®

Université Mohammed VV
Foculté des Sciences
Raboat

Systemes d'Exploitation 1
FilierRe SMI—S73

. Pr. Hicham LAANAYA

hicham.laanaya@gmail.com

ANNEE uNiversiTaire 201 7—2018

mailto:hicham.laanaya@gmail.com

Table des matieres

1 Systémes d'exploitation 2
1 Introduction . . . L 2
2 Roppelssurlematériel %

2.1 Architecture simplifiée d'unordinateur oL 2
2.9 Carte MEIG . . o v Q
3 Notions de systemes d'exploitation 4
3.1 INtrodution . . . o 4
3.9 Les principaux systemes d'exploitationo Lo 4
2 Systeme Unix 8
] Introduction au systeme Unix o 8
1.1 Systeme Unix . .o oo 8
1.2 Architecture et caractéristiques 8
1.3 Logiciels propriétaires et logiciels libres oL oo 10
2 Commandes de base du Shell 10
2.1 INEroduction . . o L 10
2.9 Format des commandes 10
2.3 Méta-caracteres du Shell 10
3 Systeme de gestion de fichiers 192
3.1 Concept de base 12
3.9 Les différents types de fichiers 12
3.3 Lesi-NCeUTS . . . o 12
3.4 lenomdes fichiers 12
3.5 leschemins d'acces o 14
3.6 Commandes de base de manipulation de fichiers L 16
3.7 Notionde liens o 16
3.8 Notions d'utilisateur et de groupe oL 18
3.9 SEcunte soUS UNIX . . o oo 18
3.10 Commandes pour modifier lesregles oL 20
301 locommande umask . .. oovi i 924

3 Programmation Shell 26

1 Introduction Qbash 26
1.1 Les différents Shells et leur initialisation L 26

1.2 Variables d'environnement 26

4 Filtre
1
2

1.3 €ntrée, sortie et erreur standards L L L 26
1.4 Regroupement des commandes 28
1.5 Contréle de thches 28
lesscripts Shell o 28
2.1 DEfiNItioN . . o o o o8
99 Voriables et substitution 30
2.3 Substitution de commandes 30
2.4 Neutralisation des caracteres 39
2.5 Parametres de Bash L 39
2.6 lecture et affichage oo 34
2.7 Décalage de parametres : shift.o Lo 34
2.8 Commandes de test : test, [1 . . . v v i v i 34
2.9 Branchement conditionnel : if-then-elif-else-fi 34
2.10 Branchement conditionnel : case-esac. 38
9211 Boudle for-do-done 40
212 Uinstruction select-do-done e 49
913 Boude while-do-done 44
9214 Boucle until-do-done 44
915 Fonctions Bourne Shell 46
216 Difference entre "$@" et "$*" . L 48
2.17 Décodage des parametres 50
9218 Débogage de Script Shell oo 59
programmable awk 54
INErOdUCION o 54
€xpressions réqulieres et Commande egrep v v o e 54
2.1 Commande egrep o 56
Filtre programmable awk 56
3.1 INtrodUCtioON o 56
3.2 \Varidbles et structure d'une ligneo 58
33 Motifs et Qctions 60
34 Fonctions utilisateur e 60
35 lesstructures de contrdle 692

Sustemes d'exploitation

Introduction

Nous présentons dans cette premiere partie une présentation générale sur les systemes
d'exploitation. La section suivante donne un rappel sur le matériel. La deuxieme section
de cette partie donne une introduction sur la notion de systeme d'exploitation. La troisieme
section donne les principaux systemes d'exploitations.

Rappels sur le matériel

2| Architecture simplifiée d'un ordinateur

Un ordinateur est composé (cf. figure 1.1) :

¢ d'une unité pour effectuer les traitements, également appelée unite centrale (UC) ou
processeur,

e d'une unité pour contenir les programmes & exécuter appelée mémoire centrale (MO),

¢ des périphériques de stockage permanent pour y enregistrer les travaux effectués
en mémoire centrale tel que le disque dur,

¢ des dispositifs pour entrer et récupérer des données appelés périphériques d'entrée-
sortie : un écran, une souris, un clavier, un lecteur de disquettes et un lecteur de (D-
ROM ou DVD-ROM

Figure 1.1: Architecture simplifiee d'un ordinateur

=
Périphérique de stockage
MC | o

Périphérique d'entrée/sortie

Carte mére

Lo carte mere est une plaque de résine contenant & ['intérieur et sur les deux faces une
fine couche de cuivre sur laquelle est imprimé le circuit imprimé, On y trouve les éléments
suivants :

* Lamemoire vive RAM (Random Access Memory) - La mémoire vive RAM (Random Access
Memory) présente le lieu de travail dans un ordinateur & savoir qu'un programme
stocké sur le disque dur est chargé en mémoire centrale oU ses instructions seront
accédées une O une pour étre exécutées par le processeur. La RAM est une mémoire
volatile c'est-0-dire que son contenu serait perdu en cas de coupure d'électricite

® Lo memoire morte ROM (Read Only memory) : €lle contient les programmes du BIOS
qui gerent le chargement du systeme et les entrées-sorties. On distingue plusieurs
puces ROM tel que la PROM (Programmable ROM) et €PROM (Erasable Programmable
ROM)

e Lhorloge qui permet de cadencer le fonctionnement du processeur, du bus. Sa

c
]
=
c
-
o
c
b
)
)
wn
S
€
S
&)
]
2>
wn
ol
2
G
e
]
=
3
c
wn
s
&
M

Notions de systemes d'exploitation

1. Systemes d'exploitation

frequence caractérise la carte mere. €lle est genéralement tres inférieure o celle
du processeur.

® Unensemble de bus : un bus est un ensemble de fils de cuivre incrustés dans la carte
mere qui permettent de véhiculer l'information. Le bus se caractérise par le nombre
de fils qui le composent. Si le nombre de fils est de 64, on parle alors de bus 64
bits. Il est également caractérisé par sa fréquence de fonctionnement.

¢ e ‘chipset” ou "jeu de composants” soudé sur la carte mere. Le chipset réqit tous les
échanges au sein du PC en aiguillant les données sur les différents bus de la carte
mere.

® Le microprocesseur

Lunité centrale est un circuit intégré qui réalise les traitements et les décisions, elle se
COMPOSE :

e d'une unité de commande et de controle UCC : elle recherche les instructions, les
décode et en supervise leur exécution par 'UAL.

e d'une unite arithmétique et logique UAL : elle réalise les traitements qu'ils soient
arithmétiques ou logiques.

¢ de reqistres : ils sont des zones mémoires internes au processeur destinées o ac-
cueillir les données, les instructions et les résultats.

¢ d'une horloge qui rythme le processeur : o chaque tep d'horloge le processeur ef-
fectue une instruction, ainsi plus I'norloge a une fréquence élevée, plus le processeur
effectue d'instructions par seconde (MIPS : Millions d'instruction par seconde). Par
exemple un ordinateur ayant une fréquence de 1 GHz (1000 MHz) effectue 1000
millions d'instructions par seconde.

e d'un bus interne qui relie ces unités aux registres.
De nos jours d'autres composants sont intégrés au processeur tels que :
¢ Une unite flottante pour le calcul des opérations sur les nombres réels.

® Lo mémoire cache : c'est une mémoire de petite taille, & acces plus rapide que
lo mémoire principale. €lle permet au processeur de se “rappeler” les opérations
déja effectuées auparavant. Ce type de mémoire résidait sur la carte mere, sur les
ordinateurs récents ce type de mémoire est directement intégré dans le processeur.

® [es unites de gestion memoire servent O convertir des adresses logiques en des
adresses réelles situées en mémoire.

Notions de systemes d'exploitation

Introdution

Le systeme d'exploitation est un gestionnaire de ressources controlant I'acces a toutes les
ressources de la machine. Il permet |'attribution de ces ressources aux différents utilisa-
teurs, et aussi & la libération de ces ressources lorsqu'elles ne sont plus utilisées. Tous les
périphériques comme la mémoire, le disque dur ou les imprimantes sont des ressources, le
processeur également est une ressource.

=2 les principaux systemes d'exploitation

MS-DOS est le plus connu des premiers systemes d'exploitation pour PC. Il est mono-
utilisateur et mono-téche. On a du greffer des couches logicielles pour répondre aux évo-
lutions matérielles et aux demandes des utilisateurs. MS-DOS a été rapidement supplanté
par les systemes Windows.

Mac OS : Cest le systeme d'exploitation d'Apple. Il a été livré pour le Macintosh en
1984. La version actuelle de ce systeme est macOS (10.12). Mac OS X se distingue par
un noyau Darwin (Unix) qui est un open source. Mac OS est un des principaux rivaux des
Windows.

Unix étant distribué gratuitement, il o donné naissance & de nombreuses versions :

® Les versions les plus connues Unix SYSTEM V (évolution de la version initiale d'AT&T
et Bell) et Unix BSD

¢ Les principaux Unix du marché sur Intel sont : Open Server et Unixware de SCO (Santa
Cruz Operation), Solaris (Sun Microsystems), BSD (Berkeley), ...

¢ Trois Unix dominent le monde des senveurs : HP/UX, Sun Solaris, IBM AIX

Linux a pris des parts de marché aux Unix, & Novell Netware et & Windows NT-2000
serveur. |l s'est imposé des la fin du 20eme siecle. Linux est multi-utilisateurs, multi-tdches,
stable et gratuit. Parmi ses principales distributions on trouve : RedHat, Debian, Caldera,
Ubuntu, ...

La famille des UJindouws :

¢ Microsoft propose en 1992 Windows 3.10 et Windows pour Workgroups 3.11 qui
sont Multi-fenétres et Multi-tGches coopératif. €n 1993, on voit apparaitre la pre-
miere version de Windows NT 3.1 suivie par NT 3.5 en 1994

e Lannée 1995, verra la sortie du fort célebre UJindows 95

Systemes d'€Exploitation 1

hicham.laanaya@gmail.com hicham.laanaya@gmail.com

Pr. Hicham LAANAYA

c
o
c
=
9
c
=
S
)
wn
8
€
S
)
w
2>
w
X
2
G
e
‘G
£
P
c
w
K]
&
"M

Notions de systemes d'exploitation

1. Systemes d'exploitation

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

e €n 1996, Windows NT 4 avec deux versions station de travail et Serveur.

