
Langage C

Préparé et présenté par

Pr S.ZITI

Pr. M. Benchrifa

Année Universitaire 2009/2010

Université Mohammed V-Agdal
Faculté des sciences de Rabat
Département d’Informatique

BRAHIM
goodprepa

http://www.goodprepa.tech

Plan
� Introduction
� Types de base, Opérateurs et Expressions
� Lecture & écriture des données
� Structures de contrôle
� Tableaux
� Pointeurs en langage C
� Fonctions
� Chaînes de caractère
� Types structures, unions et synonymes
� Fichiers

Introduction

� Préliminaire
� Un algorithme est une séquence d’opérations visant à la résolution

d’un problème en un temps fini. La conception d’un algorithme se
fait par étapes de plus en plus détaillées.

� La traduction de l’algorithme en un langage informatique et on
obtient un programme qui est défini comme une suite d’instructions
permettant de réaliser une ou plusieurs taches, de résoudre un
problème, de manipuler des données.

� Le langage de base compréhensible par un ordinateur, appelé
langage machine est constitué d’une suite de 0 et de 1.

� Plusieurs langages de programmation : structurelle (C, Pascal, …),
fonctionnelle (Lisp,…), logique (Prolog, …), scientifique (Maple,
Matlab,…), objet (C++, Java, …)

Introduction
� Historique

� En 1972, Ritchie a conçu le langage C pour développer une version
portable du système d’exploitation UNIX.

� En 1978, le duo Ritchie / Kernighan a publié la définition classique
du langage C dans le livre « The C programming language»,

� Dans les années 80, le langage C est devenu de plus en plus
populaire que ce soit dans le monde académique que celui des
professionnels (C avec des extensions particuliers)

� En 1983, l’organisme ANSI chargeait une commission de mettre
au point une définition explicite et indépendante de la machine
pour le langage C� définition de la norme ANSI-C en 1989.

Introduction
� Caractéristiques du langage C

� C est universel: permet aussi bien la programmation système que
la programmation de divers applications (scientifique, …)

� C est prés de la machine: offre des opérateurs qui sont très
proches de ceux du langage machine…

� C est de haut niveau: C est un langage structuré, typé, modulaire
et compilé

� C est portable: en respectant le standard ANSI-C, il est possible
d’utiliser le même programme source sur d’autres compilateurs.

Introduction
� Phases de la programmation
Préprocesseur: transformation purement Textuelles

Compilation : Traduit le fichier pour générer un code

en assembleur

Assemblage: transforme

le code assembleur en un

fichier binaire (*.obj)

Edition de liens: liaison

des fichiers objets et

production de

l’exécutable

Edition du fichier source

Programme objet
(.OBJ)

préprocesseur, compilation,
assemblage

Edition de liens

Programme exécutable
(.EXE)

#include <stdio.h>
#include <math.h>
…
float x ;
…
main()
{ … printf("%f",sqrt(x)) … }(.h)

Fichiers en-tête
(.h)

/* déclarations */
stdio.h

/* déclarations */

/* déclarations */
math.h

/* déclarations */

…

Bibliothèques précompilées
(.lib)

Introduction
� Composantes du langage C

� Fonctions: composée d’une ligne déclarative et un bloc
d’instructions

� Fonction main() : fonction principale et obligatoire des
programmes en C ;

� Variables : spécifiés par des identificateurs et contenant les valeurs
nécessaires pour l’exécution. Ils doivent être déclarés avant leurs
appels

� Identificateurs : Les noms des fonctions et des variables en C sont
composés d'une suite de lettres et de chiffres, plus le caractère
souligné (_). Commençant par une lettre

� Commentaires: programme plus compréhensible, \\ ou * …*\

Introduction
� Exemple de programme en C

/** *******************
Ce programme affiche le message Bonjour tout le monde et la racine carrée de 20
*** *****************/

#include <stdio.h> //fichier d’entête contenant la déclaration de la fonction printf

#include <math.h> //fichier d’entête contenant la déclaration de la fonction sqrt

int main()
{

printf(" Bonjour tout le monde\n"); /

printf(" Voici la racine carrée de 20 : %f\n",sqrt(20)); // la racine carrée de 20

return 0;
}

Type de base, opérateurs et expressions

� Types simples
� Types entiers :

� 4 variantes d'entiers : caractères (char), entiers courts (short int),
entiers longs (long int) et entiers standards (int).

� Caractéristiques :

� Remarques :
� Un caractère est un nombre entier (il s'identifie à son code ASCII). un

char peut contenir une valeur entre -128 et 127 et elle peut subir les mêmes
opérations que les variables du type short, int ou long.

� Un nombre entier de type int est souvent représenté sur 1 mot machine (16
bits ou 32 bits).

� Si l'on ajoute le préfixe unsigned à l'une de ces variantes, alors on
manipule des entiers non signés :

� unsigned char : indique des valeurs entières entre 0 et 255.
� unsigned int (resp. short) : entre 0 et 65535.
� unsigned long : entre 0 et 4294967295.

Type de base, opérateurs et expressions

� Types simples
� Types réels:

� 3 types de réels :
� réels simple précision (float),
� réels double précision (double) et
� réels très grande précision (long double).

� Caractéristiques :

Type de base, opérateurs et expressions

� Déclaration des types simples
Les variableset les constantessont les données principales

manipulées par un programme.
� En C toute variable utilisée dans un programme doit auparavant avoir

été définie. Cette définition consiste à la nommer, à lui donner un type
et, éventuellement lui donner une valeur de départ (initialisation)

� Syntaxe de déclaration:
<type> <NomVar1>, <NomVar2>, …, NomVarN> ;

� Exemple en C :
� long x, y ;
� short compteur ;
� float hauteur, largeur ;
� double r ;
� char touche ;

Type de base, opérateurs et expressions

� Déclaration des types simples
� Constantes

� Entière
* Sous forme décimale: 100, 255.
* Sous forme octale: 0144, 0377.
* Sous forme hexadécimale: 0x64, 0Xff

� Réelle
* Sous forme décimale: 123.4.
* Sous forme exponentielle: 1234e-1.

� Caractère
* Sont toujours indiqués entre apostrophes ' ‘ : ’A’.

* Pour les caractères spéciaux, utiliser \: \t.
� Chaîne de caractères

* Une suite de caractères représentées entre guillemets " " : " a"
* Le caractère nul '\0' est rajoutée à toute chaîne pour indiquer sa fin.

Utilisation des suffixe U, L ou UL

Pour forcer le type

Type double; utilisation des suffixes

F ou L pour forcer le type

Opérateurs, Expressions & Instructions

� Les opérateurssont des symboles qui permettent de manipuler des
variables, c'est-à-dire effectuer des opérations.

� Le Langage C fournis plusieursopérateurs. Des opérateurs classiques
(arithmétique, relationnels, logiques), d’autres moins classiques
(manipulation de bits) ou d’opérateurs originaux d’affectation ou
d’ incrémentation.

� Uneexpressionest uncalcul qui donne unevaleur comme résultat.

� En C, les constanteset les variablessont des expressions..

� Uneexpressionpeut comporter des variableset desconstantescombinés
entre eux par des opérateurset former ainsi une expression complexe

� Toute expressionsuivie d'un point virgule devient uneinstruction.

� Une instruction en C est un ordre qui sera traduit (par la compilateur) en
un ou plusieurs instructions machine.

Opérateurs, Expressions & Instructions

� Opérateurs classiques
� Opérateur d'affectation simple =

<variable> = <expression> ;
� L'expression est évaluée puis le résultat est affecté à la variable.
� En C, le terme à gauche de l’opérateur d’affectation est appelé «

lvalue » et doit être une référence à un emplacement mémoire
dont on pourra effectivement modifier la valeur.

� Les affectations sont interprétées comme des expressions qui
retourne la valeur affectée

� Les affectations peuvent être enchaînées, l’évaluation commence
de droite vers la gauche

� Exemples :
� const int LONG = 141 ;short val, résultat ; val = LONG ;
� resultat = 45 + 5 * val;
� a=b=c=d �� a=(b=(c=d))

Opérateurs, Expressions & Instructions

� Opérateurs classiques
� Opérateur Arithmétique
� + - * /
� L'opérateur % permet d'obtenir le reste de la division entière.

