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2.3 Propriétés de l’intégrale . . . . . . . . . . . . . . . . . . . . . 12
2.4 Exercices 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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1 INTRODUCTION

L’analyse mathématique est l’étude approfondie du calcul différentiel et
intégral. Ce cours porte sur le calcul intégral. Il se divise en trois parties. La
première présente la définition et les propriétés de l’intégrale d’une fonction
continue d’une variable réelle. La seconde utilise cet outil pour introduire
les fonctions analytiques élémentaires (les fonctions logarithmique, exponen-
tielle, trigonométriques directes et inverses, eulériennes). La dernière, enfin,
porte sur la représentation de ces fonctions par des séries de Taylor et des
séries de Fourier.

Il s’agit d’un cours de mathématique formel, avec des démonstrations
rigoureuses et complètes de tous les théorèmes présentés. Les exercices pro-
posés sont de même nature et exigent de l’étudiant qu’il en compose des
solutions rigoureuses et complètes. Ce cours est un deuxième cours d’ana-
lyse et suppose que l’étudiant connâıt déjà les propriétés des fonctions conti-
nues ainsi que celles des fonctions dérivables. Rappelons quelques-unes de
ces propriétés.

On note [a, b] un intervalle compact (c’est-à-dire fermé borné),

[a, b] = {x | a ≤ x ≤ b},

]a, b[ un intervalle ouvert,

]a, b[= {x | a < x < b}

et (a, b) un intervalle quelconque. (Ces notations présument que a ≤ b). Un
intervalle compact peut être caractérisé par la propriété suivante :

• Toute suite {xn}n≥1 de points de [a, b] contient une suite partielle {xnk
}k≥1

qui converge vers un point de [a, b] (théorème de Bolzano-Weierstrass).

Soit f : (a, b) → R une fonction. Elle est dite continue sur (a, b) si elle
est continue en chaque point x0 de (a, b), c’est-à-dire si en chaque point x0

de (a, b),
lim

x→x0

f(x) = f(x0).

Un fonction continue jouit des propriétés suivantes :

• L’image d’un intervalle quelconque par une fonction continue est un in-
tervalle (propriété des valeurs intermédiaires).

• L’image d’un intervalle compact par une fonction continue est un intervalle
compact (propriété des valeurs extrêmes).
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Une fonction f continue et strictement monotone sur un intervalle y
admet une fonction inverse f−1 qui est elle aussi continue et strictement
monotone.

Exemple.
Si n ∈ N, la fonction x 7→ x1/n est définie et continue pour x ≥ 0 si n est

pair et pour tout x si n est impair.

La fonction f : (a, b) → R est dite dérivable sur (a, b) si elle est dérivable
en chaque point x0 de (a, b), c’est-à-dire si en chaque point x0 de (a, b), la
limite suivante

lim
x→x0

f(x)− f(x0)
x− x0

existe. On écrit alors

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

.

La fonction f est dite continûment dérivable si sa dérivée f ′ est continue.
Le théorème fondamental du calcul différentiel est le théorème des ac-

croissements finis (quelquefois appelé théorème de la moyenne ou encore
théorème de Rolle lorsque f(a) = f(b) = 0) :

• Si f : [a, b] → R est continue sur [a, b] et dérivable sur ]a, b[, il existe un
nombre c ∈]a, b[ tel que

f(b)− f(a) = f ′(c)(b− a).

L’inverse d’une fonction dérivable est dérivable aux points y correspon-
dant aux points x où f ′(x) 6= 0 (y = f(x) et x = f−1(y)) et alors(

f−1
)′ (y) =

1
f ′(x)

.

Exemple.
Un polynôme de degré n,

Pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n,

est dérivable sur tout l’axe réel et

P ′n(x) = a1 + 2a2x+ · · ·+ nanx
n−1.

Une fonction rationnelle,

R(x) =
Pn(x)
Qm(x)

,
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est dérivable aux points où elle est définie (c’est-à-dire aux points où le
dénominateur Qm(x) ne s’annule pas) et

R′(x) =
P ′n(x)Qm(x)− Pn(x)Q′m(x)

Q2
m(x)

.

Si p ∈ Q,
d

dx
xp = p xp−1 , x > 0.

1.1 Exercices 1

Justifier complètement toutes ses affirmations.

1. Vérifier que la suite de points de [−1, 1] définie par

xn =
1 + (−1)nn

1 + n

ne converge pas. En exhiber une suite partielle convergente.

2. Montrer qu’une fonction continue sur un intervalle fermé peut toujours
être prolongée à une fonction continue sur R tout entier. Cela reste-t-il
vrai pour un intervalle quelconque ?

3. Donner un exemple d’une fonction continue sur un intervalle fermé qui
n’y est pas bornée ou qui n’y atteint pas ses bornes. Même question
pour un intervalle borné.

4. Montrer qu’une fonction dérivable sur un intervalle fermé peut toujours
être prolongée à une fonction dérivable sur R tout entier.

5. Les fonctions suivantes sont-elles dérivables en tous les points de leur
domaine de définition :

x1/2 , x1/3 , x3/2 , x4/3 ?

6. Soient 0 < a < b. Déterminer le point c du théorème des accroisse-
ments finis pour la fonction f(x) = x2. Même question pour la fonction
f(x) = x3.

6w
w

w
.a

l3
ab

ka
ri-

pr
o.

co
m



2 INTÉGRATION DES FONCTIONS CONTINUES

L’intégration des fonctions continues repose sur une propriété supplémentaire
de ces fonctions lorsqu’on les considère sur des intervalles compacts.

2.1 La continuité uniforme

Dire d’une fonction f : (a, b) → R qu’elle est continue, c’est dire qu’elle
est continue en chaque point x0 de (a, b), c’est-à-dire qu’à chaque point x0

et à chaque ε > 0 correspond δ > 0 tel que

|x− x0| < δ et x ∈ (a, b) impliquent |f(x)− f(x0)| < ε.

Le nombre δ dépend à la fois de x0 et de ε :

δ = δ(x0, ε).

Lorsqu’il peut être choisi indépendamment du point x0,

δ = δ(ε),

on dit que la fonction est uniformément continue sur l’intervalle (a, b).
En d’autres termes, une fonction f : (a, b) → R est uniformément

continue sur (a, b) si à chaque ε > 0 correspond δ > 0 tel que

|x− y| < δ et x, y ∈ (a, b) impliquent |f(x)− f(y)| < ε.

Exemples.
– La fonction f(x) = x2 est uniformément continue sur [0, 1] puisque :

|x2 − y2| = |(x+ y)(x− y)| ≤ 2|x− y|.

– La fonction f(x) =
√
x est uniformément continue sur [1,+∞[ ; en

vertu du théorème des accroissements finis en effet, il existe z entre x
et y tel que :

|
√
x−√y| = |x− y|

2
√
z

≤ |x− y|
2

.

– La fonction f(x) = x2 n’est pas uniformément continue sur [1,+∞[ ;
soient en effet xn = (n+ 1/n) et yn = n. On a toujours

|f(xn)− f(yn)| = 2 +
1
n2

> 2

bien que

|xn − yn| =
1
n
.

Aucun nombre δ ne peut correspondre à ε = 2.
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– La fonction f(x) =
√
x est uniformément continue sur l’intervalle [0, 1],

en vertu du théorème suivant.

Théorème 1 Une fonction f : [a, b] → R continue sur un intervalle com-
pact y est uniformément continue.

Démonstration. Supposons que le théorème est faux. Il existe alors ε > 0 tel
que, quelque soit δ > 0, on peut trouver deux points x, y de l’intervalle [a, b]
pour lesquels :

|x− y| < δ et |g(x)− g(y)| > ε.

Choisissons successivement δ = 1, 1/2, 1/3, 1/4, . . . On obtient deux suites
de points xn et yn de [a, b] tels que

|xn − yn| <
1
n

et |g(xn)− g(yn)| > ε.

Par compacité, la suite {xn}n≥1 contient une suite partielle {xnk
}k≥1 qui

converge vers un point z de [a, b]. Comme

|xnk
− ynk

| < 1
nk
,

la suite partielle {ynk
}k≥1 correspondante converge aussi vers z. Par conti-

nuité, on a donc

lim
k→+∞

(g(xnk
)− g(ynk

)) = g(z)− g(z) = 0

ce qui est absurde puisque l’on a toujours

|g(xnk
)− g(ynk

)| > ε.

C.Q.F.D.

2.2 Définition de l’intégrale

Soit f : [a, b] → R une fonction continue sur un intervalle compact. À
chaque partition P de l’intervalle,

P = {x0, x1, x2, . . . , xn} où a = x0 < x1 < · · · < xn = b,

associons avec Riemann une somme supérieure S(P, f),

S(P, f) =
n∑

k=1

sup{f(x) | xk−1 ≤ x ≤ xk}(xk − xk−1),
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et une somme inférieure s(P, f),

s(P, f) =
n∑

k=1

inf{f(x) | xk−1 ≤ x ≤ xk}(xk − xk−1).

Lorsque la fonction est positive, ces sommes majorent et minorent respec-
tivement l’aire déterminée par l’axe des abscisses, les droites x = a et x = b
et le graphe de la fonction (figure (1) — les points de la partition ne sont
pas nécessairement équidistants).

x

y

y � f�x�

a b

Fig. 1 – Sommes de Riemann

Il est clair que l’on a

inf{f(x) | a ≤ x ≤ b}(b−a) ≤ s(P, f) ≤ S(P, f) ≤ sup{f(x) | a ≤ x ≤ b}(b−a)

pour toute partition P. Observons maintenant que, si Q est une partition
plus fine que P, c’est-à-dire si P ⊆ Q, on a

S(Q, f) ≤ S(P, f) , s(P, f) ≤ s(Q, f). (1)

En effet, il suffit de vérifier ces inégalités lorsqueQ s’obtient de P par adjonc-
tion d’un seul point,Q = P∪{x∗} ; or si j est l’indice tel que xj−1 < x∗ < xj ,
on a

sup{f(x) | xj−1 ≤ x ≤ xj}(xj − xj−1)
= sup{f(x) | xj−1 ≤ x ≤ xj}(xj − x∗) + sup{f(x) | xj−1 ≤ x ≤ xj}(x ∗ −xj−1)
≥ sup{f(x) | x∗ ≤ x ≤ xj}(xj − x∗) + sup{f(x) | xj−1 ≤ x ≤ x∗}(x ∗ −xj−1)

et les autres termes de la somme S(P, f) restent inchangés. De ceci découle
la première des inégalités (1). L’autre inégalité s’obtient de façon similaire.
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On déduit de ces relations que, quelles que soient les partitions P et Q, on
a

s(P, f) ≤ s(P ∪Q, f) ≤ S(P ∪Q, f) ≤ S(Q, f),

c’est-à-dire que toute somme inférieure est plus petite que toute somme
supérieure. Ainsi

sup
P
s(P, f) ≤ inf

P
S(P, f).

En fait, on a toujours

sup
P
s(P, f) = inf

P
S(P, f). (2)

Cela est une conséquence de la continuité uniforme d’une fonction continue
sur un intervalle compact. Démontrons la relation (2). Soit ε > 0 arbitraire.
Soit δ > 0 un nombre tel que

|x− y| < δ et x, y ∈ [a, b] impliquent |f(x)− f(y)| < ε

b− a
.

Soit aussi
P = {x0, x1, x2, . . . , xn}

une partition pour laquelle

xk − xk−1 < δ pour tout k.

Soient enfin uk, vk ∈ [xk−1, xk] tels que, pour tout k,

f(uk) = inf{f(x) | xk−1 ≤ x ≤ xk} , f(vk) = sup{f(x) | xk−1 ≤ x ≤ xk}

(propriété des valeurs extrêmes). Alors

S(P, f)− s(P, f)

=
n∑

k=1

(sup{f(x) | xk−1 ≤ x ≤ xk} − inf{f(x) | xk−1 ≤ x ≤ xk})(xk − xk−1)

=
n∑

k=1

(f(vk)− f(uk))(xk − xk−1) ≤
n∑

k=1

ε

b− a
(xk − xk−1) = ε

ce qui démontre la relation (2).
On exprime l’équation (2) en disant que la fonction f est intégrable sur

l’intervalle [a, b], d’intégrale :∫ b

a
f(x) dx = sup

P
s(P, f) = inf

P
S(P, f).
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Lorsque f est positive, l’intégrale est donc exactement le nombre qui donne
l’aire déterminée par l’axe des abscisses, les droites x = a et x = b et le
graphe de la fonction.

La signification de l’intégrale ayant été bien établie, nous pouvons main-
tenant donner avec Darboux une façon plus commode de la calculer (fi-
gure (2) — les points où la fonction est évaluée ne sont pas nécessairement
équidistants).

x

y

y � f�x�

a b

Fig. 2 – Sommes de Darboux

Théorème 2 (Darboux) Quels que soient les nombres

xk,n ∈ [a+
k − 1
n

(b− a), a+
k

n
(b− a)],

on a ∫ b

a
f(x) dx = lim

n→+∞

b− a

n

n∑
k=1

f(xk,n).

Démonstration. Soit

Pn = {a, a+
1
n

(b− a), a+
2
n

(b− a), . . . , b}

la partition uniforme de [a, b]. On a

s(Pn, f) ≤ b− a

n

n∑
k=1

f(xk,n) ≤ S(Pn, f)

et

s(Pn, f) ≤
∫ b

a
f(x) dx ≤ S(Pn, f).
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Ainsi ∣∣∣∣∣
∫ b

a
f(x) dx− b− a

n

n∑
k=1

f(xk,n)

∣∣∣∣∣ ≤ S(Pn, f)− s(Pn, f).

Or, en utilisant la continuité uniforme de la fonction f et la propriété des
valeurs extrêmes, on voit comme précédemment que

lim
n→+∞

(S(Pn, f)− s(Pn, f)) = 0.

C.Q.F.D.
Exemple.
On a ∫ 1

0
x dx = lim

n→+∞

1
n

n∑
k=1

k

n
= lim

n→+∞

n+ 1
2n

=
1
2
.

2.3 Propriétés de l’intégrale

Les trois propriétés essentielles de l’intégrale d’une fonction continue sont
la linéarité, la positivité et l’additivité.

Théorème 3 (Linéarité de l’intégrale) Soient f1, f2 : [a, b] → R des
fonctions continues et c1, c2 ∈ R des nombres. Alors∫ b

a
(c1f1(x) + c2f2(x)) dx = c1

∫ b

a
f1(x) dx+ c2

∫ b

a
f2(x) dx.

Démonstration. En utilisant les sommes de Darboux-Riemann, on obtient :∫ b

a
(c1f1(x) + c2f2(x)) dx

= lim
n→+∞

b− a

n

n∑
k=1

(
c1f1

(
a+

k

n
(b− a)

)
+ c2f2

(
a+

k

n
(b− a)

))

= c1 lim
n→+∞

b− a

n

n∑
k=1

f1

(
a+

k

n
(b− a)

)
+ c2 lim

n→+∞

b− a

n

n∑
k=1

f2

(
a+

k

n
(b− a)

)

= c1

∫ b

a
f1(x) dx+ c2

∫ b

a
f2(x) dx.

C.Q.F.D.
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Théorème 4 (Positivité de l’intégrale) Soient f1, f2 : [a, b] → R des
fonctions continues telles que

f1(x) ≤ f2(x) pour a ≤ x ≤ b.

Alors ∫ b

a
f1(x) dx ≤

∫ b

a
f2(x) dx.

Démonstration. En utilisant les sommes de Darboux-Riemann, on obtient :∫ b

a
f1(x) dx = lim

n→+∞

b− a

n

n∑
k=1

f1

(
a+

k

n
(b− a)

)

≤ lim
n→+∞

b− a

n

n∑
k=1

f2

(
a+

k

n
(b− a)

)
=
∫ b

a
f2(x) dx.

C.Q.F.D.
L’application de ce théorème aux fonctions f1 = ±f et f2 = |f | conduit

à l’inégalité du triangle pour les intégrales :∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx.

Théorème 5 (Additivité de l’intégrale) Soient f : [a, b] → R une fonc-
tion continue et a < c < b. Alors∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

Démonstration. Soient P,P ′ et P ′′ des partitions des intervalles [a, b], [a, c] et [c, b]
respectivement. On a donc :

P ∪ {c} = P ′ ∪ P ′′.

En utilisant les inégalités (1), on voit d’une part que∫ b

a
f(x) dx = sup

P
s(P, f) ≤ sup

P
s(P ∪ {c}, f) = sup

P ′∪P ′′
(s(P ′, f) + s(P ′′, f))

≤ sup
P ′

s(P ′, f) + sup
P ′′

s(P ′′, f) =
∫ c

a
f(x) dx+

∫ b

c
f(x) dx
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(exercice (11)) et d’autre part que∫ b

a
f(x) dx = inf

P
S(P, f) ≥ inf

P
S(P ∪ {c}, f) = inf

P ′∪P ′′
(S(P ′, f) + S(P ′′, f))

≥ inf
P ′
S(P ′, f) + inf

P ′′
S(P ′′, f) =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

C.Q.F.D.
Il commode de poser∫ a

b
f(x) dx = −

∫ b

a
f(x) dx.

L’intégrale ∫ b

a
f(x) dx

est ainsi définie quelle que soit la position relative des bornes d’intégration
a et b — mais la propriété de positivité ne vaut que si a < b.

Exemple.
Si f : [0,+∞[→ R est continue et limx→+∞ f(x) = L,

lim
x→+∞

1
x

∫ x

0
f(t) dt = L.

En effet, quelque soit ε > 0,∣∣∣∣1x
∫ x

0
f(t) dt− L

∣∣∣∣ = ∣∣∣∣1x
∫ x

0
(f(t)− L) dt

∣∣∣∣
≤ 1
x

∫ y

0
|f(t)− L| dt+

1
x

∫ x

y
|f(t)− L| dt

≤ y

x
sup
t≥0

|f(t)− L|+ x− y

x
sup
t≥y

|f(t)− L|

<
y

x
sup
t≥0

|f(t)− L|+ x− y

x

ε

2

dès que y = yε est assez grand puis, y ainsi fixé,∣∣∣∣1x
∫ x

0
f(t) dt− L

∣∣∣∣ < ε

2
+
ε

2
< ε

dès que

x >
2 y supt≥0 |f(t)− L|

ε
.
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2.4 Exercices 2

Justifier complètement toutes ses affirmations.

1. Montrer qu’une fonction f : (a, b) → R admettant une dérivée bornée
est uniformément continue.

2. En déduire qu’une fonction rationnelle R : R → R bornée est uni-
formément continue sur R.

3. Montrer qu’une fonction f : (a, b) → R qui est uniformément continue
sur (a, c] et sur [c, b) l’est aussi sur (a, b).

4. En déduire que la fonction f(x) = 3
√
x est uniformément continue sur

R.

