
Lorem ipsum dolor sit amet, con-
sectetuer adipiscing elit. Ut purus elit,
vestibulum ut, placerat ac, adipiscing
vitae, felis. Curabitur dictum gravida
mauris. Nam arcu libero, nonummy
eget, consectetuer id, vulputate a,
magna. Donec vehicula augue eu

neque. Pellentesque habitant morbi
tristique senectus et netus et male-

suada fames ac turpis egestas. Mauris
ut leo. Cras viverra metus rhoncus sem.
Nulla et lectus vestibulum urna fringilla
ultrices. Phasellus eu tellus sit amet

tortor gravida placerat. Integer sapien
est, iaculis in, pretium quis, viverra ac,
nunc. Praesent eget sem vel leo ultrices
bibendum. Aenean faucibus. Morbi
dolor nulla, malesuada eu, pulvinar
at, mollis ac, nulla. Curabitur auctor
semper nulla. Donec varius orci eget
risus. Duis nibh mi, congue eu, accum-
san eleifend, sagittis quis, diam. Duis
eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod so-
dales, sollicitudin vel, wisi. Morbi auc-
tor lorem non justo. Nam lacus libero,

pretium at, lobortis vitae, ultricies et, tel-
lus. Donec aliquet, tortor sed accumsan
bibendum, erat ligula aliquet magna,
vitae ornare odio metus a mi. Morbi ac
orci et nisl hendrerit mollis. Suspendisse
ut massa. Cras nec ante. Pellentesque
a nulla. Cum sociis natoque penatibus
et magnis dis parturient montes, nasce-
tur ridiculus mus. Aliquam tincidunt urna.

Nulla ullamcorper vestibulum turpis.
Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non,
volutpat at, tincidunt tristique, libero. Vivamus viverra fer-

mentum felis. Donec nonummy pellentesque ante. Phasellus
adipiscing semper elit. Proin fermentum massa ac quam. Sed

diam turpis, molestie vitae, placerat a, molestie nec, leo.
Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan
nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna.

Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim.
Pellentesque tincidunt purus vel magna. Integer non enim.
Praesent euismod nunc eu purus. Donec bibendum quam in

tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulpu-
tate metus eu enim. Vestibulum pellentesque felis eu massa.
Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel

justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. In hac habitasse platea dictumst.
Integer tempus convallis augue. Etiam facilisis. Nunc elemen-
tum fermentum wisi. Aenean placerat. Ut imperdiet, enim

sed gravida sollicitudin, felis odio placerat quam, ac pulvinar
elit purus eget enim. Nunc vitae tortor. Proin tempus nibh
sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum,
nulla a faucibus semper, leo velit ultricies tellus, ac venenatis

arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue
quis sagittis posuere, turpis lacus congue quam, in hendrerit risus
eros eget felis. Maecenas eget erat in sapien mattis porttitor.

Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo
facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus
sagittis dui, et vehicula libero dui cursus dui. Mauris tempor
ligula sed lacus. Duis cursus enim ut augue. Cras ac magna.

Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi
eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.
Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt
sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante.
Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl.
Ut lectus eros, malesuada sit amet, fermentum eu, sodales
cursus, magna. Donec eu purus. Quisque vehicula, urna sed
ultricies auctor, pede lorem egestas dui, et convallis elit erat
sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor

odio, commodo pretium, ultricies non, pharetra in, velit. Integer
arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed
vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget

odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu
urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat.
Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobor-
tis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent
taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos.
Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac
turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo.
Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum
fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend

ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed portti-
tor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia
sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu,

malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.
Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi

enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero.
Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit
amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus
aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices

posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam
elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo
a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu
nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros

tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.
Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo
eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero,

molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam ele-
mentum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque
tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros

pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id
pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nasce-
tur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla

et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices
mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat
volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus
id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend
egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna.
Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam
porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede
quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci,

scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.
Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor

pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nul-
lam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis
congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas
urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.
Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum
rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condi-

mentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id,
imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accum-
san laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero.
Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed

egestas sapien nec lectus. Pellentesque vel dui vel neque bibendum viverra. Ali-
quam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et

libero. Proin euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc
lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi. Pellen-
tesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Aenean nonummy magna non leo. Sed felis erat, ullamcorper in, dictum non, ultricies ut,
lectus. Proin vel arcu a odio lobortis euismod. Vestibulum ante ipsum primis in faucibus
orci luctus et ultrices posuere cubilia Curae; Proin ut est. Aliquam odio. Pellentesque
massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra gravida

mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue.
Nulla mattis luctus nulla. Duis commodo velit at leo. Aliquam vulputate magna et leo.

Nam vestibulum ullamcorper leo. Vestibulum condimentum rutrum mauris. Donec id mauris.
Morbi molestie justo et pede. Vivamus eget turpis sed nisl cursus tempor. Curabitur mollis
sapien condimentum nunc. In wisi nisl, malesuada at, dignissim sit amet, lobortis in, odio.
Aenean consequat arcu a ante. Pellentesque porta elit sit amet orci. Etiam at turpis nec
elit ultricies imperdiet. Nulla facilisi. In hac habitasse platea dictumst. Suspendisse viverra
aliquam risus. Nullam pede justo, molestie nonummy, scelerisque eu, facilisis vel, arcu.

Curabitur tellus magna, porttitor a, commodo a, commodo in, tortor. Donec interdum.
Praesent scelerisque. Maecenas posuere sodales odio. Vivamus metus lacus, varius

quis, imperdiet quis, rhoncus a, turpis. Etiam ligula arcu, elementum a, venenatis quis,
sollicitudin sed, metus. Donec nunc pede, tincidunt in, venenatis vitae, faucibus vel,
nibh. Pellentesque wisi. Nullam malesuada. Morbi ut tellus ut pede tincidunt porta.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam congue neque id dolor.
Donec et nisl at wisi luctus bibendum. Nam interdum tellus ac libero. Sed sem
justo, laoreet vitae, fringilla at, adipiscing ut, nibh. Maecenas non sem quis tor-
tor eleifend fermentum. Etiam id tortor ac mauris porta vulputate. Integer porta
neque vitae massa. Maecenas tempus libero a libero posuere dictum. Vestibu-
lum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;

Aenean quis mauris sed elit commodo placerat. Class aptent taciti sociosqu ad
litora torquent per conubia nostra, per inceptos hymenaeos. Vivamus rhoncus tin-
cidunt libero. Etiam elementum pretium justo. Vivamus est. Morbi a tellus eget
pede tristique commodo. Nulla nisl. Vestibulum sed nisl eu sapien cursus rutrum.
Nulla non mauris vitae wisi posuere convallis. Sed eu nulla nec eros scelerisque

pharetra. Nullam varius. Etiam dignissim elementum metus. Vestibulum faucibus, metus
sit amet mattis rhoncus, sapien dui laoreet odio, nec ultricies nibh augue a enim.
Fusce in ligula. Quisque at magna et nulla commodo consequat. Proin accumsan

imperdiet sem. Nunc porta. Donec feugiat mi at justo. Phasellus facilisis ipsum quis
ante. In ac elit eget ipsum pharetra faucibus. Maecenas viverra nulla in massa.

Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet, gravida ut, risus.
Aenean ac enim. In luctus. Phasellus eu quam vitae turpis viverra pellentesque.
Duis feugiat felis ut enim. Phasellus pharetra, sem id porttitor sodales, magna

nunc aliquet nibh, nec blandit nisl mauris at pede. Suspendisse risus risus, lobor-
tis eget, semper at, imperdiet sit amet, quam. Quisque scelerisque dapibus nibh.
Nam enim. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nunc ut me-
tus. Ut metus justo, auctor at, ultrices eu, sagittis ut, purus. Aliquam aliquam.

Etiam pede massa, dapibus vitae, rhoncus in, placerat posuere, odio. Vestibulum luctus
commodo lacus. Morbi lacus dui, tempor sed, euismod eget, condimentum at, tortor.
Phasellus aliquet odio ac lacus tempor faucibus. Praesent sed sem. Praesent iaculis.
Cras rhoncus tellus sed justo ullamcorper sagittis. Donec quis orci. Sed ut tortor quis
tellus euismod tincidunt. Suspendisse congue nisl eu elit. Aliquam tortor diam, tempus

id, tristique eget, sodales vel, nulla. Praesent tellus mi, condimentum sed, viverra
at, consectetuer quis, lectus. In auctor vehicula orci. Sed pede sapien, euismod in,

suscipit in, pharetra placerat, metus. Vivamus commodo dui non odio. Donec et felis.

Systèmes d'Exploitation 1
Filière SMI—S3

Par : Pr. Hicham LAANAYA
hicham.laanaya@gmail.com

Année universitaire 2017—2018

mailto:hicham.laanaya@gmail.com

Table des matières

1 Systèmes d’exploitation 2
1 Introduction . 2
2 Rappels sur le matériel . 2

2.1 Architecture simplifiée d’un ordinateur . 2
2.2 Carte mère . 2

3 Notions de systèmes d’exploitation . 4
3.1 Introdution . 4
3.2 Les principaux systèmes d’exploitation . 4

2 Système Unix 8
1 Introduction au système Unix . 8

1.1 Système Unix . 8
1.2 Architecture et caractéristiques . 8
1.3 Logiciels propriétaires et logiciels libres . 10

2 Commandes de base du Shell . 10
2.1 Introduction . 10
2.2 Format des commandes . 10
2.3 Méta-caractères du Shell . 10

3 Système de gestion de fichiers . 12
3.1 Concept de base . 12
3.2 Les différents types de fichiers . 12
3.3 Les i-nœuds . 12
3.4 Le nom des fichiers . 12
3.5 Les chemins d’accès . 14
3.6 Commandes de base de manipulation de fichiers . 16
3.7 Notion de liens . 16
3.8 Notions d’utilisateur et de groupe . 18
3.9 Sécurité sous Unix . 18
3.10 Commandes pour modifier les règles . 20
3.11 La commande umask . 24

3 Programmation Shell 26
1 Introduction à bash . 26

1.1 Les différents Shells et leur initialisation . 26
1.2 Variables d’environnement . 26

1.3 Entrée, sortie et erreur standards . 26
1.4 Regroupement des commandes . 28
1.5 Contrôle de tâches . 28

2 Les scripts Shell . 28
2.1 Définition . 28
2.2 Variables et substitution . 30
2.3 Substitution de commandes . 30
2.4 Neutralisation des caractères . 32
2.5 Paramètres de Bash . 32
2.6 Lecture et affichage . 34
2.7 Décalage de paramètres : shift . 34
2.8 Commandes de test : test, [] . 34
2.9 Branchement conditionnel : if-then-elif-else-fi . 34
2.10 Branchement conditionnel : case-esac . 38
2.11 Boucle for-do-done . 40
2.12 L’instruction select-do-done . 42
2.13 Boucle while-do-done . 44
2.14 Boucle until-do-done . 44
2.15 Fonctions Bourne Shell . 46
2.16 Différence entre ”$@” et ”$*” . 48
2.17 Décodage des paramètres . 50
2.18 Débogage de Script Shell . 52

4 Filtre programmable awk 54
1 Introduction . 54
2 Expressions régulières et commande egrep . 54

2.1 Commande egrep . 56
3 Filtre programmable awk . 56

3.1 Introduction . 56
3.2 Variables et structure d’une ligne . 58
3.3 Motifs et actions . 60
3.4 Fonctions utilisateur . 60
3.5 Les structures de contrôle . 62

1

1
Systèmes d’exploitation

1 Introduction

Nous présentons dans cette première partie une présentation générale sur les systèmes
d’exploitation. La section suivante donne un rappel sur le matériel. La deuxième section
de cette partie donne une introduction sur la notion de système d’exploitation. La troisième
section donne les principaux systèmes d’exploitations.