¢ Windows Terminal Server : un systeme qui simule un environnement multi-utilisateurs
et prend en charge la connexion de plusieurs terminaux

e €n 1998 Windows 98 et en 2000, Microsoft commercialise Uindows 2000 profes-
sionnel et serveur, Windows Millenium, suivi de UJindows XP familial et serveur

e Windows 2003 (initialement baptisé .NET) sort en 2003 suivi de Windows VISTA,
Windows Seven, Windows 8 et Windows 10.

c c
2 2
= F=]
& g
S S
Q Q.
b el x
-e -o
0 °
wn w
[°] []
€ €
75 ©
w w
> >
wn w
x x
S E]
G G
Q Q
S S
= £
S b
Q Qa
wn w
S S
o o
(4] M

Notions de systemes d'exploitation
Notions de systemes d'exploitation

1. Systemes d'exploitation
1. Systemes d'exploitation

Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

Systeme Unix

Introduction au systéme Unix

Systeme Unix

Unix est un systeme d'exploitation (Operating System) -

e Multi-utilisateurs : le systeme identifie des personnes logiques et permet & ces per-
sonnes d'utiliser le systeme dans certaines limites

e Multi-taches : le systeme est étudié pour exécuter plusieurs programmes en méme
temps, gréce au concept de “temps partagé”

o Multi-plateforme : Unix n'est pas un systeme dédié & un processeur, mais que ¢ est
une famille de systemes que |'on retrouve sur une multitude de plates-formes.

On trouve des Unix :

® proprigtaires :

e ¢t des Unix libres :

— linux sur plate-forme Intel, Sparc, Alpha, Mac, ...
— freeBSD sur plate-forme Intel, Alpha, PC-98

— OpenBSD également multi-plate-forme

Table 2.1: Distributions Unix

Nom Propriétaire Processeur
Solaris Sun Sparc & Intel
HPUX HP PA

AIX IBM Risc & PowerPC
Digital Unix Digital Alpha

Architecture et caractéristiques

On peut décomposer un systeme Unix en trois grandes entités :

* e noyau : il assure la gestion de la mémoire et des entrées sorties de bas niveau
et I'enchainement des taches

e Un ensemble d'utilitaires : dédiés & des tdches diverses :

— des interpréteurs de commande appelés Shells permettant de soumettre des
tdches au systeme, tdches pouvant étre concurrentes et/ou communicantes

— des commandes de manipulation de fichiers (copie, déplacement, effacement,
etc)

¢ Une base de données systeme : un ensemble de fichiers contenant :

— des informations sur la configuration des différents services

— des scripts de changement d'état du systeme (démarrage, arrét, ...)

Figure 2.1: Architecture Unix (appelés scripts Shell)
€n mode interactif, le Shell affiche une invite en début de ligne (prompt) (cf figure 2.2).
Applications Lo commande est interprétée et exécutée apres la frappe de la touche “€ntrée”

Figure 2.2: Interpréteur de commandes sous Mac OS X

Last login: Tue Feb 19 10:26:46 on ttyseeo
MacBookPro-2:~ Hichams

Invite affiché par
I'interpréteur de commande

Terminal sous Mac OS X

Logiciels propriétaires et logiciels libres ——

Les logiciels sont vendus et sont régis par une licence restrictive qui interdit aux utilisateurs
de copier, distribuer, modifier ou vendre le programme en question.

2.3 Méta-caracteres du SHELL
2.3 Méta-caracteres du SHELL

Le? |ogm@|s ||br@§ Sqnt les |Og,ICI6|SA que \I or\wt peut librement Ut||’|5?r, @chong?r, Qtud@r Format des commandes
et redistribuer. Cela implique que I'on ait acces & leur code source (d'ou le terme équivalent
OpenSource)

Le format des commandes suit une convention bien établie :
i —laliberté d'exécution : tout le monde a le droit de lancer le programme, quel qu'en

o _ . R
<oit le but commande [-options] [paramétres]

ii — la liberté de modification : tout le monde a le droit d'étudier le programme et de * les options et les paramétres sont parfois facultatifs.

le modifier, ce Qui implique un acces au code source Exemple: cp -i /home/profs/profl/Hello.c /home/etudiants/etudiantl

#i — la liberté de redistribution : tout le monde a le droit de rediffuser le programme, e cp: commande qui va lancer la fonction de copie

gratuitement ou non
® |'option -1 : permet de contréler certains aspects du comportement de la commande

3 3
X 5
@ @
= =]
))
]]
w wn
G G
5 5
]]
))
w w
(] o
] °
c c
G G
(] €
€ €
o o
v v

7w — la liberté d'amélioration : tout le monde a le droit de redistribuer une version
modifiée du programme ® /home/profs/profl/Hello.c : Il s‘agit de la source ou le fichier que vous souhaitez
copier

® /home/etudiants/etudiantl: Il s'aqit de la destination ou I'emplacement de la copie
x Commandes de base du Shell E P -
= =
(] ; . (]
£ 2 4| Méta-caracteres du Shell &
2 Introduction _ 5
w w
o B lls sont interpretes specialement par le Shell avant de lancer la commande entrée par |-

Un Shell est un interpréteur de commande en mode texte et peut s'utiliser en mode inter- I'utilisateur ; et permettent de spécifier des ensembles de fichiers, sans avoir & rentrer

actif ou pour exécuter des programmes écrits dans le langage de programmation du Shel tous leurs noms en voici les plus utilisés :

Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

3.5 Les chemins d'acces

v
b
.9
=
=
=
(5]
©
c
2
=
n
(5]
(<}
(]
°
(5]
€
75}
w
>
w

2. Systeme Unix

11

12

e +: remplacé par n'importe quelle suite de caracteres
¢ 2 : remplacé par un seul caractere quelconque

e []:remplacé par I'un des caracteres mentionnés entre les crochets. On peut spé-
cifier un intervalle avec - : [a-z] spécifie donc I'ensemble des lettres minuscules

Systéme de gestion de fichiers

Concept de base

Le systeme de fichiers d'Unix est une vaste arborescence dont les nosuds sont des réper-
toires et les feuilles des fichiers. Un fichier peut :

i — contenir des données
i — &tre un lien sur un autre fichier
#i — ¢étre un moyen d'acces & un périphérique (mémoire, écran, disque dur, ...)

v — éftre un canal de communication entre processus

Figure 2.3: Hi¢rarchie du systeme de fichiers

(i) [oaen] [passva] Cireose)

java

5 2| Les différents types de fichiers

On distingue :
¢ Les fichiers ordinaires (réquliers) sont une suite d'octets sans structure

® les repertoires contiennent des informations sur les fichiers et les sous-répertoires

* les liens symboliques sont une catégorie particuliere de fichiers (qui contiennent
I'emplacement du fichier o prendre en compte)

® les peripheriques sont vus comme des fichiers spéciaux du répertoire /dev

* les tubes nommes sont des fichiers sur disque gérés comme un tube (pipe) entre deux
processus échangeant des données

A chaque fichier correspond un i-noceud contenant :

Les i-noeuds

* |e type du fichier et les droits d'acces des différents utilisateurs
e |'identification du propriétaire du fichier

¢ |a taille du fichier exprimée en nombre de caracteres (pas de sens pour les fichiers
spéciaux)

¢ le nombre de liens physiques sur le fichier
¢ |a date de derniere modification/consultation (écriture/lecture) du fichier
e |a date de derniere modification du nceud (modification d'attributs)

¢ |'identification de la ressource associée (pour les fichiers spéciaux)

Le nom d'un fichier doit permettre de I'identifier dans un ensemble de fichiers :

Le nom des fichiers

* e nom est compose de caracteres (¢f tableau 2.2 pour les caracteres acceptables)
® e nom est souvent compose de deux parties :

i — labaose ; et
i# — l'extension qui se trouve apres le caractere

¢ L'extension d'un nom de fichier désigne la nature de son contenu (texte, image, son,

)

¢ UNIX est un systeme qui distingue les caracteres majuscules et minuscules

Remarque 1

Ne pas utiliser le caractére espace comme nom de fichier ou répertoire !

Systemes d'Exploitation 1

hicham.laanaya@gmail.com hicham.laanaya@gmail.com

Pr. Hicham LAANAYA

3.5 Lles chemins d'acces

wn
b
S
=
=
2
(]
o
c
S
2
wn
o
(<}
(3]
o
(]
€
S
wn
=
w

2. Systeme Unix

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

13 14

Table 2.2: Caracteres acceptables pour les noms de fichiers Figure 2.4: cxemple de chemins

Caractéres Signification

A—7Z Lettres majuscules
o—z Lettres minuscules
0—9 Chiffres

acces.dat

Caractere souligné

. Caractere virgule

Les chemins d'acces

Pour identifier un fichier dans I'arborescence on indique le nom complet du fichier. Ce nom

Caractere point

est représenté par : e ".." désigne le répertoire parent, “." désigne le répertoire courant

¢ e chemin composé de répertoires qui conduit de la racine de |'arborescence du sys-
teme de fichiers jusqu'au répertoire qui contient le fichier

3.5 Les chemins d'acces
3.5 Lles chemins d'acces

¢ Choque répertoire est distingué des autres par un symbole séparateur */”
® |2 nom du fichier

Séparateur

’M h

| Chemin | Nom Dans la hiérarchie présentée dans la figure 2.4, exprimez les chemins suivants :

/home/etudiantl/data/Fichier.txt

On distingue deux expressions d'un chemin : b UL T

v v
b b
.9 K]
= =
= =
= =
(5] (]
© o
c c
2 2
= =
n w
(5] (5]
(<} (<}
(5] (5]
° o
(5] ()
€ €
75 7]
w w
> =
w (%]

* Le chemin d'acces absolu (chemin absolu) : commence par le symbole séparateur, il 2. absolu pour etc
exprime le chemin complet & partir de la racine de I'arborescence
= 3. absolu pour prof @ X
S ¢ e chemin d'acces relatif (chemin relatif) : commence par un autre caractere que le S
:E: caractere separateur. 4. relatif a log pour acces.dat %
]]
~| Exemple : Le répertoire courant est : /var/lo . =
: ? P fvar/log 5. relatif a prof pour acces.dat :
¢ e chemin absolu pour désigner le fichier fichier.txt est
/home/etd/etudiantl/fichier.txt 6. relatif etudiant1 pour acces.dat
e e cheminrelatifest: ../../home/etd/etudiantl/fichier.txt \ J

Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

s e
f_m \ ® cd: change le répertoire de travail (répertoire courant)