� L'opérateur / retourne un quotient entier si les deux opérandes sont entiers.
Il retourne un quotient réel si l’un au moins des opérandes est un réel.

� Opérateurs logiques
&& : ET logique (and)
|| : OU logique (or)
! : négation logique (not)

� S'appliquent à des expressions booléennes (0 si faux et valeur non nulle si
vrai)

� ET retourne la valeur 1 si les deux opérandes sont non nuls, et 0 sinon.
� OU retourne la valeur 1 si au moins un des opérandes est non nul, et 0 sinon.
� Exemples

� L'expression : 32 && 40 vaut 1
� L'expression : !65.34 vaut 0

Opérateurs, Expressions & Instructions

� Opérateurs classiques
� Opérateur de comparaison
� = = , != ,<, <=, >, >=.
� Opérateursretournent la valeur 0 si la comparaison est fausseet 1

sinon
� Exemple 0 || !(32 > 12) retourne la valeur 0.

� Opérateurs de bits
� Ils travaillent sur les bits. Les opérandesdoivent être de type entier

(char, short, int, long, signés ou non).
� Opérateurs de décalage de bits

>> : décalage à droite. << : décalage à gauche.
� L'opérande gauche constitue l'objet à décaler et l'opérande droit

le nombre de bits de décalage.
� Si la quantité à décaler est signée alors le bit signe est préservée

lors d'un décalage à droite, c.-à-d. ce bit se propage de façon à
garder le signe de la donnée.

� Si la quantité est non signée, les bits laissés libres sont mis à 0.

Opérateurs, Expressions & Instructions

� Opérateurs classiques
� Opérateurs de bits
� Opérateurs de décalage de bits

� Exemple
short j,i = -32768 ; /* représ.de i : 1000 0000 0000 0000 */
j = i>>2 ; /* représ.de j : 1110 0000 0000 0000 = -8192*/
unsigned short v,u = 32768 ; /* représ.de u : 1000 0000 0000 0000 */
v = u>>2 ; /* représ.de v : 0010 0000 0000 0000 *

� Opérateur bit à bit
� & : ET logique; | : OU inclusif
� ^ : OU exclusif; ~ : complément à 1.
� Ici, les opérateurs portent sur les bits de même rang.
� Rappel :

Opérateurs, Expressions & Instructions

� Opérateurs particuliers en C
� Opérateurs d'affectation étendu

� Pour la plupart des expressions de la forme :
lvalue = lvalue OPérateur (expr2)

� Il existe une formulation équivalente utilisant un opérateur d’affectation
étendu:

lvalue OP= expr2
� Opérateurs d'affectation utilisables :

+= -= *= /= %=
<<= >>= &= ^= |=

� Exemples
a = a + b s'écrit a += b
n = n << 2 s'écrit n <<= 2

� Opérateurs d'incrémentation et de décrémentation
� <var>++; <var>--;
� ++<var>; --<var>

Opérateurs, Expressions & Instructions

� Opérateurs particuliers en C
� Opérateur séquentiel
<expr1> , <expr2>,…, <exprN>
� Exprime des calculs successifs dans une même expression
� Le type et la valeur de l'expression sont ceux du dernier opérande.
� Exemple: L'expression : x = 5 , x + 6 a pour valeur 11

� Opérateur conditionnel
<expression> ? <expr1> : <expr2>
� <expression> est évaluée. Si sa valeur est non nulle, alors la valeur de

<expr1> est retournée. Sinon, c'est la valeur de <expr2> qui est
renvoyée.

� Exemple max = a > b ? a : b
� Opérateurs sizeof

sizeof(<type>) ou sizeof(<variable>)
� Retourne le nombre d'octets occupés en mémoire par le type de

données ou la variable spécifiés.
� Exemple int x ; sizeof(x) /* retourne la valeur 2 ou 4*/

Opérateurs, Expressions & Instructions

� Priorité et associativité des opérateurs
� Lors de l'évaluation des différentes parties d'une expression, les

opérateurs respectent certaines lois de priorité et d'associativité.
� Exemples

� La multiplication a la priorité sur l'addition
� La multiplication et l'addition ont la priorité sur l'affect ation.

� Tableau des opérateurs et priorité
� La priorité est décroissante de

haut en bat dans le tableau.
� La règle d'associativité

s'applique pour tous les
opérateurs d'un même niveau
de priorité. (� pour une
associativité de gauche à droite
et  pour une associativité de
droite à gauche).

� Les parenthèses forcent la
priorité.

Opérateurs, Expressions & Instructions

� Conversion de type (cast)
� Conversion automatique
� Si un opérateur a desopérandesde différentstypes, les valeurs des

opérandes sont convertiesautomatiquementdans un typecommun.
� Règle de conversion automatique

Lors d'une opération avec :
� deux entiers: les types char et short sont convertis en int .

Ensuite, il est choisit le plus large des deux types dans l'échelle :
int, unsigned int, long, unsigned long.

� un entier et un réel : le type entier est converti dans le type du
réel.

� deux réels: il est choisit le plus largedes deux types selon
l'échelle : float, double, long double.

� Dans une affectation : le résultat est toujours converti dans le
type de la destination. Si ce type est plus faible, il peut y avoir une
perte de précision ou un résultat erroné.

Opérateurs, Expressions & Instructions

� Conversion de type (cast)
� Conversion automatique
� Conversion forcée

� Le type d'une expression peut être forcé, en utilisant l'opérateur
cast:

(<type>) <expression>

� Exemple
� Char c; c= c+1;
� char a = 49; // a = ‘1’

Lecture et écriture de données

� Écriture formatée de données : printf()
� La fonction printf permet d’afficher du texte, des valeurs de variablesou

des résultats d'expressionssur écran (sortie standard).

� Forme générale: printf("<format>", <expr1>, …, <exprN>) ;

� La partie "<format>" est une chaîne de caractères qui peut contenir du
texte, des caractères de contrôle(‘\n’ , ‘\t’ , …) et spécificateurs de
format , un pour chaque expression<expr1>, … et <exprN>.

Lecture et écriture de données

� Écriture formatée de données : printf()
� Exemples :

� La suite d'instructions :
� int a= 1234 ;
� int b = 566 ;

printf("%i plus %i est %i \n", a, b, a + b) ;
� va afficher sur l'écran :

1234plus566est 1800

� La suite d'instructions :
� char b = 'A' ; /* le code ASCII de A est 65 */

printf("Le caractère %c a le code %i \n", b, b) ;
� va afficher sur l'écran :

Le caractère A a le code 65

Lecture et écriture de données

� Lecture formatée de données : scanf()
� scanflit depuis le clavier (entrée standard). Elle fait correspondre les

caractères lus au format indiqué dans la chaîne de format.

� La spécification de formatspour scanf est identique à celle de printf ,
sauf qu'au lieu de fournir comme arguments des variables à scanf, ce
sont les adresses de ces variables que l'on transmet.

� L' adresse d'une variable est indiquée par le nom de la variable
précédé du signe &.

� Forme générale:

scanf("<format>", <AdrVar1>, <AdrVar2>, …, <AdrVarN>)

Lecture et écriture de données

� Lecture formatée de données : scanf()
� Exemple:
� int jour , mois, annee;

scanf(" %i %i %i " , &jour , &mois, &annee) ;
� Cette instruction lit 3 entiersséparés par les espaces, tabulations ou

interlignes. Les valeurs sont attribuées respectivement aux 3
variables : jour , moiset annee.

� int i ;
� float x ;

scanf(" %d %f " , &i , &x) ;
� Si lors de l'exécution, on entre 48et 38.3e-1alors scanf affecte 48à i

et 38.3e-1à x.