2 Rappels sur le matériel

2.1 Architecture simplifiée d’un ordinateur

Un ordinateur est composé (cf. figure 1.1) :

• d’une unité pour effectuer les traitements, également appelée unité centrale (UC) ou
processeur,

• d’une unité pour contenir les programmes à exécuter appelée mémoire centrale (MC),

• des périphériques de stockage permanent pour y enregistrer les travaux effectués
en mémoire centrale tel que le disque dur,

• des dispositifs pour entrer et récupérer des données appelés périphériques d’entrée-
sortie : un écran, une souris, un clavier, un lecteur de disquettes et un lecteur de CD-
ROM ou DVD-ROM

Figure 1.1: Architecture simplifiée d’un ordinateur

UC

MC

Carte mère

Disque dur

Périphérique de stockage

Périphérique d'entrée/sortie

Bus

2.2 Carte mère

La carte mère est une plaque de résine contenant à l’intérieur et sur les deux faces une
fine couche de cuivre sur laquelle est imprimé le circuit imprimé, On y trouve les éléments
suivants :

• La mémoire vive RAM (RandomAccessMemory) : La mémoire vive RAM (Random Access
Memory) présente le lieu de travail dans un ordinateur à savoir qu’un programme
stocké sur le disque dur est chargé en mémoire centrale où ses instructions seront
accédées une à une pour être exécutées par le processeur. La RAM est une mémoire
volatile c’est-à-dire que son contenu serait perdu en cas de coupure d’électricité

• La mémoire morte ROM (Read Only memory) : Elle contient les programmes du BIOS
qui gèrent le chargement du système et les entrées-sorties. On distingue plusieurs
puces ROM tel que la PROM (Programmable ROM) et EPROM (Erasable Programmable
ROM)

• L’horloge qui permet de cadencer le fonctionnement du processeur, du bus. Sa

3

1.
Sy

st
èm

es
d’
ex
pl
oi
ta
tio

n
N
ot
io
ns

de
sy
st
èm

es
d’
ex
pl
oi
ta
tio

n
3.
2
Le
s
pr
in
ci
pa

ux
sy
st
èm

es
d’
ex
pl
oi
ta
tio

n

4
1.

Sy
st
èm

es
d’
ex
pl
oi
ta
tio

n
N
ot
io
ns

de
sy
st
èm

es
d’
ex
pl
oi
ta
tio

n
3.
2
Le
s
pr
in
ci
pa

ux
sy
st
èm

es
d’
ex
pl
oi
ta
tio

n

fréquence caractérise la carte mère. Elle est généralement très inférieure à celle
du processeur.

• Un ensemble de bus : un bus est un ensemble de fils de cuivre incrustés dans la carte
mère qui permettent de véhiculer l’information. Le bus se caractérise par le nombre
de fils qui le composent. Si le nombre de fils est de 64, on parle alors de bus 64
bits. Il est également caractérisé par sa fréquence de fonctionnement.

• Le ”chipset” ou ”jeu de composants” soudé sur la carte mère. Le chipset régit tous les
échanges au sein du PC en aiguillant les données sur les différents bus de la carte
mère.

• Le microprocesseur

L’unité centrale est un circuit intégré qui réalise les traitements et les décisions, elle se
compose :

• d’une unité de commande et de contrôle UCC : elle recherche les instructions, les
décode et en supervise leur exécution par l’UAL.

• d’une unité arithmétique et logique UAL : elle réalise les traitements qu’ils soient
arithmétiques ou logiques.

• de registres : ils sont des zones mémoires internes au processeur destinées à ac-
cueillir les données, les instructions et les résultats.

• d’une horloge qui rythme le processeur : à chaque top d’horloge le processeur ef-
fectue une instruction, ainsi plus l’horloge a une fréquence élevée, plus le processeur
effectue d’instructions par seconde (MIPS : Millions d’instruction par seconde). Par
exemple un ordinateur ayant une fréquence de 1 GHz (1000 MHz) effectue 1000
millions d’instructions par seconde.

• d’un bus interne qui relie ces unités aux registres.

De nos jours d’autres composants sont intégrés au processeur tels que :

• Une unité flottante pour le calcul des opérations sur les nombres réels.

• La mémoire cache : c’est une mémoire de petite taille, à accès plus rapide que
la mémoire principale. Elle permet au processeur de se ”rappeler” les opérations
déjà effectuées auparavant. Ce type de mémoire résidait sur la carte mère, sur les
ordinateurs récents ce type de mémoire est directement intégré dans le processeur.

• Les unités de gestion mémoire servent à convertir des adresses logiques en des
adresses réelles situées en mémoire.

3 Notions de systèmes d’exploitation

3.1 Introdution

Le système d’exploitation est un gestionnaire de ressources contrôlant l’accès à toutes les
ressources de la machine. Il permet l’attribution de ces ressources aux différents utilisa-
teurs, et aussi à la libération de ces ressources lorsqu’elles ne sont plus utilisées. Tous les
périphériques comme la mémoire, le disque dur ou les imprimantes sont des ressources, le
processeur également est une ressource.

3.2 Les principaux systèmes d’exploitation

MS-DOS est le plus connu des premiers systèmes d’exploitation pour PC. Il est mono-
utilisateur et mono-tâche. On a du greffer des couches logicielles pour répondre aux évo-
lutions matérielles et aux demandes des utilisateurs. MS-DOS a été rapidement supplanté
par les systèmes Windows.

Mac OS : C’est le système d’exploitation d’Apple. Il a été livré pour le Macintosh en
1984. La version actuelle de ce système est macOS (10.12). Mac OS X se distingue par
un noyau Darwin (Unix) qui est un open source. Mac OS est un des principaux rivaux des
Windows.

Unix étant distribué gratuitement, il a donné naissance à de nombreuses versions :

• Les versions les plus connues Unix SYSTEM V (évolution de la version initiale d’AT&T
et Bell) et Unix BSD

• Les principaux Unix du marché sur Intel sont : Open Server et Unixware de SCO (Santa
Cruz Operation), Solaris (Sun Microsystems), BSD (Berkeley), …

• Trois Unix dominent le monde des serveurs : HP/UX, Sun Solaris, IBM AIX

Linux a pris des parts de marché aux Unix, à Novell Netware et à Windows NT-2000
serveur. Il s’est imposé dès la fin du 20ème siècle. Linux est multi-utilisateurs, multi-tâches,
stable et gratuit. Parmi ses principales distributions on trouve : RedHat, Debian, Caldera,
Ubuntu, …

La famille des Windows :

• Microsoft propose en 1992 Windows 3.10 et Windows pour Workgroups 3.11 qui
sont Multi-fenêtres et Multi-tâches coopératif. En 1993, on voit apparaître la pre-
mière version de Windows NT 3.1 suivie par NT 3.5 en 1994

• L’année 1995, verra la sortie du fort célèbre Windows 95

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

5

1.
Sy

st
èm

es
d’
ex
pl
oi
ta
tio

n
N
ot
io
ns

de
sy
st
èm

es
d’
ex
pl
oi
ta
tio

n
3.
2
Le
s
pr
in
ci
pa

ux
sy
st
èm

es
d’
ex
pl
oi
ta
tio

n

6
1.

Sy
st
èm

es
d’
ex
pl
oi
ta
tio

n
N
ot
io
ns

de
sy
st
èm

es
d’
ex
pl
oi
ta
tio

n
3.
2
Le
s
pr
in
ci
pa

ux
sy
st
èm

es
d’
ex
pl
oi
ta
tio

n

• En 1996, Windows NT 4 avec deux versions station de travail et Serveur.

• Windows Terminal Server : un système qui simule un environnement multi-utilisateurs
et prend en charge la connexion de plusieurs terminaux

• En 1998 Windows 98 et en 2000, Microsoft commercialise Windows 2000 profes-
sionnel et serveur, Windows Millenium, suivi de Windows XP familial et serveur

• Windows 2003 (initialement baptisé .NET) sort en 2003 suivi de Windows VISTA,
Windows Seven, Windows 8 et Windows 10.

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

2

2
Système Unix

1 Introduction au système Unix

1.1 Système Unix

Unix est un système d’exploitation (Operating System) :

• Multi-utilisateurs : le système identifie des personnes logiques et permet à ces per-
sonnes d’utiliser le système dans certaines limites

• Multi-tâches : le système est étudié pour exécuter plusieurs programmes en même
temps, grâce au concept de ”temps partagé”

• Multi-plateforme : Unix n’est pas un système dédié à un processeur, mais que c’est
une famille de systèmes que l’on retrouve sur une multitude de plates-formes.

On trouve des Unix :

• propriétaires :

• et des Unix libres :

– Linux sur plate-forme Intel, Sparc, Alpha, Mac, …

– FreeBSD sur plate-forme Intel, Alpha, PC-98

– OpenBSD également multi-plate-forme

Table 2.1: Distributions Unix

Nom Propriétaire Processeur

Solaris Sun Sparc & Intel

HPUX HP PA

AIX IBM Risc & PowerPC

Digital Unix Digital Alpha

1.2 Architecture et caractéristiques

On peut décomposer un système Unix en trois grandes entités :

• Le noyau : il assure la gestion de la mémoire et des entrées sorties de bas niveau
et l’enchaînement des tâches

• Un ensemble d’utilitaires : dédiés à des tâches diverses :

– des interpréteurs de commande appelés Shells permettant de soumettre des
tâches au système, tâches pouvant être concurrentes et/ou communicantes

– des commandes de manipulation de fichiers (copie, déplacement, effacement,
etc.)

• Une base de données système : un ensemble de fichiers contenant :

– des informations sur la configuration des différents services

– des scripts de changement d’état du système (démarrage, arrêt, …)

9

2.
Sy

st
èm

e
U
ni
x

Co
m
m
an

de
s
de

ba
se

du
Sh

el
l

2.
3
M
ét
a-
ca
ra
ct
èr
es

du
Sh

el
l

10
2.

