde démonstration. En écrivant le reste sous forme différentielle, on
voit que la relation a démontrer se réduit au théoreme des accroissements
finis lorsque n = 0. D’ou le raisonnement suivant. Introduisons la fonction
auxiliaire

)y
- Z f].g(!O)(t — m0)" — O(t — zo)"*!

ou

®) (g
Fla) = o L) (o — )
(x — o)™t

(x et xp sont fixés, par exemple, x > (). Cette fonction g est n + 1 fois
continiment dérivable dans l'intervalle I et

g(x0) = g'(z0) = ¢"(w0) = --- = g™ (o) = 0,
gt () = fI () — (n+1)!1C.

C =

Puisque g(zg) = g(z 0, il existe z1 €|zg, x| tel que ¢'(z1)

= = 0 Mais
alors ¢'(x0) = ¢'(x1) = 0. Donc il existe x5 €|xg, x1[ tel que ¢’ (x2) =
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répétant ce raisonnement n fois, on voit qu’il existe x,, €]xg, x,—1[ tel que
g™ (x,) = 0. Alors, toujours en vertu du théoréme des accroissements finis,
il existe & €]xg, zp] tel que

g t(E) = fOTI(E) — (n+1)IC =0

c’est-a-dire

fx) =3 k0 %(x —z0)F i FntD(g)
(z — zo)n+1 )l

C.Q.F.D.
Le théoréme précédent admet une sorte de réciproque. Si f est une fonc-
tion n + 1 fois continiment dérivable dans un voisinage I de xg telle que

f(z) = Zak(x —zo) +ra(x), zel
k=0

avec

fim ) _ g
z—zo (T — z0)"
alors, nécessairement,
(k)
ak:fk('xo) pour 0 <k <n.

On a en effet que r,(x) est n + 1 fois contintment dérivable et satisfait les
relations
FO (z0) = k! ag, + ) (20)
(k)

et il suffit de vérifier que ry, ' (z9) = 0 pour 0 < k < n. Par récurrence sur k.
On a
0= lim r,(x) = r(zo).
xr—x0
Supposant ensuite que r,(zg) = 7, (x0) = -+ = i (xg) = 0, on a en
appliquant plusieurs fois la regle de ’'Hospital :




Les développements limités des fonctions suivantes s’obtiennent directe-
ment du théoreme précédent.

n
1 et
T = .k n+1
e—kzok!x +(n+1)!x , ¢ €R, (18)
n
_ (—1)k 2k (—1)n+1 cos § 2n+2
COSSU—kZ_O(2k)' X +W$ ,SUER,
n
. (=1%o, (F1)"eosE 5.4
= e ————— - € R,
e 3 e et (e s

(1+x)P:1+Zn:p(p_1)"l'€'(p_k+1) Ftra(z), > -1, (19)
k=1 ’

(le binéme de Newton) ou

() = RN P /x(z — (L,
0

n!

log(1+x) = Zn: ﬂ b+ 1" "> 1
=k (n+ 1)1+ 7 '

En intégrant ’identité

1 B E”:( l)thk‘ N (_1)n+1t2(n+1)
1+ &~ 1+¢ 7
on obtient
— (=1)*
arctanz = Z 1 2k 4 ront2(7) , * €R
k=0
ou

il x t2(n+1)
T2n+2(x) = (_1) [J 1+ 2 dt.

Il s’agit bien la du développement limité de Taylor puisque I'on a

(=1t dt| < / 2ot gp = 1
x2n+2 (=1) /0 1+ t2 = |z t2 J, 2n + 3

Exemples.
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— En laissant n tendre vers +oo dans la relation

" (-1t (-1
log2:; 2 +(n—|—1)(1+§)”+1

(o1 0 < £ < 1), on trouve
1 1

1
o=t —1log?.
R 8

— En laissant n tendre vers +oo dans la relation

tanl = —— (-1 dt
arctan ;2k+1+( ) /0 T2

on trouve
3 5 7 47
9.1.1 Notations de Landau

Il est commode d’écrire avec Landau que

p(x) =o(¥(x)) , = — @0
(lire : ¢ est négligeable devant v lorsque z tend vers zg) si
- o(x)
A o)
d’écrire
P(x) = OW(x)) , = — o