5. La fonction f(x) = 1/x est-elle uniformément continue sur l’intervalle
]0, 1] ? sur l’intervalle [1,+∞[ ?

6. Les sommes supérieures et les sommes inférieures de Riemann peuvent
être calculées pour toute fonction bornée f : [a, b] → R mais il n’est
plus certain que la fonction soit intégrable, c’est-à-dire que l’équation
(2) soit vraie. Considérer avec Dirichlet la fonction indicatrice des
nombres rationnels :

f(x) = IQ(x) =

{
1 si x ∈ Q
0 sinon .

Montrer qu’elle n’est intégrable sur aucun intervalle.

7. Démontrer l’inégalité de Cauchy-Schwarz : si f, g : [a, b] → R sont
continues, alors

∫ b

a
f(x)g(x) dx ≤

√∫ b

a
f2(x) dx

√∫ b

a
g2(x) dx.

(Suggestion : choisir le nombre λ de façon optimale dans l’inégalité :

0 ≤
∫ b

a
(f(x) + λg(x))2 dx.)

8. En déduire l’inégalité de Minkowski :√∫ b

a
(f(x) + g(x))2 dx ≤

√∫ b

a
f(x)2 dx+

√∫ b

a
g(x)2 dx.
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9. Soit f : [a, b] → R une fonction continue. Montrer qu’il existe c ∈ [a, b]
tel que ∫ b

a
f(x) dx = f(c)(b− a).

(Premier théorème de la moyenne).

10. Soit f : [a, b] → [0,+∞[ une fonction continue et positive telle que∫ b

a
f(x) dx = 0.

Montrer qu’elle est identiquement nulle.

11. Vérifier les relations suivantes :

sup
a∈A, b∈B

(a+ b) ≤ sup
a∈A

a + sup
b∈B

b,

inf
a∈A, b∈B

(a+ b) ≥ inf
a∈A

a + inf
b∈B

b.

12. Soient f : [a, b] → R une fonction continue et {an}n≥1 une suite de
nombres convergeant vers a, an > a. Montrer que∫ b

a
f(x) dx = lim

n→+∞

∫ b

an

f(x) dx.
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3 THÉORÈME FONDAMENTAL DU CALCUL

Le théorème fondamental du calcul constitue la façon habituelle d’évaluer
une intégrale. Il en fait aussi apparâıtre des propriétés supplémentaires.

3.1 Le théorème fondamental du calcul

Faisant le lien entre le calcul différentiel et le calcul intégral en montrant
que la dérivation et l’intégration sont les opérations inverses l’une de l’autre,
le théorème fondamental du calcul a deux facettes.

Théorème 6 (Théorème fondamental du calcul I) Soit f : [a, b] → R
une fonction continue. Alors, pour tout x ∈ [a, b],

d

dx

∫ x

a
f(t) dt = f(x).

Démonstration. Posons
I(x) =

∫ x

a
f(t) dt.

Soient a < x < b et h > 0 assez petit pour que les points x± h soient dans
[a, b]. On a, en vertu des propriétés de linéarité et d’additivité de l’intégrale,
que

I(x+ h)− I(x)
h

− f(x) =
1
h

∫ x+h

x
(f(t)− f(x)) dt

et que
I(x− h)− I(x)

−h
− f(x) =

1
h

∫ x

x−h
(f(t)− f(x)) dt

de telle sorte que, en vertu cette fois de la positivité,∣∣∣∣I(x+ h)− I(x)
h

− f(x)
∣∣∣∣ ≤ sup{|f(t)− f(x)| | x ≤ t ≤ x+ h}

et que ∣∣∣∣I(x− h)− I(x)
−h

− f(x)
∣∣∣∣ ≤ sup{|f(t)− f(x)| | x− h ≤ t ≤ x}.

En utilisant la continuité de la fonction f au point x, on voit donc que

lim
h→0

I(x+ h)− I(x)
h

= f(x).
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Les cas où x = a et où x = b sont similaires. C.Q.F.D.
Remarque.
Puisque ∫ b

a
f(t) dt =

∫ x

a
f(t) dt+

∫ b

x
f(t) dt,

on a aussi
d

dx

∫ b

x
f(t) dt = −f(x).

Théorème 7 (Théorème fondamental du calcul II) Soit F : [a, b] → R
une fonction continûment dérivable. Alors∫ b

a
F ′(x) dx = F (b)− F (a).

Démonstration. Considérons la fonction

J(x) =
∫ x

a
F ′(t) dt.

En vertu du théorème précédent, on a

J ′(x) = F ′(x).

Les fonction J(x) et F (x)− F (a) admettent donc la même dérivée sur l’in-
tervalle [a, b]. Comme elles s’annulent toutes les deux pour x = a, elles
cöıncident partout sur l’intervalle [a, b] :

J(b) = F (b)− F (a).

C.Q.F.D.
En vertu de ce théorème, il suffit donc, pour évaluer∫ b

a
f(x) dx,

de trouver une fonction F (x) telle que F ′(x) = f(x). On a alors tout sim-
plement ∫ b

a
f(x) dx = F (b)− F (a).

(Pour abréger l’écriture, on écrit

F (b)− F (a) = F (x)
∣∣∣b
a
. )
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Une telle fonction F se nomme primitive de f (puisque que f est sa dérivée)
ou encore intégrale indéfinie de f . On la dénote par∫

f(x) dx.

En d’autres mots,

F (x) =
∫
f(x) dx ⇔ F ′(x) = f(x).

Une primitive n’est définie qu’à l’addition d’une constante près.
Toute fonction continue f admet une primitive, nommément la fonction

définie par l’équation

F (x) =
∫ x

a
f(t) dt

(en vertu du théorème (6)) mais si cela s’avère être la seule représentation
disponible de F , elle n’est guère utile pour évaluer l’intégrale « définie » de
f . Cette situation se présente cependant quelquefois. Et, en règle générale,
le calcul des primitives est beaucoup plus difficile que le calcul des dérivées.

Exemple.
Si p ∈ Q, p 6= −1, ∫

xp dx =
xp+1

p+ 1

puisque
d

dx
xp+1 = (p+ 1)xp.

On a donc, si 0 < a < b, ∫ b

a
xp dx =

bp+1 − ap+1

p+ 1
.

3.2 Propriétés supplémentaires de l’intégrale

Le théorème fondamental du calcul met en lumière deux autres propriétés
de l’intégrale : l’intégration par parties qui correspond à la règle de dérivation
d’un produit et la formule de changement de variable qui correspond à la
règle de dérivation en châıne (exercice (7)).
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Théorème 8 (Intégration par parties) Soient F,G : [a, b] → R des fonc-
tions continûment dérivables. Alors∫ b

a
F (x)G′(x) dx = F (x)G(x)

∣∣∣b
a
−
∫ b

a
F ′(x)G(x) dx. (3)

Démonstration. Puisque

d

dx
F (x)G(x) = F ′(x)G(x) + F (x)G′(x),

on a
F (x)G(x) =

∫
F ′(x)G(x) dx+

∫
F (x)G′(x) dx

c’est-à-dire ∫
F (x)G′(x) dx = F (x)G(x)−

∫
F ′(x)G(x) dx

donc∫ b

a
F (x)G′(x) dx =

∫
F (x)G′(x) dx

∣∣∣b
a

= F (x)G(x)
∣∣∣b
a
−
∫
F ′(x)G(x) dx

∣∣∣b
a

= F (x)G(x)
∣∣∣b
a
−
∫ b

a
F ′(x)G(x) dx.

C.Q.F.D.
L’utilisation de la formule (3) pour évaluer une intégrale∫ b

a
h(x) dx

repose sur une factorisation judicieuse de la fonction h(x) sous la forme
h(x) = F (x)G′(x).

Exemple.
Soit à évaluer ∫ 1

0
x
√
x+ 1 dx.

Posant F (x) = x etG′(x) =
√
x+ 1, on a F ′(x) = 1 etG(x) = 2(x+ 1)3/2/3.

Ainsi ∫
x
√
x+ 1 dx =

2
3
x(x+ 1)3/2 −

∫
2
3
(x+ 1)3/2 dx

=
2
3
x(x+ 1)3/2 − 4

15
(x+ 1)5/2 =

2
15

(x+ 1)3/2(3x− 2)
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et ∫ 1

0
x
√
x+ 1 dx =

2
15

(
23/2 + 2

)
=

4(
√

2 + 1)
15

.

Théorème 9 (Changement de variable) Soit φ : [c, d] → R une fonc-
tion continûment dérivable strictement monotone et telle que φ([c, d]) =
[a, b]. Pour toute fonction continue f : [a, b] → R, on a∫ b

a
f(x) dx =

∫ d

c
f(φ(t))|φ′(t)| dt. (4)

Démonstration. Soit F une primitive de f . Alors∫
f(φ(t))φ′(t) dt = F (φ(t)).

La fonction φ effectue une bijection de l’intervalle [c, d] sur l’intervalle [a, b].
Si φ est croissante (c’est-à-dire si φ′ > 0), on a∫ d

c
f(φ(t))φ′(t) dt = F (φ(t))

∣∣∣d
c

= F (b)− F (a) =
∫ b

a
f(x) dx

alors que si φ est décroissante (c’est-à-dire si φ′ < 0), on a∫ d

c
f(φ(t))(−φ′(t)) dt = −F (φ(t))

∣∣∣d
c

= −F (a) + F (b) =
∫ b

a
f(x) dx.

C.Q.F.D.
L’utilisation de la formule (4) pour évaluer une intégrale∫ b

a
f(x) dx

repose sur sur un choix approprié de la nouvelle variable t = φ−1(x).
Exemple.
Soit à évaluer ∫ 1

0
x
√
x2 + 1 dx.

On pose t = x2 + 1 de telle sorte que

dt

dx
= 2x ≥ 0,

l’intervalle 0 ≤ x ≤ 1 correspondant à l’intervalle 1 ≤ t ≤ 2. On a∫ 1

0
x
√
x2 + 1 dx =

∫ 2

1

√
t

1
2
dt =

1
3
t3/2
∣∣∣2
1

=
2
√

2− 1
3

.
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3.3 Exercices 3

Justifier complètement toutes ses affirmations.

1. Déduire le théorème fondamental du calcul (théorème (6)) du premier
théorème de la moyenne (exercice (9) du chapitre 2).

2. Soient f : R → R une fonction continue et a, b : R → R des fonctions
dérivables telles que a(x) < b(x). Calculer

d

dx

∫ b(x)

a(x)
f(t) dt.

3. Soit f : R → R une fonction continue. Calculer

d

dx

∫ 1

0
f(x+ t) dt.

4. Soit f : R → R une fonction continue et périodique de période 2p
(f(t + 2p) = f(t) pour tout t). Montrer que, quel que soit le nombre
x, ∫ x+2p

x
f(t) dt =

∫ 2p

0
f(t) dt.

5. Soit f : [0,+∞[→ R une fonction continue. Posons

φ(x) =
1
x

∫ x

0
f(t) dt.

Montrer que φ est croissante si f l’est.

6. Soit p > 0. Calculer

lim
n→+∞

n∑
k=1

kp

np+1
.

7. Déduire la règle de dérivation d’un quotient de la règle de dérivation
d’un produit.

8. Soit p > 2. Calculer

lim
n→+∞

n∑
k=1

knp−2

(k + n)p
.

9. Soit f : [−A,A] → R une fonction continue. Montrer que si f est
impaire (c’est-à-dire f(−x) = −f(x) pour tout x),∫ A

−A
f(x) dx = 0
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et que si f est paire (c’est-à-dire f(−x) = f(x) pour tout x),∫ A

−A
f(x) dx = 2

∫ A

0
f(x) dx.

10. Soit f : [0, a] → R une fonction continûment dérivable. Montrer que

af(a) =
∫ a

0
f(x) dx+

∫ a

0
xf ′(x) dx.

Donner une interprétation géométrique de cette relation dans le cas
où f ′(x) > 0 et f(0) = 0.

11. Soient F : [a, b] → R une fonction continûment dérivable, positive et
décroissante et g : [a, b] → R une fonction continue. Montrer qu’il
existe c ∈ [a, b] tel que∫ b

a
F (x)g(x) dx = F (a)

∫ c

a
g(x) dx.

(Deuxième théorème de la moyenne — comparer avec le premier (exer-
cice (9) du chapitre 2)). (Suggestion : introduire la fonction

G(x) =
∫ x

a
g(t) dt

et intégrer par parties.)

12. Soit p > 0. Montrer qu’il existe un nombre c ∈ [0, 1] tel que∫ 1

0

xp

x2p + 1
dx =

cp+1

p+ 1
.
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4 LOGARITHME ET EXPONENTIELLE

Les fonctions logarithmique et exponentielle sont étroitement associées
à l’étude des phénomènes de croissance.

4.1 Le logarithme

On sait que la fonction x 7→ 1/x n’admet pas de primitive rationnelle.
Le logarithme est la fonction log : ]0,+∞[→ R définie par

log x =
∫ x

1

dt

t
.

(figure (3)). En vertu du théorème fondamental du calcul (théorème (6)), le
logarithme est une fonction dérivable et

d

dx
log x =

1
x
.

Autre notation : lnx.

0.5 1 1.5 2 2.5 3
x

0.5

1

1.5

2

y

y�1�x

Fig. 3 – Définition du logarithme

Théorème 10 (Équation fonctionnelle du logarithme) On a

log xy = log x+ log y (5)

et si f : ]0,+∞[→ R est une fonction dérivable telle que

f(xy) = f(x) + f(y), (6)

il existe un nombre c ∈ R tel que

f(x) = c log x.
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Démonstration. Pour démontrer la première affirmation, introduisons la
fonction

φ(x) = log xy − log y

(en fixant arbitrairement y > 0). Comme

φ′(x) =
1
x

=
d

dx
log x

et comme
φ(1) = 0 = log 1,

on doit avoir
φ(x) = log x.

Si, d’autre part, f satisfait l’équation fonctionnelle (6), on aura, en dérivant
par rapport à x que, quelque soit y > 0,

yf ′(xy) = f ′(x)

donc
yf ′(y) = f ′(1).

En passant aux primitives,

f(y) = f ′(1) log y +K

oùK est une constante. Puisque l’équation fonctionnelle entrâıne que f(1) = 2f(1),
f(1) = 0 donc K = 0 et on a bien

f(x) = c log x

en posant c = f ′(1). C.Q.F.D.

Comme conséquences de l’équation (5), on a

log
1
x

= − log x,

et
log xn = n log x pour tout n ∈ N

donc aussi
log x1/m =

1
m

log x pour tout m ∈ N

c’est-à-dire
log xp = p log x quelque soit p ∈ Q.
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Puisque, de plus,
d2

dx2
log x = − 1

x2
< 0,

le logarithme est une fonction strictement concave qui crôıt (stricte-
ment) de −∞ à +∞ lorsque son argument crôıt de 0 à +∞. Ces données
permettent de tracer son graphe (figure (4)).

La concavité d’une fonction entrâıne pour cette fonction d’importantes
conséquences. (Exercices (7), (8), (9)).

2 4 6 8 10

-2

-1

1

2

Fig. 4 – Graphe du logarithme

Remarque.
Le logarithme tend vers +∞ avec son argument mais plus lentement que

toute puissance (si petite soit-elle) de cet argument. En vertu de la règle de
l’Hospital, on a en effet, que quel que soit p > 0 :

lim
x→+∞

log x
xp

= lim
x→+∞

x−1

pxp−1
= lim

x→+∞

1
pxp

= 0.

Exemple.
On estime le nombre N d’atomes dans l’univers visible à

N = 10000000000000000000000000000000000000000
0000000000000000000000000000000000000000.

Le logarithme de ce nombre est

logN < 240.
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Théorème 11
log e = 1.

Démonstration. Le nombre e est défini par

e = lim
n→+∞

(
1 +

1
n

)n

.

En utilisant les propriétés du logarithme, on obtient :

log e = log
(

lim
n→+∞

(
1 +

1
n

)n)
= lim

n→+∞

(
log
(

1 +
1
n

)n)
= lim

n→+∞
n log

(
1 +

1
n

)
= lim

n→+∞

log
(
1 + 1

n

)
− log 1

1/n

=
d

dx
log x

∣∣∣
x=1

= 1.

C.Q.F.D.

4.2 La fonction exponentielle

La fonction exponentielle est la fonction inverse du logarithme, exp : R →]0,+∞[,
définie par la relation

expx = y ⇔ x = log y,

autrement dit

exp(log y) = y si y > 0, log(expx) = x pour tout x ∈ R.

L’équation fonctionnelle (5) du logarithme se traduit donc par l’équation
fonctionnelle suivante pour l’exponentielle :

exp(x1 + x2) = expx1 expx2.

Théorème 12 (Équation différentielle de l’exponentielle) On a

d

dx
expx = expx

et si f : R → R est une fonction dérivable telle que

f ′(x) = af(x)

avec a ∈ R, il existe un nombre c ∈ R tel que

f(x) = c exp(ax).
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Démonstration. En vertu de la règle pour dériver une fonction inverse, on a
bien

d

dx
expx =

1
d
dy log y

=
1

1/y
= y = expx.

D’autre part, introduisant la fonction

g(x) = f(x) exp(−ax),

on a

g′(x) = f ′(x) exp(−ax)− af(x) exp(−ax) = (f ′(x)− af(x)) exp(−ax) = 0

ce qui entrâıne
g(x) = c

pour une constante c appropriée. C.Q.F.D.

Comme pour toute fonction inverse, le graphe de la fonction exponen-
tielle (figure (5)) est le symétrique de celui du logarithme relativement à la
bissectrice y = x. Il s’agit d’une courbe strictement convexe qui crôıt
(strictement) de 0 à +∞ lorsque l’abscisse crôıt de −∞ à +∞ et ce, plus
rapidement que toute puissance de cette abscisse (exercice (13)).

-3 -2 -1 1 2 3
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15

20

Fig. 5 – Graphe de l’exponentielle
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4.3 Exposants irrationnels

Si n ∈ N est un entier naturel, xn est égal au produit de x par lui-même
n fois et, lorsque x 6= 0, x−n est égal à celui de x−1 par lui-même n fois. Si
m ∈ N, la fonction x 7→ x1/m est la fonction inverse de xm (elle est définie
pour tout x ∈ R si m si impair et pour tout x ≥ 0 si m est pair). On convient
enfin de poser x0 = 1 lorsque x > 0.

La fonction x 7→ xp est donc bien définie sur l’intervalle ]0,+∞[ pour
tout exposant p ∈ Q. Observons que l’on a

exp(p log x) = exp(log xp) = xp.