Sy
st
èm

e
U
ni
x

Co
m
m
an

de
s
de

ba
se

du
Sh

el
l

2.
3
M
ét
a-
ca
ra
ct
èr
es

du
Sh

el
l

Figure 2.1: Architecture Unix

Applications

Noyau
CPU

RAM

Drivers

Péréphiriques

Vidéo Clavier Souris Disques ...

1.3 Logiciels propriétaires et logiciels libres

Les logiciels sont vendus et sont régis par une licence restrictive qui interdit aux utilisateurs
de copier, distribuer, modifier ou vendre le programme en question.

Les logiciels libres sont les logiciels que l’ont peut librement utiliser, échanger, étudier
et redistribuer. Cela implique que l’on ait accès à leur code source (d’où le terme équivalent
OpenSource)

i — la liberté d’exécution : tout le monde a le droit de lancer le programme, quel qu’en
soit le but

ii — la liberté de modification : tout le monde a le droit d’étudier le programme et de
le modifier, ce qui implique un accès au code source

iii — la liberté de redistribution : tout le monde a le droit de rediffuser le programme,
gratuitement ou non

iv — la liberté d’amélioration : tout le monde a le droit de redistribuer une version
modifiée du programme

2 Commandes de base du Shell

2.1 Introduction

Un Shell est un interpréteur de commande en mode texte et peut s’utiliser en mode inter-
actif ou pour exécuter des programmes écrits dans le langage de programmation du Shell

(appelés scripts Shell)
En mode interactif, le Shell affiche une invite en début de ligne (prompt) (cf. figure 2.2).

La commande est interprétée et exécutée après la frappe de la touche ”Entrée”

Figure 2.2: Interpréteur de commandes sous Mac OS X

Invite affiché par
l'interpréteur de commande

Terminal sous Mac OS X

2.2 Format des commandes

Le format des commandes suit une convention bien établie :

• commande [-options] [paramètres]

• Les options et les paramètres sont parfois facultatifs.

Exemple : cp -i /home/profs/prof1/Hello.c /home/etudiants/etudiant1

• cp : commande qui va lancer la fonction de copie

• l’option -i : permet de contrôler certains aspects du comportement de la commande

• /home/profs/prof1/Hello.c : Il s’agit de la source ou le fichier que vous souhaitez
copier

• /home/etudiants/etudiant1 : Il s’agit de la destination ou l’emplacement de la copie

2.3 Méta-caractères du Shell

Ils sont interprétés spécialement par le Shell avant de lancer la commande entrée par
l’utilisateur ; et permettent de spécifier des ensembles de fichiers, sans avoir à rentrer
tous leurs noms en voici les plus utilisés :

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

11

2.
Sy

st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
5
Le
s
ch
em

in
s
d’
ac
cè
s

12
2.

Sy
st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
5
Le
s
ch
em

in
s
d’
ac
cè
s

• * : remplacé par n’importe quelle suite de caractères

• ? : remplacé par un seul caractère quelconque

• [] : remplacé par l’un des caractères mentionnés entre les crochets. On peut spé-
cifier un intervalle avec - : [a-z] spécifie donc l’ensemble des lettres minuscules

3 Système de gestion de fichiers

3.1 Concept de base

Le système de fichiers d’Unix est une vaste arborescence dont les nœuds sont des réper-
toires et les feuilles des fichiers. Un fichier peut :

i — contenir des données

ii — être un lien sur un autre fichier

iii — être un moyen d’accès à un périphérique (mémoire, écran, disque dur, ...)

iv — être un canal de communication entre processus

Figure 2.3: Hiérarchie du système de fichiers

/

bin boot etc home usr

bash vmlinuz bash passwd etudiant1 etudiant2 include

java

Go.java

.bashrc sys stdio.h

types.h

répertoire

fichier

3.2 Les différents types de fichiers

On distingue :

• Les fichiers ordinaires (réguliers) sont une suite d’octets sans structure

• Les répertoires contiennent des informations sur les fichiers et les sous-répertoires

• Les liens symboliques sont une catégorie particulière de fichiers (qui contiennent
l’emplacement du fichier à prendre en compte)

• Les périphériques sont vus comme des fichiers spéciaux du répertoire /dev

• Les tubes nommés sont des fichiers sur disque gérés comme un tube (pipe) entre deux
processus échangeant des données

3.3 Les i-nœuds

À chaque fichier correspond un i-noœud contenant :

• le type du fichier et les droits d’accès des différents utilisateurs

• l’identification du propriétaire du fichier

• la taille du fichier exprimée en nombre de caractères (pas de sens pour les fichiers
spéciaux)

• le nombre de liens physiques sur le fichier

• la date de dernière modification/consultation (écriture/lecture) du fichier

• la date de dernière modification du nœud (modification d’attributs)

• l’identification de la ressource associée (pour les fichiers spéciaux)

3.4 Le nom des fichiers

Le nom d’un fichier doit permettre de l’identifier dans un ensemble de fichiers :

• Le nom est composé de caractères (cf. tableau 2.2 pour les caractères acceptables)

• Le nom est souvent composé de deux parties :

i — la base ; et

ii — l’extension qui se trouve après le caractère ’.’

• L’extension d’un nom de fichier désigne la nature de son contenu (texte, image, son,
…)

• UNIX est un système qui distingue les caractères majuscules et minuscules

Ne pas utiliser le caractère espace comme nom de fichier ou répertoire !

Remarque 1

♣

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

13

2.
Sy

st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
5
Le
s
ch
em

in
s
d’
ac
cè
s

14
2.

Sy
st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
5
Le
s
ch
em

in
s
d’
ac
cè
s

Table 2.2: Caractères acceptables pour les noms de fichiers

Caractères Signification
A—Z Lettres majuscules

a—z Lettres minuscules

0—9 Chiffres

_ Caractère souligné

, Caractère virgule

. Caractère point

3.5 Les chemins d’accès

Pour identifier un fichier dans l’arborescence on indique le nom complet du fichier. Ce nom
est représenté par :

• Le chemin composé de répertoires qui conduit de la racine de l’arborescence du sys-
tème de fichiers jusqu’au répertoire qui contient le fichier

• Chaque répertoire est distingué des autres par un symbole séparateur ”/”

• le nom du fichier

/home/etudiant1/data/Fichier.txt

Séparateur

Chemin Nom

On distingue deux expressions d’un chemin :

• Le chemin d’accès absolu (chemin absolu) : commence par le symbole séparateur, il
exprime le chemin complet à partir de la racine de l’arborescence

• Le chemin d’accès relatif (chemin relatif) : commence par un autre caractère que le
caractère séparateur.

Exemple : Le répertoire courant est : /var/log

• Le chemin absolu pour désigner le fichier fichier.txt est
/home/etd/etudiant1/fichier.txt

• Le chemin relatif est : ../../home/etd/etudiant1/fichier.txt

Figure 2.4: Exemple de chemins

/

usr etc home lib var

bash vmlinuz prof etd log

acces.datprof1 etudiant1

fichier.txt Hello.c

• ”..” désigne le répertoire parent, ”.” désigne le répertoire courant

Dans la hiérarchie présentée dans la figure 2.4, exprimez les chemins suivants :

1. absolu pour prof1

2. absolu pour etc

3. absolu pour prof

4. relatif à log pour acces.dat

5. relatif à prof pour acces.dat

6. relatif à etudiant1 pour acces.dat

Exercice 1

♡

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

15

2.
Sy

st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
7
N
ot
io
n
de

lie
ns

16
2.

Sy
st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
7
N
ot
io
n
de

lie
ns

Dans la hiérarchie précédente, exprimez les chemins suivants :

1. absolu pour prof1 : /home/prof/prof1

2. absolu pour etc : /etc

3. absolu pour prof : /home/prof

4. relatif à log pour acces.dat : acces.dat

5. relatif à prof pour acces.dat : ../../var/log/acces.dat

6. relatif à etudiant1 pour acces.dat : ../../../var/log/acces.dat

Solution 1

♠

3.6 Commandes de base de manipulation de fichiers

Les commandes de base d’accès aux fichiers sont :

• cat : affiche le contenu du fichier

• stat : affiche les caractéristiques du fichier

• ls : affiche les caractéristiques d’une liste de fichiers (l’option -i affiche les numéros
d’i-nœuds des fichiers)

• rm : supprime un fichier

• touch : modifie les caractéristiques de date d’un fichier (permet également de créer
un fichier vide)

Les commandes d’accès aux répertoires sont :

• ls : affiche la liste des fichiers contenus dans un répertoire et utilise les options :

• -a liste aussi les fichiers cachés (fichiers où le nom commence par .)

• -l donne des informations détaillées sur chaque fichier

• -i donne le numéro de l’i-nœud du fichier

• mkdir : crée un répertoire

• cd : change le répertoire de travail (répertoire courant)

• pwd : donne le chemin absolu du répertoire courant

• rmdir : supprime un répertoire vide

Les commandes utilisées pour la manipulation du système de fichiers sont :

• cp : copie de fichier

• syntaxe cp <source> <destination>

• duplication du contenu du fichier et création d’une entrée dans un répertoire

• mv : déplace/renomme un fichier

• syntaxe mv <source> <destination>

• suppression d’une entrée dans un répertoire et création d’une nouvelle entrée
dans un répertoire

Si on copie (déplace/renomme) un fichier dans un fichier qui existe déjà, ce second fichier est modifié

(contenu écrasé et caractéristiques modifiées)

Remarque 2

♣

3.7 Notion de liens

Il existe deux types de liens :

1. Lien physique : Un même fichier peut avoir donc plusieurs noms (Il y a plusieurs liens
physiques sur le fichier).

2. Lien symbolique : c’est un fichier (de type lien) qui contient le chemin et le nom d’un
autre fichier

• Les accès à un lien sont donc des redirections vers un autre fichier : les com-
mandes qui manipulent des liens manipulent en fait le fichier dont le nom est
stocké dans le lien

• Un lien se comporte comme un raccourci (alias) vers un autre fichier

• Le contenu d’un lien est soit un chemin absolu ou un chemin relatif (qui doit être
valide depuis le répertoire dans lequel se trouve le lien !)

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

17

2.
Sy

st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
9
Sé

cu
rit
é
so
us

U
ni
x

18
2.