Dans la hiérarchie précédente, exprimez les chemins suivants : ® pwd : donne le chemin absolu du répertoire courant

® rmdir : supprime un répertoire vide

—

. absolu pour profl : /home/prof/profl

Les commandes utilisées pour la manipulation du systeme de fichiers sont :
9. absolu pour ete : /etc
® cp: copie de fichier
3. absolu pour prof : /home/prof o

® syntoxe cp <source> <destination>

4. relatif & log pour acces.dat : acces.dat ¢ duplication du contenu du fichier et création d'une entrée dans un répertoire

5. relatif & prof pour acces.dat : ../../var/log/acces.dat * mv : déplace/renomme un fichier

L) ® syntoxe mv <source> <destination>
6. relatif & etudiant] pour acces.dat : ../../../var/log/acces.dat
® suppression d'une entrée dans un répertoire et création d'une nouvelle entrée

J dans un répertoire

Remarque 2

3.7 Notion de liens
3.7 Notion de liens

Commandes de base de manipulation de fichiers St on copie (déplace/renomme) un fichier dans un fichier qui existe déja, ce second fichier est modifié

(contenu écrasé et caractéristiques modifiées)

Les commandes de base d'acces aux fichiers sont :

e cat : affiche le contenu du fichier

® stat : offiche les caractéristiques du fichier

¢ 1s: offiche les caractéristiques d'une liste de fichiers (I'option -1 affiche les numéros Notion de liens

d'i-nceuds des fichiers)

w
by
8
-=
U
=
[]
)
c
S
2
wn
(%)
()}
(5}
©

Il existe deux types de liens :

ecme

® rm: supprime un fichier
1. lien physique : Un méme fichier peut avoir donc plusieurs noms (Il y a plusieurs liens

® touch : modifie les caractéristiques de date d'un fichier (permet également de créer physiques sur le fichier).
un fichier vide)

w
b3
&
=
v
=
C]
o
c
io
=
w
)
=)
o
°
)
€
)
S
w
=
w

S

mandes qui manipulent des liens manipulent en fait le fichier dont le nom est
stocké dans le lien

X 9. lien symbolique : c'est un fichier (de type lien) qui contient le chemin et le nom d'un | 1]
S les commandes d'acces aux répertoires sont : autre fichier S
) []
.5 * 1s: offiche la liste des fichiers contenus dans un répertoire et utilise les options : e les acces & un lien sont donc des redirections vers un autre fichier = les com- S_,
9 ‘ 5
w w
o o

® -aliste aussi les fichiers cachés (fichiers ou le nom commence par .)

¢ -1 donne des informations détaillées sur chaque fichier . o o
¢ Un lien se comporte comme un raccourci (alias) vers un autre fichier

* - donne le numéro de I'i-nceud du fichier o A } ‘ . o
* Le contenu d'un lien est soit un chemin absolu ou un chemin relatif (qui doit étre

® mkdir : Crée un répertoire valide depuis le répertoire dans lequel se trouve le lien 1)

Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

17 18

Figure 2.5: Liens physiques fait correspondre un numéro d'identification gid (Group IDentifier). Ces informations sont
stockées dans des fichiers d'administration

Le fichier /etc/passwd contient les informations relatives aux utilisateurs (login, mot de
passe crypté, uid, gid, nom complet, répertoire de travail au login, commande exécutée

total 8 au login) ; et /etc/group contient les informations relatives aux groupes (nom, mot de

B43B559 -rw-r——r—— 2 Hicham @ Feb 18 23:55 AutrefichierUn . .

8438589 druxr-xr-x 2 Hicham 68 Feb 1B 23:58 Repertoireln passe, gid, liste des membres du groupe)

Baagans T e D Feb 15 93ios fiopiorbeux Le super-utilisateur (root) : || @st toujours considéré par le systeme comme propriétaire de

MacBookPro-2:SE Hichans | tous les fichiers (et des processus). La personne qui gere le systeme est normalement
lo seule & connaltre son mot de passe. Lui seul peut ajouter de nouveaux utilisateurs au
systeme.

Table 2.3: Notions de sécurité

1n [options] <destination> <nom_du_lien>

: : A , , A . Concept de base
= Les liens physiques sont plusieurs entrées de répertoires du méme i-noeud (ce sont donc P B
% des fichiers réguliers). Par contre, les liens symboliques ont chacun leur propre i-nceud ; sujet Utilisateur ou Processus qui veut executer une opération ; "
2 =2
71 leur contenu désigne un méme fichier réqulier (ils sont du type liens) objet Fichier sur lequel on veut exécuter une opération ; et enfin o
© 5 ; P . : .]
= Lo commande 1n permet de créer des liens : opération Action que I'on veut exécuter. =
2 2
'© 9
wi w
2 2
M M

* sans option : création de liens physiques e Des regles de sécurité ont pour réle d'indiquer les opérations (droits) qui seront

C L . A autorisées pour un sujet sur un objet
® avec l'option -s : création de liens symboliques

¢ Lo systeme a pour role de vérifier que le sujet a le droit d'exécuter I'opération sur

Figure 2.6: Exemple de lien physique et de lien symbolique 'objet.

59 Sécurité sous Unix

00 LSE — bash — 126x7 2
B43B55% -rw-r—-r—— Hicham 55 AutrefichierUn

B439431 lrwxr-xr-x Hicham 120 Raccourcis2FichierUn -> /Users/Hicham/Desktop/Cours System/SE/fichierUn
B439411 lrwxr-xr-x Hicham :1B RaccourcisFichierUn -= fichierUn N . . . N 3 . N . .
8438509 drxr—xr—x 2 Hicha :58 RepertoireUn Le systeme Unix associe des droits & chaque fichier (regles). Ces droits sont fonctions du
B43BTTO -rw-r--r—— Hicham 101 fichierDeux N . N . R .
8438558 —rw-r—r-— 2 Hichan 155 fichierln sujet. Un fichier appartient o un utilisateur et & un groupe. Unix distingue le sujet comme
MacBookPro-2:SE Hicham$ I

étant :

w w
1o Lo
S S
S =
= =
= =
(5] (3]
© o
c c
S 9
= S
wn wn
[] (5]
()] (<]
(] [0}
© ©
[] (]
€ €
75y -
= =
w]
> >
wi w

1. le propriétaire de I'objet (fichier)
2. membre du groupe propriétaire de I'objet (fichier)

' . 3. les autres
= &| Notions d'utilisateur et de groupe

Il faut faire la différence entre les opérations pour les fichiers réguliers et celles pour
les répertoires. Pour les fichiers réqguliers, nous avons les opérations :

2. Systeme Unix
2. Systeme Unix

Pour pouvoir accéder au systeme de fichier, |'utilisateur doit étre connecté. Pour se con-
necter, I'utilisateur doit saisir son login et le mot de passe associé. A chaque login le sys-
teme fait correspondre un numéro d'identification uid (User IDentifier). Chaque utilisateur
appartient & au moins un groupe d'utilisateurs et & chaque groupe d'utilisateur le systeme ¢ w : droit de modification et de suppression

e r: droit de lecture

Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

19 20

e x : droit d'exécution ® chgrp : permet de changer le groupe propriétaire
et les opérations pour les répertoires sont données par : ® chmod : permet de changer les droits
¢ r: droit de lister le contenu du répertoire ® umask : permet d'indiquer les droits & la création
* w : droit de modification et de suppression du contenu du répertoire Lo commande chown permet de changer le propriétaire d'un fichier et/ou d'un répertoire

et réecursivement ce qu'il contient. Sa syntaxe est :

e x : droit d'acces comme répertoire de travail sur le répertoire
chown [OPTION]..[OWNER][:[GROUP]] FILE..

Pour chaque fichier, la régle va indiquer les opérations acceptées en fonction de la La commande chgrp permet de changer le groupe d'un fichier et/ou d'un répertoire et
catégorie de sujet (propriétaire, groupe, autre). La commande 1s permet de visualiser les recursivement ce qu'il contient. La syntoxe est :
droits. €lle présente pour chaque catégorie de gauche o droite les droits : chgrp [OPTION]..[GROUP]] FILE... Pour pouvoir exécuter la commande chgrp, il faut étre
le propriétaire du fichier et étre membre du groupe auquel on veut donner le fichier.

i — pour [utilisateur propriétaire du fichier La commande chmod permet de changer les droits sur les fichiers. Sa syntoxe est
chmod [options] mode fichier.
Lutilisation de I'option -R permet de modifier récursivement les autorisations d'un répertoire
#i — pour les autres utilisateurs ; et de son contenu.

Lle mode permet de spécifier les droits :

— pour |'utilisateur membre du groupe propriétaire du fichier

Chaque droit est désigné par une lettre :

o) , ¢ de maniere symbolique (en utilisant les lettres r,w,x et les symboles +, -, =)
* r : signifie que le droit en lecture est accorde

. L ¢ de maniere numérique (en octal — base 8)
® w: droit en écriture

e Le mode est spécifié par : personne action droits
e x : droit d'exécution P par: p

v v
9 9
[« [<J)
7] 73
1= 1=y
v v
8 8
S b
k) k)
3 3
o o
€ €
13 £
2 2
o o
(<% (<8
v v
(5] (5]
o o
c c
(<} (<}
€ €
€ €
o o
v v
(=} o
= =
M M

e - : le droit correspondant n'est pas accordé Personne A A
Action Droit
u : 'utilisateur propriétaire
. o +: Qjouter r: lecture
Figure 2.7: Droits d'acces g : le groupe propri¢taire
- @ supprimer w: écriture
o : les autres
droits groupe droits pour les autres N = : initialiser x 1 execution
00 (2 SE— bash — 80x5 2| a : tous les utilisateurs
a2t Fok T pvs #echtertn

Exemple :

droits propriétaire

® u+rwx : Qjouter tous les droits au propriétaire

Systeme de gestion de fichiers
Systeme de gestion de fichiers

® og-w: enlever le droit d'écriture aux autres

® a=rx : donner le droit de lecture et exécution & tous (propriétaire, groupe et autres)

bat o=
5 - . * g=rwx : accorder tous les droits au groupe S
2 Commandes pour modifier les regles g oreup 3
5 le mode peut étre spécifié par un nombre en octal (base 8 ¢f tableau 2.4), dont les _g_,
7] . . ' N B =
1 Des commandes permettent de modifier les regles de droits sur les fichiers : chiffres représentent (dans l'ordre de gauche a droite) : =
oi oi
® chown : permet de changer le propriétaire (utilisateur et groupe) ® |es droits pour l'utilisateur propriétaire du fichier

Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

21 22

Table 2.4: Mode octal Figure 2.8: Données de I'exercice sur chmod
Droits | Binaire | Octal
00 EéE— bash — H&&dﬂ "l
-—- OOO O MacBookPro-2:SE Hicham$ 1s -1
total 16
=rw-r-—r-— 2 Hicham staff 8 Feb 18 23:55 AutrefichierUn
-=-X OO‘l] lrwxr-xr-x 1 Hicham staff 47 Feb 19 80:20 Raccourcis2FichierUn -»> fUsers/Hicham/Desktop/Cours System/SE/fichierUn
lrwxr-xr-x 1 Hicham staff 9 Feb 19 @@:18 RaccourcisFichierUn —> fichierUn
drwxr-xr-x 2 Hicham staff 6B Feb 18 23:58 Rzpm’tnir‘alln
-W- O.I O 9 —rw-r——r— 1 Hicham staff @ Feb 19 @0:81 fichierDeux
—rw-r-—r-- 2 Hicham staff ® Feb 18 23:55 fichierUn
MacBookPro-2:5E Hicham$
-wx 011 3
r-- 100 4
r-x 101 5
rw- 110 6
e | 1] 7 8 oo :

e Mode symbolique
® |es droits pour le groupe propriétaire du fichier

: 1. chmod o-rx RepertoireUn
® |es droits pour tous les autres

9. chmod g+w fichierun
Exemples :
3. chmod u+x fichierun

e /00 : représente les droits rwx------ o
¢ Mode numérique

3.11 Lla commande umask
3.11 la commande umask

e /51 : représente les droits rwxr-x--x

5 i 1. chmod 750 RepertoireUn
e 040 : représente les droits rw-r-----

M)

1. Interdire la lecture et I'acces au répertoire Repertoireun aux utilisateurs ne

9. chmod 664 fichierun

3. chmod 764 fichierun

faisant pas partie du groupe staff

Figure 2.9: Solution de I'exercice sur chmod

w w
ey Iy
.9 K]
= =
= =
= =
[} [}
© ©
c c
.0 .9
3]
(] (5]
()] (<]
(5] (]
o o
[°] (]
€ €
7y 7]
= -]
wn]
> >
wi w

9. Donner les droits d'écriture au groupe sur le fichier fichierun

> 3. Donner le droit d'exécution sur le fichier fichierun au propri¢taire e = _ _ T RER—ET VT w— _ =
'E MacBookPro-2:5E Hicham$ 1s -1
=) total 16
z . . . z N I z - - —— 2 Hich taff @ Feb 18 23:55 AutrefichierU
o 4. Prévoir les droits affichés par la commande 1s -1 apres |'exécution de ces Urwxroxrox L Hichan staft 47 Feb 19 28:20 RaccourcisaFichierln —» /lisers/Hichan/Desktop/Cours Systen/SE/fichiertn
& Grenrs 2 Hicham staff 8 reb 18 23:38 Repertoiran
3 - ——r—— 1 Hich taff @ Feb 19 28:01 fichierD
9 commandes Chxrwr— 2 Hichan staff 8 Feb 18 23:55 fichierlin
w MacBookPro-2:SE Hichams [
oi

5. Réécrire les commandes avec |'utilisation numérique de la commande chmod

Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

23 24

5 I Lo commande umask

Cette commande permet de spécifier des droits par défaut lors de la création des fichiers.
Pour cela, elle utilise des masques sous forme numérique octale. €n exécutant cette com-
mande :

® sans parometre : elle indique le masque courant
® avec le masque en parametre : elle modifie le masque courant

les droits obtenus sont le complémentaire (& 777 pour les répertoires et 0 666 pour les
fichiers) de ceux indiqués par le masque.

Table 2.5: xemple du calcul pour un répertoire
Droits 777 rwxrwxrwx | 777 rwxrwxrwx
Masque 022 ----w--w- | 227 -w--w-rwx

Droits obtenus | 755 rwxr-xr-x | 550 r-xr-x---

3.11 La commande umask

E 3
(7]
(]
£
>
o
i)
c
G
€
€
o
v
G
-t
-
=
M

de gestion de fichiers

eme

w
b
&
=
=2
C)
°
c
&
w
)
=)
)
©
)
€
)
S
[7]
>

w

Syst

2. Systeme Unix
2. Systeme Unix

Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

Programmation Shell

Introduction & bash

Les différents Shells et leur initialisation

Il existe plusieurs Shells UNIX :

e (C-Shell (csh ou tcsh)
e Bourne Shell (sh ou bash)
e Korn Shell (ksh),

Uinterprétation des commandes simples est semblable pour tous. Par contre, I'utilisation
pour écrire des scripts differe beaucoup (définition des variables, structures de contréle,
etd)

Uinitialisation du Shell se fait au démarrage du systeme : Les Shel exécutent des fichiers
de configuration, qui peuvent contenir des commandes quelconques et sont généralement
utilisés pour définir des variables d'environnement et des alias

® csh execute le fichier ~/.cshre (le “rc” signifie run command)
® tcsh exécute ~/.cshrc

® shexécute ~/.profile

® bash exécute ~/.bash_profile ou O défaut ~/.profile

Ces fichiers d'initialisation sont "invisibles”.

Variables d'environnement

€lles sont instanciées lorsqu'un Shell est exécuté par le systeme. Ce sont des variables dy-
namiques utilisées par les différents processus d'un systeme d'exploitation. €lles donnent
des informations sur le systeme, la machine et I'utilisateur, entre autres.

La commande env permet d'officher & I'écran toutes les variables d'environnement pour
le Shell (cf. figure 5.1).

Pour définir ses propres variables d'environnement, on utilise la commande export :

® VARIABLE=VALEUR : donne une valeur & une variable
® export VARIABLE : définit VARIABLE comme une variable d'environnement

® cocho $VARIABLE : aoffiche la valeur de la variable

€ntrée, sortie et erreur standards

Uentrée standard est attachée au clavier et a un numéro de descripteur égale & 0. La
sortie standard est attachée o I'écran dont le numéro de descripteur est 1. €nfin, I'erreur
standard, elle aussi, est attachée & I'écran et a un numéro de descripteur égale & 2. |l est
possible de rediriger ces trois flux :

e Redirection de la sortie standard : $ echo bonjour > test.txt

¢ Concaténation pour préserver le contenu du fichier de sortie :
$ cat < toto.txt >> FichijerSortie

e Redirection de I'erreur standard : $ 1s abdnkjf 2> erreur.txt

2.1 Définition

~
R
3
@
3
=
B
v
n
v
0
-

3. Programmation SHELL

27

28

Figure 3.1: &xemple d'exécution de la commande env

8 00 - (it Hicham — bash — 80x24
Thu Feb 21 2@8:38:23 on ttysoee

MacBookPro-2:~ Hicham$ env

TERM_PROGRAM=Apple_Terminal

TERM=xterm-256color

SHELL=/bin/bash

TMPDIR=/var/folders/v_/6rnvb_s13_vgrcsOxbx63zb4@800@gn/T/

Apple_PubSub_Socket_Render=/tmp/launch-nigalQ/Render

TERM_PROGRAM_VERSION=3089

TERM_SESSION_ID=T79C%FC5A-B59F-410E-BF27-%BEC35EFR3D2

USER=Hicham

COMMAND_MODE=unix2@83

S5H_AUTH_SOCK=/tmp/launch-1cBxR4/Listeners

__CF_USER_TEXT_ENCODING=8x1F5:0:0

Apple_Ubiquity_Message=/tmp/launch-VUnxuA/Apple_Ubiquity_Message

PATH=/opt/local/bin: fopt/local/sbin: fusr/bin: fbin: fusr/sbin:/shin: fusr/local/bin

sfopt/X1l/bin

PWD=/Users/Hicham

SHLVL=1

HOME=/Users/Hicham

LOGNAME=Hicham

LC_CTYPE=UTF-8

DISPLAY=/tmp/launch-J¥YNjyg/org.macosforge.xquartz:@

_=/usr/bin/env

MacBookPro-2:~ Hichams JI

e Redirection de I'entrée standard : $ be < calcul.dat

e Redirection de I'entrée et de la sortie standard :
$ bc < calcul.dat > resultat.txt

Exemple : $ 1s abdnkjf > sortie.txt 2>&1: Lo sortie de s est enregistree dans le fichier
sortie.txt. Lereur standard est redirigée o la sortie standard. Donc, I'erreur standard
est egalement redirigée au fichier sortie. txt

Le Pipe, I, permet de brancher la sortie standard d'une commande & I'entrée standard
d'une autre commande.

Exemple . $ 1s -1 | sort -r (cffiche le contenu du répertoire courant trié @ I'envers).

| 2 Regroupement des commandes

Pour lancer I'exécution séquentielle de plusieurs commandes sur la méme ligne de com-
mande, il suffit de les séparer par un caractere ;
Exemple :$ cd /tmp ; pwd; echo bonjour; cd ; pwd

Nous pouvons utiliser I'exécution séquentielle d'une ligne de commandes par regroupe-
ment :

® (cmdl ; cmd2) ; cmd3

® (cmdl ; cmd2) & cmd3

* les commandes regroupés sont exécutees dans un interpréteur enfant (subshell)

o Exemple :
pwd ; (cd ..; pwd; cp user.txt test.txt; ls -1 test.txt); pwd

| 5 Controle de tbches

le Shell attend la fin de I'exécution d'une commande avant d'afficher le prompt suivant.
Uexécution en arriere-plan permet & un utilisateur de lancer une commande et de récupérer
immédiatement la main pour lancer “en parallele” la commande suivante (parallélisme
logique). Pour cela, on utilise le caractere & apres la commande qu'on souhaite lancée
en arriere-plan.

Exemple: $ sleep 100 &
Lles commandes utilisées pour le contréle des tdches sont :

¢ Lo commande jobs affiche les commandes lancées en arriere plan.

¢ Lo combinaison de touches Ctri+Z permet de suspendre la thche courante, que Nous
pouvons relancer en arriere-plan en exécutant la commande bg

e Lo commande fg permet de récupérer la derniere tache lancée en arriere plan. Pour
recupérer la tbche numéro n, on utilise fg %n

¢ La commande kill %n permet de tuer la tache numeéro n lancée en arriere-plan.