Lecture et écriture de données

� Ecriture d’un caractère: putchar()
� putchar permet d’afficher un caractère sur l’écran.
� putchar(c) ; est équivalente à printf("%c", c) ;
� Forme générale:

putchar(<caractere>) ;
� Elle reçoit comme argument la valeur d'un caractère convertie en

entier.
� Exemples

� char a = 63 ;
� char b = '\n' ;

putchar('x') ; /* affiche la lettre x */
putchar(b) ; /* retour à la ligne */
putchar(65) ; /* affiche le caractère de code ASCII = 65: A */

� Remarque:
putchar retourne la valeur du caractèreécrit toujours considéré
comme un entier, ou bien la valeur -1 (EOF) en cas d'erreur.

Lecture et écriture de données

� Lecture d’un caractère: getchar()
� Permet de lire un caractèredepuis le clavier.
� c=getchar(c); est équivalente à scanf("%c",&c) ;

� Forme générale:
<Caractere> = getchar() ;

� Remarques:
� getchar retourne le caractère lu(un entier entre 0 et 255), ou bien

la valeur -1 (EOF).
� getchar lit les données depuis le clavier et fournit les données

après confirmation par la touche "entrée"

� Exemple :
� int c ;

c = getchar() ; /* attend la saisie d'un caractère au clavier */

Structures de contrôle

� Structures de choix
� Elle permettent de déterminer quelles instructions seront exécutées et

dans quel ordre.

� Branchement conditionel (if…else) :
if (expression) {bloc-instruction-1}

else {bloc-instruction-2}
� Après évaluation de l’expression, si elle est vraie, alors le 1er bloc

d'instructions est exécuté, sinon c'est le 2ème bloc qui est exécuté.
� La partie else est optionnelle, lorsque plusieurs instructions if sont

imbriquées, chaque else se rapporte au dernier if qui ne possède pas
de partie else.

� Exemple :
� If (a>10) { b=11; c=12; }

Structures de contrôle

� Structures de choix

� Branchement multiple (switch)
� On l’appelle aussi l'instruction d'aiguillage. Elle teste si une

expression entière prend une valeur parmi une suite de constantes
entières, et effectue le branchement correspondant si c'est le cas.

� Format :
switch (expression)

{

case expression_constante1 : suite d'instructions 1

case expression_constante2 : suite d'instructions 2

...

case expression_constanteN : suite d'instructions N

default : suite d'instructions

}

Structures de contrôle

� Structures de choix

� Branchement multiple (switch)
� Fonctionnement :

� Après l’évaluation de l’expression, s'il existe un énoncé case avec
une constante = expression, le contrôle est transféré à
l'instruction qui suit cet énoncé;

� sinon si l’énoncé default existe, alors le contrôle est transféré à
l'instruction qui suit l'énoncé default ;

� si la valeur de expression ne correspond à aucun énoncé case et
s'il n'y a pas d'énoncé default, alors aucune instruction n'est
exécutée.

� Attention . Lorsqu'il y a branchement réussi à un case, toutes les
instructions qui le suivent sont exécutées, jusqu'à la fin du bloc
ou jusqu'à une instruction de rupture (break).

Structures de contrôle

� Structures de choix

� Branchement multiple (switch)
� Exemple : #include <stdio.h>

main()

{ short a,b ,

char operateur ;

printf("Entrez un opérateur (+, -, * ou /) : ") ;

scanf("%c", &operateur) ;

printf("Entrez deux entiers : ") ;

scanf("%hd %hd", &a,&b) ;
switch (operateur)

{ case '+' : printf("a + b = %d\n",a+b) ; break ;

case '-' : printf("a - b = %d\n",a-b) ; break ;

case '*' : printf(" a * b = %d\n",a*b) ; break ;

case '/' : printf("a / b = %d\n",a/b) ; break ;

default : printf("opérateur inconnu\n") ;

}

return 0 ;

}

Structures de contrôle

� Structures de répétition (boucles)
� Les structures répétitives (ou Boucles) permettent de répéter une

série d’instructions tant qu’une certaine condition reste vraie.

� Les instructions while et do…while
� Les instructions while et do … while représentent un moyen

d'exécuter plusieurs fois la même série d'instructions.
� La syntaxe :

� Dans la structure while on vérifie la condition avant d’exécuter la
liste d’instructions, tandis que dans la structure do … while on
exécute la liste d’instructions avant de vérifier la condition

while (condition)
{ liste d'instructions}
while (condition)
{ liste d'instructions}

do { liste d'instructions
} while (condition);
do { liste d'instructions
} while (condition);

Structures de contrôle

� Structures de répétition (boucles)
� Les instructions while et do…while
� Exemple:

1. Code C pour imprimer les
entiers de 1 à 9.

i = 1;

while (i < 10)
{

printf("\n i = %d",i);
i++;

}

1. Code C pour imprimer les
entiers de 1 à 9.

i = 1;

while (i < 10)
{

printf("\n i = %d",i);
i++;

}

2. Code C pour contrôler la saisie au clavier
d’un entier entre 1 et 10 :

int a;

do
{
printf("\n Entrez un entier entre 1 et 10 : ");
scanf("%d",&a);

}
while ((a <= 0) || (a > 10));

2. Code C pour contrôler la saisie au clavier
d’un entier entre 1 et 10 :

int a;

do
{
printf("\n Entrez un entier entre 1 et 10 : ");
scanf("%d",&a);

}
while ((a <= 0) || (a > 10));

Structures de contrôle

� Structures de répétition (boucles)
� L’ instructions for
� permet d'exécuter plusieurs fois la même série d'instructions.
� La syntaxe de for est :

� Dans la construction de for :
� expression1 : effectue les initialisations nécessaires avant l’entrée

dans la boucle ;
� expression2: est le test de continuationde la boucle ; le test est

évalué avant l’exécution du corps de la boucle;
� expression3: est évaluée à la findu corps de la boucle.

for (expression1 ; expression2 ; expression3)
{

liste d'instructions }

for (expression1 ; expression2 ; expression3)
{

liste d'instructions }

Structures de contrôle

� Structures de répétition (boucles)
� L’ instructions for
� Remarque

� Exemple

for (expr1 ; expr2 ; expr3)
{ liste d'instruction }
for (expr1 ; expr2 ; expr3)
{ liste d'instruction }

expr1;
while (expr2)
{liste instructions;

expr3;
}

expr1;
while (expr2)
{liste instructions;

expr3;
}

��

1. Programme pour calculer la somme de 1 à 100 :

short n, total ;

for (total = 0, n = 1 ; n<101 ; n++)
total += n ;

printf("La somme des nombres de 1 à 100 est %d\n", total) ;

1. Programme pour calculer la somme de 1 à 100 :

short n, total ;

for (total = 0, n = 1 ; n<101 ; n++)
total += n ;

printf("La somme des nombres de 1 à 100 est %d\n", total) ;

Structures de contrôle

� Instructions break et continue
� L’ instructions break
� On a vu le rôle de l'instruction break; au sein d'une instruction de

branchement multiple switch.
� L'instruction break peut, plus généralement, être employée à

l'intérieur de n'importe quelle boucle (for ; while ; do …while). Elle
permet l’abandon de la structure et le passage à la première
instruction qui suit la structure.

� En cas de boucles imbriquées, break fait sortir de la boucle la plus
interne.

� Exemple
for (; ;)
{

printf("donne un nombre (0 pour sortir) : ");
scanf("%d", &n);
if (n == 0) break;
exploitation de la donnée

}

for (; ;)
{

printf("donne un nombre (0 pour sortir) : ");
scanf("%d", &n);
if (n == 0) break;
exploitation de la donnée

}

Structures de contrôle

� Instructions break et continue
� L’ instructions continue
� L'instruction continuepeut être employée à l'intérieur d’une

structure de type boucle (for ; while ; do …while).
� Elle produit l’abandon de l’itération courante et fait passer

directement à l’itération suivante d’une boucle
� L’instruction continue concerne la boucle la plus proche.
� Exemple int main()

{ int i, j ;
... //initialisation de i et j
for (; i>0 && j>0 ; i--, j--)
{

if (i == 5) continue ;
printf("i : %d et j : %d\n, i, j) ;
if (j == 5) break ;

}
return 0 ; }

int main()
{ int i, j ;

... //initialisation de i et j
for (; i>0 && j>0 ; i--, j--)
{

if (i == 5) continue ;
printf("i : %d et j : %d\n, i, j) ;
if (j == 5) break ;

}
return 0 ; }

Tableaux

� Introduction et Définition

� Tableaux à une dimension(Vecteurs)
� Déclaration ; Initialisation ; Accès ; …

� Tableaux à plusieurs dimensions
� Déclaration
� Tableaux à deux dimensions(matrices) :

� Déclaration ; Initialisation ; Accès ;…

� Exemples

� Représentation en mémoire des tableaux

� Les variables, telles que nous les avons vues, ne permettent de
stockerqu'une seule donnéeà la fois.