Cette propriété permet d’introduire des exposants irrationnels.
Soit a ∈ R un nombre réel quelconque. La fonction x 7→ xa est la fonction

]0,+∞[→ ]0,+∞[ définie par l’équation

xa = exp(a log x).

Observons que, en vertu du théorème (11), l’on a en particulier :

ea = exp a pour tout a ∈ R.

Les règles de calcul avec les exposants restent encore vraies.

Théorème 13 (Règles des exposants) Soient a, a1, a2 ∈ R et x, y > 0.
Alors

a) (xy)a = xaya

b) xa1+a2 = xa1xa2

c) xa1a2 = (xa1)a2

Démonstration. En vertu de la définition que nous avons posée, on a succes-
sivement

a) (xy)a = ea log xy = ea log x+a log y = ea log xea log y = xaya;

b) xa1+a2 = e(a1+a2) log x = ea1 log x+a2 log x = ea1 log xea2 log x = xa1xa2 ;

c) (xa1)a2 = exp(a2 log xa1) = exp(a2 log(exp(a1 log x))) = exp(a2a1 log x) =
xa1a2 .

C.Q.F.D.
Une conséquence en est que la formule de dérivation

d

dx
xa = axa−1
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reste toujours valable.
Fixons maintenant b > 0, b 6= 1, et considérons la fonction g : R →]0,+∞[

définie par
g(x) = bx.

Puisque
d

dx
g(x) = bx log b,

elle est strictement monotone (croissante si b > 1, décroissante si b < 1).
Son inverse est le logarithme de base b, dénoté par logb. Autrement dit

x = logb y ⇔ y = bx.

4.4 Les fonctions hyperboliques

Le cosinus hyperbolique et le sinus hyperbolique sont les fonctions R → R
définies par les relations

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2

respectivement.

Théorème 14 Les fonctions hyperboliques jouissent des propriétés suivantes :

a) cosh2 x− sinh2 x = 1 ;

b) cosh′ x = sinhx , sinh′ x = coshx ;

c) cosh(x+ y) = coshx cosh y + sinhx sinh y,
sinh(x+ y) = sinhx cosh y + sinh y coshx.

Démonstration. En vertu des définitions que nous avons posées, on a
successivement

a)

cosh2 x− sinh2 x =
e2x + 2 + e−2x

4
− e2x − 2 + e−2x

4
= 1;

b)

cosh′ x =
ex − e−x

2
= sinhx , sinh′ x =

ex + e−x

2
= coshx;
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c)

coshx cosh y + sinhx sinh y

=
ex+y + ex−y + e−x+y + e−x−y

4
+
ex+y − ex−y − e−x+y + e−x−y

4

=
ex+y + e−x−y

2
= cosh(x+ y),

sinhx cosh y + sinh y coshx

=
ex+y + ex−y − e−x+y − e−x−y

4
+
ex+y − ex−y + e−x+y − e−x−y

4

=
ex+y − e−x−y

2
= sinh(x+ y).

C.Q.F.D.

Les graphes des fonctions hyperboliques se déduisent de celui de l’expo-
nentielle.

-4 -2 2 4

-5

5

10

15

cosh x

sinh x

Fig. 6 – Les fonctions hyperboliques

Sa dérivée étant strictement positive, le sinus hyperbolique est une fonc-
tion strictement croissante et admet une fonction inverse partout dérivable,
l’arcsinus hyperbolique, arcsinh : R → R.

En résolvant l’équation quadratique

e2x − 1 = 2 y ex

à l’aide de la formule de Viète, on trouve

ex = y +
√

1 + y2
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c’est-à-dire
arcsinh y = log(y +

√
1 + y2).

En dérivant cette dernière relation ou en utilisant la formule pour la dérivée
d’une fonction inverse, on obtient enfin

d

dy
arcsinh y =

1√
1 + y2

.

Le graphe de l’arcsinus hyperbolique s’en déduit.

-10 -5 5 10

-3

-2

-1

1

2

3

Fig. 7 – L’arcsinus hyperbolique

4.5 Exercices 4

Justifier complètement toutes ses affirmations.
1. Soit

xn =
n∑

k=1

1
k
− log n.

Montrer que la suite {xn}n∈N est décroissante et minorée par 1− log 2
— sa limite est la constante d’Euler-Mascheroni, dénotée γ.

2. Déterminer toutes les fonctions ]0,+∞, [ → ]0,+∞[ dérivables qui sa-
tisfont l’équation fonctionnelle

f(xy) = f(x)f(y).

3. Tracer le graphe de la fonction

f(x) =
log x
x

.
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4. Calculer les limites suivantes :

a)
lim
x→0

xa log x

b)
lim
x→0

xx

c)
lim
x→0

x1/x

d)
lim

x→+∞
x1/x.

5. Soient 0 < a < b. Lequel des deux nombres suivants est le plus grand :
ab ou ba ?

6. Calculer
lim

n→+∞

(
1 +

x

n

)n
.

7. Soit f :]a, b[→ R une fonction deux fois dérivable et telle que f ′′(x) ≥ 0.
Montrer qu’elle satisfait l’inégalité de convexité suivante :

x1 < x3 < x2 ⇒ f(x3) ≤
x2 − x3

x2 − x1
f(x1) +

x3 − x1

x2 − x1
f(x2)

qui exprime que son graphe est situé sous n’importe laquelle de ses
sécantes (figure (8)). (Suggestion : utiliser le théorème des accroisse-
ments finis.)

8. Vérifier que l’inégalité précédente peut s’écrire

f(λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2)

avec
λ1 > 0, λ2 > 0 et λ1 + λ2 = 1

(une combinaison convexe de deux nombres). La généraliser à une
combinaison convexe de n nombres

f

(
n∑

k=1

λkxk

)
≤

n∑
k=1

λkf(xk)

par récurrence sur n (inégalité de Jensen).
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9. Soit f :]a, b[→ R une fonction deux fois dérivable et telle que f ′′(x) ≥ 0.
Montrer que quel que soit x0 ∈]a, b[, le graphe de f est situé au-dessus
de sa tangente en x0 :

f(x) ≥ f(x0) + f ′(x0)(x− x0)

(figure (8)).(Suggestion : utiliser le théorème fondamental du calcul.)

une sécante

le graphe de f

une tangente

Fig. 8 – Une fonction convexe

10. Démontrer l’inégalité entre la moyenne arithmétique et la moyenne
géométrique de n nombres positifs x1, x2, . . . , xn :

n
√
x1x2 · · ·xn ≤

1
n

(x1 + x2 + · · ·+ xn).

11. Démontrer l’inégalité entre la moyenne géométrique et la moyenne
harmonique de n nombres strictement positifs x1, x2, . . . , xn :

n

1/x1 + 1/x2 + · · ·+ 1/xn
≤ n
√
x1x2 · · ·xn.

12. Montrer que
log x ≤ x− 1.

13. Montrer que
ex ≥ x+ 1.

En déduire directement (c’est-à-dire sans utiliser la règle de l’Hospital)
que, quel que soit n ∈ N,

lim
x→+∞

xn

ex
= 0.
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(Suggestion :
x

ex
= 2

x/2
ex/2

1
ex/2

;

raisonner par récurrence sur n.)

14. Déterminer toutes les fonctions R → R qui satisfont l’équation différentielle

f ′(x) = −xf(x).

15. Déterminer la solution de l’équation logistique :

f ′(x) = af(x)(b− f(x)) , x > 0

où a > 0 et b > 0 si 0 < f(0) < b.

16. Montrer que

logb y =
log y
log b

.

17. La fonction tangente hyperbolique est définie par

tanhx =
sinhx
coshx

.

Vérifier qu’elle satisfait l’équation différentielle

f ′(x) = 1− f2(x).

Exprimer tanh(x+y) en terme de tanhx et de tanh y. Tracer le graphe.

18. Vérifier que la tangente hyperbolique admet une fonction inverse, l’arc-
tangente hyperbolique, arctanh : ]− 1, 1[→ R. Montrer que

arctanh y =
1
2

log
1 + y

1− y
.

Calculer la dérivée de cette fonction et tracer son graphe.
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5 FONCTIONS TRIGONOMÉTRIQUES

Les fonctions trigonométriques sont étroitement associées à l’étude des
phénomènes périodiques.

5.1 Définition des fonctions trigonométriques

Le nombre π est, par définition, égal à l’aire du disque de rayon unité :

π = 2
∫ 1

−1

√
1− x2 dx.

Pour −1 ≤ y ≤ 1, posons

arccos y = 2
∫ 1

y

√
1− t2 dt+ y

√
1− y2

(figure (9) — arccos y représente l’aire du secteur (pour vérifier cette affir-
mation, distinguer suivant que y est positif ou négatif)).

y 1

Fig. 9 – Définition de l’arccosinus

La fonction ainsi définie est continue sur [−1, 1] mais dérivable seulement
sur ]− 1, 1[ où

d

dy
arccos y =

−1√
1− y2

.
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Elle est strictement décroissante, de π à 0 lorsque son argument y crôıt de
−1 à 1. Donné 0 ≤ x ≤ π, il existe donc un et un seul nombre −1 ≤ y ≤ 1
tel que

arccos y = x.

Les fonctions trigonométriques cosinus et sinus sont définies pour 0 ≤ x ≤ π
par les relations

cosx = y , sinx =
√

1− y2.

Elles sont prolongées à l’axe réel R tout entier en posant d’abord, pour
−π < x < 0,

cosx = cos(−x) , sinx = − sin(−x)

et ensuite, pour n ∈ Z,

cos(x+ 2πn) = cosx , sin(x+ 2πn) = sinx.

Observons les valeurs remarquables

cos 0 = 1 , cos
π

4
=

1√
2
, cos

π

2
= 0 , cos

3π
4

= − 1√
2
, cosπ = −1

et
sin 0 = 0 , sin

π

4
=

1√
2
, sin

π

2
= 1 , sin

3π
4

=
1√
2
, sinπ = 0.

Observons aussi que la relation

cos2 x+ sin2 x = 1

reste valable sur tout l’axe réel.
Les fonctions périodiques de période 2π ainsi obtenues sont continues :

ainsi, pour le cosinus,

lim
x→0−

cosx = lim
x→0−

cos(−x) = lim
z→0+

cos z = cos 0

et

lim
x→π+

cosx = lim
x→π+

cos(x− 2π) = lim
z→−π+

cos z

= lim
z→−π+

cos(−z) = lim
w→π−

cosw = cosπ.

Elles sont même dérivables et satisfont les relations

d

dx
cosx = − sinx ,

d

dx
sinx = cosx. (7)
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cosinus

sinus

Fig. 10 – Le sinus et le cosinus

Vérifions par exemple, la première de ces relations. Lorsque 0 < x < π
tout d’abord, on a :

d

dx
cosx =

1
d
dy arccos y

=
1
−1√
1−y2

= −
√

1− y2 = − sinx.

Considérons ensuite les points de raccordement. En x = 0, on a, en utilisant
le théorème des accroissement finis — dans ce qui suit 0 < h1 < h,

lim
h→0+

cosh− 1
h

= lim
h→0+

− sinh1 = − sin 0

et

lim
h→0+

cos(−h)− 1
−h

= lim
h→0+

cosh− 1
−h

= lim
h→0+

sinh1 = sin 0 = − sin 0.

En x = π :

lim
h→0+

cos(π − h)− cosπ
−h

= lim
h→0+

− sin(π − h1) = − sinπ

et

lim
h→0+

cos(π + h)− cosπ
h

= lim
h→0+

cos(−π + h)− cosπ
h

= lim
h→0+

cos(π − h)− cosπ
h

= lim
h→0+

sin(π − h1) = sinπ = − sinπ.
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Ces diverses relations permettent de tracer les graphes des fonctions
trigonométriques sinus et cosinus (figure (10)).

La fonction tangente est la fonction définie par la relation

tanx =
sinx
cosx

si x 6= (2n+ 1)π
2

, n ∈ Z.

Son domaine de définition « naturel » est l’intervalle ] − π/2, π/2[. Elle
satisfait la relation

d

dx
tanx = 1 + tan2 x (8)

comme il est aisé de le vérifier à partir de la définition. On en déduit l’allure
de son graphe (figure (11)).

-1.5 -1 -0.5 0.5 1 1.5

-7.5

-5

-2.5

2.5

5

7.5

Fig. 11 – La tangente

5.2 Propriétés des fonctions trigonométriques

Théorème 15 (Équation différentielle de sinus et cosinus) Les fonc-
tions sinus et cosinus sont deux solutions de l’équation différentielle

f ′′(x) + f(x) = 0. (9)

Si, réciproquement f : R → R est une fonction deux fois dérivable qui
satisfait l’équation précédente, il existe deux nombres a, b ∈ R tels que

f(x) = a cosx+ b sinx.

39w
w

w
.a

l3
ab

ka
ri-

pr
o.

co
m



Démonstration. La première affirmation suit des relations (7). Pour démontrer
la seconde, posons a = f(0), b = f ′(0) et considérons la fonction

g(x) = f(x)− a cosx− b sinx.

Elle satisfait l’équation différentielle

g′′(x) + g(x) = 0

sous les conditions initiales

g(0) = g′(0) = 0.

Introduisons alors la fonction

h(x) = g2(x) + g′ 2(x).

Comme
h′(x) = 2g′(x)(g(x) + g′′(x)) = 0,

on doit avoir
h(x) = h(0) = 0 pour tout x

c’est-à-dire que
g(x) = 0 pour tout x.

C.Q.F.D.

Théorème 16 (Formules d’addition) Quelques soient x, y ∈ R, on a :

sin(x+ y) = sinx cos y + sin y cosx
cos(x+ y) = cosx cos y − sinx sin y.

Démonstration. La fonction f(x) = sin(x + y), (y fixé), satisfait l’équation
différentielle (9) et est donc de la forme f(x) = a cosx + b sinx. Puisque
f(0) = sin y et que f ′(0) = cos y, il faut que a = sin y et que b = cos y ce qui
démontre la première formule.

La démonstration de la seconde est similaire. C.Q.F.D.

Les relations suivantes sont un cas particulier fréquemment utilisé :

cos 2x = cos2 x− sin2 x , sin 2x = 2 sinx cosx.

La formule d’addition pour la tangente suit du théorème : si x, y et x+
y 6= (2k + 2)π/2 avec k ∈ Z,

tan(x+ y) =
tanx+ tan y

1 + tanx tan y
.
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Théorème 17 (Relations d’orthogonalité) Quelques soient m,n ∈ N0,
on a : ∫ +π

−π
cosmx sinnx dx = 0

∫ +π

−π
cosmx cosnx dx =

{
0 si m 6= n

π si m = n∫ +π

−π
sinmx sinnx dx =

{
0 si m 6= n

π si m = n.

Démonstration. En vertu des formule d’addition, on a, par exemple,∫ +π

−π
cosmx cosnx dx =

∫ +π

−π

cos(m− n)x+ cos(m+ n)x
2

dx.

Si m 6= n, on en tire∫ +π

−π
cosmx cosnx dx =

1
2

(
sin(m− n)x
m− n

+
sin(m+ n)x
m+ n

)∣∣∣π
−π

= 0

alors que si m = n, on obtient∫ +π

−π
cos2mxdx =

1
2

(
x+

sin 2mx
2m

)∣∣∣π
−π

= π.

Les autres cas sont similaires. C.Q.F.D.

5.3 Les fonctions trigonométriques inverses

La fonction arccosinus (figure (12)), arccos : [−1, 1] → [0, π], est définie
par la relation

arccos y = 2
∫ 1

y

√
1− t2 dt+ y

√
1− y2

comme nous l’avons vu. Elle est continue sur [−1, 1] et dérivable sur ]−1, 1[,
avec

d

dy
arccos y =

−1√
1− y2

.
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C’est une fonction strictement décroissante et l’on a

cos(arccos y) = y , y ∈ [−1, 1]

et
arccos(cosx) = x , x ∈ [0, π].

Cependant, la fonction cosinus étant une fonction paire et périodique de
période 2π, elle n’admet pas d’inverse globale et de la relation cosx = y on
ne peut pas conclure que x = arccos y. En fait, on a

cosx = y ⇔ x = ± arccos y + 2kπ avec k ∈ Z.

-1 -0.5 0.5 1

-1

1

2

3

arccosinus

arcsinus

Fig. 12 – L’arcsinus et l’arccosinus

La fonction sinus étant strictement croissante sur [−π/2, π/2], elle y
admet une fonction inverse continue mais dérivable seulement sur ] − 1, 1[
(parce que sin′(±π/2) = 0). La fonction inverse est l’arcsinus (figure (12)),
arcsin : [−1, 1] → [−π/2, π/2]. On a donc

sin(arcsin y) = y , y ∈ [−1, 1]

et
arcsin(sinx) = x , x ∈ [π/2, π/2].

Comme cosx > 0 lorsque −π/2 < x < π/2, on a pour tout y ∈]− 1, 1[ :

d

dy
arcsin y =

1
d
dx sinx

=
1

cosx
=

1√
1− sin2 x

=
1√

1− y2
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Fig. 13 – L’arctangente

c’est-à-dire que la fonction arcsin y + arccos y est constante ; calculant sa
valeur à l’origine, on obtient :

arcsin y + arccos y =
π

2
.

La fonction tangente crôıt (strictement) de −∞ à ∞ lorsque son argu-
ment crôıt de −π/2 à π/2. La fonction inverse est la fonction arctangente
(figure (13)), arctan : R →]− π/2, π/2[. On a donc

tan(arctan y) = y , y ∈ R

et
arctan(tanx) = x , x ∈]− π/2, π/2[.

En vertu de l’équation (8), la dérivée de cette fonction est une fonction
rationnelle :

d

dy
arctan y =

1
1 + y2

.

5.4 La notion d’angle

Les fonctions trigonométriques introduites précédemment via le calcul
intégral sont bien les mêmes que celles introduites en trigonométrie pour
l’étude des triangles. C’est qu’en effet la définition correcte de la notion
d’angle repose sur la fonction arccosinus.
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Soit Pi le point de coordonnées cartésiennes (xi, yi) du plan (i = 1, 2, 3).
L’angle u formé par les segments P1P2 et P1P3 est, par définition,

u = arccos
(x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1)√

(x2 − x1)2 + (y2 − y1)2
√

(x3 − x1)2 + (y3 − y1)2

(figure (14), exercice (13)).

P1

P2

P3

u

Fig. 14 – Angle entre deux droites

Introduisant la distance d(Pi, Pj),

d(Pi, Pj) =
√

(xi − xj)2 + (yi − yj)2,

cette définition peut s’écrire

d2(P2, P3) = d2(P1, P2) + d2(P1, P3)− 2d(P1, P2)d(P1, P3) cosu

(loi des cosinus), ce qui se réduit à

d2(P2, P3) = d2(P1, P2) + d2(P1, P3)

lorsque u = π/2 (théorème de Pythagore).
Ces équations entrâınent les relations suivantes pour un triangle rec-

tangle (figure (15)) :

cosu =
A2 + C2 −B2

2AC
=
A

C
, sinu =

√
1− A2

C2
=
B

C
, tanu =

B

A
.