Les scripts Shell

9 Définition

Les scripts sont des programmes écrits dans un langage interprété, par exemple le langage
du Shell. Un script peut étre une simple liste de commandes. La premiere ligne du script doit
préciser l'interpréteur utilisé, elle commence par les deux caracteres #!, suivis du chemin de
l'interpreteur.

Systemes d'Exploitation 1

hicham.laanaya@gmail.com hicham.laanaya@gmail.com

Pr. Hicham LAANAYA

2.1 Définition

<
§
@
3
&
=S
[v]
]
v
]
-

3. Programmation SHELL

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

Exemple d'un script shell

#!/bin/bash

liste

echo "Contenu du répertoire courant"
1s -1

QehE "eessssssssssscsssssssssnsosss

Dans cet exemple, la deuxieme ligne est un commentaire (commence par le caractere #).
Le fichier contenant ces commandes doit étre rendu exécutable :

$ chmod u+x liste

Variables et substitution

Les variables du Shell sont des symboles auxquels on affecte des valeurs. Une variable
est identifiee par son nom et son contenu est identifié par le symbole $ placé devant son
nom.

Affichage en utilisant la commande echo

$ VARIABLE=VALEUR
$ echo $VARIABLE

VALEUR

Buash realisera la substitution du contenu d'une variable lorsqu'il rencontre $ suivi d'un
nom de variable. Deux comportements sont possibles :

1. Substitution vide : La variable n'est pas définie ou la variable est définie mais son
contenu est vide.

9. Substitution du contenu : La variable est définie et son contenu est non nul.

Substitution de variable : Exemple 1

$ MSGl="Jean est un "
$ MSG2="chien fort réputé"
$ echo "$MSG1l SMETIER $MSG2"

Jean est un chien fort réputé

Substitution de variable : Exemple 2

$ MSGl="Jean est un "

$ MSG2="chien fort réputé"
$ METIER="dresseur de"
$ echo "$MSG1 SMETIER $MSG2"

Jean est un dresseur de chien fort réputé

Substitution de commandes

Bash est en mesure de substituer le résultat d'une ligne de commandes UNIX. Le symbole
impliqué dans ce genre de substitution est I'accent grave ().

Exemple de substitution de commande

$ echo pwd
pwd
$ echo “pwd®

/home/comptel/Desktop
$ echo "Mon répertoire de travail est: “pwd'"

Mon répertoire de travail est: /home/comptel/Desktop

Il est possible d'assigner le résultat d'une ligne de commande UNIX & une varioble.

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

Affectation du résultat d'une commande a une variable : Exemple

rep="pwd"
moi="who am i’

machine="hostname"

v W W Wn

echo -e "Utilisateur: $moi\n Répertoire de travail:$rep\nMachine:
Smachine"

Utilisateur: comptel ttys000 Feb 24 22:46

Répertoire de travail: /home/comptel/Desktop

Machine: MacBookPro.local

Neutralisation des caracteres

Certains caracteres ont des significations particulieres pour l'interpréteur de commandes.
Parexemple : &, (,), *, ', {, }. Sans un mécanisme d'échappement, ces caracteres
spéciaux seront interprétés par Bash. Les commandes et programmes qui utilisent ces car-
acteres spéciaux ne pourront pas s'exécuter correctement. D'ou la nécessité de neutraliser
la signification particuliere de ces caracteres speciaux pour Bash.

Exemple : Nous désirons afficher la chaine de caractéres "TOTO & TATA"

$ echo TOTO & TATA

[1] 2527

TOTO

-bash: TATA: command not found
$ echo TOTO \& TATA

TOTO & TATA

Donc, le symbole \ permet la neutralisation du caractere qui le suit. Nous pouvons
neutraliser la signification spéciale du caractere Cspace par les symboles * " et

¢ e guillemet : ¢limine la signification spéciale du caractere Cspace mais permet la
substitution des variables et commandes.

* Lopostrophe : ¢limine la signification spéciale du caractere Cspace et empéche la

substitution des variables et commandes.

Parametres de Bash

Les script shell ont la possibilite d'utiliser des parametres de position. Par exemple, I'exécution
de lao commande cmd $ cmd parl par2 par3 par4 utilise 4 parametres parl par2 par3
par4. Dans un programme Bash, e contenu de ces parametres de position est représenté

par: $1, $2, $3 jusqu'a $9. Le nom du fichier (cmd) est représenté par $0.

substitué par le contenu de $1 suivi du caractére o).

Pour accéder a un paramétre de position dont le numéro est strictement supérieur a 9, il faut entourer

ce numéro par {}. (${10} désigne le contenu du dixiéme paramétre de position. Par contre $10, sera

Exemple de paramétres de position a ['aide d'un programme Bash

#!/bin/bash

Nom du fichier param
param
Lancer le fichier de commande
echo "Numero PID de 1l'interpreteur de commande:
echo "Nom du fichier de commande: $0"

echo "Nombre de parametres: $#"

echo "Parametre 1: $1"

echo "Parametre 2: $2"

echo "Parametre 3: $3"

echo "Parametre 4: $4"

echo "Toute la ligne de commande: $@"

param -A -B -C

montrer l'utilisation des parametres Bourne shell

$$ll

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

a=
G

|
(]
0]
=)
(0]

|
G
a=
—)
(]

!
=
(]
<
P

|
G
a=
©
c
c
0
=
c
o
v
-
[
(5]
€
(5]
=
U
c
G
=
o
o
oN

Les scripts SHELL

3. Programmation SHELL

33

2 5| Llecture et affichage

Lo commande read réalise la lecture & partir de 'entrée standard :
$ read varl var2 var3. Cette commande permet de lire de I'entrée standard et placer les
données dans les variables varl, var2 et var3. La separation des données d'entrée en
champs est réalisée par Bash O 'aide de la variable IFS (Internal Field Separator).

Exemple . voici une-ligne de données (Il existe 4 champs)

Dans I'exemple ci-dessous :

¢ La lecture est realisée o partir de |'entrée standard

¢ les données lues sont placées dans trois variables (repertoirel, repertoire2 et

repertoires)

* Le programme termine son exécution par 'affichage des donnees lues

Exemple d'utilisation de read

#!/bin/bash

nom du fichier: lecture

lecture : montrer comment lire des données a partir de l'entrée
standard

echo -e "Les repertoires de l'installation? \c"

read repertoirel repertoire2 repertoire3

echo "Merci !"

echo -e "L'entree lue : $repertoirel\n S$Srepertoire2\n Srepertoire3"

Décaloge de parametres : shift

La commande shi ft agit sur les parametres de position du Bash. A chaque emploi de shift

® |e parametre $1 précédent est perdu

LUemploi de shift nécessite que le Shell script ait au moins un parametre (Le code de retour
dans le cas ov il n'y a pas de parametres est 1).

Exemple d'utilisation de shift

#!/bin/bash
echo "S$# : argl = $1, arg2 = $2; total : s$@"
shift; echo "$# : argl = $1, arg2 = $2; total : $@"

$2; total : $@"

shift; echo "$# : argl

$1, arg2

$2; total : $@"

shift; echo "$# : argl = $1, arg2

shift; exit 0

Commandes de test : test, []

Cette commande permet d'évaluer une expression :

¢ Sivrai, renvoie O (¢rue), sinon, renvoie 1 (false)
* S’iln'y a pas d'expression, renvoie |

Lo commande test expression est équivalente & [expression]. Lle tableau 5.1 donne
quelques exemples d'expressions pour le test sur les fichiers, les répertoires, sur les chaines
de caracteres et pour le test sur des variables numériques.

991 Branchement conditionnel : i f-then-elif-else-fi

— EEaEEE

if liste-commandes-1
then liste-commandes-2
elif liste-commandes-3 # autant de fois que nécessaire

else liste-commandes-4 # si nécessaire

® $1 est supprimé de $* et $e £
® $# est decrementé de 1
Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

I=
G

|
()
(%)
—
()

|
G
I=
—
(]

I
c
()
<
o

|
G
=
©
c
c
i
=
c
o
v
-
[
5]
€
]
=
U
c
(<
=
(-~
o
N

Les scripts SHELL

3. Programmation SHELL

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

Table 3.1: Test sur fichiers, répertoires et chaines Branchement conditionnel : if-then-elif-else-fi : Exemple 1

Expression vrai si :
- #!/bin/bash
-e fic fic existe
. . ’ . : if [-d toto] ; then
-d fic fic existe et est un répertoire
-f fic fic existe et est un fichier « ordinaire» echo "toto est un répertoire"
-h fic fic existe et est un lien symbolique elif [-h toto] ; then
-s fic fic existe et est non vide echo "toto est un lien symbolique"
-r fic fic existe et est autorisé en lecture slee
-w fic fic existe et est autorisé en écriture ;))
echo "autre que répertoire ou lien"
-x fic fic existe et est autorisé en exécution
f4
chl = ch2 les deux chalnes sont identiques
chl != ch2 les deux chalnes sont différentes
nl -eq n2 nl = n2
nl -ne n2 nl # n2
nl -le n2 nl < n2
nl -ge n2 nl > n2
nl -1t n2 nl < n2
nl -gt n2 nl > n2
1 expl expl est fausse
expl -a exp2 expl el exp2 vraies
expl -0 exp2 expl OU exp2 est vraie Branchement conditionnel : if-then-elif-else-fi : Exemple 2

#!/bin/bash

La condition (booléenne) est en général le code de retour d'une commande UNIX. Le if 1s toto > /dev/null 2>&1; then

code de retour de la commande détermine le test « if » : echo "le fichier toto existe"
else
echo "le fichier toto n'existe pas"

e Code de retour valant zéro : Le test « if » est vrai.
fi

e Code de retour non nul : Le test « if » est faux.

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

Branchement conditionnel : if-then-elif-else=fi : Exemple 3

#!/bin/bash
Mot secret
Ce programme demande a l'utilisateur de deviner un mot.
SECRET_WORD="SMI"
echo "Votre nom 2"
read NAME
echo "Bonjour $NAME. Devinez un mot."
echo -e "Vous avez le choix entre : SMA, SMI et SMP : \c"
read GUESS
if [$SGUESS=$SECRET_WORD]
then
echo "Congratulations !"