Sy
st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
9
Sé

cu
rit
é
so
us

U
ni
x

Figure 2.5: Liens physiques

Les liens physiques sont plusieurs entrées de répertoires du même i-nœud (ce sont donc
des fichiers réguliers). Par contre, les liens symboliques ont chacun leur propre i-nœud ;
leur contenu désigne un même fichier régulier (ils sont du type liens)

La commande ln permet de créer des liens :
ln [options] <destination> <nom_du_lien>

• sans option : création de liens physiques

• avec l’option -s : création de liens symboliques

Figure 2.6: Exemple de lien physique et de lien symbolique

3.8 Notions d’utilisateur et de groupe

Pour pouvoir accéder au système de fichier, l’utilisateur doit être connecté. Pour se con-
necter, l’utilisateur doit saisir son login et le mot de passe associé. A chaque login le sys-
tème fait correspondre un numéro d’identification uid (User IDentifier). Chaque utilisateur
appartient à au moins un groupe d’utilisateurs et à chaque groupe d’utilisateur le système

fait correspondre un numéro d’identification gid (Group IDentifier). Ces informations sont
stockées dans des fichiers d’administration

Le fichier /etc/passwd contient les informations relatives aux utilisateurs (login, mot de
passe crypté, uid, gid, nom complet, répertoire de travail au login, commande exécutée
au login) ; et /etc/group contient les informations relatives aux groupes (nom, mot de
passe, gid, liste des membres du groupe)

Le super-utilisateur (root) : Il est toujours considéré par le système comme propriétaire de
tous les fichiers (et des processus). La personne qui gère le système est normalement
la seule à connaître son mot de passe. Lui seul peut ajouter de nouveaux utilisateurs au
système.

Table 2.3: Notions de sécurité

Concept de base

sujet Utilisateur ou Processus qui veut exécuter une opération ;

objet Fichier sur lequel on veut exécuter une opération ; et enfin

opération Action que l’on veut exécuter.

• Des règles de sécurité ont pour rôle d’indiquer les opérations (droits) qui seront
autorisées pour un sujet sur un objet

• Le système a pour rôle de vérifier que le sujet a le droit d’exécuter l’opération sur
l’objet.

3.9 Sécurité sous Unix

Le système Unix associe des droits à chaque fichier (règles). Ces droits sont fonctions du
sujet. Un fichier appartient à un utilisateur et à un groupe. Unix distingue le sujet comme
étant :

1. le propriétaire de l’objet (fichier)

2. membre du groupe propriétaire de l’objet (fichier)

3. les autres

Il faut faire la différence entre les opérations pour les fichiers réguliers et celles pour
les répertoires. Pour les fichiers réguliers, nous avons les opérations :

• r : droit de lecture

• w : droit de modification et de suppression

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

19

2.
Sy

st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
10

Co
m
m
an

de
s
po

ur
m
od

ifi
er

le
s
rè
gl
es

20
2.

Sy
st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
10

Co
m
m
an

de
s
po

ur
m
od

ifi
er

le
s
rè
gl
es

• x : droit d’exécution

et les opérations pour les répertoires sont données par :

• r : droit de lister le contenu du répertoire

• w : droit de modification et de suppression du contenu du répertoire

• x : droit d’accès comme répertoire de travail sur le répertoire

Pour chaque fichier, la règle va indiquer les opérations acceptées en fonction de la
catégorie de sujet (propriétaire, groupe, autre). La commande ls permet de visualiser les
droits. Elle présente pour chaque catégorie de gauche à droite les droits :

i — pour l’utilisateur propriétaire du fichier

ii — pour l’utilisateur membre du groupe propriétaire du fichier

iii — pour les autres utilisateurs ;

Chaque droit est désigné par une lettre :

• r : signifie que le droit en lecture est accordé

• w : droit en écriture

• x : droit d’exécution

• - : le droit correspondant n’est pas accordé

Figure 2.7: Droits d’accès

Propriétaire Groupe

droits propriétaire

droits groupe droits pour les autres

3.10 Commandes pour modifier les règles

Des commandes permettent de modifier les règles de droits sur les fichiers :

• chown : permet de changer le propriétaire (utilisateur et groupe)

• chgrp : permet de changer le groupe propriétaire

• chmod : permet de changer les droits

• umask : permet d’indiquer les droits à la création

La commande chown permet de changer le propriétaire d’un fichier et/ou d’un répertoire
et récursivement ce qu’il contient. Sa syntaxe est :
chown [OPTION]…[OWNER][:[GROUP]] FILE…

La commande chgrp permet de changer le groupe d’un fichier et/ou d’un répertoire et
récursivement ce qu’il contient. La syntaxe est :
chgrp [OPTION]…[GROUP]] FILE…. Pour pouvoir exécuter la commande chgrp, il faut être
le propriétaire du fichier et être membre du groupe auquel on veut donner le fichier.

La commande chmod permet de changer les droits sur les fichiers. Sa syntaxe est :
chmod [options] mode fichier.
L’utilisation de l’option -R permet de modifier récursivement les autorisations d’un répertoire
et de son contenu.

Le mode permet de spécifier les droits :

• de manière symbolique (en utilisant les lettres r,w,x et les symboles +,-,=)

• de manière numérique (en octal — base 8)

Le mode est spécifié par : personne action droits

Personne

u : l’utilisateur propriétaire

g : le groupe propriétaire

o : les autres

a : tous les utilisateurs

Action

+ : ajouter

- : supprimer

= : initialiser

Droit

r : lecture

w : écriture

x : exécution

Exemple :

• u+rwx : ajouter tous les droits au propriétaire

• og-w : enlever le droit d’écriture aux autres

• a=rx : donner le droit de lecture et exécution à tous (propriétaire, groupe et autres)

• g=rwx : accorder tous les droits au groupe

Le mode peut être spécifié par un nombre en octal (base 8 cf. tableau 2.4), dont les
chiffres représentent (dans l’ordre de gauche à droite) :

• les droits pour l’utilisateur propriétaire du fichier

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

21

2.
Sy

st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
11

La
co
m
m
an

de
um

as
k

22
2.

Sy
st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
11

La
co
m
m
an

de
um

as
k

Table 2.4: Mode octal

Droits Binaire Octal

--- 000 0

--x 001 1

-w- 010 2

-wx 011 3

r-- 100 4

r-x 101 5

rw- 110 6

rwx 111 7

• les droits pour le groupe propriétaire du fichier

• les droits pour tous les autres

Exemples :

• 700 : représente les droits rwx------

• 751 : représente les droits rwxr-x--x

• 640 : représente les droits rw-r-----

1. Interdire la lecture et l’accès au répertoire RepertoireUn aux utilisateurs ne

faisant pas partie du groupe staff

2. Donner les droits d’écriture au groupe sur le fichier fichierUn

3. Donner le droit d’exécution sur le fichier fichierUn au propriétaire

4. Prévoir les droits affichés par la commande ls -l après l’exécution de ces

commandes

5. Réécrire les commandes avec l’utilisation numérique de la commande chmod

Exercice 2

♡

Figure 2.8: Données de l’exercice sur chmod

• Mode symbolique

1. chmod o-rx RepertoireUn

2. chmod g+w fichierUn

3. chmod u+x fichierUn

• Mode numérique

1. chmod 750 RepertoireUn

2. chmod 664 fichierUn

3. chmod 764 fichierUn

Solution 2

♠

Figure 2.9: Solution de l’exercice sur chmod

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

23

2.
Sy

st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
11

La
co
m
m
an

de
um

as
k

24
2.

Sy
st
èm

e
U
ni
x

Sy
st
èm

e
de

ge
st
io
n
de

fic
hi
er
s

3.
11

La
co
m
m
an

de
um

as
k

3.11 La commande umask

Cette commande permet de spécifier des droits par défaut lors de la création des fichiers.
Pour cela, elle utilise des masques sous forme numérique octale. En exécutant cette com-
mande :

• sans paramètre : elle indique le masque courant

• avec le masque en paramètre : elle modifie le masque courant

les droits obtenus sont le complémentaire (à 777 pour les répertoires et à 666 pour les
fichiers) de ceux indiqués par le masque.

Table 2.5: Exemple du calcul pour un répertoire

Droits 777 rwxrwxrwx 777 rwxrwxrwx

Masque 022 ----w--w- 227 -w--w-rwx

Droits obtenus 755 rwxr-xr-x 550 r-xr-x---

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

3

3
Programmation Shell

1 Introduction à bash

1.1 Les différents Shells et leur initialisation

Il existe plusieurs Shells UNIX :

• C-Shell (csh ou tcsh)

• Bourne Shell (sh ou bash)

• Korn Shell (ksh),

L’interprétation des commandes simples est semblable pour tous. Par contre, l’utilisation
pour écrire des scripts diffère beaucoup (définition des variables, structures de contrôle,
etc)

L’initialisation du Shell se fait au démarrage du système : Les Shell exécutent des fichiers
de configuration, qui peuvent contenir des commandes quelconques et sont généralement
utilisés pour définir des variables d’environnement et des alias

• csh exécute le fichier ~/.cshrc (le ”rc” signifie run command)

• tcsh exécute ~/.cshrc

• sh exécute ~/.profile

• bash exécute ~/.bash_profile ou à défaut ~/.profile

Ces fichiers d’initialisation sont ”invisibles”.

1.2 Variables d’environnement

Elles sont instanciées lorsqu’un Shell est exécuté par le système. Ce sont des variables dy-
namiques utilisées par les différents processus d’un système d’exploitation. Elles donnent
des informations sur le système, la machine et l’utilisateur, entre autres.

La commande env permet d’afficher à l’écran toutes les variables d’environnement pour
le Shell (cf. figure 3.1).

Pour définir ses propres variables d’environnement, on utilise la commande export :

• VARIABLE=VALEUR : donne une valeur à une variable

• export VARIABLE : définit VARIABLE comme une variable d’environnement

• echo $VARIABLE : affiche la valeur de la variable

1.3 Entrée, sortie et erreur standards

L’entrée standard est attachée au clavier et a un numéro de descripteur égale à 0. La
sortie standard est attachée à l’écran dont le numéro de descripteur est 1. Enfin, l’erreur
standard, elle aussi, est attachée à l’écran et a un numéro de descripteur égale à 2. Il est
possible de rediriger ces trois flux :

• Redirection de la sortie standard : $ echo bonjour > test.txt

• Concaténation pour préserver le contenu du fichier de sortie :
$ cat < toto.txt >> FichierSortie

• Redirection de l’erreur standard : $ ls abdnkjf 2> erreur.txt

27

3.
Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
1
D
éfi

ni
tio

n

28
3.

Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
1
D
éfi

ni
tio

n

Figure 3.1: Exemple d’exécution de la commande env

• Redirection de l’entrée standard : $ bc < calcul.dat

• Redirection de l’entrée et de la sortie standard :
$ bc < calcul.dat > resultat.txt

Exemple : $ ls abdnkjf > sortie.txt 2>&1 : La sortie de ls est enregistrée dans le fichier
sortie.txt. L’erreur standard est redirigée à la sortie standard. Donc, l’erreur standard
est également redirigée au fichier sortie.txt

Le Pipe, ”|”, permet de brancher la sortie standard d’une commande à l’entrée standard
d’une autre commande.

Exemple : $ ls -l | sort -r (affiche le contenu du répertoire courant trié à l’envers).