(lire : ¢ est comparable & 1) lorsque x tend vers xg) si 'expression

(=)

P(x)

reste bornée lorsque z tend vers xg et enfin

¢(x) ~P(x) , =m0
(lire : ¢ est équivalente a v lorsque = tend vers ) si

lim M =1.
i $(@)
Ici, —oo < xg < 400. Ces notations s’emploient aussi pour les suites (avec
Ty = +00).
Exemples.
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sinx ~xz, x — 0;

n\n”"
n! ~ (—) 2mn , n — +o0.
e

Avec ces notations, un développement limité s’écrit
n
F®) (g
fa) =3 I g o(a = a) . x— am
k=0

Exemple.

On a
2

cosz =1— % + o(z%)

et

73

sinx = x — 5 + o(z?)

de telle sorte que

3 R

cosxsinx:x—?—k:co(ﬁ)—g 5ol
2 3

+o(z) = o(z?) <”;> o(at)o (@) = x — 25 4 o(ah).

9.2 Séries infinies

Si la fonction f est indéfiniment dérivable et si le reste 7, dans son
développement limité au point zg tend vers 0 lorsque n tend vers +oco, on
peut la représenter comme la somme d’une série de puissances entieres de
Xr — Xg.

Théoreme 32 Les fonctions analytiques usuelles admettent les représentations
suivante :
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e’ = . 1 2 zeR
prd k! ’
2. . .
cosT = Z (=1) z , z€R
— (2k)!
3. e .
sinz = Z (2(]{_41_)1)‘ g2l , z€eR
k=0
4. +o0
(1+x)p:1+Zp<p—1)”l'ffp_k+1)xk lzl <1
k=1
- +oo
log(l+z) = H}Zklxk, lz] <1
k=1
6. . .
arctanx = Z 2(];_1:1 2zl <1
k=0
7.

X135 (2k — 1) a2k+!
2.4-6---2k 2k+1

arcsinx = = + , x| < 1.

k=1

Démonstration. Il s’agit de voir que le reste r,(z) dans le développement
limité de la fonction tend vers 0 lorsque n tend vers +oo pour x dans l'in-
tervalle indiqué.

Considérons d’abord la fonction exponentielle. Donné x € R, choisis-
sons un indice N > 2|z| et considérons r, lorsque n > N. Nous utilisons
I'équation (18) :

13 n+1
n+D)!" | e N
ou N
X
HN = €|x|]\|ﬂ
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est fixé et
|x’”+1_N 1

=Nttt ~

on+1-N

tend vers 0 avec 1/n.
Les fonctions cosinus et sinus se traitent de la méme fagon.
Pour le binéme de Newton, donné x €] — 1, 1[, soit N un indice tel que

2|p||x|

N >
1—|z|

et considérons 7, pour n > N. Nous utilisons la relation (19) :

‘p(p—l)'“(p—n)
n!

/Om(a:—t)”(l +t)p”1dt‘
_ ’(p 1) n' (p—n) /Ox <T+z>np(l+t)pldt’

’(p_l)”'(p_n) ’m‘n’<1+$>p_1‘

<
- n!

(pour vérifier le détail de ce calcul, distinguer suivant que x est positif ou
négatif) de telle sorte que

‘p(p —D-p-n) /Ox(a: — )" (14 )P dt‘

n!