� Pour mémoriser et manipuler de nombreuses données (100,
1000, …), des variables distinctesseraient beaucoup trop
lourdesà gérer.

� Pour résoudre ce problème, le langage C (ainsi que les autres
langages de programmations) propose une structure de
données permettant de stocker l'ensemble de ces données dans
une "variable commune" appelée :<

Tableaux

Tableau

Définition
� On appelle tableauune variable composée de données de même type,

stockée de manière contiguë en mémoire(les unes à la suite des autres).

� La taille d’un tableau est conditionnée (ou définie) par le type et le nombre
de ces éléments :

Taille tableau (en octet) = taille du type de donnée (en octet) * le nombre des éléments

� Le type des éléments du tableau peut être :
�simple : char, int, float, double, ...

� tableau à une dimensionou tableau unidimensionnel
�tableau

� tableau à plusieurs dimensionsou tableau multidimensionnel
�Autres: Pointeurset Structures

Tableaux

Tableaux à une dimension (vecteur)
Déclaration
La déclaration d’un tableau à une dimension se fait de la façon suivante :

<Type Simple> Nom_du_Tableau [Nombre_Elements];

Type Simple : définit le type d’élément que contient le tableau (char,
int,…)

Nom_du_Tableau : est le nom que l'on décide de donner au tableau, le nom
du tableau suit les mêmes règles qu'un nom de variable.

Nombre_Elements: est une expression constante entière positive.

Exemples :
char caracteres[12] ; //Taille en octet : 1 octet * 12 = 12 octets
float reels_SP[8] ; //Taille en octet : 4 octets * 8 = 32 octet
#define N 10 //define permet d’assigner un nom à une constante
int entier[N] ; //Taille en octet : 2 octets * 10 = 20 octets
double reel_DP[2*N-5] ; //Taille en octet : 8 octets * 15 = 120 octets

Tableaux

Tableaux à une dimension
� Initialisation à la déclaration
Il est possible d’initialiser le tableau à la définition :

<Type> Tableau [Nombre_Elements] = {C1, C2, … , Cn};
Où C1, C2, .., Cn sont des constantes dont le nombre ne doit pas dépasser
le Nombre_Elements (n<=Nombre_Elements).

Si la liste de constantes ne contient pas assez de valeurs pour tous les
éléments,les éléments restantes sont initialisées à zéro.

Exemples :
char voyelles[6] = { 'a' , 'e' , 'i' , 'o' , 'u' , 'y' } ;
int Tableau_entier1[10] = {10 , 5 , 9 , -2 , 011 , 0xaf , 0XBDE};
float Tableau_reel[8] = { 1.5 , 1.5e3 , 0.7E4 };
short A[3] = {12 , 23 , 34 , 45 , 56}; //Erreur !
int Tableau_entier2[] = { 15 , -8 , 027 , 0XABDE } //Tableau de 4 éléments

Tableaux

Tableaux à une dimension (vecteur)
� Accès aux composantes d’un tableau
Pour accéder à un élément du tableau, il suffit de donner le nom du tableau, suivi

de l’indice de l’élément entre crochets :

Nom_du_Tableau[indice]

Où indice est une expression entière positive ou nulle.

Un indice est toujours positif ou nul ;
L’indice du premier élément du tableau est 0 ;
L’indice du dernier élément du tableau est égal au nombre d’éléments – 1.

Exemple :
short A[5] = {12 , 23 , 34 , 45 , 56};

A[0] donne accès au 1er élément du tableau A
int i = 4; A[i] donne accès au dernier élément du Tableau A
int j = 2; A[2*j-1] donne accès au 4ème élément de A

En revanche la plus part des compilateurs C ne font aucun contrôle sur les
indices! Ils laissent passer par exemple : A[20] = 6 ; : Accès en dehors du tableau

Tableaux

Tableaux à une dimension (vecteur)
Remarques
� Chaque élément (TAB[i]) d’un tableau (int TAB[20]) est manipulé

comme une simple variable (lvalue), on peut :

scanf("%d", &TAB[i]); TAB[i] sera initialisé par un entier saisi depuis la clavier

printf("TAB[%d] = %d ", i , TAB[i]); Le contenu de TAB[i] sera affiché sur
écran

Apparaître comme opérande d’un opérateur d’incrémentation : TAB[i]++ ou --
TAB[i]

� Pour initialiser un tableau (TAB1) par les éléments d’un autre tableau
(TAB2) :

� évitez d’écrire TAB1 = TAB2 (incorrect)
� On peut par exemple écrire :

for(i = 0 ; i < taille_tableau ; i++)
TAB1[i] = TAB2[i];

Tableaux

Tableaux à plusieurs dimensions
Déclaration
De manière similaire, on peut déclarer un tableau à plusieurs dimensions :

<Type Simple> Nom_du_Tableau [Nbre_E_1] [Nbre_E_2]…[Nbre_E_N];
• Chaque élément entre crochets désigne le nombre d’éléments dans chaque dimension ;
• Le nombre de dimension n’est pas limité.

Tableaux à deux dimensions (Matrices)
Déclaration

<Type Simple> Nom_du_Tableau [Nombre_ligne] [Nombre_colonne];

Exemple :
short T[3][4] ; //Taille en octet : 3 * 4 * 2 octets = 24 octets
La variable tableau T est une matrice. Si on considère la représentation
matricielle alors la disposition des éléments de T est :

Tableaux

Tableaux à deux dimensions (matrices)
Initialisation à la déclaration et accès aux éléments :

• Les valeurs sont affectées ligne par ligne lors de l’initialisation à la
déclaration

• Accès aux composantes se fait par : Nom_tableau[ligne][colonne].
Exemples :

float A[3][2] = { {-1.05,-1.10} , {86e-5, 87e-5} , {-12.5E4} };
int B[4][4] = { {-1 , 10 , 013 , Oxfe} , {+8 , -077} , {} , {011,-14,0XAD} };

A

B

-1.05 -1.10

86e-5 87e-5

-12.5E4 0.0

-1 10 013 0xFE

+8 -077 0 0

0 0 0 0

011 -14 0XAD 0

A[0][1] = ?

A[1][0] = ?

A[2][1] = ?

B[0][2] = ?

B[1][3] = ?

B[3][2] = ?

Tableaux

Exemple
� Saisie et affichagedes données d’un tableaux d’entiers de 20 éléments aux

maximum.

� Déterminer la plus petite valeur d’un tableau d’entiers A. Ecrire un
programme C qui remplit un tableau T de N entiers long (taille maximale :
30) et affiche ensuite la valeur et la position du minimum. Si le tableau
contient plusieurs minimum, retenir la position du premier minimum
rencontré.

� Recherche d'une valeur dans un tableau: Etant donnés un tableau de float
(taille maximale 50) et une valeur. On recherche la première occurrence de
cette valeur dans le tableau. S’il existe, on affiche sa position sinon on
affiche un message d’erreur.
� Tableau est non trié (recherche séquentielle)
� Tableau est trié (recherche dichotomique).

Tableaux

Exemple
� Saisie et affichagedes données entières d’une matrice de M ligne (20 lignes

au maximum) et N colonnes (30 colonnes au maximum). M et N sont
entrées au clavier.