Ces relations sont bien celles que l’on utilise en trigonométrie pour définir
les fonctions trigonométriques.

Il y a une autre façon de calculer un angle : en utilisant la longueur d’arc.
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A

B
C

u

Fig. 15 – Le triangle rectangle

Une courbe plane simple C est définie par un paramétrage

x = x(t) , y = y(t) , t ∈ (a, b),

où x(t) et y(t) sont des fonctions continûment dérivables telles que

x′(t)2 + y′(t)2 > 0

(ce qui signifie qu’elle admet une tangente en chaque point) et

x(t1) = x(t2) , y(t1) = y(t2) et t1, t2 ∈]a, b[ ⇒ t1 = t2

(c’est-à-dire qu’elle ne se recoupe pas). La courbe est fermée si

x(a) = x(b) , y(a) = y(b).

Si t = t(s) est une fonction continûment dérivable de s ∈ (c, d) telle que
t′(s) 6= 0, les équations

x = x(t(s)) = x1(s) , y = y(t(s)) = y1(s) , s ∈ (c, d),

représentent la même courbe C, parcourue à une vitesse différente, dans le
même sens si t′(s) > 0 et dans le sens contraire si t′(s) < 0.

La longueur LC de la courbe C est, par définition, le nombre

LC =
∫ b

a

√
dx

dt

2

+
dy

dt

2

dt
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Comme il se doit, ce nombre ne dépend pas du paramétrage retenu pour la
courbe : ∫ b

a

√
dx

dt

2

+
dy

dt

2

dt =
∫ b

a

√
dx(t(s))
ds

2

+
dy(t(s))
ds

2 ∣∣∣∣dsdt
∣∣∣∣ dt

=
∫ d

c

√
dx1

ds

2

+
dy1

ds

2
∣∣∣∣dsdt
∣∣∣∣ ∣∣∣∣ dtds

∣∣∣∣ ds =
∫ d

c

√
dx1

ds

2

+
dy1

ds

2

ds

en vertu de la formule du changement de variable (théorème (9)).
De plus, il redonne bien, dans le cas d’un segment de droite, la distance

entre les extémités : un paramétrage possible pour la droite D d’extrémités
P1 et P2 est en effet

x = (1− t)x1 + tx2 , y = (1− t)y1 + ty2 , 0 ≤ t ≤ 1,

ce qui conduit à

LD =
∫ 1

0

√
(x2 − x1)2 + (y2 − y1)2 dt =

√
(x2 − x1)2 + (y2 − y1)2.

u

x

y
C1

1

Fig. 16 – Angle et longueur d’arc

Calculons alors la longueur d’un arc C1 du cercle de rayon unité. En vertu
des propriétés des fonctions trigonométriques, un paramétrage possible est

x = cos t , y = sin t , 0 ≤ t ≤ u (où 0 ≤ u ≤ 2π).
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(figure (16)). On a donc

LC1 =
∫ u

0

√
(− sin t)2 + (cos t)2 dt = u.

Chacune des définitions présentée ci-dessus permet d’étendre la notion
d’angle à une situation différente ; celle avec l’arccosinus permet de définir
l’angle dans un espace à un nombre quelconque (éventuellement infini) de
dimensions, celle avec l’arc de cercle permet d’introduire la notion d’angle
solide dans l’espace usuel.

5.5 Exercices 5

Justifier complètement toutes ses affirmations.

1. Montrer que

lim
x→0

sinx
x

= 1.

2. Vérifier que la fonction sinus est concave sur l’intervalle [0, π/2]. En
déduire que :

0 ≤ x ≤ π

2
⇒ 2x

π
≤ sinx ≤ x.

3. Est-il vrai qu’une fonction dérivable est périodique si et seulement si
sa dérivée l’est ?

4. Vérifier que la fonction f : [0, 1] → R définie par :

f(x) =

{
sin 1

x si x 6= 0,
0 si x = 0

est discontinue mais possède quand même la propriété des valeurs in-
termédiaires.

5. Obtenir la solution générale l’équation différentielle suivante :

f ′′(x) + ω2f(x) = ex.

6. Montrer que la solution générale de l’équation différentielle

f ′′(x)− f(x) = 0

est
f(x) = a coshx+ b sinhx.
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7. Exprimer sin 3x en terme de sinx. En déduire la valeur de sinπ/3.
Calculer sinπ/5 par la même méthode.

8. Montrer que, quels que soient les coefficients a1, b1, . . . , an, bn, l’équation

a1 cosx+ b1 sinx+ · · ·+ an cosnx+ bn sinnx = 0

possède toujours au moins une racine dans l’intervalle ]− π, π].

9. Montrer que si

T (x) =
1
2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx),

on a

ak =
1
π

∫ +π

−π
T (x) cos kx dx , (k = 0, 1, . . . , n)

et

bk =
1
π

∫ +π

−π
T (x) sin kx dx , (k = 1, 2, . . . , n)

(formules de Fourier pour les coefficients d’un polynôme trigonométrique).

10. Soient −π < x1 < x2 < x3 ≤ π et y1, y2, y3 des nombres quelconques.
Déterminer un polynôme trigonométrique de degré un,

T (x) =
1
2
a0 + a1 cosx+ b1 sinx,

tel que
T (xi) = yi , (i = 1, 2, 3).

11. Montrer que la fonction f(y) = cos(n arccos y) est un polynôme de
degré n en y. (Suggestion : raisonner par récurrence sur n).

12. Montrer que la fonction arctan n’est pas une fonction rationnelle.

13. Si
x = (x1, x2, . . . , xn) et y = (y1, y2, . . . , yn),

soient

x � y =
n∑

k=1

xkyk

et
‖x‖ =

√
x � x.
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Démontrer l’inégalité de Cauchy-Schwarz :

|x � y| ≤ ‖x‖‖y‖

et discuter le cas d’égalité (comparer avec l’exercice (7) du chapitre
2). Vérifier aussi la relation

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2x � y.

14. Montrer que la somme des angles intérieurs d’un triangle est égale à
π. (Suggestion : commencer par un triangle rectangle.)

15. Calculer l’aire déterminée par l’ellipse

x2

a2
+
y2

b2
= 1.

Le calcul de sa longueur est-il aussi facile ?
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6 CALCUL DES PRIMITIVES

La famille des fonctions introduites est fermée sous l’opération « calcul
de la primitive ». En particulier, elle permet de trouver une primitive à toute
fonction rationnelle.

6.1 Primitives des fonctions analytiques usuelles

Les entrées de la petite table suivante peuvent être vérifiées en dérivant
le membre de droite. Elles ont été obtenues soit directement, soit par une
intégration par parties,∫

f(x) dx = xf(x)−
∫
xf ′(x) dx,

et/ou par un changement de variable simple (y = 1 ± x2, y = arcsinx,
y = arcsinhx).

1. ∫
xp dx =

xp+1

p+ 1
si p 6= −1 pour x > 0

2. ∫
1
x
dx = log x pour x > 0

3. ∫
ex dx = ex

4. ∫
log x dx = x log x− x pour x > 0

5. ∫
cosx dx = sinx

6. ∫
sinx dx = − cosx

7. ∫
tanx dx = − log cosx pour |x| < π

2
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8. ∫
arccosx dx = x arccosx−

√
1− x2 pour |x| < 1

9. ∫
arcsinx dx = x arcsinx+

√
1− x2 pour |x| < 1

10. ∫
arctanx dx = x arctanx− log

√
1 + x2

11. ∫
coshx dx = sinhx

12. ∫
sinhx dx = coshx

13. ∫ √
1− x2 dx =

1
2
(arcsinx+ x

√
1− x2) pour |x| < 1

14. ∫ √
1 + x2 dx =

1
2
(arcsinh x+ x

√
1 + x2)

15. ∫
1√

1− x2
dx = arcsinx pour |x| < 1

16. ∫
1√

1 + x2
dx = arcsinh x

On utilise quelquefois des « formules de réduction » pour calculer cer-
taines primitives par récurrence. En voici un exemple.

Soit N ≥ 2 un entier naturel. Alors∫
sinN x dx =

∫
sinN−2 x dx−

∫
sinN−2 x cos2 x dx

=
∫

sinN−2 x dx−
(∫

(sinN−2 x cosx) cosx dx
)

=
∫

sinN−2 x dx−
(

sinN−1 x

N − 1
cosx+

∫
sinN−1 x

N − 1
sinx dx

)
=
∫

sinN−2 x dx− sinN−1 x cosx
N − 1

−
∫

sinN x

N − 1
dx
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de telle sorte que∫
sinN x dx

(
1 +

1
N − 1

)
=
∫

sinN−2 x dx− sinN−1 x cosx
N − 1

.

Autrement dit :∫
sinN x dx = −sinN−1 x cosx

N
+
N − 1
N

∫
sinN−2 x dx. (10)

La formule de Wallis est une belle application de cette dernière relation.

Théorème 18 (Le produit de Wallis)

π

2
= lim

n→+∞

2 · 2 · 4 · 4 · 6 · 6 · · · 2n · 2n
1 · 3 · 3 · 5 · 5 · · · (2n− 1) · (2n− 1) · (2n+ 1)

.

Démonstration. En vertu de l’équation (10), on a∫ π/2

0
sinN x dx =

N − 1
N

∫ π/2

0
sinN−2 x dx

de telle sorte que, par récurrence sur n,∫ π/2

0
sin2n x dx =

2n− 1
2n

2n− 3
2n− 2

· · · 1
2

∫ π/2

0
dx

c’est-à-dire ∫ π/2

0
sin2n x dx =

1 · 3 · 5 · 7 · · · (2n− 1)
2 · 4 · 6 · · · 2n

π

2
et que ∫ π/2

0
sin2n+1 x dx =

2n
2n+ 1

2n− 2
2n− 1

· · · 2
3

∫ π/2

0
sinx dx

c’est-à-dire ∫ π/2

0
sin2n+1 x dx =

2 · 4 · 6 · · · 2n
3 · 5 · 7 · · · (2n+ 1)

. (11)

Ainsi

π

2
=

∫ π/2
0 sin2n x dx∫ π/2

0 sin2n+1 x dx

2 · 2 · 4 · 4 · 6 · 6 · · · 2n · 2n
1 · 3 · 3 · 5 · 5 · · · (2n− 1) · (2n− 1) · (2n+ 1)

.
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Le résultat suit donc des inégalités

1 ≤
∫ π/2
0 sin2n x dx∫ π/2

0 sin2n+1 x dx
=

2n+ 1
2n

∫ π/2
0 sin2n x dx∫ π/2

0 sin2n−1 x dx
≤ 2n+ 1

2n
= 1 +

1
2n
.

C.Q.F.D.
Remarque.
On utilise souvent la forme équivalente plus simple√

π

2
= lim

n→+∞

2 · 4 · 6 · · · 2n
3 · 5 · 7 · · · (2n− 1)

√
2n+ 1

(12)

du produit de Wallis.

6.2 Primitives des fonctions rationnelles

Les entrées de la petite table suivante peuvent être vérifiées en dérivant
le membre de droite. Elles ont été obtenues soit par une décomposition
en fractions partielles ou soit par un changement de variable simple (après
complétion du carré).

1. ∫
dx

(x− a)(x− b)
=

1
a− b

log
∣∣∣∣x− a

x− b

∣∣∣∣ pour x 6= a, b

2. ∫
dx

x2 + 2Ax+B
=

1√
B −A2

arctan
x+A√
B −A2

si B −A2 > 0

3. ∫
x dx

(x− a)(x− b)
=

a

a− b
log |x− a| − b

a− b
log |x− b| pour x 6= a, b

4. ∫
x dx

x2 + 2Ax+B
= log

√
x2 + 2Ax+B − A√

B −A2
arctan

x+A√
B −A2

si B −A2 > 0
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La primitive d’une fonction rationnelle R = P/Q quelconque peut s’ob-
tenir en factorisant son dénominateur Q,

Q(x) =
∏

i

(x− ai)pi
∏
j

(x2 + 2Ajx+Bj)qj ,

(dans un cours d’analyse complexe, on montre que tout polynôme à coeffi-
cients réels admet une telle factorisation) puis en la décomposant en fractions
partielles :

R(x) = A(x) +
∑

i

αi x
mi

(x− ai)ni
+
∑

j

βj x
uj

(x2 + 2Ajx+Bj)vj
,

(A est un polynôme, identiquement nul si le degré du numérateur P est stric-
tement plus petit que celui du dénominateur Q). Une formule de réduction
peut ensuite s’avérer nécessaire.

En vertu du théorème du binôme, on a∫
xk dx

(x− a)n
=
∫

(x− a+ a)k dx

(x− a)n
=
∫ k∑

i=0

(
k

i

)
ak−i(x− a)i−n dx.

Par suite, si 1 ≤ k ≤ n− 2,∫
xk dx

(x− a)n
=

k∑
i=0

(
k

i

)
ak−i (x− a)i−n+1

i− n+ 1
pour x 6= a

alors que∫
xn−1 dx

(x− a)n
=

n−2∑
i=0

(
n− 1
i

)
an−1−i (x− a)i−n+1

i− n+ 1
+ log(x− a) pour x > a.

On a ∫
dx

(x2 + 2Ax+B)n
=

√
B −A2

(B −A2)n

∫
dy

(y2 + 1)n

en posant

y =
x+A√
B −A2

.
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De plus,∫
dx

(x2 + 1)n
=
∫

(x2 + 1− x2) dx
(x2 + 1)n

=
∫

dx

(x2 + 1)n−1
−
∫
x

x dx

(x2 + 1)n

=
∫

dx

(x2 + 1)n−1
+

1
2(n− 1)

(
x

(x2 + 1)n−1
−
∫

dx

(x2 + 1)n−1

)

c’est-à-dire∫
dx

(x2 + 1)n
=

1
2(n− 1)

x

(x2 + 1)n−1
+

2n− 3
2n− 2

∫
dx

(x2 + 1)n−1
(13)

et, si 1 ≤ k ≤ 2n− 1 :∫
xk dx

(x2 + 1)n
=
∫
xk−1 x dx

(x2 + 1)n

= − 1
2(n− 1)

xk−1

(x2 + 1)n−1
+

k − 1
2(n− 1)

∫
xk−2 dx

(x2 + 1)n−1
.

Exemple. ∫ 1

0

x4(1− x)4 dx
x2 + 1

=
22
7
− π. (14)

En effet, en divisant le numérateur par le dénominateur, on trouve

x4(1− x)4

x2 + 1
= x6 − 4x5 + 5x4 − 4x2 + 4− 4

x2 + 1

ce qui conduit, par intégration, à la relation (14). Cette dernière entrâıne en
particulier

0 <
22
7
− π <

∫ 1

0
x4(1− x)4 dx =

1
630

d’où l’estimation
3, 141 < π < 3, 143.

6.3 Exercices 6

Justifier complètement toutes ses affirmations.
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1. Calculer ∫
tanhx dx.

2. Calculer ∫
arctanhx dx.

3. Montrer que∫ 1

0
xm(1− x)n dx = 2

∫ π/2

0
sin2m+1 x cos2n+1 x dx =

m!n!
(m+ n+ 1)!

.

4. La probabilité d’observer autant de piles que de faces lors de 2n lancers
d’une pièce de monnaie non-biaisée est

pn =
(

2n
n

)
1

22n
.

Montrer que
lim

n→+∞
pn = 0.

5. Calculer ∫
x3 dx

(x− 1)4
, x > 1.

6. Calculer ∫
x3 dx

(x2 + 1)2
.

7. Calculer ∫
x3 dx

(x2 + x+ 1)2
.

x 1 � y2

1 � y2 2y

Fig. 17 – Une substitution
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8. Soit 0 < y < 1. On considère le triangle rectangle de côtés 1 − y2, 2y
et 1 + y2. Montrer que l’angle x opposé au côté 2y vaut 2 arctan y. En
déduire que la substitution x = 2arctan y entrâıne

cosx =
1− y2

1 + y2
et sinx =

2y
1 + y2

.

9. Calculer ∫
1 + cosx
1 + sinx

dx , |x| < π

2
.
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7 INTÉGRALES IMPROPRES

La définition de l’intégrale d’une fonction continue sur un intervalle n’a
plus de sens si ce dernier n’est pas compact.

7.1 Généralisation de l’intégrale

Soit f : (a, b) → R une fonction continue (−∞ ≤ a < b ≤ +∞). Elle est
donc intégrable sur tout intervalle compact [α, β] entièrement contenu dans
(a, b). Par définition,∫ b

a
f(x) dx = lim

α→a+, β→b−

∫ β

α
f(x) dx

si la limite existe (c’est-à-dire si l’intégrale est convergente — elle peut être
divergente). On généralise ainsi la notion d’intégrale (exercice (12) du cha-
pitre 1) au cas où l’intervalle d’intégration ou la fonction à intégrer (ou les
deux) ne sont pas bornés.

De façon explicite, dans le cas par exemple de l’intervalle (0,+∞), dire
que ∫ +∞

0
f(x) dx = I

signifie qu’à chaque ε > 0 correspondent δ > 0 et M > 0 tels que

0 < α < δ et β > M impliquent
∣∣∣∣∫ β

α
f(x) dx− I

∣∣∣∣ < ε

ou, de manière équivalente, que pour toutes suites {αn}n∈N et {βn}n∈N de
nombres positifs,

lim
n→+∞

αn = 0 et lim
n→+∞

βn = +∞ impliquent lim
n→+∞

∫ βn

αn

f(x) dx = I.

Exemples. ∫ +∞

0

dx

x2 + 1
= lim

β→+∞

∫ β

0

dx

x2 + 1

= lim
β→+∞

arctanx
∣∣∣β
0

= lim
β→+∞

arctanβ =
π

2
;

∫ +∞

0
e−x dx = lim

β→+∞

∫ β

0
e−x dx = lim

β→+∞
−e−x

∣∣∣β
0

= 1− e−β = 1.
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Exemple. Soient 0 < α < β. Puisque∫ β

α

dx

x
= log x

∣∣∣β
α

= log β − logα

et que, si p 6= 1, ∫ β

α

dx

xp
=

x−p+1

−p+ 1

∣∣∣β
α

=
β−p+1

−p+ 1
− α−p+1

−p+ 1
,

l’intégrale impropre ∫ 1

0

dx

xp

diverge si p ≥ 1 et ∫ 1

0

dx

xp
=

1
1− p

si p < 1

alors que l’intégrale impropre ∫ +∞

1

dx

xp

diverge si p ≤ 1 et que ∫ +∞

1

dx

xp
=

1
p− 1

si p > 1.