1.4 Regroupement des commandes

Pour lancer l’exécution séquentielle de plusieurs commandes sur la même ligne de com-
mande, il suffit de les séparer par un caractère ;
Exemple : $ cd /tmp ; pwd; echo bonjour; cd ; pwd

Nous pouvons utiliser l’exécution séquentielle d’une ligne de commandes par regroupe-
ment :

• (cmd1 ; cmd2) ; cmd3

• (cmd1 ; cmd2) & cmd3

• Les commandes regroupés sont exécutées dans un interpréteur enfant (subshell)

• Exemple :
pwd ; (cd ..; pwd; cp user.txt test.txt; ls -l test.txt); pwd

1.5 Contrôle de tâches

Le Shell attend la fin de l’exécution d’une commande avant d’afficher le prompt suivant.
L’exécution en arrière-plan permet à un utilisateur de lancer une commande et de récupérer
immédiatement la main pour lancer ”en parallèle” la commande suivante (parallélisme
logique). Pour cela, on utilise le caractère & après la commande qu’on souhaite lancée
en arrière-plan.

Exemple : $ sleep 100 &

Les commandes utilisées pour le contrôle des tâches sont :

• La commande jobs affiche les commandes lancées en arrière plan.

• La combinaison de touches Ctrl+Z permet de suspendre la tâche courante, que nous
pouvons relancer en arrière-plan en exécutant la commande bg

• La commande fg permet de récupérer la dernière tâche lancée en arrière plan. Pour
récupérer la tâche numéro n, on utilise fg %n

• La commande kill %n permet de tuer la tâche numéro n lancée en arrière-plan.

2 Les scripts Shell

2.1 Définition

Les scripts sont des programmes écrits dans un langage interprété, par exemple le langage
du Shell. Un script peut être une simple liste de commandes. La première ligne du script doit
préciser l’interpréteur utilisé, elle commence par les deux caractères #!, suivis du chemin de
l’interpréteur.

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

29

3.
Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
3
Su

bs
tit
ut
io
n
de

co
m
m
an

de
s

30
3.

Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
3
Su

bs
tit
ut
io
n
de

co
m
m
an

de
s

Exemple d'un script shell

#!/bin/bash

liste

echo "Contenu du répertoire courant"

ls -l

echo "-----------------------------"

Dans cet exemple, la deuxième ligne est un commentaire (commence par le caractère #).
Le fichier contenant ces commandes doit être rendu exécutable :
$ chmod u+x liste

2.2 Variables et substitution

Les variables du Shell sont des symboles auxquels on affecte des valeurs. Une variable
est identifiée par son nom et son contenu est identifié par le symbole $ placé devant son
nom.

Affichage en utilisant la commande echo

$ VARIABLE=VALEUR

$ echo $VARIABLE

VALEUR

Bash réalisera la substitution du contenu d’une variable lorsqu’il rencontre $ suivi d’un
nom de variable. Deux comportements sont possibles :

1. Substitution vide : La variable n’est pas définie ou la variable est définie mais son
contenu est vide.

2. Substitution du contenu : La variable est définie et son contenu est non nul.

Substitution de variable : Exemple 1

$ MSG1="Jean est un "

$ MSG2="chien fort réputé"

$ echo "$MSG1 $METIER $MSG2"

Jean est un chien fort réputé

Substitution de variable : Exemple 2

$ MSG1="Jean est un "

$ MSG2="chien fort réputé"

$ METIER="dresseur de"

$ echo "$MSG1 $METIER $MSG2"

Jean est un dresseur de chien fort réputé

2.3 Substitution de commandes

Bash est en mesure de substituer le résultat d’une ligne de commandes UNIX. Le symbole
impliqué dans ce genre de substitution est l’accent grave (`).

Exemple de substitution de commande

$ echo pwd

pwd

$ echo `pwd`

/home/compte1/Desktop

$ echo "Mon répertoire de travail est: `pwd`"

Mon répertoire de travail est: /home/compte1/Desktop

Il est possible d’assigner le résultat d’une ligne de commande UNIX à une variable.

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

31

3.
Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
6
Le
ct
ur
e
et

af
fic
ha

ge

32
3.

Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
6
Le
ct
ur
e
et

af
fic
ha

ge

Affectation du résultat d'une commande à une variable : Exemple

$ rep=`pwd`

$ moi=`who am i`

$ machine=`hostname`

$ echo -e "Utilisateur: $moi\n Répertoire de travail:$rep\nMachine:

$machine"

Utilisateur: compte1 ttys000 Feb 24 22:46

Répertoire de travail: /home/compte1/Desktop

Machine: MacBookPro.local

2.4 Neutralisation des caractères

Certains caractères ont des significations particulières pour l’interpréteur de commandes.
Par exemple : &, (,), *, !, {, }. Sans un mécanisme d’échappement, ces caractères
spéciaux seront interprétés par Bash. Les commandes et programmes qui utilisent ces car-
actères spéciaux ne pourront pas s’exécuter correctement. D’où la nécessité de neutraliser
la signification particulière de ces caractères spéciaux pour Bash.

Exemple : Nous désirons afficher la chaîne de caractères "TOTO& TATA"

$ echo TOTO & TATA

[1] 2527

TOTO

-bash: TATA: command not found

$ echo TOTO \& TATA

TOTO & TATA

Donc, le symbole \ permet la neutralisation du caractère qui le suit. Nous pouvons
neutraliser la signification spéciale du caractère Espace par les symboles ” ” et ’ ’ :

• Le guillemet : élimine la signification spéciale du caractère Espace mais permet la
substitution des variables et commandes.

• L’apostrophe : élimine la signification spéciale du caractère Espace et empêche la
substitution des variables et commandes.

2.5 Paramètres de Bash

Les script shell ont la possibilité d’utiliser des paramètres de position. Par exemple, l’exécution
de la commande cmd $ cmd par1 par2 par3 par4 utilise 4 paramètres par1 par2 par3

par4. Dans un programme Bash, le contenu de ces paramètres de position est représenté
par : $1, $2, $3 jusqu’à $9. Le nom du fichier (cmd) est représenté par $0.

Pour accéder à un paramètre de position dont le numéro est strictement supérieur à 9, il faut entourer

ce numéro par {}. (${10} désigne le contenu du dixième paramètre de position. Par contre $10, sera

substitué par le contenu de $1 suivi du caractère 0).

Remarque 3

♣

Exemple de paramètres de position à l'aide d'un programme Bash

#!/bin/bash

Nom du fichier param

param : montrer l'utilisation des parametres Bourne shell

Lancer le fichier de commande : param -A -B -C

echo "Numero PID de l'interpreteur de commande: $$"

echo "Nom du fichier de commande: $0"

echo "Nombre de parametres: $#"

echo "Parametre 1: $1"

echo "Parametre 2: $2"

echo "Parametre 3: $3"

echo "Parametre 4: $4"

echo "Toute la ligne de commande: $@"

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

33

3.
Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
9
Br
an

ch
em

en
t
co
nd

iti
on

ne
l:

if
-t

he
n-

el
if

-e
ls

e-
fi

34
3.

Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
9
Br
an

ch
em

en
t
co
nd

iti
on

ne
l:

if
-t

he
n-

el
if

-e
ls

e-
fi

2.6 Lecture et affichage

La commande read réalise la lecture à partir de l’entrée standard :
$ read var1 var2 var3. Cette commande permet de lire de l’entrée standard et placer les
données dans les variables var1, var2 et var3. La séparation des données d’entrée en
champs est réalisée par Bash à l’aide de la variable IFS (Internal Field Separator).

Exemple : voici une-ligne de données (Il existe 4 champs)
Dans l’exemple ci-dessous :

• La lecture est réalisée à partir de l’entrée standard

• Les données lues sont placées dans trois variables (repertoire1, repertoire2 et
repertoire3)

• Le programme termine son exécution par l’affichage des données lues

Exemple d'utilisation de read

#!/bin/bash

nom du fichier: lecture

lecture : montrer comment lire des données à partir de l'entrée

standard

echo -e "Les repertoires de l'installation? \c"

read repertoire1 repertoire2 repertoire3

echo "Merci !"

echo -e "L'entree lue : $repertoire1\n $repertoire2\n $repertoire3"

2.7 Décalage de paramètres : shift

La commande shift agit sur les paramètres de position du Bash. A chaque emploi de shift

• le paramètre $1 précédent est perdu

• $1 est supprimé de $* et $@

• $# est décrémenté de 1

L’emploi de shift nécessite que le Shell script ait au moins un paramètre (Le code de retour
dans le cas où il n’y a pas de paramètres est 1).

Exemple d'utilisation de shift

#!/bin/bash

echo "$# : arg1 = $1, arg2 = $2; total : $@"

shift; echo "$# : arg1 = $1, arg2 = $2; total : $@"

shift; echo "$# : arg1 = $1, arg2 = $2; total : $@"

shift; echo "$# : arg1 = $1, arg2 = $2; total : $@"

shift; exit 0

2.8 Commandes de test : test, []

Cette commande permet d’évaluer une expression :

• Si vrai, renvoie 0 (true), sinon, renvoie 1 (false)

• S’il n’y a pas d’expression, renvoie 1

La commande test expression est équivalente à [expression]. Le tableau 3.1 donne
quelques exemples d’expressions pour le test sur les fichiers, les répertoires, sur les chaînes
de caractères et pour le test sur des variables numériques.

2.9 Branchement conditionnel : if-then-elif-else-fi

Syntaxe de la commande if

if liste-commandes-1

then liste-commandes-2

elif liste-commandes-3 # autant de fois que nécessaire

else liste-commandes-4 # si nécessaire

fi

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

35

3.
Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
9
Br
an

ch
em

en
t
co
nd

iti
on

ne
l:

if
-t

he
n-

el
if

-e
ls

e-
fi

36
3.

Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
9
Br
an

ch
em

en
t
co
nd

iti
on

ne
l:

if
-t

he
n-

el
if

-e
ls

e-
fi

Table 3.1: Test sur fichiers, répertoires et chaînes

Expression vrai si :

-e fic fic existe

-d fic fic existe et est un répertoire

-f fic fic existe et est un fichier « ordinaire»

-h fic fic existe et est un lien symbolique

-s fic fic existe et est non vide

-r fic fic existe et est autorisé en lecture

-w fic fic existe et est autorisé en écriture

-x fic fic existe et est autorisé en exécution

ch1 = ch2 les deux chaînes sont identiques

ch1 != ch2 les deux chaînes sont différentes

n1 –eq n2 n1 = n2

n1 -ne n2 n1 ≠ n2

n1 -le n2 n1 ≤ n2

n1 -ge n2 n1 ≥ n2

n1 -lt n2 n1 < n2

n1 -gt n2 n1 > n2

! exp1 exp1 est fausse

exp1 -a exp2 exp1 et exp2 vraies

exp1 -o exp2 exp1 ou exp2 est vraie

La condition (booléenne) est en général le code de retour d’une commande UNIX. Le
code de retour de la commande détermine le test « if » :

• Code de retour valant zéro : Le test « if » est vrai.