£

La commande case-esac : Exemple 1

#!/bin/bash

case $1 1in

[Yyl[eE][sS] | [0O][uUI[iI])
[Nn][00] | [Nn][Oo][Nn])
yesno)

*)

esac

echo

echo

echo

echo

"affirmatif" ;;
"négatif" ;;
"décide-toi" ;;

"quelle réponse!"

b

Branchement conditionnel : case-esac

Syntaxe de la commande case-esac

case expression 1in

motif) liste-commandes-1 ;; # autant de fois

*) liste-commandes-2 ;;

esac

J

&xécute la liste-commandes suivant le motif (pattern en anglais) reconnu. Le motif &
reconnaitre peut s'exprimer sous forme d'expression rationnelle (ou réguliere) utilisant les

méta-caracteres : * 2 [] -

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

La commande case-esac : Exemple 2

#!/bin/bash
traiter les options d'une commande ;
utiliser case - esac pour traiter les options
if [$# = 0]; then
echo "Usage : casesac -t -q -1 NomFich"
exit 1
fi
for option; do
case "$option" din
-t) echo "option -t recu" ;;
-q) echo "option -q recu" ;;
-1) echo "option -1 recu" ;;
[!-1*) if [-f Soption]
then
echo "fichier $option trouve"
else
echo "fichier Soption introuvable"
fi
55
*) echo "option inconnue S$Soption recontree"
esac

done

Syntaxe de la commande for-do-done

for variable in liste-de-mots
do
liste-commandes

done

La variable prend successivement les valeurs de la liste de mots, et pour chaque valeur,

liste-commandes est exécutée.

La commande for-do-done : Exemple 1

#!/bin/bash
for i in un deux trois quatre cing six
do

echo "Semestre $i"

done

Boucle for-do-done

r-do-done : Exemple 2

#!/bin/bash
for i in ~/Desktop/*.pdf
do

echo $i

done

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

La commande for-do-done : Exemple 3

Uinstruction select-do-done

#!/bin/bash
for fichier 1in $@; do

if [-d $fichier]; then # Test fichier type

echo "sfichier est un répertoire” Syntaxe de la commande select-do-done
elif [-f s$fichier]; then

echo "$fichier est régulier" select variable in liste-de-mots
elif [-h $fichier 1; then e

echo "s$fichier est un lien symbolique" Liste-commandes
alsa done

echo "S$fichier n'existe pas ou autre type" -
fi

Uinstruction select génere un menu @ partir de liste-de-mots et demande a ['utilisateur
de faire un choix. Cette commande permet @ I'utilisateur de sélectionner une variable parmi
echo "Propriétaire de $fichier" une liste de mots. 1iste-commandes est exécutée.

if [-o $fichier]; then # vérifie le propriétaire

else

echo "Pas propriétaire de $fichier" La commande select-do-done : Exemple 1

£

#!/bin/bash

if [-r $fichier]; then # Droit de lecture

. L. echo "Quel est votre 0S préféré 2"
echo "Droit de lecture sur $fichier"

fi select var in "Linux" "Mac O0S X" "Autre"; do
i

. echo "Vous avez sélectionné Svar"
if [-w $fichier]; then # Droit de modification

. L . if ["$var" = "Autre"]; then
echo "Droit d'écriture sur $fichier"
. break
fi
. o . . . i
if [-x $fichier]; then # Droit d'exécution
done

echo "Droit d'exécution sur $fichier"

fi
done

Dans ce premier exemple, I'utilisateur fait entrée un choix parmi les trois mots "Linux"
"Mac 0S X" "Autre". le script affichera la phrase "vous avez sélectionné" suivi du choix
de l'utilisateur. Sile choix est Autre, le script quitte la boucle select et termine son exécu-
tion.

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

La commande select-do-done : Exemple 2

#!/bin/bash
PS3="Que voulez vous ? "
select ch 1in "ler" "2eme" "Abandon" ; do
case S$REPLY 1in
1) echo "C'est du $ch choix" ;;
2) echo "Que du $ch choix" ;;
3) echo "On abandonne ..." ; break ;;
*) echo "Choix invalide" ;;
esac

done

Dans cet exemple, On remarque |'utilisation de la variable d'environnement REPLY. Cette
variable stocke le nombre entrée par I'utilisateur et non pas le mot correspondant au choix.
Ceci permettra un meilleur traitement du choix de |'utilisateur avec un simple case—esac sur
la varioble REPLY.

Boucle while-do-done

Syntaxe de la commande while-do-done

while liste-commandes-1
do
liste-commandes-2

done

Lo valeur testée par la commande while est I'état de sortie de la derniere commande
de liste-commandes-1. Si I'état de sortie est o, alors le Shell exécute liste-commandes-2
puis recommence la boucle.

La commande while-do-done : Exemple 1

#!/bin/bash
echo -e "Devinez le mot secret : SMI, SMA, SMP
read GUESS
while [SGUESS != "SMI"]; do
echo -e "Ce n'est pas $GUESS, devinez : \c"
read GUESS
done

echo "Bravo"

\C”

La commande while-do-done : Exemple 2

#!/bin/bash

compteur=5

while [$compt -ge 0]; do
echo $compt
compt="expr $compt - 1°

done

Boucle until-do-done

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

Syntaxe de la commande until-do-done
<

until liste-commandes-1

do
liste-commandes-2

done

le Shell teste I'état de sortie de liste-commandes-1. Sil'état de sortie est 1, alors,
liste-commandes-2 est exécutée puis la boucle est recommencée.

La commande until-do-done : Exemple 1

#!/bin/bash
echo -e "Devinez le mot secret : SMI, SMA, SMP : \c"
read GUESS
until [$GUESS = "SMI'"]; do
echo -e "Ce n'est pas S$GUESS, devinez encore : \c"
read GUESS
done

echo "Bravo."

La commande until-do-done : Exemple 2

#!/bin/bash

compt=5

until [$compt -1t 0]; do
echo S$compt
compt="expr $compt - 1°

done

Fonctions Bourne Shell

Nous pouvons rendre la programmation plus structurée en utilisant des fonctions :

Syntaxe de fonction

NomDeFonction (){

commandes

La definition des fonctions Bourne shell doit étre faite au début du fichier de commande
et il faut prendre préséance sur les commandes systemes de méme nom. Ces fonctions
peuvent avoir une valeur de retour : exit n (OU return n) oU n est une valeur numérique
(=0 : OK, #0 (et <256) : €rreur)

Fonction Bourne Shell : Exemple 1

#!/bin/bash
mafonction() {

echo "Celle-ci est mafonction"
}
Code principal commence 1ci
echo "Appel de mafonction..."
mafonction

echo "Done."

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

Fonction Bourne Shell : Exemple 2

#!/bin/sh
repertoire () {
echo "Entrer un nom de repertoire: \c"
read repertoire
if [-d "$repertoire"]; then
return @ # repertoire existe
else
return 101 # repertoire inexistant
fi
}
gestion_erreur () {
case SERRNO in
0) ;; # pas d'erreur
101) echo "Répertoire inexistant" ;;
*) echo "Code d'erreur qinconnu"
exit 1 ;3
esac
}
Programme principal
ERRNO=123
while [$ERRNO -ne 0]; do
statut de sortie de repertoire () assigné a ERRNO
repertoire; ERRNO=$?
dinvoquer le gestionnaire d'erreur
gestion_erreur

done

Différence entre "$@" et "$*"

Lorsque utilisé entre quillemet, la variable $e et la variable $* n‘ont pas la méme significa-
tion. Pour "s$e" l'interpréteur de commandes substitue les paraometres de position en leur

entourant par des guillemets. Ce n'est pas le cas pour "s*.

Exemple : Différence entre "$@" et "$*"

#!/bin/bash
Nom fichier : exemple_arobase.sh
echo "Utilisation de \$*"
for OPTION 1in "$*"; do
echo "Itération : $OPTION"
done
echo "Utilisation de \$@"
for OPTION 1in "$@"; do
echo "Itération : $OPTION"

done

Exemple : Résultat d'exécution

$./exemple_arobase.sh un deux troix quatre
Utilisation de $*

Itération : un deux troix quatre
Utilisation de s$@

Itération : un

Itération : deux

Itération : troix

Itération : quatre

On remarque que le résultat n'est pas le méme. Cest pour cela qu'il faut penser &

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

o | 50

utiliser "$e@" dans vos programmes Bash. Exemple 1 (getopts) : Résultat d'exécution

$ install -1

OPTION 1 regue
Décodage des parametres)) L)
Indice de la prochaine option a traiter : 2

$ dinstall -1 -q

Il existe une commande simple pour le décodage systématique des parametres de position.

o OPTION 1 regue
Il s‘agit de la commande getopts. La syntaxe de cette commande :

getopts optstring name [arg ..] OU: Indice de la prochaine option a traiter : 2

OPTION q recue

* optstring représente les options & reconnaltre par getopts drdtes g e precdiaiie epEien & ErETEer o 8

$ dnstall -x
./install : option incorrecte -- x

® name les options reconnues par getopts sont placées dans cette variable
Usage: install [-1lq]

® args'il existe, getopts va tenter d'extraire les options & partir de cet argument

w w
o [
-] F]
7y]
€ €
G G
B S
G G
(=1 Q
w w
(5] [}
o ©
[5))
(<] (2]
G G
o o
o o
v v
‘O ‘O
[a] [a]
~ ~
= o
N N

—— (i i |

#!/bin/sh

while getopts lq OPT; do

Les scripts SHELL
Les scripts SHELL

case "SOPT" 1n
1) echo "OPTION $OPT regue" ;;
q) echo "OPTION $OPT regue" ;;
?) echo "Usage: install [-1q]" ; exit 1 ;;
esac
echo "Indice de la prochaine option a traiter : SOPTIND"

done

3. Programmation SHELL
3. Programmation SHELL

Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

. =
—M * -n: lUreles commandes mais ne pos les exécuter (Vérifie les erreurs de syntaxe sans

exécuter le script)

#1/bin/sh * -v: Affiche les lignes lues du programme lors de son exécution

while getopts 1l:q OPT; do) - P
e _x : Afficher les commandes et les substitutions lors de leur exécution
case "SOPT" -in

1) OPTION="SOPT"

Exemple d'utilisation de la commande (set)

LOGARG="S$SOPTARG"

n . n .
echo "OPTION $OPT regue; son argument est $LOGARG" ;; #1/bin/sh

_n "o
q) OPTION=HSOPTH 5 # settest : montrer l'utilisation des options de set

AAIecho "OPTION S$OPT regue" ;;

e # pour le débogage E
n ()
- ? " i i i 2 ce oo . . .
o)R topiien dnvelige seibecios # Utiliser l'option -v (affiche les commandes et leur argument) a
B =S
v echo "Usage: install [-1 logfile -q] [nom_repertoire]" v
5 set -x o
° °
° exit 1 ;;)
1) 1)
& esac g
g pud g
8 echo "Indice de la prochaine option a traiter : SOPTIND" 1s -1 E
© [
= done 3 S =
o echo “who Y

Chercher le parameétre nom_repertoire

shift “expr $OPTIND - 1°
-'If ["$ll|]
then

repertoire="s1"

~ ~
: :
X X
@ @
2 P4
= =
<] +]
w w
[d w
S S

echo "Répertoire d'installation: $repertoire"

fi

Débogage de Script Shell

Pour simplifier la recherche des erreurs dans un programme Bourne Shell, ce dernier met
a notre disposition la commande set pour activer les modes de débogage. Les options
disponibles sont :

3. Programmation SHELL
3. Programmation SHELL

Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

Filtre programmable awk

— . matche avec n'importe quel caractere

Introduction
— /Vindique un début de chaine, etc ...