< [ = e oy - | P e -y,
My = ’(p_l)‘]’\,'!(p_N) oV |(1 + 2)P — 1
est fixé et
I _‘(p—N—l)(p—N—Q)---(p—n) |1:’n—N
" (N+1)(N+2)---n

p| | p N
<1+ L) (14 P (1 B g
—< LY A G 5 )l
|p| mN (L \"Y
<((1+ P < (=
—<< TNl =\ 2
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tend vers 0 lorsque n tend vers +o0o. Lorsque p est un entier positif, la série se
termine avec k = p et le bindbme de Newton se réduit au théoreme binomial

de I’algebre :
P
ey =3 (7)o"

k=0
Les séries pour le logarithme, I’arctangente et ’arcsinus peuvent étre
obtenues le plus simplement & partir du binéme de Newton par intégration

terme & terme de la série appropriée. On a (p = —1 dans le binéme de
Newton)
1 X
k,k
T2 —Z(—l) =¥, x| <1
k=0
donc
+oo (_1)k
log(1+z) = Mz < 1
k+1
k=0
Aussi (p = —1, > 2?)
1 '
k 2k
;=) (ka2 <1
1+=2 i

de telle sorte que

+oo(_1)k
arctan z = Z mx%ﬂ , lx] < 1.
k=0
Enfin (p = —1/2, 2 — —2?)
+o0
1 1-3-5---(2k—1) o
— =1 <1
V1 — 22 +; 2.4-6---2k " ;[
donc
. ++001-3-5---(2k—1):c2k+1 o] <1
resine = :
ST L Ty e ok ke
C.Q.F.D.

Remarque. Il peut paraitre surprenant que le rayon de convergence de
la série pour la fonction arctangente soit égal a 1 alors que la fonction est
indéfiniment dérivable sur tout ’axe réel. L’analyse complexe en fournit
I’explication.
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Exemple.
Considérons la fonction f : R — R définie par

f(lU) = {Ol/x S?‘Téoﬂ

sixz > 0.

Elle est indéfiniment dérivable et I'on a

1) = f@) o )

ou pa est un polynome de degré 2k, comme on peut le vérifier par récurrence
sur k. Cela repose seulement sur le fait que quelque soit n

1
lim — e /% = 0.
z—0+ ™

On en déduit que
F®(0) =0 pour tout k> 0.

Ainsi cette fonction pourtant indéfiniment dérivable n’est égale & la somme
de sa série de Taylor dans aucun intervalle centré a I'origine.

Théoreme 33 Le nombre e est irrationnel.
Démonstration. On a
+00 1
e = Z g
k=0
Supposons que e est rationnel, soit e = p/q avec p,q € N. On a alors

q +oo
(4= 1) Z% _Zk

k=

‘ =l

Or ceci est impossible. En effet, le membre de gauche de cette équation est
un entier alors que le membre de droite ne l'est pas :

“+o0
q! 1 1 q+2

0< < = < 1.

Z k! q—i—lkgo(q—l—Q)k (q+1)?

C.Q.F.D.

Théoréme 34 Le nombre ™ est irrationnel.
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Démonstration. Considérons le polynome

2"(1—x)"
n! )

p(z) =

On peut écrire

nlg(z) = ; (Z) (—1)nhg2n—k — i <2n”_ j> (—1)I—"ad.

k=0 j=n
On a d’abord )
0<¢>(x)<ﬁ si 0<z<l.
De plus,
0 si 0<k<n,
1 n
(k) — . _1\k—n | . < <
'™ (0) n!<2n—k>( D"kl st n <k <2n,
0 si 2n <k
et

®(1) = (=1)*®(0).
Les nombres ¢(0), ¢(1), (;5’( ), @' (1),¢"(0),¢"(1),... sont donc tous des en-

tiers.
Supposons donc que 7 est rationnel, soit 1 = p/q avec p,q € N. Intro-
duisons le polynome

n

w(x) _ an Z(—l)k’iTQn_QkQﬁ(Qk) (x)

k=0

Les nombres ¢(0) et 1 (1) sont donc eux aussi des entiers. D’autre part, ce
polynome v satisfait I’équation différentielle

V" (2) + 7P (x) = ¢ 2 g(x)
de telle sorte que

d

. (¢ (z) sinma — wip(z) cosmz) = (¥ (x) + 7r2¢(:1:)) sinrx = ¢2"n?"2¢(z) sin .