• Code de retour non nul : Le test « if » est faux.

Branchement conditionnel : if-then-elif-else-fi : Exemple 1

#!/bin/bash

if [-d toto] ; then

echo "toto est un répertoire"

elif [-h toto] ; then

echo "toto est un lien symbolique"

else

echo "autre que répertoire ou lien"

fi

Branchement conditionnel : if-then-elif-else-fi : Exemple 2

#!/bin/bash

if ls toto > /dev/null 2>&1; then

echo "le fichier toto existe"

else

echo "le fichier toto n'existe pas"

fi

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

37

3.
Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
10

Br
an

ch
em

en
t
co
nd

iti
on

ne
l:

ca
se

-e
sa

c

38
3.

Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
10

Br
an

ch
em

en
t
co
nd

iti
on

ne
l:

ca
se

-e
sa

c

Branchement conditionnel : if-then-elif-else-fi : Exemple 3

#!/bin/bash

Mot secret

Ce programme demande à l'utilisateur de deviner un mot.

SECRET_WORD="SMI"

echo "Votre nom ?"

read NAME

echo "Bonjour $NAME. Devinez un mot."

echo -e "Vous avez le choix entre : SMA, SMI et SMP : \c"

read GUESS

if [$GUESS=$SECRET_WORD]

then

echo "Congratulations !"

fi

2.10 Branchement conditionnel : case-esac

Syntaxe de la commande case-esac

case expression in

motif) liste-commandes-1 ;; # autant de fois

...

*) liste-commandes-2 ;;

esac

Exécute la liste-commandes suivant le motif (pattern en anglais) reconnu. Le motif à
reconnaitre peut s’exprimer sous forme d’expression rationnelle (ou régulière) utilisant les
méta-caractères : * ? [] -

La commande case-esac : Exemple 1

#!/bin/bash

case $1 in

[Yy][eE][sS] | [oO][uU][iI]) echo "affirmatif" ;;

[Nn][oO] | [Nn][Oo][Nn]) echo "négatif" ;;

yesno) echo "décide-toi" ;;

*) echo "quelle réponse!" ;;

esac

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

39

3.
Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
11

Bo
uc
le

fo
r-

do
-d

on
e

40
3.

Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
11

Bo
uc
le

fo
r-

do
-d

on
e

La commande case-esac : Exemple 2

#!/bin/bash

traiter les options d'une commande ;

utiliser case – esac pour traiter les options

if [$# = 0]; then

echo "Usage : casesac –t –q –l NomFich"

exit 1

fi

for option; do

case "$option" in

-t) echo "option –t recu" ;;

-q) echo "option –q recu" ;;

-l) echo "option –l recu" ;;

[!-]*) if [-f $option]

then

echo "fichier $option trouve"

else

echo "fichier $option introuvable"

fi

;;

*) echo "option inconnue $option recontree"

esac

done

2.11 Boucle for-do-done

Syntaxe de la commande for-do-done

for variable in liste-de-mots

do

liste-commandes

done

La variable prend successivement les valeurs de la liste de mots, et pour chaque valeur,
liste-commandes est exécutée.

La commande for-do-done : Exemple 1

#!/bin/bash

for i in un deux trois quatre cinq six

do

echo "Semestre $i"

done

La commande for-do-done : Exemple 2

#!/bin/bash

for i in ~/Desktop/*.pdf

do

echo $i

done

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

41

3.
Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
12

L’i
ns
tr
uc
tio

n
se

le
ct

-d
o-

do
ne

42
3.

Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
12

L’i
ns
tr
uc
tio

n
se

le
ct

-d
o-

do
ne

La commande for-do-done : Exemple 3

#!/bin/bash

for fichier in $@; do

if [-d $fichier]; then # Test fichier type

echo "$fichier est un répertoire"

elif [-f $fichier]; then

echo "$fichier est régulier"

elif [-h $fichier]; then

echo "$fichier est un lien symbolique"

else

echo "$fichier n'existe pas ou autre type"

fi

if [-o $fichier]; then # vérifie le propriétaire

echo "Propriétaire de $fichier"

else

echo "Pas propriétaire de $fichier"

fi

if [-r $fichier]; then # Droit de lecture

echo "Droit de lecture sur $fichier"

fi

if [-w $fichier]; then # Droit de modification

echo "Droit d'écriture sur $fichier"

fi

if [-x $fichier]; then # Droit d'exécution

echo "Droit d'exécution sur $fichier"

fi

done

2.12 L’instruction select-do-done

Syntaxe de la commande select-do-done

select variable in liste-de-mots

do

liste-commandes

done

L’instruction select génère un menu à partir de liste-de-mots et demande à l’utilisateur
de faire un choix. Cette commande permet à l’utilisateur de sélectionner une variable parmi
une liste de mots. liste-commandes est exécutée.

La commande select-do-done : Exemple 1

#!/bin/bash

echo "Quel est votre OS préféré ?"

select var in "Linux" "Mac OS X" "Autre"; do

echo "Vous avez sélectionné $var"

if ["$var" = "Autre"]; then

break

fi

done

Dans ce premier exemple, l’utilisateur fait entrée un choix parmi les trois mots "Linux"

"Mac OS X" "Autre". Le script affichera la phrase "Vous avez sélectionné" suivi du choix
de l’utilisateur. Si le choix est Autre, le script quitte la boucle select et termine son exécu-
tion.

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

43

3.
Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
14

Bo
uc
le

un
ti

l-
do

-d
on

e

44
3.

Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
14

Bo
uc
le

un
ti

l-
do

-d
on

e

La commande select-do-done : Exemple 2

#!/bin/bash

PS3="Que voulez vous ? "

select ch in "1er" "2eme" "Abandon" ; do

case $REPLY in

1) echo "C'est du $ch choix" ;;

2) echo "Que du $ch choix" ;;

3) echo "On abandonne ..." ; break ;;

*) echo "Choix invalide" ;;

esac

done

Dans cet exemple, On remarque l’utilisation de la variable d’environnement REPLY. Cette
variable stocke le nombre entrée par l’utilisateur et non pas le mot correspondant au choix.
Ceci permettra un meilleur traitement du choix de l’utilisateur avec un simple case—esac sur
la variable REPLY.

2.13 Boucle while-do-done

Syntaxe de la commande while-do-done

while liste-commandes-1

do

liste-commandes-2

done

La valeur testée par la commande while est l’état de sortie de la dernière commande
de liste-commandes-1. Si l’état de sortie est 0, alors le Shell exécute liste-commandes-2

puis recommence la boucle.

La commande while-do-done : Exemple 1

#!/bin/bash

echo -e "Devinez le mot secret : SMI, SMA, SMP : \c"

read GUESS

while [$GUESS != "SMI"]; do

echo -e "Ce n'est pas $GUESS, devinez : \c"

read GUESS

done

echo "Bravo"

La commande while-do-done : Exemple 2

#!/bin/bash

compteur=5

while [$compt -ge 0]; do

echo $compt

compt=`expr $compt - 1`

done

2.14 Boucle until-do-done

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

45

3.
Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
15

Fo
nc
tio

ns
Bo

ur
ne

Sh
el
l

46
3.

Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
15

Fo
nc
tio

ns
Bo

ur
ne

Sh
el
l

Syntaxe de la commande until-do-done

until liste-commandes-1

do

liste-commandes-2

done

Le Shell teste l’état de sortie de liste-commandes-1. Si l’état de sortie est 1, alors,
liste-commandes-2 est exécutée puis la boucle est recommencée.

La commande until-do-done : Exemple 1

#!/bin/bash

echo -e "Devinez le mot secret : SMI, SMA, SMP : \c"

read GUESS

until [$GUESS = "SMI"]; do

echo -e "Ce n'est pas $GUESS, devinez encore : \c"

read GUESS

done

echo "Bravo."

La commande until-do-done : Exemple 2

#!/bin/bash

compt=5

until [$compt -lt 0]; do

echo $compt

compt=`expr $compt - 1`

done

2.15 Fonctions Bourne Shell

Nous pouvons rendre la programmation plus structurée en utilisant des fonctions :

Syntaxe de fonction

NomDeFonction (){

commandes

}

La définition des fonctions Bourne shell doit être faite au début du fichier de commande
et il faut prendre préséance sur les commandes systèmes de même nom. Ces fonctions
peuvent avoir une valeur de retour : exit n (ou return n) où n est une valeur numérique
(=0 : OK, ̸=0 (et <256) : Erreur)

Fonction Bourne Shell : Exemple 1

#!/bin/bash

mafonction() {

echo "Celle-ci est mafonction"

}

Code principal commence ici

echo "Appel de mafonction..."

mafonction

echo "Done."

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

47

3.
Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
17

D
iff
ér
en

ce
en

tr
e
”$
@
”
et

 ”
$*

”

48
3.

Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
17

D
iff
ér
en

ce
en

tr
e
”$
@
”
et

 ”
$*

”

Fonction Bourne Shell : Exemple 2

#!/bin/sh

repertoire () {

echo "Entrer un nom de repertoire: \c"

read repertoire

if [-d "$repertoire"]; then

return 0 # repertoire existe

else

return 101 # repertoire inexistant

fi

}

gestion_erreur () {

case $ERRNO in

0) ;; # pas d'erreur

101) echo "Répertoire inexistant" ;;

*) echo "Code d'erreur inconnu"

exit 1 ;;

esac

}

Programme principal

ERRNO=123

while [$ERRNO -ne 0]; do

statut de sortie de repertoire () assigné à ERRNO

repertoire; ERRNO=$?

invoquer le gestionnaire d'erreur

gestion_erreur

done

2.16 Différence entre ”$@” et ”$*”

Lorsque utilisé entre guillemet, la variable $@ et la variable $* n’ont pas la même significa-
tion. Pour "$@" l’interpréteur de commandes substitue les paramètres de position en leur
entourant par des guillemets. Ce n’est pas le cas pour "$*".

Exemple : Différence entre "$@" et "$*"

#!/bin/bash

Nom fichier : exemple_arobase.sh

echo "Utilisation de \$*"

for OPTION in "$*"; do

echo "Itération : $OPTION"

done

echo "Utilisation de \$@"

for OPTION in "$@"; do

echo "Itération : $OPTION"

done

Exemple : Résultat d'exécution

$./exemple_arobase.sh un deux troix quatre

Utilisation de $*

Itération : un deux troix quatre

Utilisation de $@

Itération : un

Itération : deux

Itération : troix

Itération : quatre

On remarque que le résultat n’est pas le même. C’est pour cela qu’il faut penser à

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

49

3.
Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
17

D
éc
od

ag
e
de

s
pa

ra
m
èt
re
s

50
3.

Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
17

D
éc
od

ag
e
de

s
pa

ra
m
èt
re
s

utiliser "$@" dans vos programmes Bash.