Les filtres sont des programmes qui lisent une entrée, effectuent une transformation et * les métacaracteres sont neutralisés par le caractere \
écrivent un résultat (sur la sortie standard). Parmi ces filtres on trouve :

)) o Table 4.1: Sxpressions réqulieres définies par des méta-caracteres
® grep, egrep, fgrep : recherche d'une expression dans des fichiers

® diff, cmp, unig, tr, dd ..: outils de comparaison, conversion de fichiers nimporte quel caractere

? | 0 ou une occurrence du caractere

. o
sed : éditeur de flots * | repétition du caractere precedent

® awk : outil programmable de transformation de texte + | Une ou une infinité d'occurrence

: o . . R : [<liste>] | Un choix parmi un ensemble
Ces outils utilisent les "expressions requlieres”. Ces expressions sont :

[N<liste>] | Tout sauf un certain caractere

* un moyen algébrique pour représenter un langage réqulier Na |l aendéebut de chaine

® ¢t permettent de décrire une famille de chaines de caracteres au moyen de métacar- a% | aen fin de chaine
acteres a\(n\] | nrépétitions du caractere a
a\(n\} | au moins n répétitions de a
a\(n,p\l | entre n et p répétitions de a

€xpressions réqgulieres et commande egrep \(\) | sous-expression "repérée’

\k | k-eme sous-expression repérée

® un “caractere simple” "matche" avec lui-méme :

— a matche avec a Exemples 1

— 6 matche avec 6 e *: zéro ou une infinité de caracteres quelconques

® Un Métacaractere génere ou précise un ensemble de possibilités e A% chaine d'un seul caractere

3.1 Introduction

:
<
)
5
G
€
€
G
S
o
o
e
G
)
=
=

4. Filtre programmable AWK

55

® +b* : au moins un 'a’ suivi de 0 ou une infinité de 'b’
e [ab]+ : au moins un ‘a’ ou ‘b’ ou une infinité

® "\ (.*\)\1$: ligne constituée de 2 occurrences d'une méme chaine de caracteres

Remarque 4

Attention aux confusions avec les méta-caractéres du Shell : Sens différents pour méta-caractéres : *

[

Exemples 2

e v.+ : les chaines contenant un 'v' suivi de n'importe quelle suite de caracteres

(vandalisme, vestiaire, lavage, ...)

® [vs].+: les chalnes contenant un 'v' ou un 's' suivi de n'importe quelle suite de
caracteres (vandalisme, voiture, descendre, sandales, ...)

® a.*a: les chalnes contenant deux 'a' (palais, sandales, pascale, cascade, ...)

® [ps].*a.*a : les chaines contenant un 'p' ou un 's' suivi d'une sous chaine con-
tenant deux 'a' (sandales, pascale, apprentissoge automatique, ...)

Cette commande permet de rechercher dans des fichiers d'une chaine ou d'une sous chaine
de caracteres ou simplement d'un mot ou d'une chaine formalisée par une expression
requliere. La syntaxe de la commande est :

egrep [options] <chaine recherchée> <fichier> Le résultat de cette commande est les
lignes du fichier contenant ce qui est recherché ou autre résultat, suivant les options util-
isées. Les options les plus utilisees sont :

Commande egrep

® cgrep <chaine> fichier : recherche de <chaine> dans fichier

® egrep -v <chaine> fichier : recherche inversée
® egrep -w <chaine> fichier : recherche d'un mot exact
® egrep -<nombre de lignes> <chaine> fichier : ligne de contexte

® egrep -n <chaine> fichier : numéros de lignes

® egrep -n<nombre de lignes> <chaine> fichier :
precedentes

combinaison des deux options

® egrep -i <chaine> fichier : respect de la casse

® egrep -c <chafne> fichier : nombre d'occurrences

Exemple
Considérons le fichier de notes suivant :

Table 4.2: Fichier de notes

crepetna:Crepet, Nathalie:CREN1807750:92:87:88:54:70
yosnheat:Yos Nhean, Trakal:YO0ST19087603:84:73:70:50:73
benelaur:Benel, Aurelien:BENA80207700:84:73:89:45:100

soucypas:Soucy, Pascal:SOUP14067502:95:90:89:87:99

On peut extraire les lignes qui contiennent une note comprise entre 90 et 99 : $ egrep
:9 notes.txt. Maintenant, comment faire pour extraire les lignes ou la derniere note est
comprise entre 90 et 99 ?. Une solution est d'utiliser une expression réquliere :
$ egrep :.*:i. X *¥i *r % %9 notes.txtOU .*:.*:i *r *: % * 9 représente une chaine
avec 7 ':' entre lesquels on peut avoir n'importe quoi et dont le dernier " est suivi d'un
9. Une autre solution serait :
$ egrep '"\(:.*\)\{6\}:9' notes.txt OU $ egrep '9[0-9]$' notes.txt

Filtre programmable awk

= || Introduction

le langage awk a été developpé par Alfred Abo, Peter Weinberger & Brian Kernighan. || s'agit
d'un programme UNIX capable d'interpréter un programme utilisateur. Ce programme doit
étre écrit en utilisant les instructions légales et selon le format de awk. (voir la page de

manuel : man awk). Le concept de programmation est appelé “piloté par données” (data-
driven). On peut utiliser awk pour :

® récuperer de l'information ;
® géneérer des rapports ;

¢ transformer des données. ..

Systemes d'€Exploitation 1

hicham.laanaya@gmail.com hicham.laanaya@gmail.com

Pr. Hicham LAANAYA

3.1 Introduction

:
<
)
5
G
€
€
G
P
()
o
b
c
)
=
£

4. Filtre programmable AWK

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

- |52

Table 4.3: Options de la commande awk Figure 4.1: Principe de fonctionnement

Option et parametre Signification

Programme composé

Données X . .
d'une séquence "motif—action'

"

-Fc Caractere c est le séparateur de champ. -
motif — action

-f prog prog estle nom du fichier contenant le progromme awk motif — action

motif — action
motif — action
motif — action
motif — action

awk

'programme' programme gwk donné directement entre apostrophes

-v var=valeur.. Initialisation de variables avant 'exécution du programme

fichierl.. Fichier contenant les données a traiter

awk lit 'entrée
ligne par ligne

Le synopsis de awk :
awk [-Fc] [-f prog | 'prog'] [-v var=valeur..] [fichl fich2 ..] Chaque ligne
d'entrée du fichier est séparée en champs $1, $2, $3, .

L'action de chaque
motif sélectionné est
exécutée par awk

awk compare chaque
motif du programme
avec la ligne lue

Remarque 5

Ces champs n'ont rien & voir avec les $1, $2, ..du Bourne Shell.

Principe (cf figure 4. 1):

On peut specifier un programme awk dans un fichier par 'option -f ou I'écrire directe-
ment entre apostrophes. les données & traiter sont contenues dans les fichiers fichi,
fich2, .. ou acheminées via I'entrée standard. Lle corps d'un programme awk est une e Corps : pour chaque ligne du texte entré
séquence de “motif—action” (pattern—action). On peut passer des parametres G un pro-
gramme awk par |'option -v

)
c
2
©
c
2
)
)
3
2
v
2
=
w
=
G
w
)
]
&
G
>
&
"M

e |nitialisation (BEGIN) : effectuer actione

o
c
2
o
c
=
)
)
=3
2
v
2
=
wn
o=
]
w
9
5
g
G
>
&
M

— simotifl estveérifiee effectuer actionl
_ A o o — simotif2 est vérifiée effectuer action2
¢ Cette option est utile lorsque awk est utilisée O I'intérieur d'un fichier de commandes

Bourne Shell - et

) . . e Terminaison (END) : effectuer actionF
* Par exemple, on peut passer la valeur des variables d'un programme Bourne Shell &

des variables d'un programme awk Remarque 6

Filtre programmable AWK
Filtre programmable AWK

Si le moti est omis alors ['action associée est toujours effectuée et si I'action est omise on affiche

Structure d'un programme awk

toute la ligne.

BEGIN {action0}

motifl {actionl}

motif2 {action2} Variables et structure d'une ligne

Chaque ligne ("Record”) est automatiquement séparée en champs ("Fields”) en utilisant un
s¢éparateur (par défaut : blancs et/ou tabulations) ou précisé avec 'option -F d'awk. Les
variables utilisées par awk sont :

END {actionF}

4. Filtre programmable Awk
4. Filtre programmable Awk

Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

3.4 Fonctions utilisateur

<
)
5
G
€
€
G
S
o
o
3
c
)
=
=

4. Filtre programmable Awk

59

® \NR, NF numéro de ligne (Record), nombre de champs (Fields)

* 50 contenu de la ligne courante

® $1, $2 .. $NF contenu du ieme ...dernier champ

® RS, FSséparateur de lignes (défaut = \n), de champs (défaut = blanc et tab)

® ORS, OFS séparateurs en sortie (pour modifier 'impression)

Remarque 7

La variable 7S peut aussi étre initialisée lors de l'appel de awk via l'option : -Fc : le séparateur de

champs prend la valeur du caractére c.

— (S |

$ awk 'BEGIN {print "Premier programme awk"} {print $0}\

> END {print "Fin du programme awk"}' data.txt

Dans ce premier exemple, le programme awk est specifié directement entre apostro-
phes.