Ainsi

/01 et (x) sinmr do = (z!/(."n)s,lnﬂx —1(x) cos 7'['.%‘);) =(0) + (1)

™
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est un entier et ce quelque soit n € N. Ceci est impossible puisque

1 2nﬂ_2n+1
0</ ¢ g (x) sin T da <
0 n'
et que
2n,__2n+1
s
T <
n!

des que n est suffisamment grand. C.Q.F.D.

9.3 Exercices 9

Justifier completement toutes ses affirmations.

1. Soit f : [a,b] — R une fonction contintiment dérivable. Montrer que

’f )+ f@)] (b )llfH

2. Obtenir le développement limité d’ordre 2 au point x¢ = n pour la
fonction
f(z) =a"e ™.

3. Considérons le développement limité d’une fonction f au point xg.
Soit k£ > 0 le rang du premier terme apres f(zp) qui est non nul dans
ce développement. Montrer que si k est pair la fonction admet un
extrémum relatif (local) en . Qu’arrive-t-il k est impair ?

4. Obtenir le développement limité d’ordre 5 de la fonction tangente a
lorigine (utiliser les notations de Landau).

(Suggestion : sinx = tanz cos x).

5. Montrer que les inégalités

1
l+sine < e’ < ———
v1—-2x
sont valables dans un petit intervalle ouvert autour de l’origine.
6. Soit R > 0. Représenter la fonction

1 1
(R —x)? B (R+ )2

fz) =

comme la somme d’une série de puissances entieres de x dans le plus
grand intervalle possible autour de ’origine.
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10.

11.

12.

Obtenir la série de Taylor a 'origine de la fonction
sinh .

Déterminer son rayon de convergence.

Mémes questions pour la fonction

arcsinh z.

Mémes questions pour la fonction

arctanh z.

Mémes questions pour la fonction

Calculer

27 00 1

/ Z — e " coskx dx.
2k

0 k=1

Montrer que le nombre cos 1 est irrationnel.
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10 SERIES DE FOURIER

La représentation d’une fonction par sa série de Taylor est limitée de deux
fagons : d’abord, elle ne s’applique qu’aux fonctions indéfiniment dérivables
et ensuite, elle est locale — les sommes partielles de la série obtenue ne
constituent une approximation de la fonction que dans un voisinage (qui
peut étre tres petit) du point autour duquel on la calcule.

La série de Fourier ne souffre pas de ces inconvénients : on peut pres-
crire a ’avance l'intervalle de convergence et elle permet de représenter des
fonctions trés générales, présentant méme certains types de discontinuités.

Le prix a payer : alors que la série de Taylor utilise les monomes

1, x,x2, x3, :1:4, ceey
la série de Fourier se sert des fonctions transcendantes
1, cos z,sin x, cos 2z, sin 2z, . . .
La résolution des équations aux dérivées partielles, objet d’étude d’un cours
d’analyse appliquée, explique en partie le choix de ces fonctions.

10.1 La série de Fourier

Dans tout ce chapitre, nous considérons des fonctions f : [—7,7[— R,
prolongées a R par périodicité.

Remarque. Le nombre 7w n’a été choisi que pour simplifier I’écriture. Si
f i [a,b[— R, on se ramene a U'intervalle [—m, 7[ en considérant la fonction g

a(a:+7r)> .

g(@) = f (a+

™

La fonction paire (ou la fonction impaire) qui coincide avec

f(a+b_a:c>
T

lorsque 0 < z < 7 peut aussi étre utilisée.