� Produit de deux matrices des données réelles: En multipliant une matrice A
de M lignes (au maximum 10 ligne) et N colonnes (au maximum 15
colonnes) avec une matrice B de N lignes et P colonnes (au maximum 20
colonnes), on obtient une matrice C de M lignes et P colonnes :

La composante cij de la matrice C, placée à la ième ligne et jème colonne, se
calcule de la façon suivante :

Tableaux

Exercice (Extrait du CC version 2008/2009)
Dans cet exercice, on considérera les entiers de l’ensemble [-200,200].

Ecrire un programme C qui :

� Remplit une matrice A de M lignes et N colonnes (au maximum 30 lignes et 20
colonnes) ligne par ligne par des entiers saisis au clavier.

� Puis construit un tableau T par les éléments strictement positifs de la matrice A
parcourue colonne par colonne.

Ex : T = (14, 5, 17, 8, 11, 4, 8, 6, 4, 7)

� Ensuite trie le tableau T selon le critère suivant : tous les entiers pairs doivent être
au début du tableau et les entiers impairs à la fin (sans utiliser un tableau
intermédiaire).

Ex :

� Pour le tableau T = (14, 5, 17, 8, 11, 4, 8, 6, 4, 7)

� deviendra après le tri T = (14, 4, 6, 8, 8, 4, 11, 17, 5, 7)

� Enfin affiche le tableau T.























−−
−−−−

−−
−−

−−−−

=

13481117

574920

745485

401241214

162642

A

Tableaux

Organisation de la mémoire RAM
� Rappelons que la mémoire (RAM) est une superposition de cases mémoires ou

rangées.

� Chaque case mémoire est une suite de 8 bits (1 octets).
La lecture ou l’écriture en mémoire se fait par mot machine
(2 octets ou 4 octets).

� Chaque case mémoire est identifiée par un numéro appelé adresse.
Par convention, la première case mémoire est identifiée par
l’adresse 0, la seconde par adresse 1, …, jusqu’à 2n-1 avec n
le nombre de bits pour l’adressage.

� Souvent on est ramené à exprimer cette adresse en hexadécimal.
Une écriture plus compact proche de la représentation binaire de
l’adresse et donne une idée sur le nombre des bits d’adressage.
Dans le cas ou n = 16, on dit un adressage sur 16 bits. Dans
des machines, on peut avoir un adressage sur n = 32 bits
ou n = 64 bits.

...

..

0 8 bits

1 1 octet

2n-1

0000 =

0001 =

FFFF =

Tableaux

Représentation en mémoire d’un tableau
à une dimension

� En C, la déclaration d’un tableau T induit une réservation
automatique d’une zone mémoire contiguë (les cases
mémoire sont successives).
Cette zone mémoire sera associée à la variable tableau T
le long de l’exécution du programme.

� Dés la déclaration, on connaît la taille d’un tableau T qui est
conditionnée par le nombre N des éléments et leur type :

Taille de T en octet = N * sizeof (type)

� En C, le nom d’un tableau T (l’identificateur) est un pointeur
constant qui pointe sur le premier élément du tableau. Il
contient l’adresse du premier élément du tableau.

� Etant donnée l’adresse du premier élément du tableau
(matérialisée par le nom du tableau T), l’adresse du ième
élément de T est donnée par :

&T[i] = &T[0] + sizeof(type) * i ou
&T[i] = T + sizeof(type) * i

...

..

0 8 bits

1 1 octet

2n-1

0000 =
0001 =

FFFF =

T

Tableaux

Déclaration et représentation en mémoire d’un tableau à une
dimension

Déclaration char T[10]

Taille en mémoire 1octet * 10 = 10 octets

Adresse de début T = 0105 hexa

short T[5]

2 octets * 5 = 10 octets

T = 0108 hexa

float T[3]

4octets * 3 = 12 octets

T = 0116 hexa

...

...
...

...

0108
0109
010A
010B

T[0]

T[1]

T[2]

T[3]

T[4]

0116
T[0]

T[1]

T[2]

0117
0118
0119
011A
011B
011C
011D
011E
011F
0120
0121

010C
010D
010E
010F
0110
0111

...

...

0105 T[0]

0106 T[1]
0107 T[2]
0108 T[3]
0109 T[4]
010A T[5]
010B T[6]
010C T[7]
010D T[8]

010E T[9]

scanf("%f", &T[2])  - 2.3 ?scanf("%c", &T[6]) A

scanf("%hd", &T[3]) 274

0100 0001
0000 0001
0001 0010

Tableaux

Représentation en mémoire d’un tableau à 2 dimensions
La déclaration d’un tableau T à deux dimensions (matrice) induit la réservation de l’espace
mémoire nécessaire pour accueillir tous les éléments du tableau.
Les éléments de la matrice sont répartis en mémoire ligne
par ligne.

Par exemple, soit T un tableau défini par : char T[3][4]
Alors on a :

T[0] et &T[0][0] : adresse du 1er élément

T[1] et &T[1][0] : adresse du 1er élément de
la 2ème ligne

T[2] et &T[2][0] : adresse du 1er élément de
la 3ème ligne

T[i] et &T[i][0] : adresse du 1er élément de la ième ligne

...

..

T[0][0]

T[0][1]

T[0][2]
T[0][3]

T[1][0]

T[1][1]

T[1][2]
T[1][3]

T[2][0]
T[2][1]

T[2][2]

T[2][3]

T[0]

T[1]

T[2]

Répartition des éléments

de T en mémoire

Répartition des éléments

de T en mémoire

Tableaux

Pointeurs en langage C

� Introduction : Définition et Intérêts

� Déclaration et initialisation d’un pointeur

� Opérations élémentaires sur les pointeurs

� Applications des pointeurs
� Pointeurs et Tableaux

� Allocation dynamique de la mémoire

Définition
� Un pointeur est unevariable spéciale qui peut contenir l'adressed'une

autre variable.

� En C, chaque pointeur est limité à un type de données. Il peut contenir
l'adresse d'une variable de ce type.

� Si un pointeur P contient l'adresse d'une variable A, on dit que
'P pointe sur A'.

Pointeurs en langage C

P

A

.

.

.

...

Adresse de A

Mémoire RAM

Intérêts

� En C, l'utilisation de pointeurs estincontournable car ils sont
étroitement liésà la représentation et manipulation des tableaux

� Les principales intérêts des pointeurs résident dans la possibilité de :
� Allouer de la mémoire dynamique sur le TAS(1), ce qui permet la

gestion de structures de taille variable. Par exemple, tableau de
taille variable.

� Permettre le passage par référencepour des paramètres des
fonctions

� Réaliser des structures de données récursives(listeset arbres)

� …

(1) : Tas (ou heap) est une zone d’allocation dynamique , qui est une réserve de mémoire dans
laquelle le programme peut puiser en cours d’exécution grâce à des fonctions prédéfinies (voir suite)

Pointeurs en langage C

Déclaration et initialisation d’un pointeur
Déclaration
� Un pointeur est une variable dont la valeur est égale à l’adresse

d’une autre variable. En C, on déclare un pointeurpar
l’instruction :

type *nom_du_pointeur ;
où

� type est le type de la variable pointée,

� l’identificateur nom_du_pointeur est le nom de la variable pointeur et

� * est l’opérateur qui indiquera au compilateur que c’est un pointeur.

� Exemple : short *p ;
On dira que :

p est un pointeur sur une variable du type short, ou bien

p peut contenir l'adresse d'une variable du type short

*p est de type short, c’est l’emplacement mémoire pointépar p.

Pointeurs en langage C

Remarques :
� A la déclaration d’un pointeur p, il ne pointea priori sur aucune

variable précise: p est un pointeur non initialisé.
Toute utilisation dep devrait être précédée par une

initialisation.

� la variable pointeur est représentée en mémoire soit sur 16 bits, 32
bits ou 64 bits.