Motifs et actions

Un motif est une expression réguliere qui va étre comparée & un champs (51, $2, .., $NF).
Siune correspondance est trouvée entre |'expression regquliere et I'enregistrement, le motif
devient vrai et I'action correspondante est exécutée. La syntaxe des motifs peut s'exprimer
de trois fagons :

® motif en fonction d'une expression réguliere
® motif en fonction d'expressions logiques

® motif en utilisant les deux formats

Table 4.4: Les expressions logiques pour les motifs

Opérateur Description
< Inférieur o
> Supérieur o
== €galite

I= Différent
&& €T logique
I OU logique

~ Permet de comparer |'expression réquliere & un champ précis

Exemple de motifs

$1 == $2

(($2 > 100) || ($2 == $3*50)) && ($4 > 10)
($1 ~ /[a-z]/) && ($2 ~/[0-9]/)
(81 ~ /[a-2z]/) && ($2 ~/[0-9]/) && ($3 < 10)

les actions : décrivent les opérations o effectuer lorsque le motif décrit en téte de
requéte est vérifié et ont une syntaxe similaire o celle du langage C. On trouvera aussi un
ensemble de fonctions specifiques présentées dans le tableau 4.5.

Fonctions utilisateur

Lutilisateur peut définir ses propres fonctions. Ces fonctions peuvent se trouver n'importe
ou dans le corps du programme gwk. La déclaration d'une fonction se fait de la fagon
suivante :

Premier exemple awk

function nom_fonction (arguments) {

instructions

La fonction peut étre appelée dans n'importe quel bloc action d'une requéte awk. Ci-

Systemes d'€Exploitation 1

hicham.laanaya@gmail.com hicham.laanaya@gmail.com

Pr. Hicham LAANAYA

3.4 Fonctions utilisateur

<
»
5
G
€
€
G
P
)
o
3
c
)
=
=

4. Filtre programmable Awk

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

L)
©
s
[
o
v
)
°
w
S
13
=
v
2
=
w
w
S
&y
M

Filtre programmable AWk

4. Filtre programmable AWk

61
dessous un exemple de deux fonctions en awk. La premiere calcul le minimum de deux
nombres et la deuxieme donne le factoriel d'un entier.
function minimum (n,m) {
return (m < n ? m : n)
}
Table 4.5: cxemple de fonctions prédéfinies
P P function factoriel (num) {
Fonction Description (num == 0) ? return 1 : return (num * factoriel(num - 1))
sqrt(arg) renvoie la racine carré de |'argument }
log(arg) r’@nv0|@ le logarithme népérien de G - JABaeteriEls) © print fecimriel(e) 1
I'argument
L . , 1 ~ /MMini int mini 2 3
exp(arg) renvoie I'exponentiel de I'argument 3 f*Minimum$/ { print minimum($2, $3) }
int(arg) renvoie la partie entiere de |'argument
length renvoie la longueur de I'enregistrement
courant
length(arg) renvoie la longueur de la chaine passée

print [argl[,arg2],..] [> dest]

printf(format,argl,arg2,..) [> dest]

en argument

offiche les arguments "argl", "arg2",
.sur la sortie stondard sans les
formater. Avec l'option "> dest",
I'affichage est redirigé sur le fichier
"dest" au lieu de la sortie standard

offiche les arguments argl, arg2, ..sur
la sortie stondard apres les avoir for-
matés o laide de la chaine de con-
tréle "format". Avec l'option "> dest",
I'affichage est redirigé sur le fichier

"dest" au lieu de la sortie standard

Les structures de contrdle

LUensemble des structures de controle de awk fonctionnent comme celles du langage C. Lle
terme instruction désigne un ensemble d'instructions "ewk" séparées par le caractere ;"
ou "return" et encadrées par des "{","}"

e Structure de contrble if, else :

| S|

if (condition)

instruction
else

instruction

e Structure de contréle while

Systemes d'€Exploitation 1

hicham.laanaya@gmail.com

hicham.laanaya@gmail.com Pr. Hicham LAANAYA

o
<0
=]
[
o
v
o
o
v
o
13
=
v
2
=
w
S
-
&y
(]

Filtre programmable AWKk

4. Filtre programmable AWK

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

- | s
,_W Exemples de structures de controle

while (condition) if ($3 == foo*5) {

instruction a = %6 % 2;

print $5, $6, "total", a;

b = 0;
}
. else {
e Structure de contréle for
i) next)
<2 <2
8 ¥ H
v v
- — umile (4 <= W) ¢ 3
8 8
= print $1i; 5
° for (initj;condition;itération) (ou for (var in tableau)) 3
E i ++; 2
wn 8 a wn
n instruction o
S } S
1n 1n
M for (i=1; (i<= NF) && (i <= 10); i++) { M

if (1 < 0) break;

§ if (1 == 5) continue; §
< <
® ® |nstruction "break" : provoque la sortie du niveau courant d'une boucle "while" ou print $i;)
2 "for™". 2
€ } €
€ €
o <
o ()
o o
(<% (<%
o ® |nstruction "continue" : provoque l'itération suivante au niveau courant d'une boucle o
& "while" ou "for". Table 4.6: Fichier de données “population” T
Russie 8649 275 Asie
§ Canada 3852 95 Amérique §
N * Instruction "next" : force "awk” & passer O la ligne suivante du fichier en entrée. . : <
P nex awerap ° Chine 3705 1032 FAsie P
g france 211 55 €urope g
€ €
g g
[. « L .) . (o)
o ® |nstruction "exit" : force "awk" & interrompre la lecture du fichier d'entrée comme si o
(< , Lo . c
© la fin avait été atteinte. °
e Sxemples &
< <

Le premier exemple calcul la superficie totale et la population totale de tous les pays. Le
second exemple cherche le pays avec la plus grande population.

Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

Utilisation de awk : Exemple 1

BEGIN {printf("%10s %6s %5s %s\n", "Pays","Superf","Pop","Cont")}
{ printf ("%10s %6s %5s %s\n", $1, $2, $3, $4)

superf = superf + $2

pop = pop + $3
}

END { printf("\n %10s %6s %5s\n", "TOTAL", superf, pop)}

Utilisation de awk : Exemple 2 .

{ 4if (maxpop < $3) {

maxpop = $3
pays = $1
}
}
END { print "Pays : " pays "/Max-Pop: " maxpop }

&xemple : fFréquence des mots dans un texte

Dans le domaine de I'analyse textuelle, la frequence des mots est un outil tres utilisée
dans I'authentification des documents. Nous allons créer un petit programme capable de
donner la fréquence d'apparition des mots dans un texte. Les étapes a suivre sont :

1. Isolation des mots par gsub () revient o éliminer les caracteres de ponctuation :

Suppression des caractéres de ponctuation

gsub(/[.,:;20 011/, ")

9. Confondre les mots majuscules et les mots minuscules (Cette conversion est réalisée
en dehors du progromme awk) :

Convertir les minuscules en majuscules

$ cat texte.txt | tr 'a-z' 'A-Z' > lignes.tmp

3. Compter les mots revient a stocker les mots dans un tableau associatif. Les indices du
tableau sont les mots eux-mémes et la valeur d'un élément du tableau est le nombre
d'apparitions d'un mot :

Compter les occurrences

for (i=1; i<=NF; qi++)

compte[$i]++

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

67 68

Exemple : Fréquence des mots dans un texte

#!/bin/sh

Programme awk pour compter le nombre d'occurence de mots d'un texte

Convertir le texte en majuscule et le mettre dans "lignes.tmp"

cat texte.txt | tr 'a-z' 'A-Z' > lignes.tmp

awk '
A la fin du programme afficher le résultat en ordre décroissant

numerique

i) .
<0 <0
S =]
[[
o o
v v
(5] (]
- o
v v
(3] (3]
13 13
= =
v v
2 2
= =
w 2]
v v
]]
- -
&y &y
(L] (]

END {
for (mot in compte) {
print compte[mot], mot
total += compte[mot]
}
N print "Nombre total des mots : " total N
2 2
) X)
2 2
€ { €
g g
= gsub(/[.,:5!'20){}1/,"") # elimine la ponctuation =
o o
c for (i=1; i<=NF; i++) # placer les mots trouves dans c
))
S o]
T compte[$i]++ # un tableau associatif T
}

' lignes.tmp | sort -nr

4. Filtre programmable AWk
4. Filtre programmable AWK

Systemes d'Exploitation 1 hicham.laanaya@gmail.com hicham.laanaya@gmail.com Pr. Hicham LAANAYA

mailto:hicham.laanaya@gmail.com
mailto:hicham.laanaya@gmail.com

	Systèmes d'exploitation
	Introduction
	Rappels sur le matériel
	Architecture simplifiée d'un ordinateur
	Carte mère

	Notions de systèmes d'exploitation
	Introdution
	Les principaux systèmes d'exploitation

	Système Unix
	Introduction au système Unix
	Système Unix
	Architecture et caractéristiques
	Logiciels propriétaires et logiciels libres

	Commandes de base du [Scale=.95]Hoefler TextShell
	Introduction
	Format des commandes
	Méta-caractères du [Scale=.95]Hoefler TextShell

	Système de gestion de fichiers
	Concept de base
	Les différents types de fichiers
	Les i-nœuds
	Le nom des fichiers
	Les chemins d'accès
	Commandes de base de manipulation de fichiers
	Notion de liens
	Notions d'utilisateur et de groupe
	Sécurité sous Unix
	Commandes pour modifier les règles
	La commande umask

	Programmation [Scale=.95]Hoefler TextShell
	Introduction à [Scale=.95]Hoefler Textbash
	Les différents Shells et leur initialisation
	Variables d'environnement
	Entrée, sortie et erreur standards
	Regroupement des commandes
	Contrôle de tâches

	Les scripts [Scale=.95]Hoefler TextShell
	Définition
	Variables et substitution
	Substitution de commandes
	Neutralisation des caractères
	Paramètres de Bash
	Lecture et affichage
	Décalage de paramètres : shift
	Commandes de test : test, []
	Branchement conditionnel : if-then-elif-else-fi
	Branchement conditionnel : case-esac
	Boucle for-do-done
	L'instruction select-do-done
	Boucle while-do-done
	Boucle until-do-done
	Fonctions Bourne Shell
	Différence entre "$@" et "$*"
	Décodage des paramètres
	Débogage de Script Shell

	Filtre programmable [Scale=.95]Hoefler Textawk
	Introduction
	Expressions régulières et commande egrep
	Commande egrep

	Filtre programmable [Scale=.95]Hoefler Textawk
	Introduction
	Variables et structure d'une ligne
	Motifs et actions
	Fonctions utilisateur
	Les structures de contrôle