Ainsi, l’intégrale ∫ +∞

0

dx

xp

est divergente quelque soit p > 0.

Les propriétés de linéarité, de positivité et d’additivité (théorèmes (3),
(4) et (5)) restent valables pour les intégrales impropres. Par exemple, si les
intégrales ∫ b

a
f1(x) dx et

∫ b

a
f2(x) dx

sont convergentes et a1, a2 ∈ R,

a1

∫ b

a
f1(x) dx+ a2

∫ b

a
f2(x) dx

= a1 lim
α→a+, β→b−

∫ β

α
f1(x) dx+ a2 lim

α→a+, β→b−

∫ β

α
f2(x) dx

= lim
α→a+, β→b−

∫ β

α
(a1f1(x) + a2f2(x)) dx =

∫ b

a
(a1f1(x) + a2f2(x)) dx.
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De même, la formule du changement de variable et celle de l’intégration
par parties (convenablement adaptées) (théorèmes (8) et (9)) sont encore
vraies (exercice (1) ).

L’étude de la convergence des intégrales impropres est semblable à l’étude
de la convergence des séries infinies.

Lorsque la fonction intégrée est positive, il n’y a que deux possibilités, à
savoir, la divergence vers +∞ :∫ b

a
f(x) dx = +∞

ou la convergence vers un nombre fini, ce que l’on dénote par∫ b

a
f(x) dx < +∞.

En effet, les nombres ∫ βn

αn

f(x) dx

croissent lorsque αn ↓ a et βn ↑ b (exercice (2)).
En conséquence, le critère de comparaison entre intégrales impropres de

fonctions positives est applicable. De même, la convergence absolue d’une
intégrale impropre entrâıne sa convergence simple (exercice (3)).

Exemple.
L’intégrale ∫ +∞

1
sinx2 dx

est convergente. En effet,∫ β

1
sinx2 dx =

∫ β2

1

sin y
2
√
y
dy =

− cos y
2
√
y

∣∣∣β2

1
−
∫ β2

1

cos y
4 y3/2

dy

de telle sorte que ∫ +∞

1
sinx2 dx =

cos 1
2

−
∫ +∞

1

cos y
4 y3/2

dy

(cette dernière intégrale est absolument convergente). Cet exemple illustre
le fait qu’une intégrale impropre peut converger sans que la fonction intégrée
f(x) ne tende vers 0 lorsque x→ +∞ — à la différence des séries.
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Théorème 19 (Test intégral) Soit f : [1,+∞[→ R une fonction conti-
nue, positive et décroissante. Alors la série

∑+∞
k=1 f(k) et l’intégrale

∫ +∞
1 f(x) dx

convergent ou divergent simultanément.

Démonstration. Les inégalités

f(k + 1) ≤
∫ k+1

k
f(x) dx ≤ f(k)

entrâınent les inégalités

+∞∑
k=2

f(k) ≤
∫ +∞

1
f(x) dx ≤

+∞∑
k=1

f(k).

C.Q.F.D.

f�k�

f�k�1�

k k�1

f�x�

Fig. 18 – Comparaison de séries et d’intégrales

Exemple.
La série

+∞∑
k=1

1
kp

converge si et seulement si p > 1, par comparaison avec l’intégrale∫ +∞

1

dx

xp
.

On a de plus l’estimation

1
p− 1

≤
+∞∑
k=1

1
kp

≤ p

p− 1
.
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7.2 La fonction gamma

L’intégrale ∫ +∞

0
tx−1e−t dt

converge si et seulement si x > 0. En effet, puisque

lim
t→+∞

tx+1e−t = 0,

on a, pour une constante positive Ax appropriée, que

tx−1e−t ≤ Ax

t2
pour tout t > 1

de telle sorte que, quel que soit x,∫ +∞

1
tx−1e−t dt ≤ Ax

∫ +∞

1

dt

t2
< +∞.

D’autre part, lorsque x < 1, l’intégrale est aussi impropre à 0 et elle y
converge si et seulement si x > 0 puisque

1
e

∫ 1

0

dt

t1−x
≤
∫ 1

0
tx−1e−t dt ≤

∫ 1

0

dt

t1−x
.

La fonction gamma (ou fonction eulérienne de seconde espèce) est la
fonction Γ : ]0,+∞[→ R définie par la relation

Γ(x) =
∫ +∞

0
tx−1e−t dt.

(La fonction eulérienne de première espèce ou fonction bêta est une fonction
de deux variables

B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt , x > 0 , y > 0.

(exercice (3) du chapitre 6)).

Théorème 20 (Équation fonctionnelle de la fonction gamma)

Γ(x+ 1) = xΓ(x). (15)
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Démonstration. Il suffit d’intégrer par parties :

Γ(x+ 1) =
∫ +∞

0
txe−t dt = tx(−e−t)

∣∣∣+∞
0

+ x

∫ +∞

0
tx−1e−t dt = xΓ(x).

C.Q.F.D.
La relation (15) jointe au fait que

Γ(1) = 1

montre que la fonction gamma interpole les factoriels :

Γ(n+ 1) = n! pour n = 0, 1, 2, 3, . . .

Lue à l’envers,

Γ(x) =
Γ(x+ 1)

x
,

elle permet de prolonger la fonction gamma à R \ {0,−1,−2,−3, . . .}. Le
tracé du graphe de la fonction gamma est assez complexe et nous allons
omettre sa justification dans ce cours (figure (19)).

-2 2 4 6

-20

-10

10

20

Fig. 19 – La fonction gamma

Théorème 21 (L’intégrale de Gauss)

Γ
(

1
2

)
=
√
π. (16)
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Démonstration. La démonstration de cette formule repose sur la convexité
de l’exponentielle. En vertu de l’exercice (13) du chapitre 4, nous avons

ex ≥ 1 + x pour tout x.

D’où
e−x2 ≥ 1− x2 , ex

2 ≥ 1 + x2

c’est-à-dire
1− x2 ≤ e−x2 ≤ 1

1 + x2
.

En faisant le changement de variable t = x2, nous voyons que

Γ
(

1
2

)
=
∫ +∞

0
t−1/2e−t dt = 2

∫ +∞

0
e−x2

dx.

Or, en utilisant les inégalités précédentes, on a∫ 1

0
(1− x2)n dx ≤

∫ 1

0
e−nx2

dx ≤
∫ 1

0

dx

(1 + x2)n

c’est-à-dire (on a posé y = x
√
n dans l’intégrale du milieu de la ligne

précédente)∫ 1

0
(1− x2)n dx ≤ 1√

n

∫ √
n

0
e−y2

dy ≤
∫ 1

0

dx

(1 + x2)n
.

Donc, d’une part, en vertu de la relation (11) (et en posant x = cos y dans
l’intégrale de gauche de la ligne précédente),

1√
n

∫ √
n

0
e−y2

dy ≥
∫ π/2

0
sin2n+1 y dy =

2 · 4 · 6 · · · 2n
3 · 5 · 7 · · · (2n+ 1)

et (équation (12))∫ +∞

0
e−y2

dy ≥ lim
n→+∞

2 · 4 · 6 · · · 2n
√
n

3 · 5 · 7 · · · (2n+ 1)
=
√
π

2
.

D’autre part, en vertu de la relation (13),

1√
n

∫ √
n

0
e−y2

dy ≤ (2n− 3)(2n− 5) · · · 1
(2n− 2)(2n− 4) · · · 2

∫ +∞

0

dx

x2 + 1
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et (équation (12) encore une fois)∫ +∞

0
e−y2

dy ≤ lim
n→+∞

1 · 3 · 5 · · · (2n− 3)
√
n

2 · 4 · 6 · · · (2n− 2)
π

2
=
√
π

2
.

C.Q.F.D.
Remarque.
Dans le calcul des probabilités, on rencontre plutôt l’intégrale de Gauss

sous la forme équivalente

1√
2π

∫ +∞

−∞
e−t2/2 dt = 1.

Théorème 22 (La formule de Stirling)

lim
n→+∞

n!√
n(n

e )n
=
√

2π.

Démonstration. La démonstration de cette formule repose sur la concavité
du logarithme. En vertu de l’exercice (7) du chapitre 4, nous avons d’abord

0 < k < x < k + 1 ⇒ log x ≥ (k + 1− x) log k + (x− k) log(k + 1)

c’est-à-dire

0 < k < x < k + 1 ⇒ log x ≥ log k + (x− k) log
k + 1
k

ce qui, par intégration, entrâıne∫ k+1

k
log x dx ≥ 1

2
(log(k + 1) + log k).

En vertu de l’exercice (9) du chapitre 4, nous avons aussi

log x ≤ log k +
1
k
(x− k) ( pour tout x).

Nous en déduisons tout d’abord que la suite de nombres

n!√
n(n

e )n
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est décroissante. En effet, après simplifications,

log
(n+ 1)!√

n+ 1(n+1
e )n+1

−log
n!√
n(n

e )n
=

1
2
(log(n+1)+log n)−

∫ n+1

n
log x dx ≤ 0.

Toute suite décroissante de nombres positifs étant convergente, posons

λ = lim
n→+∞

n!√
n(n

e )n
.

Cette limite est strictement positive :

log n! =
n∑

k=2

log k ≥
n∑

k=2

∫ k

k−1

(
log x− x− k

k

)
dx

= n log n− n+ 1 +
1
2

n∑
k=2

1
k
≥ n log n− n+ 1 +

1
2

n∑
k=2

∫ k+1

k

dx

x

= n log n− n+ 1 +
1
2
(log(n+ 1)− log 2)

de telle sorte que
n! ≥

(n
e

)n √
n+ 1

e√
2

et λ ≥ e/
√

2. Nous avons finalement (équation (12)),√
π

2
= lim

n→+∞

2 · 4 · 6 · · · 2n
3 · 5 · 7 · · · (2n− 1)

√
2n+ 1

= lim
n→+∞

22nn!2

(2n!)
√

2n+ 1

= lim
n→+∞

22n

√
2n+ 1

(
n!√
n(n

e )n

)2
√

2n
(

2n
e

)2n

(2n)!
n√

2n 22n
=
λ2

2λ
=
λ

2
.

C.Q.F.D.

7.3 Exercices 7

Justifier complètement toutes ses affirmations.

1. Énoncer et démontrer la formule de changement de variable pour les
intégrales impropres.

2. Si f : [0,+∞[ est continue et positive, pour montrer que∫ +∞

0
f(x) dx = I,

66w
w

w
.a

l3
ab

ka
ri-

pr
o.

co
m



il faut montrer que

lim
n→+∞

∫ βn

0
f(x) dx = I

pour toute suite {βn}n∈N telle que

lim
n→+∞

βn = +∞.

Montrer qu’il suffit de considérer les suites {βn}n∈N monotones.

3. Montrer que la convergence absolue implique la convergence simple,
c’est-à-dire que la convergence de l’intégrale∫ b

a
|f(x)| dx

entrâıne celle de l’intégrale ∫ b

a
f(x) dx.

(Suggestion : on a 0 ≤ |f | − f ≤ 2|f |).
4. Pour quelles valeurs des paramètres p > 0 et q > 0 l’intégrale suivante

est-elle convergente ∫ +∞

0

dx
q
√

1 + xp
?

5. Montrer qu’une fonction rationnelle R = P/Q est intégrable sur R si
et seulement si son dénominateur Q ne s’annule pas et le degré de Q
excède le degré du numérateur P par au moins deux.

6. Montrer que l’intégrale ∫ +∞

0

sin2 x

x2
dx

est convergente.

7. Montrer que l’intégrale ∫ +∞

0

sinx
x

dx

est convergente. (Suggestion : intégrer par parties.)
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8. Montrer que l’intégrale ∫ +∞

0

∣∣∣∣sinxx
∣∣∣∣ dx

est divergente.

9. Calculer ∫ +∞

0
e−px cosx dx

(p > 0). (Suggestion : intégrer par parties.)

10. Déterminer les valeurs du paramètre p > 0 pour lesquelles la série

+∞∑
k=2

1
kp log k

est convergente.

11. Calculer Γ(n+ 1
2).

12. Calculer ∫ +∞

−∞
xke−(x−µ)2/2σ2

dx

pour k = 0, 1, 2 (σ > 0).
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8 SUITES ET SÉRIES DE FONCTIONS

Si des fonction fn convergent vers une fonction limite f lorsque n→ +∞,
des propriétés telles que la continuité, la dérivabilité ou l’intégrabilité ne sont
pas nécessairement préservées.

8.1 La convergence uniforme

On peut considérer une suite de fonctions fn : (a, b) → R comme une
famille de suites numériques dépendant d’un paramètre x ∈ (a, b) ou comme
une suite de courbes indexées par un indice n ∈ N. Le premier point de vue
conduit naturellement à la notion de convergence simple (ou ponctuelle), le
second conduit à celle de convergence uniforme.

Les fonctions fn : (a, b) → R convergent simplement (ou ponctuelle-
ment) vers la fonction f : (a, b) → R sur l’intervalle (a, b) si, pour chaque
x ∈ (a, b), la suite numérique {fn(x)}n∈N converge vers le nombre f(x),
c’est-à-dire si à chaque x ∈ (a, b) et à chaque ε > 0 correspond un indice
N ∈ N tel que

n ≥ N implique |fn(x)− f(x)| < ε.

Exemple.
Les fonctions

fn(x) =
1− nx

1 + nx

convergent simplement sur l’intervalle [0, 1] vers la fonction

f(x) =

{
1 si x = 0,
−1 sinon.

Dans cet exemple, bien que les fonctions fn soient continues, la fonction
limite f ne l’est pas.

L’indice N de la définition précédente dépend de x et de ε,

N = N(x, ε).

Lorsqu’il peut être choisi indépendamment du nombre x ∈ (a, b),

N = N(ε),
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on dit que les fonctions fn : (a, b) → R convergent uniformément sur
(a, b) vers la fonction limite f : (a, b) → R. En d’autres mots, les fonc-
tions fn : (a, b) → R convergent uniformément sur (a, b) vers la fonction
f : (a, b) → R si à chaque ε > 0 correspond un indice N ∈ N tel que

n ≥ N implique |fn(x)− f(x)| < ε pour tout x ∈ (a, b).

Exemple.
Les fonctions

fn(x) =
sinnx
n

convergent uniformément sur R vers la fonction f = 0 puisque

|fn(x)− f(x)| ≤ 1
n

pour tout x ∈ R.

Exemple.
Les fonctions

fn(x) =
1− nx

1 + nx

ne convergent pas uniformément sur [0, 1] vers leur limite f puisque∣∣∣∣fn

(
1
n

)
− f

(
1
n

)∣∣∣∣ = 1 pour tout n ∈ N.

Aucun indice N ne peut correspondre à ε = 1. Cette absence d’uniformité
dans la convergence est responsable de la discontinuité de la fonction limite.

Théorème 23 (Continuité d’une fonction limite) Soient fn : (a, b) → R
des fonctions continues qui convergent uniformément sur (a, b) vers une
fonction f : (a, b) → R. Alors f est continue sur (a, b).

Démonstration. Soit x0 ∈ (a, b) un point arbitraire. Montrons que f est
continue en x0. Soit ε > 0. La convergence uniforme entrâıne l’existence
d’un indice N ∈ N tel que

n ≥ N implique |fn(x)− f(x)| < ε

3
pour tout x ∈ (a, b).

La continuité de la fonction fN en x0 entrâıne d’autre part l’existence d’un
nombre δ > 0 tel que

|x− x0| < δ et x ∈ (a, b) impliquent |fN (x)− fN (x0)| <
ε

3
.
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Donc, si |x− x0| < δ et x ∈ (a, b), on aura

|f(x)− f(x0)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (x0)|+ |fN (x0)− f(x0)| < ε.

C.Q.F.D.

Théorème 24 (Intégration d’une fonction limite) Soient fn : [a, b] → R
des fonctions continues sur un intervalle compact [a, b] qui convergent uni-
formément sur [a, b] vers une fonction f : [a, b] → R. Alors∫ b

a
f(x) dx = lim

n→+∞

∫ b

a
fn(x) dx.

Démonstration. On a∣∣∣∣∫ b

a
f(x) dx−

∫ b

a
fn(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)− fn(x)| dx.

Donné ε > 0, soit N ∈ N tel que

n ≥ N implique |f(x)− fn(x)| < ε

b− a
pour tout x ∈ [a, b].

Alors

n ≥ N implique
∣∣∣∣∫ b

a
f(x) dx−

∫ b

a
fn(x) dx

∣∣∣∣ < ε.

C.Q.F.D.

Remarque.
Le théorème précédent n’est pas vrai si l’intervalle d’intégration n’est

pas compact (exercice (5)).

Théorème 25 (Critère de Cauchy) Les fonctions fn : (a, b) → R convergent
uniformément sur (a, b) vers une fonction f : (a, b) → R si et seulement si
elles satisfont la condition suivante : à chaque ε > 0 correspond un indice
N ∈ N tel que :

m, n ≥ N implique |fm(x)− fn(x)| < ε pour tout x ∈ (a, b).

Démonstration.
La condition est nécessaire. Si les fonctions fn convergent uniformément

vers la fonction f sur (a, b), il existe N ∈ N tel que

n ≥ N implique |fn(x)− f(x)| < ε

2
pour tout x ∈ (a, b).
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Alors, si m, n ≥ N , on aura

|fm(x)− fn(x)| ≤ |fm(x)− f(x)|+ |f(x)− fn(x)| < ε pour tout x ∈ (a, b).

La condition est suffisante. Si elle est satisfaite, en vertu du critère de Cauchy
pour les suites numériques, pour chaque x ∈ (a, b),

lim
n→+∞

fn(x) existe,

définissant ainsi une fonction f : (a, b) → R vers laquelle les fonction de la
suite convergent :

f(x) = lim
n→+∞

fn(x).

Cette convergence est uniforme. En effet, donné ε > 0, il existe N ∈ N tel
que l’on ait

|fm(x)− f(x)| = lim
n→+∞

|fm(x)− fn(x)| < ε pour tout x ∈ (a, b)

dès que m ≥ N . C.Q.F.D.

Théorème 26 (Critère de Weierstrass) Soient fk : (a, b) → R des fonc-
tions. La série

+∞∑
k=0

fk(x)

converge uniformément sur (a, b) pourvu qu’il existe une série numérique
convergente

+∞∑
k=0

Mk < +∞,

telle que
|fk(x)| ≤Mk pour tout x ∈ (a, b).

Démonstration. Posons

Sn(x) =
n∑

k=0

fk(x), Sn =
n∑

k=0

Mk.