Nous dirons d’une fonction f qu’elle est continue par morceaux si

C1 il existe un nombre fini n > 0 de points
T =r0< 1 <T2<T3 < < Ty < Tpy1 =T

tels que f est continue sur chaque intervalle ouvert Jz;_q,z;[,1 <j <n+1;
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C2 les limites unilatérales

flej=) = lim_f(z), f(zj+)= lim f(z)

T—xj— r—xi+

existent (comme nombres réels finis) pour chaque 0 < j <n+ 1.
Remarquons que 'on a toujours, par périodicité, f(xo—) = f(zpy1—) et
f(xo+) = f(zny1+) alors que la relation f(xo+) = f(xnr1—) nest pas
nécessairement valable.

Nous dirons d’une fonction f qu’elle satisfait les conditions de Dirichlet
si (figure(21))

D1 il existe un nombre fini n > 0 de points
=< T <2 <T3< < Ty < Tpgp1 =T
tels que f est continiment dérivable sur chaque intervalle ouvert |x;_1, z;],

1<j<n+1;

D2 les limites unilatérales

flzj=) = Tlim_f(z), f(zj+)= lim f(z)

T—Tj— T—xi+

et
f@rﬂlelf@%f@ﬁﬂzlmuf@)

T—Tj— Ty

existent (comme nombres réels finis) pour chaque 0 < j <n + 1.

Xg=-71 xi/ X2  Xz=71

F1G. 21 — Les conditions de Dirichlet

98



L’intégrale d’une fonction f continue par morceaux est définie sur I'in-
tervalle (—m, ) par la relation

n+1

+m Tj
f(z) dz = f(z) dx

—Tr

et, sur un intervalle (a,b) C (—m, ) quelconque, par

b +7
/ f@de= [ f@) () de

—T

ou Ig est la fonction indicatrice de ’ensemble E (égale a 1 ou & 0 suivant
que son argument appartient ou non & E — exercice (6) du chapitre 2).
L’intégrale sur un intervalle qui n’est pas contenu dans (—m, ) est définie
en utilisant la périodicité de f. Cette extension de la définition de 'intégrale
préserve ses propriétés de linéarité, de posivité et d’additivité.

Les coefficients de Fourier d’une fonction continue par morceaux sont,
par définition, les nombres

1 [t
ak(f):; (z)coskxdx , (k=0,1,...)
et
1 [t
be(f) = — (x)sinkxdx , (k=1,2,...)
T

—T
(ce choix est dicté par la propriété d’orthogonalité des fonctions trigonométriques
— exercice (9) du chapitre 5).

La série trigonométrique formée a 'aide de ces coefficients,

+oo
S(f)(x) = %ao(f) + Z(ak(f) cos kx + by (f) sin kx),
k=1

est la série de Fourier de la fonction f. (On a choisi d’écrire le terme constant
sous la forme %ao( f) afin que la formule pour ag(f) soit la méme que celle
pour ag(f) lorsque k > 1 — ce terme constant est donc la valeur moyenne
de la fonction sur une période.)

Lorsque la fonction f est paire, la série de Fourier se réduit a

400
S(f)(z) = %ao(f) + Zak(f) cos kx
k=1
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ol
ak(f):i/ f(z)coskxdr , (k=0,1,...)
0

et lorsqu’elle est impaire, a

+00
S(H)(@) = bi(f)sinkz,
k=1
avec o
be(f) = / flx)sinkzdr , (k=1,2,...)
T Jo
Les sommes partielles de la série de Fourier seront dénotées par
1 - :
Sn(f)(x) = iao(f) + Z(ak(f) cos kx + by (f) sin kx).
k=1
Il s’agit d’étudier leur convergence vers la fonction.

Exemples.

1. Pour la fonction f; définie par
file)=xz(z—7) si —nw<z<m,

on a
2 to
i k 4 271' .
S(fi)(x) = 5 + gl(—l) <k2 cos kx + ksmkx) )

2. Pour la fonction fo définie par
fo(z) =m—lz| si —7w<z<m,
on a

™ R 4 )
S(f2)(x) = 3 + jzo T2+ 1) cos(2j + 1)z.