2.17 Décodage des paramètres

Il existe une commande simple pour le décodage systématique des paramètres de position.
Il s’agit de la commande getopts. La syntaxe de cette commande :
getopts optstring name [arg …] où :

• optstring représente les options à reconnaître par getopts

• name les options reconnues par getopts sont placées dans cette variable

• arg s’il existe, getopts va tenter d’extraire les options à partir de cet argument

Exemple 1 (getopts)

#!/bin/sh

while getopts lq OPT; do

case "$OPT" in

l) echo "OPTION $OPT reçue" ;;

q) echo "OPTION $OPT reçue" ;;

?) echo "Usage: install [-lq]" ; exit 1 ;;

esac

echo "Indice de la prochaine option à traiter : $OPTIND"

done

Exemple 1 (getopts) : Résultat d'exécution

$ install -l

OPTION l reçue

Indice de la prochaine option à traiter : 2

$ install -l -q

OPTION l reçue

Indice de la prochaine option à traiter : 2

OPTION q reçue

Indice de la prochaine option à traiter : 3

$ install -x

./install : option incorrecte -- x

Usage: install [-lq]

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

51

3.
Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
18

D
éb

og
ag

e
de

Sc
rip

t
Sh

el
l

52
3.

Pr
og

ra
m
m
at
io
n
Sh

el
l

Le
s
sc
rip

ts
Sh

el
l

2.
18

D
éb

og
ag

e
de

Sc
rip

t
Sh

el
l

Exemple 2 (getopts)

#!/bin/sh

while getopts l:q OPT; do

case "$OPT" in

l) OPTION="$OPT"

LOGARG="$OPTARG" ;

echo "OPTION $OPT reçue; son argument est $LOGARG" ;;

q) OPTION="$OPT" ;

^^Iecho "OPTION $OPT reçue" ;;

?) echo "Option invalide détectée"

echo "Usage: install [-l logfile -q] [nom_repertoire]"

exit 1 ;;

esac

echo "Indice de la prochaine option à traiter : $OPTIND"

done

Chercher le paramètre nom_repertoire

shift `expr $OPTIND - 1`

if ["$1"]

then

repertoire="$1"

echo "Répertoire d'installation: $repertoire"

fi

2.18 Débogage de Script Shell

Pour simplifier la recherche des erreurs dans un programme Bourne Shell, ce dernier met
à notre disposition la commande set pour activer les modes de débogage. Les options
disponibles sont :

• -n : Lire les commandes mais ne pas les exécuter (Vérifie les erreurs de syntaxe sans
exécuter le script)

• -v : Affiche les lignes lues du programme lors de son exécution

• -x : Afficher les commandes et les substitutions lors de leur exécution

Exemple d'utilisation de la commande (set)

#!/bin/sh

settest : montrer l'utilisation des options de set

pour le débogage

Utiliser l'option –v (affiche les commandes et leur argument)

set -x

pwd

ls -l

echo `who`

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

4

4
Filtre programmable awk

1 Introduction

Les filtres sont des programmes qui lisent une entrée, effectuent une transformation et
écrivent un résultat (sur la sortie standard). Parmi ces filtres on trouve :

• grep, egrep, fgrep : recherche d’une expression dans des fichiers

• diff, cmp, uniq, tr, dd … : outils de comparaison, conversion de fichiers

• sed : éditeur de flots

• awk : outil programmable de transformation de texte

Ces outils utilisent les ”expressions régulières”. Ces expressions sont :

• un moyen algébrique pour représenter un langage régulier

• et permettent de décrire une famille de chaînes de caractères au moyen de métacar-
actères

2 Expressions régulières et commande egrep

• un ”caractère simple” "matche" avec lui-même :

– a matche avec a

– 6 matche avec 6

• un métacaractère génère ou précise un ensemble de possibilités

– . matche avec n’importe quel caractère

– ^ indique un début de chaîne, etc …

• les métacaractères sont neutralisés par le caractère \

Table 4.1: Expressions régulières définies par des méta-caractères

. n’importe quel caractère

? 0 ou une occurrence du caractère

* répétition du caractère précédent

+ Une ou une infinité d’occurrence

[<liste>] Un choix parmi un ensemble

[^<liste>] Tout sauf un certain caractère

^ a a en début de chaîne

a$ a en fin de chaîne

a\{n\} n répétitions du caractère a

a\{n,\} au moins n répétitions de a

a\{n,p\} entre n et p répétitions de a

\(...\) sous-expression ”repérée”

\k k-ème sous-expression repérée

Exemples 1

• .* : zéro ou une infinité de caractères quelconques

• ^.$: chaîne d’un seul caractère

55

4.
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
1
In
tr
od

uc
tio

n

56
4.

Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
1
In
tr
od

uc
tio

n

• a+b* : au moins un ’a’ suivi de 0 ou une infinité de ’b’

• [ab]+ : au moins un ’a’ ou ’b’ ou une infinité

• ˆ\(.*\)\1$: ligne constituée de 2 occurrences d’une même chaîne de caractères

Attention aux confusions avec les méta-caractères du Shell : Sens différents pour méta-caractères : *

. ?

Remarque 4

♣

Exemples 2

• v.+ : Les chaînes contenant un 'v' suivi de n’importe quelle suite de caractères
(vandalisme, vestiaire, lavage, …)

• [vs].+ : Les chaînes contenant un 'v' ou un 's' suivi de n’importe quelle suite de
caractères (vandalisme, voiture, descendre, sandales, …)

• a.*a : Les chaînes contenant deux 'a' (palais, sandales, pascale, cascade, …)

• [ps].*a.*a : Les chaînes contenant un 'p' ou un 's' suivi d’une sous chaîne con-
tenant deux 'a' (sandales, pascale, apprentissage automatique, …)

2.1 Commande egrep

Cette commande permet de rechercher dans des fichiers d’une chaîne ou d’une sous chaîne
de caractères ou simplement d’un mot ou d’une chaîne formalisée par une expression
régulière. La syntaxe de la commande est :
egrep [options] <chaîne recherchée> <fichier> Le résultat de cette commande est les
lignes du fichier contenant ce qui est recherché ou autre résultat, suivant les options util-
isées. Les options les plus utilisées sont :

• egrep <chaîne> fichier : recherche de <chaîne> dans fichier

• egrep –v <chaîne> fichier : recherche inversée

• egrep –w <chaîne> fichier : recherche d’un mot exact

• egrep –<nombre de lignes> <chaîne> fichier : ligne de contexte

• egrep –n <chaîne> fichier : numéros de lignes

• egrep –n<nombre de lignes> <chaîne> fichier : combinaison des deux options
précédentes

• egrep –i <chaîne> fichier : respect de la casse

• egrep –c <chaîne> fichier : nombre d’occurrences

Exemple
Considérons le fichier de notes suivant :

Table 4.2: Fichier de notes

crepetna:Crepet, Nathalie:CREN1807750:92:87:88:54:70

yosnheat:Yos Nhean, Trakal:YOST19087603:84:73:70:50:73

benelaur:Benel, Aurelien:BENA80207700:84:73:89:45:100

soucypas:Soucy, Pascal:SOUP14067502:95:90:89:87:99

On peut extraire les lignes qui contiennent une note comprise entre 90 et 99 : $ egrep

:9 notes.txt. Maintenant, comment faire pour extraire les lignes où la dernière note est
comprise entre 90 et 99 ?. Une solution est d’utiliser une expression régulière :
$ egrep :.*:.*:.*:.*:.*:.*:9 notes.txt où .*:.*:.*:.*:.*:.*:9 représente une chaîne
avec 7 ':' entre lesquels on peut avoir n’importe quoi et dont le dernier ’:’ est suivi d’un
9. Une autre solution serait :
$ egrep '\(:.*\)\{6\}:9' notes.txt ou $ egrep '9[0-9]$' notes.txt

3 Filtre programmable awk

3.1 Introduction

Le langage awk a été developpé par Alfred Aho, PeterWeinberger & Brian Kernighan. Il s’agit
d’un programme UNIX capable d’interpréter un programme utilisateur. Ce programme doit
être écrit en utilisant les instructions légales et selon le format de awk. (voir la page de
manuel : man awk). Le concept de programmation est appelé ”piloté par données” (data-
driven). On peut utiliser awk pour :

• récuperer de l’information ;

• générer des rapports ;

• transformer des données…

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

57

4.
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
2
Va

ria
bl
es

et
st
ru
ct
ur
e
d’
un

e
lig

ne

58
4.

Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
2
Va

ria
bl
es

et
st
ru
ct
ur
e
d’
un

e
lig

ne

Table 4.3: Options de la commande awk

Option et paramètre Signification

-Fc Caractère c est le séparateur de champ.

-f prog prog est le nom du fichier contenant le programme awk
'programme' programme awk donné directement entre apostrophes

-v var=valeur… Initialisation de variables avant l’exécution du programme

fichier1… Fichier contenant les données à traiter

Le synopsis de awk :
awk [-Fc] [-f prog | 'prog'] [-v var=valeur…] [fich1 fich2 …] Chaque ligne

d’entrée du fichier est séparée en champs $1, $2, $3, ….

Ces champs n'ont rien à voir avec les $1, $2, … du Bourne Shell.

Remarque 5

♣

On peut spécifier un programme awk dans un fichier par l’option -f ou l’écrire directe-
ment entre apostrophes. Les données à traiter sont contenues dans les fichiers fich1,

fich2, … ou acheminées via l’entrée standard. Le corps d’un programme awk est une
séquence de ”motif—action” (pattern—action). On peut passer des paramètres à un pro-
gramme awk par l’option -v

• Cette option est utile lorsque awk est utilisée à l’intérieur d’un fichier de commandes
Bourne Shell

• Par exemple, on peut passer la valeur des variables d’un programme Bourne Shell à
des variables d’un programme awk

Structure d'un programme awk

BEGIN {action0}

motif1 {action1}

motif2 {action2}

...

END {actionF}

Figure 4.1: Principe de fonctionnement

awk

motif — action
motif — action
motif — action
motif — action
motif — action
motif — action

: — :
: — :

Données

awk lit l'entrée
ligne par ligne

awk compare chaque
motif du programme

avec la ligne lue

Programme composé
d'une séquence "motif—action"

L'action de chaque
motif sélectionné est

exécutée par awk

Principe (cf. figure 4.1):

• Initialisation (BEGIN) : effectuer action0

• Corps : pour chaque ligne du texte entré

– si motif1 est vérifiée effectuer action1

– si motif2 est vérifiée effectuer action2

– etc …

• Terminaison (END) : effectuer actionF

Si le motif est omis alors l'action associée est toujours effectuée et si l'action est omise on affiche

toute la ligne.