� L’interprétation de la valeur d’une variable pointeur p :
Si p pointe sur une variable de type char Alors sa valeurdonne
l’adresse de l’octet ou cette variable est stockée.
Si p pointe sur une variable de type short Alors sa valeur
donne l’adresse du premier des 2 octets où la variable est stockée
Si p pointe sur une variable de type float Alors sa valeur
donne l’adresse du premier des 4 octets où la variable est stockée

Pointeurs en langage C

Initialisation
Pour initialiser un pointeur, le langage C fournit l’opérateur unaire & .
Ainsi pour récupérer l’adressed’une variable A et la mettre dans le
pointeur P (P pointe vers A), on écrit :

Exemple 1:
short A, B, *P; /*supposons que ces variables occupent la mémoire à partir de

l’adresse 01A0 */
A = 10;
B = 50;
P = &A ; // se lit mettre dans P l’adresse de A
B = *P ; /* mettre dans B le contenu de

l’emplacement mémoire pointé par P*/
*P = 20; /*mettre la valeur 20dans

l’emplacement mémoire pointé par P*/
P = &B; // P pointe sur B

*P += 15;

P = & A

10

50

01A0

01A1

01A2

01A3

01A4

01A5
01A0

A

B

P

..

.

..

.

10

20

01A2

25

Pointeurs en langage C

Exemple 2 :

…….
float a , *p; /*supposons que ces variables sont représentées

en mémoire à partir de l’adresse 01BE*/
…….

clrscr(); // pour effacer l’écran � <conio.h>

p = &a;

printf("Entrer une valeur réelle:");
scanf("%f",p); // on saisie la valeur 1.4

printf("\nAdresse de a = %x Contenu de a = %f",p,*p);

*p += 0.4;
printf("\na = %f " , a);

…….

1.4

01BE

01CF

01C0

01C1

01C2

01C3
01BE

A

P

..

.

..

.

1.8

Entrer une valeur réelle : 1.4

Adresse de a : 01BE Contenu de a = 1.4

a = 1.8

Affichage sur Ecran

Pointeurs en langage C

Opérations élémentaires sur les pointeurs
� L'opérateur & : 'adresse de' : permet d'obtenir l'adresse d'une

variable.
� L'opérateur * : 'contenu de' : permet d'accéder au contenu d'une

adresse.
� Si un pointeur P pointe sur une variable X, alors *P peut être utilisée

partout où on peut écrire X.

� Exemple : long X=1, Y, *P Après l'instruction, P = &X ;

On a :
Y = X + 1 équivalente à Y = *P + 1
X += 2 équivalente à *P += 2
++X équivalente à ++ *P
X++ équivalente à (*P)++

Pointeurs en langage C

Opérations élémentaires sur les pointeurs (suite)
� Le seul entier qui puisse être affectéà un pointeur d'un type

quelconque P est laconstante entière 0 désignée par le symbole NULL
défini dans <stddef.h>.

On dit alors que le pointeur P pointe 'nulle part'.

� Exemple :
#include <stddef.h>
...
long *p, x , *q;
short y = 10 , *pt = &y;
p = NULL ; /* Correct */
p = 0 ; /* Correct */
x = 0 ;
p = x ; /* Incorrect ! bien que x vaille 0 */
q = &x ;
p = q ; /* Correct : p et q pointe sur des variables de même type*/
p = pt ; /* Incorrect : p et pt pointe sur des variable de type différent */

Pointeurs en langage C

�Applications des pointeurs

�Pointeurs et Tableaux

� Allocation dynamique de la mémoire

Pointeurs en langage C

Pointeurs et Tableaux
� En C, il existe une relation très étroite entre tableaux et pointeurs.

Ainsi, chaque opération avec des indices de tableaux peut aussi être
exprimée à l'aide de pointeurs.

� Comme déjà mentionné , le nom d'un tableau représente l'adresse de
son premier élément :
� Tableau à une dimension (short T[30]) :

� le nom T du tableau est un pointeur constant sur le premier élément
du tableau (du 1er entier)

� T et &T[0] contiennent l’adresse du premier élément du tableau.

� Tableau à deux dimensions(short T[20][30]) :
� le nom T est un pointeur constant sur le premier tableau (d’entiers).
� T[i] est un pointeur constant sur le premier élément du (i+1)ème

tableau.
� T et T[0] contiennent la même adresse mais leur manipulation n’est

pas la même puisqu’ils ne représentent pas le même type de pointeur.

Pointeurs en langage C

4.1 Accès aux composantes d’un tableau à une dimension par le
biais d’un pointeur

� En déclarant un tableau A de type short(short A [N]) et un pointeur P
sur des variables entière (short *P),

� L’expression P = A crée une liaisonentre le pointeur P et letableau A
en mettent dans P l’adresse du premier élément de A (de même P =
&A[0]).

� A partir du moment où P = A, la manipulation du tableau A peut se
faire par le biais du pointeur P. En effet :

p pointe sur A [0] *p désigne A [0]
p+1 pointe sur A [1] *(p+1) désigne A [1]
….
p+i pointe sur A [i] *(p+i) désigneA [i]

où i ∈ [0 , N-1]

Pointeurs en langage C

Exemple (Lecture et Affichage d'un vecteur par le biais d’un
pointeur)#include <stdio.h>

#defineN 10

void main()
{

float T[N] , *pt ;
int i ;

printf ("Entrez %d entiers\n", N) ;

pt = &T[0] ; // ou pt = T
for (i = 0 ; i<N; i++)
scanf("%f", pt+i) ; // pt+i pointe sur T[i]

printf ("\nTableau lu : \n") ;
for (i = 0 ; i<N ; i++)
printf ("%7.2f", *(pt+i)) ;
// *(pt+i) équivalente à pt[i]

}

/* Autre Solution sans déclarer la
variable i */

#include <stdio.h>
#defineN 10

void main()
{

float T[N] , *pt ;

printf ("Entrez %d entiers\n", N) ;

for (pt = T ; pt<T+N; pt++)
scanf("%f", pt) ;

printf ("\nTableau lu : \n") ;

for (pt = T ; pt<T+N; pt++)
printf ("%7.2f", *pt) ;

}

Pointeurs en langage C

Accès aux composantes d’une matrice par le biais d’un pointeur
� En déclarant une matrice A de type long(long A[M][N]) et un pointeur P sur

des variables entières (long *P),

� l‘expression P = A[0] crée une liaisonentre le pointeur P et la matrice A en
mettent dans P l’adressedu premier élément de la première lignede la
matrice A (P = &A[0][0]).

� A partir du moment où P = A[0], la manipulation de la matrice A peut se faire
par le biais du pointeur P. En effet :

p pointe sur A[0][0] et * p désigne A[0][0]
p + 1 pointe sur A[0][1] et * (p + 1) désigne A[0][1]

….
p + N pointe sur A[1][0] et * (p + N) désigne A[1][0]
p + N + 1 pointe sur A[1][1] et * (p + N + 1) désigne A[1][1]

….
p + i * N + j pointe sur A[i][j] et * (p + i * N + j) désigne A[i][j]

où i ∈ [0 , M-1] et j ∈ [0 , N-1].

Pointeurs en langage C

Exemple (Lecture et Affichage d'une matrice matérialisé par un pointeur)

#include <stdio.h>
#defineM 4
#defineN 10

void main()
{
short A[M][N] , *pt ;
int i, j ;

/* lecture de la matriceligne par ligne*/
pt = &A[0][0] ; /* ou bien pt = A[0] ; */
for (i = 0 ; i<M ; i++)
{

printf ("\t ligne n° %d\n", i+1) ;
for (j = 0 ; j<N ; j++)

scanf("%hd", pt + i * N + j) ;
}

#include <stdio.h>
#defineM 4
#defineN 10

void main()
{
short A[M][N] , *pt ;
int i, j ;

/* lecture de la matriceligne par ligne*/
pt = &A[0][0] ; /* ou bien pt = A[0] ; */
for (i = 0 ; i<M ; i++)
{

printf ("\t ligne n° %d\n", i+1) ;
for (j = 0 ; j<N ; j++)

scanf("%hd", pt + i * N + j) ;
}

/* Affichage de la matrice*/
for (i = 0 ; i<M ; i++)
{

for (j = 0 ; j<N ; j++)
printf ("%hd\t", *(pt + i * N + j)) ;

printf ("\n") ;
}

}

/* Affichage de la matrice*/
for (i = 0 ; i<M ; i++)
{

for (j = 0 ; j<N ; j++)
printf ("%hd\t", *(pt + i * N + j)) ;

printf ("\n") ;
}

}

Pointeurs en langage C

Arithmétiques des pointeurs
Affectation par un pointeur sur le même type :

� Soient P1 et P2deux pointeurs sur lemême typede données.
� L'affectation : P1 = P2; fait pointer P1 sur le même objetque P2.