3. Pour la fonction f3 définie par
fa(x) =sgnzsi —w<x<m,

on a
—+00

S(fs) (@) = -

—————sin(25 + 1)z.
2+ 1) ( )
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(La fonction sgn donne le signe de son argument :

L s #0,
sgnzx = ||
0 sinon.)

10.2 Théorémes de convergence

Désignons par T;, un polynéme trigonométrique de degré n arbitraire :

1 n
Tn(x) = Zag + Z(ak cos kx + by sinkx).

2
k=1

Théoréme 35 (Approximation en moyenne quadratique) Pour toute
fonction f continue par morceaux, on a

+7 +7
wils [ (@ - T@Pd 1) = - [ U@ - S0 @)

T T™J—x

1 +7
= () dx — (ao + Z (az(f) + bi( ))

—Tr

Démonstration. Que les sommes partielles de la série de Fourier constituent
ses meilleures approximations en moyenne quadratique résulte directement
des propriétés d’orthogonalité des fonctions trigonométriques. On a

+
1/<mwnwwx

L "
+7 +m +m
:% [ P@a-2 [ r@ne )dq:+7lr/_w T2(z) da.

Or, en vertu de la définition méme des coefficients de Fourier,

1 [f7

R Ty dr = Saga(s +Z%% )+ by bl f))

™ —T

et, a cause de I'orthogonalité des fonctions trigonométriques,

1 [t 1 -
| m@ds=jab+ Yot + )
k=1

™ —T
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de telle sorte que, en complétant les carrés,

v - merar =1 [T P a
+5 (a0 —ao(£))* + D ((ar — ar(f))* + (b — bi(f))?)
k=1
- (;a?)(f) £+ bi(f)))
k=1

On voit donc que

+7 +m

L U@ - n@rde= (@) - S, do
+7 n

- [T P @a%(f) FY @0 + bi(f)) .
- k=1

C.Q.F.D.

Théoréme 36 (Bessel) Pour toute fonction f continue par morceauz, on
a

1
fao )+ Z )+ bi(f ; f2(z) dz

—Tr

Démonstration. Cette inégalité découle directement du théoreme précédent.
Quelque soit n, on a en effet

n 1 “+m
fao N+ @D+ < — [ Playda

k=1 -T

et donc, en laissant n tendre vers 400, on voit que la série des carrés des
coefficients de Fourier est convergente et satisfait I’inégalité de Bessel :

1 t
fao )+ Z )+ bi(f ; (z) dx

—T

C.Q.F.D.

En particulier, les coefficients de Fourier a,(f) et b,(f) d’une fonc-
tion f continue par morceaux tendent vers 0 lorsque n tend vers 4oco. La
démonstration du théoreme suivant repose sur ce fait.
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Théoréme 37 (Dirichlet) La série de Fourier d’une fonction f qui satis-
fait les conditions de Dirichlet converge vers cette fonction en tout point, a
la condition de la redéfinir aux éventuels points de discontinuité x; en posant

flzj—) + f(x+)
5 .

f(zj) =

Démonstration. En remplacant les coefficients de Fourier par leur ex-
pression intégrale puis en permutant la somme et I'intégrale, on obtient

Sn(f)(z) = %ao(f) + Z(ak(f) cos kx + by (f) sin kx)
k=1

1

+7 1 n
:w/ f(t) <2+Zcosk(x—t)> dt
k=1

—T

En vertu de l'identité trigonométrique

2cosasinb = sin(a 4 b) — sin(a — b),

on a ;
1 sin(2n + 1)%
Q—I—Zcosk‘(w—t) = T
k=1 2sin
2
donc
L[t sin(2n 4 1)Zt
Sn(f)(x) =/ fit (-—x_)tht
T J)_n 2sin %5+
1 +m 1 2 +1 S
_1 (=) SN TV,
7 - 28in 5

ce que l'on exprime en disant que la somme partielle S, (f)(x) est la convo-
lution de la fonction f avec le noyau de Dirichlet D,, sur l'intervalle [—, 7]
(figure(22)) :

sin(2n +1)35

Dn(s) = "
27 sin §

En appliquant cette relation a la fonction g = 1, pour laquelle on a aussi
Sp(g) = 1, on voit que ce noyau possede la propriété suivante :

1 /+” sin(2n +1)3

1=— —
T 251n§

ds.