On a
|Sn(x)− Sm(x)| ≤ |Sn − Sm|

et le résultat suit du critère de Cauchy. C.Q.F.D.
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En vertu du théorème (24), une série uniformément convergente de fonc-
tions continues sur un intervalle compact peut y être intégrée terme à terme :∫ b

a

+∞∑
k=0

fk(x) dx = lim
n→+∞

∫ b

a

n∑
k=0

fk(x) dx

= lim
n→+∞

n∑
k=0

∫ b

a
fk(x) dx =

+∞∑
k=0

∫ b

a
fk(x) dx.

Exemple.
En vertu du critère de Weierstrass, la série

+∞∑
k=1

sin kx
k2

est uniformément convergente sur R et∫ π

0

+∞∑
k=1

sin kx
k2

dx =
+∞∑
k=0

2
(2j + 1)3

.

Dans le cas de fonctions continues sur un intervalle compact, les définitions
et les théorèmes précédents peuvent s’énoncer élégamment à l’aide de la no-
tion de norme, qui joue pour les fonctions un rôle analogue à celui que joue
la notion de valeur absolue pour les nombres. La norme ‖f‖ d’une fonction
continue sur un intervalle compact f : [a, b] → R est définie par la relation

‖f‖ = sup{|f(x)| | x ∈ [a, b]}.

On peut reformuler les énoncés précédents à l’aide de cette notion. Les
fonctions fn convergent uniformément vers la fonction f si et seulement si

lim
n→+∞

‖fn − f‖ = 0.

Le critère de Cauchy affirme qu’une condition nécessaire et suffisante pour
que les fonctions fn admettent une limite uniforme est que

lim
m, n→+∞

‖fm − fn‖ = 0

et le critère de Weierstrass dit que la condition

+∞∑
k=0

‖fk‖ < +∞
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est suffisante pour assurer la convergence uniforme de la série

+∞∑
k=0

fk(x).

Remarque.
Lorsqu’une série de fonctions converge en vertu du critère de Weierstrass,

on dit qu’elle converge normalement.

8.2 L’approximation des fonction continues

Les polynômes sont les plus élémentaires des fonctions continues. Ils
peuvent aussi servir à approximer toutes les autres.

Théorème 27 (Weierstrass) Soit f : [a, b] → R une fonction continue.
Alors il existe une suite de polynômes {Pn}n∈N qui convergent uniformément
vers f sur [a, b].

Démonstration.
On peut supposer que [a, b] = [0, 1] et que f(0) = f(1) = 0 (en sous-

trayant si nécessaire un polynôme de degré un de f). Prolongeons la fonc-
tion f en posant f(x) = 0 si x /∈ [0, 1]. Nous obtenons ainsi une fonction
f : R → R uniformément continue.

-1 -0.5 0.5 1

0.5

1

1.5

2

Fig. 20 – Quelques fonctions Qn(x)

Considérons le polynôme (de degré 2n)

Qn(x) = cn(1− x2)n
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où le nombre cn est défini par∫ 1

−1
Qn(x) dx = 1.

(figure(20)). Observons que quelque soit δ > 0, on a

0 ≤ Qn(x) ≤ cn(1− δ2)n si δ ≤ |x| ≤ 1.

De plus, en vertu de la convexité de la fonction u 7→ (1− u)n, on a

1
cn
≥ 2

∫ 1/
√

n

0
Qn(x) dx ≥ 2

∫ 1/
√

n

0
(1− nx2) dx =

4
3
√
n
,

c’est-à-dire que
cn <

√
n.

Introduisons maintenant le polynôme (de degré 2n)

Pn(x) =
∫ 1

0
f(s)Qn(x− s) ds.

Lorsque 0 ≤ x ≤ 1 et puisque f est nulle à l’extérieur de l’intervalle [0, 1],

Pn(x) =
∫ x

x−1
f(x− t)Qn(t) dt =

∫ 1

−1
f(x− t)Qn(t) dt.

Lorsque 0 ≤ x ≤ 1 et quelque soit δ > 0, on a donc

|Pn(x)− f(x)| =
∣∣∣∣∫ 1

−1
(f(x− t)− f(x))Qn(t) dt

∣∣∣∣ ≤ ∫ 1

−1
|f(x− t)− f(x)|Qn(t) dt

=
∫
|t|<δ

|f(x− t)− f(x)|Qn(t) dt+
∫

δ≤|t|≤1
|f(x− t)− f(x)|Qn(t) dt.

Un nombre ε > 0 étant donné, choisissons, en vertu de la continuité uniforme
de la fonction f , un nombre δ = δ(ε) > 0 tel que∫

|t|<δ
|f(x− t)− f(x)|Qn(t) dt <

ε

2

∫
|t|<δ

Qn(t) dt <
ε

2
.

On a alors

|Pn(x)− f(x)| < ε

2
+ 2 ‖f‖ 2 cn (1− δ2)n <

ε

2
+ 4 ‖f‖

√
n (1− δ2)n.
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En utilisant le fait que

lim
n→+∞

√
n (1− δ2)n = 0,

nous pouvons choisir un entier nε tel que

n ≥ nε implique |Pn(x)− f(x)| < ε

2
+
ε

2
= ε

pour tout x ∈ [0, 1]. C.Q.F.D.

Remarque.
Le polynôme Pn du théorème précédent est la convolution de la fonction

donnée f avec le « noyau » Qn sur l’intervalle [−1, 1]. La représentation

Pn(x) =
∫ 1

−1
f(s)Qn(x− s) ds

montre qu’il est, comme le noyau, un polynôme alors que la représentation

Pn(x) =
∫ 1

−1
f(x− t)Qn(t) dt

montre qu’il constitue une moyenne pondérée des valeurs de la fonction f
sur l’intervalle, un poids plus grand étant accordé aux valeurs près de x,
d’où la convergence vers f(x).

8.3 Les séries entières

Les séries de fonctions les plus simples sont les séries entières (ou séries
de puissances), qui sont des séries de la forme

+∞∑
k=0

akx
k

— les coefficients ak sont donnés. La plus simple des séries entières est
la série géométrique, pour laquelle ces coefficients sont tous égaux à 1.
Puisque, si x 6= 1,

n∑
k=0

xk =
1− xn+1

1− x
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(comme il est aisé de le vérifier en multipliant les deux membres de l’équation
par 1−x), la série géométrique de raison x converge si et seulement si |x| < 1
auquel cas

+∞∑
k=0

xk =
1

1− x
, |x| < 1.

Dans le cas général, les coefficients ak déterminent les valeurs de x pour
lesquelles la série entière converge, via la notion de rayon de convergence. Et
le calcul de ce rayon de convergence se fait au moyen d’une limite supérieure.

Soit {uk}k∈N une suite bornée. La suite

Mn = sup{uk | k ≥ n}

est décroissante et bornée, donc elle est convergente. Sa limite est la limite
supérieure de la suite {uk}k∈N :

lim sup
k

uk = lim
n→+∞

sup{uk | k ≥ n}.

De même, la suite
mn = inf{uk | k ≥ n}

est croissante et bornée, donc convergente. Sa limite est la limite inférieure
de la suite {uk}k∈N :

lim inf
k

uk = lim
n→+∞

inf{uk | k ≥ n}.

Si la suite n’est pas bornée supérieurement, on convient de poser

lim sup
k

uk = +∞

et si elle n’est pas bornée inférieurement, on pose

lim inf
k

uk = −∞.

Ainsi, pour toute suite {uk}k∈N, on a

−∞ ≤ lim inf
k

uk ≤ lim inf
k

uk ≤ +∞.

Exemple.
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On a

lim sup
k

(−1)kk

k + 1
= 1 , lim inf

k

(−1)kk

k + 1
= −1

puisque Mn = 1 et mn = −1 pour tout n ∈ N.

Un nombre u est une valeur adhérente (ou un point d’accumulation)
de la suite {uk}k∈N s’il existe une suite partielle qui converge vers u :

u = lim
j→+∞

ukj
.

En convenant que +∞ est une valeur adhérente d’une suite qui n’est pas
bornée supérieurement et que −∞ est une valeur adhérente d’une suite qui
n’est pas bornée inférieurement, toute suite admet au moins une valeur
adhérente.

Exemple.
La suite

uk = sin k
p

q
π où p, q ∈ N,

ne contient qu’un nombre fini de valeurs distinctes, ceux des nombres

sin
p

q
π, sin 2

p

q
π, . . . , sin(2q − 1)

p

q
π, sin 2q

p

q
π

qui sont distincts. Ces valeurs sont toutes des valeurs adhérentes. La plus
grande de ces valeurs est la limite supérieure de la suite, la plus petite, sa
limite inférieure.

Théorème 28 La limite supérieure d’une suite {uk}k∈N est égale à sa plus
grande valeur adhérente et sa limite inférieure, à la plus petite.

Démonstration. Si les valeurs adhérentes sont en nombre infini, leur borne
supérieure est encore une valeur adhérente (exercice (15)), c’est elle la plus
la plus grande dans ce cas.

La suite n’est pas bornée supérieurement si et seulement si sa limite
supérieure est +∞ mais aussi si et seulement si +∞ en est une valeur
adhérente.

Si la suite est bornée supérieurement, soit α sa plus grande valeur adhérente.
Soit ε > 0 arbitraire. Puisque l’on a uk < α+ ε pour tout k assez grand, on
a aussi

lim sup
k

uk ≤ α.
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Réciproquement, puisque sup{uk | k ≥ n} < lim supk uk + ε pour tout n
assez grand, on a aussi

α ≤ lim sup
k

uk.

La démonstration pour la limite inférieure est semblable. C.Q.F.D.

Théorème 29 (Formule de Cauchy pour le rayon de convergence)
Donnée une série entière,

+∞∑
k=0

akx
k,

soit
R =

1
lim supk |ak|1/k

donc 0 ≤ R ≤ +∞. Alors la série converge sur l’intervalle ] − R,R[, de
façon uniforme sur tout sous-intervalle compact [−r,+r] et elle diverge si
|x| > R.

Démonstration. Si R = 0, la série diverge pour tout x 6= 0. En effet, quel
que soit x 6= 0, il y a un nombre infini d’indices k pour lesquels

|ak|1/k >
1
|x|

et la série
+∞∑
k=0

akx
k

ne peut converger puisque que son terme général ne tend pas vers 0.
Si 0 < R < +∞, soient 0 < r < R arbitraire et |x| ≤ r. Pour tout k

suffisamment grand, on a

|ak|1/k <
2

R+ r

donc

|akx
k| <

(
2r

R+ r

)k

et la série, éventuellement majorée par une série géométrique de raison
inférieure à 1, est uniformément convergente en vertu du critère de Weiers-
trass. Si |x| > R par contre, il y a un nombre infini d’indices k pour lesquels

|ak|1/k >
1
|x|
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et la série diverge pour la même raison que précédemment.
Si R = +∞ enfin, le raisonnement sur la convergence du paragraphe

précédent s’applique quelques soient les nombres R > r > 0 et la série
converge pour tout x ∈ R. C.Q.F.D.

Remarque.
On ne peut rien conclure aux extrémités de l’intervalle de convergence,

les points où |x| = R, comme le montre l’exemple des séries

+∞∑
k=1

xk,
+∞∑
k=1

1
k
xk, et

+∞∑
k=1

1
k2
xk

qui ont toutes 1 pour rayon de convergence et qui convergent exactement
sur les intervalles ]− 1, 1[, [−1, 1[ et [−1, 1] respectivement.

Exemple.
La série exponentielle

+∞∑
k=0

1
k!
xk

converge pour tout x ∈ R. En effet,

lim sup
k

(
1
k!

)1/k

= lim
k→+∞

(
1
k!

)1/k

= 0

puisque, en vertu de la formule de Stirling, on a

lim
k→+∞

(
1
k!

)1/k

= lim
k→+∞

e

k (2πk)1/2k
.

Théorème 30 (Dérivation terme à terme d’une série entière) Soient
R le rayon de convergence de la série entière

+∞∑
k=0

akx
k

et f : (−R,R) → R sa somme :

f(x) =
+∞∑
k=0

akx
k.
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Alors la fonction f est dérivable sur l’intervalle ouvert ]−R,R[ et

f ′(x) =
+∞∑
k=1

kakx
k−1, |x| < R.

Démonstration. Le rayon de convergence de la série
∑+∞

k=1 kakx
k−1 est encore

égal à R. Posons

g(x) =
+∞∑
k=1

kakx
k−1, |x| < R.

L’intégration terme à terme étant permise, on a que∫ x

0
g(t) dt = f(x)− a0

et le théorème fondamental du calcul (théorème (6)) montre que

g(x) = f ′(x).

C.Q.F.D.
Remarque.
En répétant ce raisonnement, on voit que la somme d’une série entière

est une fonction indéfiniment dérivable et que

ak =
1
k!
f (k)(0)

(formule de Taylor pour les coefficients d’une série entière).

8.4 Exercices 8

Justifier complètement toutes ses affirmations.
1. Déterminer

lim
n→+∞

1 + nx

1 + nx2
, x ∈ R.

La convergence est-elle uniforme ?
2. Déterminer

lim
n→+∞

log
(
1 +

x

n

)
, x > −1.

La convergence est-elle uniforme ?
3. Déterminer

lim
n→+∞

xe−nx , x ≥ 0.

La convergence est-elle uniforme ?
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4. Montrer par un exemple approprié que la convergence uniforme de
fonctions dérivables fn vers une fonction dérivable f n’entrâıne pas
nécessairement la convergence des dérivées f ′n vers la dérivée f ′.

5. Montrer par un exemple approprié que le théorème (24) n’est pas
nécessairement vrai si l’intervalle d’intégration n’est pas compact.

6. Montrer que la série
+∞∑
k=1

ke−kx cos kx

converge uniformément sur tout intervalle [a,+∞[ (a > 0) .

7. Montrer que la série
+∞∑
k=1

sin kx
k2 + x2

converge uniformément sur R.

8. Montrer que la série
+∞∑
k=1

sin
x

k2

converge uniformément sur tout intervalle [−M,M ].

9. Soient f, g : [0, 1] → R des fonctions continues. Montrer que

‖f + g‖ ≤ ‖f‖+ ‖g‖

et que
‖fg‖ ≤ ‖f‖‖g‖.

Ces inégalités peuvent-elles être strictes ?

10. Soit f : [0, 1] → R une fonction continue telle que∫ 1

0
xnf(x) dx = 0 pour tout n ∈ N0.

Montrer qu’elle est identiquement nulle.

11. Déterminer la limite supérieure et la limite inférieure de la suite(
1 +

cos kπ
k

)k

.
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12. Déterminer les valeurs adhérentes, la limite supérieure et la limite
inférieure de la suite

k cos k π
2

k + 1
.

13. Déterminer les valeurs adhérentes, la limite supérieure et la limite
inférieure de la suite

1
2
,
1
3
,
2
3
,
1
4
,
2
4
,
3
4
,
1
5
,
2
5
,
3
5
,
4
5
,
1
6
, . . .

14. Montrer, si elles sont vraies, les inégalités suivantes

lim sup
k

(uk + vk) ≤ lim sup
k

uk + lim sup
k

vk

et
lim sup

k
ukvk ≤ lim sup

k
uk lim sup

k
vk.

Ces inégalités peuvent-elles êtres strictes ? Restent-elles vraies si on y
remplace lim supk par lim infk ?

15. Montrer que si une suite admet un nombre infini de valeurs adhérentes,
leur borne supérieure est encore une valeur adhérente de la suite.

16. Soit {ak}k∈N une suite de nombres strictement positifs pour lesquels
la limite

lim
k→+∞

ak+1

ak

existe. Montrer qu’alors

lim
k→+∞

(ak)1/k

existe aussi et que ces deux limites sont égales. Donner un exemple où
la seconde limite existe mais pas la première. (formule de d’Alembert
pour le rayon de convergence).

17. Déterminer les valeurs de x pour lesquelles la série
+∞∑
k=1

k2xk

converge et calculer sa somme.
18. Déterminer les valeurs de x pour lesquelles la série

+∞∑
k=0

xk+1

k + 1

converge et calculer sa somme.
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9 SÉRIES DE TAYLOR

Les puissances entières de la variable peuvent servir à représenter toutes
les fonctions de l’analyse.

9.1 Développements limités

Le calcul différentiel repose sur l’observation que, localement, « toute »
fonction est presque linéaire. Soit f une fonction dérivable dans un intervalle
ouvert I contenant le point x0. Alors,

f(x) ≈ f(x0) + f ′(x0)(x− x0) lorsque x ≈ x0.

En effet, la définition de f ′(x0) peut se mettre sous la forme

f(x) = f(x0) + f ′(x0)(x− x0) + r1(x) , x ∈ I

où
lim

x→x0

r1(x)
x− x0

= 0.

Cette approximation locale peut être raffinée lorsque la fonction admet des
dérivées supplémentaires.

Théorème 31 (Taylor) Soit f une fonction n+1 fois continûment dérivable
dans un intervalle I contenant un intervalle ouvert contenant le point x0(dans
un voisinage I de x0). Alors

f(x) =
n∑

k=0

f (k)(x0)
k!

(x− x0)k + rn(x) , x ∈ I (17)

où
lim

x→x0

rn(x)
(x− x0)n

= 0.

Le reste rn peut s’exprimer sous forme intégrale :

rn(x) =
1
n!

∫ x

x0

(x− t)nf (n+1)(t) dt

ou sous forme différentielle :

rn(x) =
f (n+1)(ξ)
(n+ 1)!

(x− x0)n+1

où ξ est un point entre x et x0.
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Démonstration.
Première démonstration. En écrivant le reste sous forme intégrale, on

voit que la relation à démontrer se réduit au théorème fondamental du calcul
(théorème (7)) lorsque n = 0. D’où le raisonnement suivant. En intégrant n
fois par parties :

f(x) = f(x0) +
∫ x

x0

f ′(t) dt

= f(x0) +
(
−(x− t)f ′(t)

∣∣∣x
x0

+
∫ x

x0

(x− t)f ′′(t) dt
)

= f(x0) + f ′(x0)(x− x0) +
(
−1

2
(x− t)2f ′′(t)

∣∣∣x
x0

+
1
2

∫ x

x0

(x− t)2f ′′′(t) dt
)

= f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2

+
(
− 1

3!
(x− t)3f ′′′(t)

∣∣∣x
x0

+
1
3!

∫ x

x0

(x− t)3f (iv)(t) dt
)

= · · ·

=
n∑

k=0

f (k)(x0)
k!

(x− x0)k +
1
n!

∫ x

x0

(x− t)nf (n+1)(t) dt.

Seconde démonstration. En écrivant le reste sous forme différentielle, on
voit que la relation à démontrer se réduit au théorème des accroissements
finis lorsque n = 0. D’où le raisonnement suivant. Introduisons la fonction
auxiliaire

g(t) = f(t)−
n∑

k=0

f (k)(x0)
k!