Addition et soustraction d'un nombre entier :
� Si P pointe sur l'élémentA[i] d'un tableau, alors :
� P+n pointe surA[i+n] et P-n pointe surA[i-n]

Incrémentation et décrémentation d'un pointeur :
� Si P pointe sur l'élément A[i] d'un tableau, alors après l'instruction :
� P++ ; Ppointe surA[i+1]
� P += n ; Ppointe surA[i+n]
� P-- ; P pointe surA[i-1]
� P -= n ; Ppointe surA[i-n]

Comparaison de deux pointeurs :
� On peut comparer deux pointeurs de même typepar : <, >, <=, >=, == ou !=
� La comparaison de deux pointeurs qui pointent dans le même tableau est

équivalente à la comparaison des indices correspondants.

Pointeurs en langage C

Allocation dynamique

� La déclaration d'une variable tableau définit un tableau
"statique" (il possède un nombre figé d'emplacements). Il y a
donc un gaspillage d'espace mémoire en réservant toujours
l'espace maximal prévisible.

� Il serait souhaitable que l'allocation de la mémoire dépend du
nombre d'éléments à saisir. Ce nombre ne sera connu qu'à
l'exécution : c'est l'allocation dynamique.

Pointeurs en langage C

Fonctions d'allocation dynamique de la mémoire
� En C, il existe principalement 3 fonctions prédéfinis pour gérer l’

allocation dynamiquement de la mémoire

� Chacune des fonctions malloc ou realloc, prend un bloc d'une taille
donnée dans l'espace mémoire libre réservé pour le programme (appelé
tasou heap) et affecte l'adresse du début de la zone à une variable
pointeur.

� S'il n'y a pas assez de mémoire libre à allouer dans le Tas, la fonction
renvoie le pointeurNULL .

Bibliothèque < stdlib.h>

char * malloc(unsigned int n) allocation d’un bloc de n octets dans le
tas.

char * realloc(char *, unsigned int n) Permet de modifier la taille d’un bloc
préalablement alloué par malloc.

void free(char *) libération d’un bloc préalablement
alloué par malloc ou realloc

Pointeurs en langage C

Fonctions malloc et free
� malloc

<pointeur> = <type> malloc(<taille>);
<type> est un type pointeur définissant le type de la variable <pointeur>
<taille> est la taille, en octets, de la zone mémoire à allouer

dynamiquement. <taille> est du type unsigned int.
Si le type unsigned int est codé sur 2 octets alors on ne peut pas réserver

plus de 216 octets = 65536 octets à la fois.
Si le type unsigned int est codé sur 4 octets alors on peut réserver

jusqu’à 232 octets = 4 Goà la fois.
La fonction malloc retourne l’adresse du premier octet de la zone

mémoire allouée. En cas d’échec, elle retourne NULL.
� free

- Si on n’a plus besoin d’un bloc de mémoire réservé dynamiquement
par malloc, alors on peut le libérer à l’aide de la fonction free.

free(<pointeur>);
- Libère le bloc de mémoire désigné par le pointeur <pointeur>

Pointeurs en langage C

Exemple(Allocation dynamique, Saisie et Affichage d’un tableau)

#include <stdio.h>
#include<stdlib.h>

int main()
{

short *pt;
int N , i;
printf("Entrez la taille N du tableau \n") ;
scanf("%d", &N) ;

pt = (short *) malloc(N * sizeof(short));
if (pt == NULL)
{

printf("Mémoire non disponible") ;
system("pause") ;

return 1;
}

#include <stdio.h>
#include<stdlib.h>

int main()
{

short *pt;
int N , i;
printf("Entrez la taille N du tableau \n") ;
scanf("%d", &N) ;

pt = (short *) malloc(N * sizeof(short));
if (pt == NULL)
{

printf("Mémoire non disponible") ;
system("pause") ;

return 1;
}

printf("Saisie du tableau : ");
for (i = 0 ; i < N; i++)

scanf("%hd", pt + i) ;

printf("Affichage du tableau ") ;
for (i= 0 ; i < N; i++)

printf("%hd\t", *(pt + i)) ;

free(pt);

return 0;
}

printf("Saisie du tableau : ");
for (i = 0 ; i < N; i++)

scanf("%hd", pt + i) ;

printf("Affichage du tableau ") ;
for (i= 0 ; i < N; i++)

printf("%hd\t", *(pt + i)) ;

free(pt);

return 0;
}

Pointeurs en langage C

Exercices

Trouvez les erreurs dans les suites d’instruction suivantes :

a) short *p , x = 34; *p = x;
*p = x est incorrect parce que le pointeur p n’est pas initialisé

b) long x = 17 , *p = x; *p = 17;
*p = x est incorrect. Pour que p pointe sur x à la déclaration, on écrit : *p = &x

c) double *q; long x = 17 , *p = &x; q = p;
q = p incorrect. q et p deux pointeurs sur des types différent

d) short x, *p; &x = p;
&x = p incorrect. &x n’est pas une variable (lvalue) et par conséquent l’expression
&x ne peut pas figurer à gauche d’une affectation.

e) char mot[10], car = ‘A’, *pc = &car ; mot = pc;
mot = pc incorrect.
mot est un pointeur constant (nom d’une variable tableau) par conséquent on ne peut
pas changer sa valeur.

Pointeurs en langage C

Exercice :

Soit les déclarations suivantes :

int A[] = { 12 , 23 , 34 , 45 , 56 , 67 , 78 , 89 , 90 } , *P ;

int B[3][4] = {{-4 , 5 ,+10 ,-3 } , {} , { 12 , 60 , 30 , -10 } } , *Pt ;

P = A ; Pt = B[0] ;

Quelles valeurs ou adresses fournissent ces expressions:

*P+2 ; *(P+2) ; &A[4]-3 ; A+3 ; P+(*P-10) ; *(P+*(P+8)-A[7]) ;

*Pt+2 ; *(Pt+2) ; B[2]+3 ; B+2 ; Pt+(*Pt+6) ; *(Pt+*(Pt+8)-2) ;

Pointeurs en langage C

Fonctions

� La programmation modulaire

� Définition, appel et déclaration d’une fonction

� Durée de vie des variables

� Passage des paramètres d’une fonction

� Fonctions récursives

Fonctions
La programmation modulaire

� Découper un programme en plusieurs parties appelées modules :
� Un module est une entité de données et d'instructionsfournissant une

solution à une partie bien définie d'un problème plus complexe.
� Un module peut faire appel à d'autres modules, leur transmettre des données

et recevoir des données en retour.
� L'ensembledes modules reliésdoit résoudre le problème global.

� Pourquoi la programmation modulaire ? :
� Un programme sur plusieurs pagesdevient difficile à comprendre et à

maîtriser.
� Il faut souvent répéter les mêmes instructionsdans le texte du programme,

ce qui entraîne un gaspillage de la mémoire.
� Un module, une fois mis au point, peut êtreréutilisé par d'autres modules ou

programmes (notion de réutilisation du code)
� Un module peut être changéou remplacé sans devoir toucheraux autres

modulesdu programme.

� En C, la structuration d'un programme en sous-programmes (modules)
se fait à l'aide de fonctions.

Définition, appel et déclaration d’une fonction
Définition d'une fonction
Une fonction est définie par un entêteet un corpscontenant les instructions à

exécuter :

� La première ligne de cette définition est l'en-tête de la fonction. Dans cet en-tête,
type désigne le type de la fonction, c'est-a-dire le type de la valeur qu'elle retourne.
Une fonction qui ne renvoie pas de valeur est une fonction dont le type est spécifié
par le mot clef void.