—T
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Ny ar /\\\/\)1/\/ \/\A/\\/\\,}2 N o

F1G. 22 — Quelques fonctions Dy, (x)

Soit donc x € [—7, w[. Supposons d’abord que x n’est pas égal a I'un des
points z;. On a alors

1t sin(2n 4+ 1)3
SN~ S =2 [ (a8 = ) T
1 +m 1 +m
= ¢z (s)cosnsds + - z(s)sinnsds

en posant

b = L= = 1)
: fo = 8) = fa) cos’

x—s)— f(x) cos
Vals) = 2 sing '

2
La fonction s — ¢, (s) étant continue par morceaux, on a
I

ngrfm = ¢z(s) cosnsds = 0.

Il en va de méme pour la fonction s — 1), (s) puisque

lim v, (s) = lim fw=s) = flz) :21 cosg =—f'(x)

s—0 s—0 S S1

de telle sorte que 'on a également
1 [t
lim — Yz(s)sinnsds =0
—m

n—-+oo T
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ce qui complete le raisonnement lorsque x est un point régulier.
Supposons maintenant que x = x;. Alors

flz—) + fla+)

g fro) + S sin2n +1)3
T G e e
1 ™ f(l'—) + f(;p—|—) Sil’l<2n + 1>§
A A F
T o sy — () ey SRR DS
_W/()(f( )+ Fats) = (fe=) + @) —5 5 d
= % o ¢z(s)cosnsds + % /+7T Yy (s) sinnsds
ol, maintenant,
0 si —w1<s<0,
bz(s) = f(g;—s)+f(x—|—s)2—(f($—)+f(ﬂz+)) G 0<s<n
et
0 si —w<s<0,
nls) = § Sl =s) + o ts) = (flao) + @) eoss
2 sin §

La fonction ¢, est bien évidemment continue par morceaux de telle sorte
que
1 [t
lim — s)cosnsds = 0.
Jim = o)
Il en est de méme pour la fonction v, puisque en vertu de la regle de I’'Hos-
pital, on a
coSs —

2

m(s) = i {E =D = f@) T fars) — fat) 5 s
" i 5 sin

= —f'z=) + f'(z+).

N|®w

Ainsi
1 [t7

li — i ds =0
Jim — - )z(s)sinnsds

aussi et la démonstration est complete. C.Q.F.D.

Exemples.
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1. Pour la fonction f; définie par
filz)=z(x—7) si —7w<z<m,
on a

2 27
S(f1 —+Z ( coska:+k81nkx>

de telle sorte que

S(fl)(w):{:cgac—w) S% —rT<z<m,

s S1 X = —T.

On tire en particulier de ce dernier cas

R
126

F1G. 23 — Fonctions fo et Sg(f2)

2. Pour la fonction fo définie par
folx)=m—z| si —w<zx<m,
on a

S(fo g ZO cos(23+1):n—f2( )

pour tout x. La convergence de la série est uniforme dans ce cas-ci et
la fonction limite est continue (figure(23)).
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3. Pour la fonction f3 définie par

fa(x) =sgnesi —r<z<m,

on a
+oo
S T) = ———sin(2§ + 1)z.
(e = X gy gy
Ainsi (figure(24))
0 si z=m,
—+o00 .

1 -z —nm<x<0,
DIESERTATRI b BE SR
= (2j+1) 0 si =0,

T si O<zx<m.
A N
0.5
3 -2 -1 1 2 3
-0.
V4 \J

F1c. 24 — Fonctions f3 et S12(/f3)

10.3 L’approximation des fonctions continues périodiques

On sait que les moyennes arithmétiques des termes d’une suite forment
une nouvelle suite plus réguliere que la suite originelle, qui peut par exemple
converger lorsque la suite elle-méme ne converge pas.