(t− x0)k − C(t− x0)n+1

où

C =
f(x)−

∑n
k=0

f (k)(x0)
k! (x− x0)k

(x− x0)n+1

(x et x0 sont fixés, par exemple, x > x0). Cette fonction g est n + 1 fois
continûment dérivable dans l’intervalle I et

g(x0) = g′(x0) = g′′(x0) = · · · = g(n)(x0) = 0,

g(n+1)(t) = f (n+1)(t)− (n+ 1)!C.

Puisque g(x0) = g(x) = 0, il existe x1 ∈]x0, x[ tel que g′(x1) = 0. Mais
alors g′(x0) = g′(x1) = 0. Donc il existe x2 ∈]x0, x1[ tel que g′′(x2) = 0. En
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répétant ce raisonnement n fois, on voit qu’il existe xn ∈]x0, xn−1[ tel que
g(n)(xn) = 0. Alors, toujours en vertu du théorème des accroissements finis,
il existe ξ ∈]x0, xn[ tel que

g(n+1)(ξ) = f (n+1)(ξ)− (n+ 1)!C = 0

c’est-à-dire
f(x)−

∑n
k=0

f (k)(x0)
k! (x− x0)k

(x− x0)n+1
=
f (n+1)(ξ)
(n+ 1)!

.

C.Q.F.D.
Le théorème précédent admet une sorte de réciproque. Si f est une fonc-

tion n+ 1 fois continûment dérivable dans un voisinage I de x0 telle que

f(x) =
n∑

k=0

ak(x− x0)k + rn(x) , x ∈ I

avec
lim

x→x0

rn(x)
(x− x0)n

= 0,

alors, nécessairement,

ak =
f (k)(x0)

k!
pour 0 ≤ k ≤ n.

On a en effet que rn(x) est n+ 1 fois continûment dérivable et satisfait les
relations

f (k)(x0) = k! ak + r(k)
n (x0)

et il suffit de vérifier que r(k)
n (x0) = 0 pour 0 ≤ k ≤ n. Par récurrence sur k.

On a
0 = lim

x→x0

rn(x) = r(x0).

Supposant ensuite que rn(x0) = r′n(x0) = · · · = r
(k)
n (x0) = 0, on a en

appliquant plusieurs fois la règle de l’Hospital :

0 = lim
x→x0

rn(x)
(x− x0)k+1

= lim
x→x0

r′n(x)
(k + 1)(x− x0)k

= lim
x→x0

r′′n(x)
(k + 1)k(x− x0)k−1

= · · ·

= lim
x→x0

r
(k)
n (x)

(k + 1)k · · · 2(x− x0)
=
r(k+1)(x0)
(k + 1)!

.
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Les développements limités des fonctions suivantes s’obtiennent directe-
ment du théorème précédent.

ex =
n∑

k=0

1
k!
xk +

eξ

(n+ 1)!
xn+1 , x ∈ R, (18)

cosx =
n∑

k=0

(−1)k

(2k)!
x2k +

(−1)n+1 cos ξ
(2n+ 2)!

x2n+2 , x ∈ R,

sinx =
n∑

k=0

(−1)k

(2k + 1)!
x2k+1 +

(−1)n+1 cos ξ
(2n+ 3)!

x2n+3 , x ∈ R,

(1 + x)p = 1 +
n∑

k=1

p(p− 1) · · · (p− k + 1)
k!

xk + rn(x) , x > −1, (19)

(le binôme de Newton) où

rn(x) =
p(p− 1) · · · (p− n)

n!

∫ x

0
(x− t)n(1 + t)p−n−1 dt,

log(1 + x) =
n∑

k=1

(−1)k−1

k
xk +

(−1)n

(n+ 1)(1 + ξ)n+1
xn+1 , x > −1.

En intégrant l’identité

1
1 + t2

=
n∑

k=0

(−1)kt2k +
(−1)n+1t2(n+1)

1 + t2
,

on obtient

arctanx =
n∑

k=0

(−1)k

2k + 1
x2k+1 + r2n+2(x) , x ∈ R

où

r2n+2(x) = (−1)n+1

∫ x

0

t2(n+1)

1 + t2
dt.

Il s’agit bien là du développement limité de Taylor puisque l’on a∣∣∣∣∣ 1
x2n+2

(−1)n+1

∫ x

0

t2(n+1)

1 + t2
dt

∣∣∣∣∣ ≤ 1
|x|2n+2

∫ |x|

0
t2(n+1) dt =

|x|
2n+ 3

.

Exemples.
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– En laissant n tendre vers +∞ dans la relation

log 2 =
n∑

k=1

(−1)k−1

k
+

(−1)n

(n+ 1)(1 + ξ)n+1

(où 0 < ξ < 1), on trouve

1− 1
2

+
1
3
− 1

4
+ · · · = log 2.

– En laissant n tendre vers +∞ dans la relation

arctan 1 =
n∑

k=1

(−1)k

2k + 1
+ (−1)n+1

∫ 1

0

t2(n+1)

1 + t2
dt,

on trouve
1− 1

3
+

1
5
− 1

7
+ · · · = π

4
.

9.1.1 Notations de Landau

Il est commode d’écrire avec Landau que

φ(x) = ◦(ψ(x)) , x→ x0

(lire : φ est négligeable devant ψ lorsque x tend vers x0) si

lim
x→x0

φ(x)
ψ(x)

= 0,

d’écrire
φ(x) = ©(ψ(x)) , x→ x0

(lire : φ est comparable à ψ lorsque x tend vers x0) si l’expression∣∣∣∣φ(x)
ψ(x)

∣∣∣∣
reste bornée lorsque x tend vers x0 et enfin

φ(x) ∼ ψ(x) , x→ x0

(lire : φ est équivalente à ψ lorsque x tend vers x0) si

lim
x→x0

φ(x)
ψ(x)

= 1.

Ici, −∞ ≤ x0 ≤ +∞. Ces notations s’emploient aussi pour les suites (avec
x0 = +∞).

Exemples.
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–
x2 = ◦(x) , x→ 0;

–
sinx = ©(1) , x→ 0;

–
sinx ∼ x , x→ 0;

–
n! ∼

(n
e

)n√
2πn , n→ +∞.

Avec ces notations, un développement limité s’écrit

f(x) =
n∑

k=0

f (k)(x0)
k!

(x− x0)k + ◦(x− x0)n , x→ x0.

Exemple.
On a

cosx = 1− x2

2
+ ◦(x3)

et

sinx = x− x3

6
+ ◦(x4)

de telle sorte que

cosx sinx = x− x3

2
+ x ◦ (x3)− x3

6
+
x5

12
− x3

6
◦ (x3)

+ ◦ (x4)− ◦(x4)
(
x2

2

)
+ ◦(x4) ◦ (x3) = x− 2x3

3
+ ◦(x4).

9.2 Séries infinies

Si la fonction f est indéfiniment dérivable et si le reste rn dans son
développement limité au point x0 tend vers 0 lorsque n tend vers +∞, on
peut la représenter comme la somme d’une série de puissances entières de
x− x0.

Théorème 32 Les fonctions analytiques usuelles admettent les représentations
suivante :
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1.

ex =
+∞∑
k=0

1
k!
xk , x ∈ R

2.

cosx =
+∞∑
k=0

(−1)k

(2k)!
x2k , x ∈ R

3.

sinx =
+∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 , x ∈ R

4.

(1 + x)p = 1 +
+∞∑
k=1

p(p− 1) · · · (p− k + 1)
k!

xk , |x| < 1

5.

log(1 + x) =
+∞∑
k=1

(−1)k−1

k
xk , |x| < 1

6.

arctanx =
+∞∑
k=0

(−1)k

2k + 1
x2k+1 , |x| < 1

7.

arcsinx = x+
+∞∑
k=1

1 · 3 · 5 · · · (2k − 1)
2 · 4 · 6 · · · 2k

x2k+1

2k + 1
, |x| < 1.

Démonstration. Il s’agit de voir que le reste rn(x) dans le développement
limité de la fonction tend vers 0 lorsque n tend vers +∞ pour x dans l’in-
tervalle indiqué.

Considérons d’abord la fonction exponentielle. Donné x ∈ R, choisis-
sons un indice N > 2|x| et considérons rn lorsque n > N . Nous utilisons
l’équation (18) : ∣∣∣∣ eξ

(n+ 1)!
xn+1

∣∣∣∣ ≤ e|x|
|x|n+1

(n+ 1)!
= ΠN Πn

où

ΠN = e|x|
|x|N

N !
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est fixé et

Πn =
|x|n+1−N

(N + 1)(N + 2) · · · (n+ 1)
<

1
2n+1−N

tend vers 0 avec 1/n.
Les fonctions cosinus et sinus se traitent de la même façon.
Pour le binôme de Newton, donné x ∈]− 1, 1[, soit N un indice tel que

N >
2|p||x|
1− |x|

et considérons rn pour n > N . Nous utilisons la relation (19) :∣∣∣∣p(p− 1) · · · (p− n)
n!

∫ x

0
(x− t)n(1 + t)p−n−1 dt

∣∣∣∣
=
∣∣∣∣(p− 1) · · · (p− n)

n!

∣∣∣∣ ∣∣∣∣∫ x

0

(
x− t

1 + t

)n

p(1 + t)p−1 dt

∣∣∣∣
≤
∣∣∣∣(p− 1) · · · (p− n)

n!

∣∣∣∣ |x|n |(1 + x)p − 1|

(pour vérifier le détail de ce calcul, distinguer suivant que x est positif ou
négatif) de telle sorte que∣∣∣∣p(p− 1) · · · (p− n)

n!

∫ x

0
(x− t)n(1 + t)p−n−1 dt

∣∣∣∣
≤
∣∣∣∣(p− 1) · · · (p−N)

N !

∣∣∣∣ |x|N |(1 + x)p − 1|
∣∣∣∣(p−N − 1) · · · (p− n)

(N + 1) · · ·n

∣∣∣∣ |x|n−N = ΠN Πn

où

ΠN =
∣∣∣∣(p− 1) · · · (p−N)

N !

∣∣∣∣ |x|N |(1 + x)p − 1|

est fixé et

Πn =
∣∣∣∣(p−N − 1)(p−N − 2) · · · (p− n)

(N + 1)(N + 2) · · ·n

∣∣∣∣ |x|n−N

≤
(

1 +
|p|

N + 1

)(
1 +

|p|
N + 2

)
· · ·
(

1 +
|p|
n

)
|x|n−N

≤
((

1 +
|p|

N + 1

)
|x|
)n−N

≤
(

1 + |x|
2

)n−N
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tend vers 0 lorsque n tend vers +∞. Lorsque p est un entier positif, la série se
termine avec k = p et le binôme de Newton se réduit au théorème binomial
de l’algèbre :

(1 + x)p =
p∑

k=0

(
p

k

)
xk.

Les séries pour le logarithme, l’arctangente et l’arcsinus peuvent être
obtenues le plus simplement à partir du binôme de Newton par intégration
terme à terme de la série appropriée. On a (p = −1 dans le binôme de
Newton)

1
1 + x

=
+∞∑
k=0

(−1)k xk , |x| < 1

donc

log(1 + x) =
+∞∑
k=0

(−1)k

k + 1
xk+1 , |x| < 1.

Aussi (p = −1, x 7→ x2)

1
1 + x2

=
+∞∑
k=0

(−1)k x2k , |x| < 1

de telle sorte que

arctanx =
+∞∑
k=0

(−1)k

2k + 1
x2k+1 , |x| < 1.

Enfin (p = −1/2, x 7→ −x2)

1√
1− x2

= 1 +
+∞∑
k=1

1 · 3 · 5 · · · (2k − 1)
2 · 4 · 6 · · · 2k

x2k , |x| < 1

donc

arcsinx = x+
+∞∑
k=1

1 · 3 · 5 · · · (2k − 1)
2 · 4 · 6 · · · 2k

x2k+1

2k + 1
, |x| < 1.

C.Q.F.D.
Remarque. Il peut parâıtre surprenant que le rayon de convergence de

la série pour la fonction arctangente soit égal à 1 alors que la fonction est
indéfiniment dérivable sur tout l’axe réel. L’analyse complexe en fournit
l’explication.
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Exemple.
Considérons la fonction f : R → R définie par

f(x) =

{
0 si x ≤ 0,
e−1/x si x > 0.

Elle est indéfiniment dérivable et l’on a

f (k)(x) = f(x) p2k

(
1
x

)
où p2k est un polynôme de degré 2k, comme on peut le vérifier par récurrence
sur k. Cela repose seulement sur le fait que quelque soit n

lim
x→0+

1
xn

e−1/x = 0.

On en déduit que
f (k)(0) = 0 pour tout k ≥ 0.

Ainsi cette fonction pourtant indéfiniment dérivable n’est égale à la somme
de sa série de Taylor dans aucun intervalle centré à l’origine.

Théorème 33 Le nombre e est irrationnel.

Démonstration. On a

e =
+∞∑
k=0

1
k!
.

Supposons que e est rationnel, soit e = p/q avec p, q ∈ N. On a alors

(q − 1)! p−
q∑

k=0

q!
k!

=
+∞∑

k=q+1

q!
k!
.

Or ceci est impossible. En effet, le membre de gauche de cette équation est
un entier alors que le membre de droite ne l’est pas :

0 <
+∞∑

k=q+1

q!
k!
<

1
q + 1

+∞∑
k=0

1
(q + 2)k

=
q + 2

(q + 1)2
< 1.

C.Q.F.D.

Théorème 34 Le nombre π est irrationnel.
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Démonstration. Considérons le polynôme

φ(x) =
xn(1− x)n

n!
.

On peut écrire

n!φ(x) =
n∑

k=0

(
n

k

)
(−1)n−kx2n−k =

2n∑
j=n

(
n

2n− j

)
(−1)j−nxj .

On a d’abord
0 < φ(x) <

1
n!

si 0 < x < 1.

De plus,

φ(k)(0) =


0 si 0 ≤ k < n,
1
n!

(
n

2n− k

)
(−1)k−nk! si n ≤ k ≤ 2n,

0 si 2n < k

et
φ(k)(1) = (−1)kφ(k)(0).

Les nombres φ(0), φ(1), φ′(0), φ′(1), φ′′(0), φ′′(1), . . . sont donc tous des en-
tiers.

Supposons donc que π est rationnel, soit π = p/q avec p, q ∈ N. Intro-
duisons le polynôme

ψ(x) = q2n
n∑

k=0

(−1)kπ2n−2kφ(2k)(x).

Les nombres ψ(0) et ψ(1) sont donc eux aussi des entiers. D’autre part, ce
polynôme ψ satisfait l’équation différentielle

ψ′′(x) + π2ψ(x) = q2nπ2n+2φ(x)

de telle sorte que

d

dx

(
ψ′(x) sinπx− πψ(x) cosπx

)
=
(
ψ′′(x) + π2ψ(x)

)
sinπx = q2nπ2n+2φ(x) sinπx.

Ainsi∫ 1

0
q2nπ2n+1φ(x) sinπx dx =

(
ψ′(x) sinπx

π
− ψ(x) cosπx

∣∣∣1
0

)
= ψ(0) + ψ(1)
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est un entier et ce quelque soit n ∈ N. Ceci est impossible puisque

0 <
∫ 1

0
q2nπ2n+1φ(x) sinπx dx <

q2nπ2n+1

n!

et que
q2nπ2n+1

n!
< 1

dès que n est suffisamment grand. C.Q.F.D.

9.3 Exercices 9

Justifier complètement toutes ses affirmations.

1. Soit f : [a, b] → R une fonction continûment dérivable. Montrer que∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ (b− a)
∣∣∣∣f(b) + f(a)

2

∣∣∣∣+ (b− a)2

2
‖f ′‖.

2. Obtenir le développement limité d’ordre 2 au point x0 = n pour la
fonction

f(x) = xne−x.

3. Considérons le développement limité d’une fonction f au point x0.
Soit k > 0 le rang du premier terme après f(x0) qui est non nul dans
ce développement. Montrer que si k est pair la fonction admet un
extrémum relatif (local) en x0. Qu’arrive-t-il k est impair ?

4. Obtenir le développement limité d’ordre 5 de la fonction tangente à
l’origine (utiliser les notations de Landau).
(Suggestion : sinx = tanx cosx).

5. Montrer que les inégalités

1 + sinx < ex <
1√

1− 2x

sont valables dans un petit intervalle ouvert autour de l’origine.

6. Soit R > 0. Représenter la fonction

f(x) =
1

(R− x)2
− 1

(R+ x)2

comme la somme d’une série de puissances entières de x dans le plus
grand intervalle possible autour de l’origine.
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7. Obtenir la série de Taylor à l’origine de la fonction

sinhx.

Déterminer son rayon de convergence.

8. Mêmes questions pour la fonction

arcsinhx.

9. Mêmes questions pour la fonction

arctanhx.

10. Mêmes questions pour la fonction

sin
√
x√

x
.

11. Calculer ∫ 2π

0

+∞∑
k=1

1
2k
e−kx cos kx dx.

12. Montrer que le nombre cos 1 est irrationnel.
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10 SÉRIES DE FOURIER

La représentation d’une fonction par sa série de Taylor est limitée de deux
façons : d’abord, elle ne s’applique qu’aux fonctions indéfiniment dérivables
et ensuite, elle est locale — les sommes partielles de la série obtenue ne
constituent une approximation de la fonction que dans un voisinage (qui
peut être très petit) du point autour duquel on la calcule.

La série de Fourier ne souffre pas de ces inconvénients : on peut pres-
crire à l’avance l’intervalle de convergence et elle permet de représenter des
fonctions très générales, présentant même certains types de discontinuités.

Le prix à payer : alors que la série de Taylor utilise les monômes

1, x, x2, x3, x4, . . . ,

la série de Fourier se sert des fonctions transcendantes

1, cosx, sinx, cos 2x, sin 2x, . . .

La résolution des équations aux dérivées partielles, objet d’étude d’un cours
d’analyse appliquée, explique en partie le choix de ces fonctions.

10.1 La série de Fourier

Dans tout ce chapitre, nous considérons des fonctions f : [−π, π[→ R,
prolongées à R par périodicité.

Remarque. Le nombre π n’a été choisi que pour simplifier l’écriture. Si
f : [a, b[→ R, on se ramène à l’intervalle [−π, π[ en considérant la fonction g

g(x) = f

(
a+

b− a

2π
(x+ π)

)
.

La fonction paire (ou la fonction impaire) qui cöıncide avec

f

(
a+

b− a

π
x

)
lorsque 0 ≤ x < π peut aussi être utilisée.

Nous dirons d’une fonction f qu’elle est continue par morceaux si
C1 il existe un nombre fini n ≥ 0 de points

−π = x0 < x1 < x2 < x3 < · · · < xn < xn+1 = π

tels que f est continue sur chaque intervalle ouvert ]xj−1, xj [, 1 ≤ j ≤ n+ 1 ;
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C2 les limites unilatérales

f(xj−) = lim
x→xj−

f(x), f(xj+) = lim
x→xj+

f(x)

existent (comme nombres réels finis) pour chaque 0 ≤ j ≤ n+ 1.