Remarque 6

♣

3.2 Variables et structure d’une ligne

Chaque ligne (”Record”) est automatiquement séparée en champs (”Fields”) en utilisant un
séparateur (par défaut : blancs et/ou tabulations) ou précisé avec l’option -F d’awk. Les
variables utilisées par awk sont :

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

59

4.
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
4
Fo

nc
tio

ns
ut
ili
sa
te
ur

60
4.

Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
4
Fo

nc
tio

ns
ut
ili
sa
te
ur

• NR, NF numéro de ligne (Record), nombre de champs (Fields)

• $0 contenu de la ligne courante

• $1, $2 … $NF contenu du ième …dernier champ

• RS, FS séparateur de lignes (défaut = \n), de champs (défaut = blanc et tab)

• ORS, OFS séparateurs en sortie (pour modifier l’impression)

La variable FS peut aussi être initialisée lors de l'appel de awk via l'option : -Fc : le séparateur de

champs prend la valeur du caractère c.

Remarque 7

♣

Un premier exemple

$ awk 'BEGIN {print "Premier programme awk"} {print $0}\

> END {print "Fin du programme awk"}' data.txt

Dans ce premier exemple, le programme awk est spécifié directement entre apostro-
phes.

3.3 Motifs et actions

Un motif est une expression régulière qui va être comparée à un champs ($1, $2, …, $NF).
Si une correspondance est trouvée entre l’expression régulière et l’enregistrement, le motif
devient vrai et l’action correspondante est exécutée. La syntaxe des motifs peut s’exprimer
de trois façons :

• motif en fonction d’une expression régulière

• motif en fonction d’expressions logiques

• motif en utilisant les deux formats

Table 4.4: Les expressions logiques pour les motifs

Opérateur Description

< Inférieur à

> Supérieur à

== Egalité

!= Différent

&& ET logique

|| OU logique

~ Permet de comparer l’expression régulière à un champ précis

Exemple de motifs

$1 == $2

(($2 > 100) || ($2 == $3*50)) && ($4 > 10)

($1 ~ /[a-z]/) && ($2 ~/[0-9]/)

($1 ~ /[a-z]/) && ($2 ~/[0-9]/) && ($3 < 10)

Les actions : décrivent les opérations à effectuer lorsque le motif décrit en tête de
requête est vérifié et ont une syntaxe similaire à celle du langage C. On trouvera aussi un
ensemble de fonctions spécifiques présentées dans le tableau 4.5.

3.4 Fonctions utilisateur

L’utilisateur peut définir ses propres fonctions. Ces fonctions peuvent se trouver n’importe
où dans le corps du programme awk. La déclaration d’une fonction se fait de la façon
suivante :

Premier exemple awk

function nom_fonction (arguments) {

instructions

}

La fonction peut être appelée dans n’importe quel bloc action d’une requête awk. Ci-

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

61

4.
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
5
Le
s
st
ru
ct
ur
es

de
co
nt
rô
le

62
4.

Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
5
Le
s
st
ru
ct
ur
es

de
co
nt
rô
le

Table 4.5: Exemple de fonctions prédéfinies

Fonction Description

sqrt(arg) renvoie la racine carré de l’argument

log(arg) renvoie le logarithme népérien de
l’argument

exp(arg) renvoie l’exponentiel de l’argument

int(arg) renvoie la partie entière de l’argument

length renvoie la longueur de l’enregistrement
courant

length(arg) renvoie la longueur de la chaine passée
en argument

print [arg1[,arg2],…] [> dest] affiche les arguments "arg1", "arg2",
…sur la sortie standard sans les
formater. Avec l’option "> dest",
l’affichage est redirigé sur le fichier
"dest" au lieu de la sortie standard

printf(format,arg1,arg2,…) [> dest] affiche les arguments arg1, arg2, … sur
la sortie standard après les avoir for-
matés à l’aide de la chaîne de con-
trôle "format". Avec l’option "> dest",
l’affichage est redirigé sur le fichier
"dest" au lieu de la sortie standard

dessous un exemple de deux fonctions en awk. La première calcul le minimum de deux
nombres et la deuxième donne le factoriel d’un entier.

Exemple de fonctions

function minimum (n,m) {

return (m < n ? m : n)

}

function factoriel (num) {

(num == 0) ? return 1 : return (num * factoriel(num - 1))

}

$1 ~ /^Factoriel$/ { print factoriel($2) }

$1 ~ /^Minimum$/ { print minimum($2, $3) }

3.5 Les structures de contrôle

L’ensemble des structures de contrôle de awk fonctionnent comme celles du langage C. Le
terme instruction désigne un ensemble d’instructions "awk" séparées par le caractère ";"

ou "return" et encadrées par des "{","}"

• Structure de contrôle if, else :

Structure if

if (condition)

instruction

else

instruction

• Structure de contrôle while

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

63

4.
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
5
Le
s
st
ru
ct
ur
es

de
co
nt
rô
le

64
4.

Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
5
Le
s
st
ru
ct
ur
es

de
co
nt
rô
le

Structure while

while (condition)

instruction

• Structure de contrôle for

Boucle for

for (init;condition;itération) (ou for (var in tableau))

instruction

• Instruction "break" : provoque la sortie du niveau courant d’une boucle "while" ou
"for".

• Instruction "continue" : provoque l’itération suivante au niveau courant d’une boucle
"while" ou "for".

• Instruction "next" : force "awk" à passer à la ligne suivante du fichier en entrée.

• Instruction "exit" : force "awk" à interrompre la lecture du fichier d’entrée comme si
la fin avait été atteinte.

Exemples de structures de contrôle

if ($3 == foo*5) {

a = $6 % 2;

print $5, $6, "total", a;

b = 0;

}

else {

next

}

while (i <= NF) {

print $i;

i ++;

}

for (i=1; (i<= NF) && (i <= 10); i++) {

if (i < 0) break;

if (i == 5) continue;

print $i;

}

Table 4.6: Fichier de données ”population”

Russie 8649 275 Asie

Canada 3852 25 Amérique

Chine 3705 1032 Asie

France 211 55 Europe

Exemples

Le premier exemple calcul la superficie totale et la population totale de tous les pays. Le
second exemple cherche le pays avec la plus grande population.

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

65

4.
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
5
Le
s
st
ru
ct
ur
es

de
co
nt
rô
le

66
4.

Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
5
Le
s
st
ru
ct
ur
es

de
co
nt
rô
le

Utilisation de awk : Exemple 1

BEGIN {printf("%10s %6s %5s %s\n", "Pays","Superf","Pop","Cont")}

{ printf ("%10s %6s %5s %s\n", $1, $2, $3, $4)

superf = superf + $2

pop = pop + $3

}

END { printf("\n %10s %6s %5s\n", "TOTAL", superf, pop)}

Utilisation de awk : Exemple 2

{ if (maxpop < $3) {

maxpop = $3

pays = $1

}

}

END { print "Pays : " pays "/Max-Pop: " maxpop }

Exemple : Fréquence des mots dans un texte
Dans le domaine de l’analyse textuelle, la fréquence des mots est un outil très utilisée
dans l’authentification des documents. Nous allons créer un petit programme capable de
donner la fréquence d’apparition des mots dans un texte. Les étapes à suivre sont :

1. Isolation des mots par gsub() revient à éliminer les caractères de ponctuation :

Suppression des caractères de ponctuation

gsub(/[.,:;!?()[]]/, "")

2. Confondre les mots majuscules et les mots minuscules (Cette conversion est réalisée
en dehors du programme awk) :

Convertir les minuscules en majuscules

$ cat texte.txt | tr 'a-z' 'A-Z' > lignes.tmp

3. Compter les mots revient à stocker les mots dans un tableau associatif. Les indices du
tableau sont les mots eux-mêmes et la valeur d’un élément du tableau est le nombre
d’apparitions d’un mot :

Compter les occurrences

for (i=1; i<=NF; i++)

compte[$i]++

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

67

4.
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
5
Le
s
st
ru
ct
ur
es

de
co
nt
rô
le

68
4.

Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
Fi
ltr
e
pr
og

ra
m
m
ab

le
aw

k
3.
5
Le
s
st
ru
ct
ur
es

de
co
nt
rô
le

Exemple : Fréquence des mots dans un texte

#!/bin/sh

Programme awk pour compter le nombre d'occurence de mots d'un texte

Convertir le texte en majuscule et le mettre dans "lignes.tmp"

cat texte.txt | tr 'a-z' 'A-Z' > lignes.tmp

awk '

A la fin du programme afficher le résultat en ordre décroissant

numerique

END {

for (mot in compte) {

print compte[mot], mot

total += compte[mot]

}

print "Nombre total des mots : " total

}

{

gsub(/[.,:;!?(){}]/,"") # elimine la ponctuation

for (i=1; i<=NF; i++) # placer les mots trouves dans

compte[$i]++ # un tableau associatif

}

' lignes.tmp | sort -nr

Systèmes d’Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

	Systèmes d'exploitation
	Introduction
	Rappels sur le matériel
	Architecture simplifiée d'un ordinateur
	Carte mère

	Notions de systèmes d'exploitation
	Introdution
	Les principaux systèmes d'exploitation

	Système Unix
	Introduction au système Unix
	Système Unix
	Architecture et caractéristiques
	Logiciels propriétaires et logiciels libres

	Commandes de base du [Scale=.95]Hoefler TextShell
	Introduction
	Format des commandes
	Méta-caractères du [Scale=.95]Hoefler TextShell

	Système de gestion de fichiers
	Concept de base
	Les différents types de fichiers
	Les i-nœuds
	Le nom des fichiers
	Les chemins d'accès
	Commandes de base de manipulation de fichiers
	Notion de liens
	Notions d'utilisateur et de groupe
	Sécurité sous Unix
	Commandes pour modifier les règles
	La commande umask

	Programmation [Scale=.95]Hoefler TextShell
	Introduction à [Scale=.95]Hoefler Textbash
	Les différents Shells et leur initialisation
	Variables d'environnement
	Entrée, sortie et erreur standards
	Regroupement des commandes
	Contrôle de tâches

	Les scripts [Scale=.95]Hoefler TextShell
	Définition
	Variables et substitution
	Substitution de commandes
	Neutralisation des caractères
	Paramètres de Bash
	Lecture et affichage
	Décalage de paramètres : shift
	Commandes de test : test, []
	Branchement conditionnel : if-then-elif-else-fi
	Branchement conditionnel : case-esac
	Boucle for-do-done
	L'instruction select-do-done
	Boucle while-do-done
	Boucle until-do-done
	Fonctions Bourne Shell
	Différence entre "$@" et "$*"
	Décodage des paramètres
	Débogage de Script Shell

	Filtre programmable [Scale=.95]Hoefler Textawk
	Introduction
	Expressions régulières et commande egrep
	Commande egrep

	Filtre programmable [Scale=.95]Hoefler Textawk
	Introduction
	Variables et structure d'une ligne
	Motifs et actions
	Fonctions utilisateur
	Les structures de contrôle