Théoréme 38 (Fejér) Soit f : [—m, 7] — R une fonction continue telle
que f(—m) = f(m). Alors les moyennes arithmétiques o, (f) des sommes
partielles S, (f) de sa série de Fourier convergent vers la fonction f uni-
formément sur [—m,m].
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Démonstration. Par définition,

Comme

a sin(2n Z—t
S0 = o= [ I

— 2
=5 F— dt

— Sin 5
on a, en vertu de l'identité trigonométrique

2sinasinb = cos(a — b) — cos(a + b),
que

1 [t

B sin?(n +1)%
on(f)(z) = o . (= s) mds
1 [t

_ 1 - N 1 —cos(n+1)s
Com ). I/ )(n—l—l)(l—coss)

La fonction o, est donc la convolution de la fonction donnée f avec le noyau
de Fejér F,, sur l'intervalle [—m, x| (figure(25)) :

102 s

sin“(n +1)5
F.(s) = ( )%S
2m(n + 1) sin® §

Alors, quelque soit § > 0,

+7 — cos(n s

o (F)(z) = f(z)] = 217T/_ (f(z —s) = f()) (7,1L+ 1) ((1 —+cc1)2,s) s
T 1—cos(n+1)s

< - |f(x —s) = f(z)] (n+1) (1 — cos s)

1 1 —cos(n+1)s

|f($ — 3) - f($)| (n+ 1) (1 _ COSS)
1—cos(n+1)s
|f(."L‘ — 3) - f(l')| (n + 1) (1 _ COSS)

2
< s 11 =) = S+ 2O G171 onp

Donné € > 0, on peut choisir, en vertu de la continuité uniforme, § = d(e) > 0
pour que

ds

271 Jig1<s
1

21 Js<|s|<n

ds

sup | f(x = ) = J()] <

|s|<d
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quelque soit z € R puis ne pour que

2

217 @)l (n+1)(1—cosd) <3

@)

pour tout n > n.. C.Q.F.D.

F1a. 25 — Quelques fonctions F,(x)

Théoréme 39 (Parseval) Soit f : [—m, 7| — R une fonction continue telle

que f(—m) = f(m). Alors

. 1 [t
Jin < [ Su((e) - @) =0
et

+m
Sa3(f +Z DR == [ Parda

—T

Démonstration. Les fonctions o, (f) convergent uniformément vers f sur
[—7, 7] donc elles convergent en moyenne quadratique vers f et le résultat
suit du théoreme (35).

C.Q.F.D.

10.4 Exercices 10

1. Montrer que toute fonction définie sur un intervalle symétrique par
rapport a ’origine peut s’y représenter comme la somme d’une fonction
paire et d’une fonction impaire.
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. Les coefficients a(f) et bi(f) de Fourier d'une fonction f tendent
vers 0 d’autant plus vite que la fonction est plus réguliere. Montrer,
par exemple, que si f admet une deuxieme dérivée continue, on a

ar(f) = o), bu(F) = o)

lorsque k — +o0.

. Déterminer le minimum de ’expression

1 [t
/ (t* —a — bcost — csint)? dt

T™J-xm

lorsque a, b et ¢ parcourent I’ensemble R des nombres réels.

. Obtenir la série de Fourier de la fonction f définie par
flxy=m*—2* si —w<z<m.

Etudier sa convergence.

. Mémes questions pour la fonction

f(z) =|sinz| si —7w<z<m.
. Mémes questions pour la fonction

flz)=2z si —nm<z<m.

En déduire la somme de la série

Z sin ky

k=

. Représenter la fonction z comme une somme de cosinus sur 'intervalle
(0,A).

. Montrer qu’une fonction R — R périodique et continue est entierement
déterminée par ses coefficients de Fourier.

. Montrer que

“+oo

x(w—x:% kz cos2kr , 0<z<m

et que

00"
|t 90
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