Remarquons que l’on a toujours, par périodicité, f(x0−) = f(xn+1−) et
f(x0+) = f(xn+1+) alors que la relation f(x0+) = f(xn+1−) n’est pas
nécessairement valable.

Nous dirons d’une fonction f qu’elle satisfait les conditions de Dirichlet
si (figure(21))

D1 il existe un nombre fini n ≥ 0 de points

−π = x0 < x1 < x2 < x3 < · · · < xn < xn+1 = π

tels que f est continûment dérivable sur chaque intervalle ouvert ]xj−1, xj [,
1 ≤ j ≤ n+ 1 ;

D2 les limites unilatérales

f(xj−) = lim
x→xj−

f(x), f(xj+) = lim
x→xj+

f(x)

et
f ′(xj−) = lim

x→xj−
f ′(x), f ′(xj+) = lim

x→xj+
f ′(x)

existent (comme nombres réels finis) pour chaque 0 ≤ j ≤ n+ 1.

x0��Π x1 x2 x3�Π

Fig. 21 – Les conditions de Dirichlet
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L’intégrale d’une fonction f continue par morceaux est définie sur l’in-
tervalle (−π, π) par la relation∫ +π

−π
f(x) dx =

n+1∑
j=1

∫ xj

xj−1

f(x) dx

et, sur un intervalle (a, b) ⊆ (−π, π) quelconque, par∫ b

a
f(x) dx =

∫ +π

−π
f(x)I(a,b)(x) dx

où IE est la fonction indicatrice de l’ensemble E (égale à 1 ou à 0 suivant
que son argument appartient ou non à E — exercice (6) du chapitre 2).
L’intégrale sur un intervalle qui n’est pas contenu dans (−π, π) est définie
en utilisant la périodicité de f . Cette extension de la définition de l’intégrale
préserve ses propriétés de linéarité, de posivité et d’additivité.

Les coefficients de Fourier d’une fonction continue par morceaux sont,
par définition, les nombres

ak(f) =
1
π

∫ +π

−π
f(x) cos kx dx , (k = 0, 1, . . .)

et

bk(f) =
1
π

∫ +π

−π
f(x) sin kx dx , (k = 1, 2, . . .)

(ce choix est dicté par la propriété d’orthogonalité des fonctions trigonométriques
— exercice (9) du chapitre 5).

La série trigonométrique formée à l’aide de ces coefficients,

S(f)(x) =
1
2
a0(f) +

+∞∑
k=1

(ak(f) cos kx+ bk(f) sin kx),

est la série de Fourier de la fonction f . (On a choisi d’écrire le terme constant
sous la forme 1

2a0(f) afin que la formule pour a0(f) soit la même que celle
pour ak(f) lorsque k ≥ 1 — ce terme constant est donc la valeur moyenne
de la fonction sur une période.)

Lorsque la fonction f est paire, la série de Fourier se réduit à

S(f)(x) =
1
2
a0(f) +

+∞∑
k=1

ak(f) cos kx
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où
ak(f) =

2
π

∫ π

0
f(x) cos kx dx , (k = 0, 1, . . .)

et lorsqu’elle est impaire, à

S(f)(x) =
+∞∑
k=1

bk(f) sin kx,

avec
bk(f) =

2
π

∫ π

0
f(x) sin kx dx , (k = 1, 2, . . .)

Les sommes partielles de la série de Fourier seront dénotées par

Sn(f)(x) =
1
2
a0(f) +

n∑
k=1

(ak(f) cos kx+ bk(f) sin kx).

Il s’agit d’étudier leur convergence vers la fonction.

Exemples.

1. Pour la fonction f1 définie par

f1(x) = x(x− π) si − π ≤ x < π,

on a

S(f1)(x) =
π2

3
+

+∞∑
k=1

(−1)k

(
4
k2

cos kx+
2π
k

sin kx
)
.

2. Pour la fonction f2 définie par

f2(x) = π − |x| si − π ≤ x < π,

on a

S(f2)(x) =
π

2
+

+∞∑
j=0

4
π(2j + 1)2

cos(2j + 1)x.

3. Pour la fonction f3 définie par

f3(x) = sgnx si − π ≤ x < π,

on a

S(f3)(x) =
+∞∑
j=0

4
π(2j + 1)

sin(2j + 1)x.
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(La fonction sgn donne le signe de son argument :

sgnx =


x

|x|
si x 6= 0,

0 sinon.)

10.2 Théorèmes de convergence

Désignons par Tn un polynôme trigonométrique de degré n arbitraire :

Tn(x) =
1
2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx).

Théorème 35 (Approximation en moyenne quadratique) Pour toute
fonction f continue par morceaux, on a

inf{ 1
π

∫ +π

−π
(f(x)− Tn(x))2 dx | Tn} =

1
π

∫ +π

−π
(f(x)− Sn(f)(x))2 dx

=
1
π

∫ +π

−π
f2(x) dx−

(
1
2
a2

0(f) +
n∑

k=1

(a2
k(f) + b2k(f)

)
.

Démonstration. Que les sommes partielles de la série de Fourier constituent
ses meilleures approximations en moyenne quadratique résulte directement
des propriétés d’orthogonalité des fonctions trigonométriques. On a

1
π

∫ +π

−π
(f(x)− Tn(x))2 dx

=
1
π

∫ +π

−π
f2(x) dx− 2

π

∫ +π

−π
f(x)Tn(x) dx+

1
π

∫ +π

−π
T 2

n(x) dx.

Or, en vertu de la définition même des coefficients de Fourier,

1
π

∫ +π

−π
f(x)Tn(x) dx =

1
2
a0 a0(f) +

n∑
k=1

(ak ak(f) + bk bk(f))

et, à cause de l’orthogonalité des fonctions trigonométriques,

1
π

∫ +π

−π
T 2

n(x) dx =
1
2
a2

0 +
n∑

k=1

(a2
k + b2k)
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de telle sorte que, en complétant les carrés,

1
π

∫ +π

−π
(f(x)− Tn(x))2 dx =

1
π

∫ +π

−π
f2(x) dx

+
1
2
(a0 − a0(f))2 +

n∑
k=1

((ak − ak(f))2 + (bk − bk(f))2)

−

(
1
2
a2

0(f) +
n∑

k=1

(a2
k(f) + b2k(f))

)
.

On voit donc que

1
π

∫ +π

−π
(f(x)− Tn(x))2 dx ≥ 1

π

∫ +π

−π
(f(x)− Sn(x))2 dx

=
1
π

∫ +π

−π
f2(x) dx−

(
1
2
a2

0(f) +
n∑

k=1

(a2
k(f) + b2k(f)

)
.

C.Q.F.D.

Théorème 36 (Bessel) Pour toute fonction f continue par morceaux, on
a

1
2
a2

0(f) +
+∞∑
k=1

(a2
k(f) + b2k(f) ≤ 1

π

∫ +π

−π
f2(x) dx.

Démonstration. Cette inégalité découle directement du théorème précédent.
Quelque soit n, on a en effet

1
2
a2

0(f) +
n∑

k=1

(a2
k(f) + b2k(f)) ≤ 1

π

∫ +π

−π
f2(x) dx

et donc, en laissant n tendre vers +∞, on voit que la série des carrés des
coefficients de Fourier est convergente et satisfait l’inégalité de Bessel :

1
2
a2

0(f) +
+∞∑
k=1

(a2
k(f) + b2k(f) ≤ 1

π

∫ +π

−π
f2(x) dx.

C.Q.F.D.
En particulier, les coefficients de Fourier an(f) et bn(f) d’une fonc-

tion f continue par morceaux tendent vers 0 lorsque n tend vers +∞. La
démonstration du théorème suivant repose sur ce fait.
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Théorème 37 (Dirichlet) La série de Fourier d’une fonction f qui satis-
fait les conditions de Dirichlet converge vers cette fonction en tout point, à
la condition de la redéfinir aux éventuels points de discontinuité xj en posant

f(xj) =
f(xj−) + f(xj+)

2
.

Démonstration. En remplaçant les coefficients de Fourier par leur ex-
pression intégrale puis en permutant la somme et l’intégrale, on obtient

Sn(f)(x) =
1
2
a0(f) +

n∑
k=1

(ak(f) cos kx+ bk(f) sin kx)

=
1
π

∫ +π

−π
f(t)

(
1
2

+
n∑

k=1

cos k(x− t)

)
dt

En vertu de l’identité trigonométrique

2 cos a sin b = sin(a+ b)− sin(a− b),

on a (
1
2

+
n∑

k=1

cos k(x− t)

)
=

sin(2n+ 1)
x− t

2

2 sin
x− t

2
donc

Sn(f)(x) =
1
π

∫ +π

−π
f(t)

sin(2n+ 1)x−t
2

2 sin x−t
2

dt

=
1
π

∫ +π

−π
f(x− s)

sin(2n+ 1) s
2

2 sin s
2

ds,

ce que l’on exprime en disant que la somme partielle Sn(f)(x) est la convo-
lution de la fonction f avec le noyau de Dirichlet Dn sur l’intervalle [−π, π]
(figure(22)) :

Dn(s) =
sin(2n+ 1) s

2

2π sin s
2

.

En appliquant cette relation à la fonction g = 1, pour laquelle on a aussi
Sn(g) = 1, on voit que ce noyau possède la propriété suivante :

1 =
1
π

∫ +π

−π

sin(2n+ 1) s
2

2 sin s
2

ds.
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Fig. 22 – Quelques fonctions Dn(x)

Soit donc x ∈ [−π, π[. Supposons d’abord que x n’est pas égal à l’un des
points xj . On a alors

Sn(f)(x)− f(x) =
1
π

∫ +π

−π
(f(x− s)− f(x))

sin(2n+ 1) s
2

2 sin s
2

ds

=
1
π

∫ +π

−π
φx(s) cosns ds+

1
π

∫ +π

−π
ψx(s) sinns ds

en posant

φx(s) =
f(x− s)− f(x)

2
et

ψx(s) =
f(x− s)− f(x)

2
cos s

2

sin s
2

.

La fonction s 7→ φx(s) étant continue par morceaux, on a

lim
n→+∞

1
π

∫ +π

−π
φx(s) cosns ds = 0.

Il en va de même pour la fonction s 7→ ψx(s) puisque

lim
s→0

ψx(s) = lim
s→0

f(x− s)− f(x)
s

s
2

sin s
2

cos
s

2
= −f ′(x)

de telle sorte que l’on a également

lim
n→+∞

1
π

∫ +π

−π
ψx(s) sinns ds = 0
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ce qui complète le raisonnement lorsque x est un point régulier.
Supposons maintenant que x = xj . Alors

Sn(f)(x)− f(x−) + f(x+)
2

=
1
π

∫ π

0

(
f(x− s)− f(x−) + f(x+)

2

)
sin(2n+ 1) s

2

2 sin s
2

ds

+
1
π

∫ π

0

(
f(x+ s)− f(x−) + f(x+)

2

)
sin(2n+ 1) s

2

2 sin s
2

ds

=
1
π

∫ π

0
(f(x− s) + f(x+ s)− (f(x−) + f(x+)))

sin(2n+ 1) s
2

2 sin s
2

ds

=
1
π

∫ +π

−π
φx(s) cosns ds+

1
π

∫ +π

−π
ψx(s) sinns ds

où, maintenant,

φx(s) =

0 si − π ≤ s ≤ 0,
f(x− s) + f(x+ s)− (f(x−) + f(x+))

2
si 0 < s < π

et

ψx(s) =

0 si − π ≤ s ≤ 0,
f(x− s) + f(x+ s)− (f(x−) + f(x+))

2
cos s

2

sin s
2

si 0 < s < π.

La fonction φx est bien évidemment continue par morceaux de telle sorte
que

lim
n→+∞

1
π

∫ +π

−π
φx(s) cosns ds = 0.

Il en est de même pour la fonction ψx puisque en vertu de la règle de l’Hos-
pital, on a

lim
s↓0

ψx(s) = lim
s↓0

f(x− s)− f(x−) + f(x+ s)− f(x+)
s

s
2

sin s
2

cos
s

2

= −f ′(x−) + f ′(x+).

Ainsi

lim
n→+∞

1
π

∫ +π

−π
ψx(s) sinns ds = 0

aussi et la démonstration est complète. C.Q.F.D.

Exemples.
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1. Pour la fonction f1 définie par

f1(x) = x(x− π) si − π ≤ x < π,

on a

S(f1)(x) =
π2

3
+

+∞∑
k=1

(−1)k

(
4
k2

cos kx+
2π
k

sin kx
)

de telle sorte que

S(f1)(x) =

{
x(x− π) si − π < x < π,

π2 si x = −π.

On tire en particulier de ce dernier cas

+∞∑
k=1

1
k2

=
π2

6
.

-3 -2 -1 1 2 3

0.5

1

1.5

2

2.5

3

Fig. 23 – Fonctions f2 et S6(f2)

2. Pour la fonction f2 définie par

f2(x) = π − |x| si − π ≤ x < π,

on a

S(f2)(x) =
π

2
+

+∞∑
j=0

4
π(2j + 1)2

cos(2j + 1)x = f2(x)

pour tout x. La convergence de la série est uniforme dans ce cas-ci et
la fonction limite est continue (figure(23)).
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3. Pour la fonction f3 définie par

f3(x) = sgnx si − π ≤ x < π,

on a

S(f3)(x) =
+∞∑
j=0

4
π(2j + 1)

sin(2j + 1)x.

Ainsi (figure(24))

+∞∑
j=0

1
(2j + 1)

sin(2j + 1)x =


0 si x = π,

−π
4 si − π < x < 0,

0 si x = 0,
π
4 si 0 < x < π.

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Fig. 24 – Fonctions f3 et S12(f3)

10.3 L’approximation des fonctions continues périodiques

On sait que les moyennes arithmétiques des termes d’une suite forment
une nouvelle suite plus régulière que la suite originelle, qui peut par exemple
converger lorsque la suite elle-même ne converge pas.

Théorème 38 (Fejér) Soit f : [−π, π] → R une fonction continue telle
que f(−π) = f(π). Alors les moyennes arithmétiques σn(f) des sommes
partielles Sn(f) de sa série de Fourier convergent vers la fonction f uni-
formément sur [−π, π].
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Démonstration. Par définition,

σn(f)(x) =
1

n+ 1

n∑
k=0

Sk(f)(x).

Comme

Sn(f)(x) =
1
2π

∫ +π

−π
f(t)

sin(2n+ 1)x−t
2

sin x−t
2

dt

on a, en vertu de l’identité trigonométrique

2 sin a sin b = cos(a− b)− cos(a+ b),

que

σn(f)(x) =
1
2π

∫ +π

−π
f(x− s)

sin2(n+ 1) s
2

(n+ 1) sin2 s
2

ds

=
1
2π

∫ +π

−π
f(x− s)

1− cos(n+ 1)s
(n+ 1) (1− cos s)

ds.

La fonction σn est donc la convolution de la fonction donnée f avec le noyau
de Fejér Fn sur l’intervalle [−π, π] (figure(25)) :

Fn(s) =
sin2(n+ 1) s

2

2π(n+ 1) sin2 s
2

.

Alors, quelque soit δ > 0,

|σn(f)(x)− f(x)| =
∣∣∣∣ 1
2π

∫ +π

−π
(f(x− s)− f(x))

1− cos(n+ 1)s
(n+ 1) (1− cos s)

ds

∣∣∣∣
≤ 1

2π

∫ +π

−π
|f(x− s)− f(x)| 1− cos(n+ 1)s

(n+ 1) (1− cos s)
ds

=
1
2π

∫
|s|<δ

|f(x− s)− f(x)| 1− cos(n+ 1)s
(n+ 1) (1− cos s)

ds

+
1
2π

∫
δ≤|s|≤π

|f(x− s)− f(x)| 1− cos(n+ 1)s
(n+ 1) (1− cos s)

ds

≤ sup
|s|<δ

|f(x− s)− f(x)|+ 2‖f(x)‖ 2
(n+ 1) (1− cos δ)

Donné ε > 0, on peut choisir, en vertu de la continuité uniforme, δ = δ(ε) > 0
pour que

sup
|s|<δ

|f(x− s)− f(x)| < ε

2
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quelque soit x ∈ R puis nε pour que

2‖f(x)‖ 2
(n+ 1) (1− cos δ)

<
ε

2

pour tout n > nε. C.Q.F.D.

-3 -2 -1 1 2 3
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4
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Fig. 25 – Quelques fonctions Fn(x)

Théorème 39 (Parseval) Soit f : [−π, π] → R une fonction continue telle
que f(−π) = f(π). Alors

lim
n→+∞

1
π

∫ +π

−π
(Sn(f)(x)− f(x))2dx = 0

et
1
2
a2

0(f) +
+∞∑
k=1

(a2
k(f) + b2k(f) =

1
π

∫ +π

−π
f2(x) dx.

Démonstration. Les fonctions σn(f) convergent uniformément vers f sur
[−π, π] donc elles convergent en moyenne quadratique vers f et le résultat
suit du théorème (35).

C.Q.F.D.

10.4 Exercices 10

1. Montrer que toute fonction définie sur un intervalle symétrique par
rapport à l’origine peut s’y représenter comme la somme d’une fonction
paire et d’une fonction impaire.
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2. Les coefficients ak(f) et bk(f) de Fourier d’une fonction f tendent
vers 0 d’autant plus vite que la fonction est plus régulière. Montrer,
par exemple, que si f admet une deuxième dérivée continue, on a

ak(f) = ◦( 1
k2

), bk(f) = ◦( 1
k2

)

lorsque k → +∞.
3. Déterminer le minimum de l’expression

1
π

∫ +π

−π
(t2 − a− b cos t− c sin t)2 dt

lorsque a, b et c parcourent l’ensemble R des nombres réels.
4. Obtenir la série de Fourier de la fonction f définie par

f(x) = π2 − x2 si − π ≤ x < π.

Étudier sa convergence.
5. Mêmes questions pour la fonction

f(x) = | sinx| si − π ≤ x < π.

6. Mêmes questions pour la fonction

f(x) = x si − π ≤ x < π.

En déduire la somme de la série
+∞∑
k=1

sin ky
k

.

7. Représenter la fonction x comme une somme de cosinus sur l’intervalle
(0, A).

8. Montrer qu’une fonction R → R périodique et continue est entièrement
déterminée par ses coefficients de Fourier.

9. Montrer que

x(π − x) =
π2

6
−

+∞∑
k=1

1
k2

cos 2kx , 0 < x < π

et que
+∞∑
k=1

1
k4

=
π4

90
.
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