� Les arguments de la fonction, appelés paramètres formels, peuvent être de n'importe
quel type. Enfin, si la fonction ne possède pas de paramètres, on remplace la liste de
paramètres par le mot clef void.

� Le corps de la fonction débute éventuellement par des déclarations de variables, qui
sont locales à cette fonction. Il se termine éventuellement par l'instruction de retour
à la fonction appelante, return, dont la syntaxe est return expression ;

type nom_fonction (type_1 arg_1 , ... , type_n arg_n)

{

déclarations de variables locales

liste d'instructions

}

type nom_fonction (type_1 arg_1 , ... , type_n arg_n)

{

déclarations de variables locales

liste d'instructions

}

Fonctions

� Écrire :

� une fonction, nommée affiche_bonjour, se
contentant d’afficher « Bonjour tout le monde »
(elle ne possède aucun argument ni valeur de
retour).

� Une fonction, nommée affiche_somme, qui
affiche la somme de deux entiers (short) passés
comme paramètres (elle ne possède aucune
valeur de retour).

� Une fonction, nommée produit, qui reçoit en
paramètre deux entiers (int) et retourne leur
produit (int).

� Une fonction, nommée imprime_tab, qui
affiche les éléments d’un tableau de réels
(float). Le tableau ainsi que le nombre
d’éléments du tableau sont les paramètres de la
fonction (elle ne possède aucune valeur de
retour).

� Écrire :

� une fonction, nommée affiche_bonjour, se
contentant d’afficher « Bonjour tout le monde »
(elle ne possède aucun argument ni valeur de
retour).

� Une fonction, nommée affiche_somme, qui
affiche la somme de deux entiers (short) passés
comme paramètres (elle ne possède aucune
valeur de retour).

� Une fonction, nommée produit, qui reçoit en
paramètre deux entiers (int) et retourne leur
produit (int).

� Une fonction, nommée imprime_tab, qui
affiche les éléments d’un tableau de réels
(float). Le tableau ainsi que le nombre
d’éléments du tableau sont les paramètres de la
fonction (elle ne possède aucune valeur de
retour).

void affiche_bonjour(void)

{

printf("Bonjour tout le monde \n");

}

void affiche_somme(short a, short b)

{

printf("%hd",a+b);

}

int produit(int a, int b)

{

return(a*b);

}

void imprime_tab(float tab[] , int nb_elements)

{

int i;

for (i = 0; i < nb_elements; i++)

printf("%f \t",tab[i]);

printf("\n");

}

void affiche_bonjour(void)

{

printf("Bonjour tout le monde \n");

}

void affiche_somme(short a, short b)

{

printf("%hd",a+b);

}

int produit(int a, int b)

{

return(a*b);

}

void imprime_tab(float tab[] , int nb_elements)

{

int i;

for (i = 0; i < nb_elements; i++)

printf("%f \t",tab[i]);

printf("\n");

}

Exemples :Exemples :

Fonctions

Appel d'une fonction
L'appel d'une fonction se fait par l'expression :

� L'ordre et letype desparamètres effectifsde la fonctiondoivent concorder
avec ceux donnés dans l'en-tête de la fonction.

� Les paramètres effectifspeuvent êtredes expressions.

� La virgule qui sépare deux paramètres effectifs est unsimple signe de
ponctuation ; il ne s'agit pas del'opérateur virgule. Cela implique en
particulier que l'ordre d'évaluation des paramètres effectifs n'est pas assuré
et dépend du compilateur.

nom_fonction (para_1 , para_2 , ... , para_n)nom_fonction (para_1 , para_2 , ... , para_n)

Fonctions

#include<stdio.h>
double puissance(int n, double x)
{
double p = 1.0 ; // variable locale
int i ; // variable locale
for(i = 1 ; i <= n ; i++) p *= x ; //calcul de xn

return p ; // valeur retournée
}
void main()
{
double y , z;
scanf("%lf",&z); // appel de la fonction scanf définie dans <stdio.h >
y = puissance(3, z+1.0) ; // appel de la fonction puissance
printf("(%lf+1)^3 = %lf", z , y); // appel de la f onction printf <stdio.h>

}

#include<stdio.h>
double puissance(int n, double x)
{
double p = 1.0 ; // variable locale
int i ; // variable locale
for(i = 1 ; i <= n ; i++) p *= x ; //calcul de xn

return p ; // valeur retournée
}
void main()
{
double y , z;
scanf("%lf",&z); // appel de la fonction scanf définie dans <stdio.h >
y = puissance(3, z+1.0) ; // appel de la fonction puissance
printf("(%lf+1)^3 = %lf", z , y); // appel de la f onction printf <stdio.h>

}

Exemple :Exemple :

� Écrire une fonction, nommée puissance, qui calcule et retourne la valeur
de xn (double). Elle possède comme arguments x (double) et n (int).

� Écrire un programme C qui fait appel à la fonction puissance.

� Écrire une fonction, nommée puissance, qui calcule et retourne la valeur
de xn (double). Elle possède comme arguments x (double) et n (int).

� Écrire un programme C qui fait appel à la fonction puissance.

Fonctions

Déclaration d'une fonction
� Le C n'autorise pas les fonctions imbriquées.La définition d'une fonction

secondairedoit donc être placée soit avant, soit aprèsson appel .

� Toutefois, il estindispensable que le compilateur connaisse la fonction au
moment ou celle-ci est appelée. Si une fonction est définie aprèsson premier
appel , elle doit impérativement être déclarée au préalable.

� Une fonction secondaireest déclaréepar son prototype, qui donnele type de
la fonction et celui de ses paramètres, sous la forme :

type nom_fonction(type_1 , ... , type_n);type nom_fonction(type_1 , ... , type_n);

Fonctions

#include <stdio.h>
#include <stdlib.h>

long puissance (int , int) ; //Prototype de la fonction puissance

void main()
{ int a = 2, b = 5;

printf("% ld\n", puissance(a , b)); //On affiche ab

system("pause");

}

long puissance (int x, int y) //Définition de la fonction puissance xy

{ int i ;
long p = 1 ;
for (i = 0 ; i < y ; i++) p*=x;
return p;

}

#include <stdio.h>
#include <stdlib.h>

long puissance (int , int) ; //Prototype de la fonction puissance

void main()
{ int a = 2, b = 5;

printf("% ld\n", puissance(a , b)); //On affiche ab

system("pause");

}

long puissance (int x, int y) //Définition de la fonction puissance xy

{ int i ;
long p = 1 ;
for (i = 0 ; i < y ; i++) p*=x;
return p;

}

Exemple :Exemple :

Fonctions

Durée de vie et Classes d’allocation des variables
Durée de vie des variables
Les variablesmanipulées dans un programme C ne sont pas toutes traitées de

la même manière. En particulier, elles n'ont pas toutes la même durée de
vie. On distingue deux catégories de variables : Variables globales et
variables locales:

1. toute variable définie à l’extérieur des fonctions, d’un fichier source, est
une variable globale: elle est connue et utilisable partout dans n’importe
quelle fonction de ce fichier (sauf si elle est masquée par une variable
locale).Elle est allouéedans la zone d’allocation statique(segment de
données).

2. toute variable définie à l’intérieur d’une fonction est une variable locale.
Elle n’est connue qu’à l’intérieur de la fonction dans laquelle elle est
définie. Son contenuest perdu d’un appel à l’autre de la fonction.Elle est
allouée dans le segment pile. Une variable localecache la variable globale
ayant même nom.

Fonctions

Affichage

i : 3 *** k : 1

i : 4 *** k : 1

k de main : 5

i : 5

Affichage

i : 3 *** k : 1

i : 4 *** k : 1

k de main : 5

i : 5

Exemple (variables locale & globale):Exemple (variables locale & globale):

#include <stdio.h>

void fct(void) //fonction prototype

int i ; //variable globale

void main ()

{ int k = 5; //variable locale à main

i = 3;

fct();

fct();

printf ("k de main : %d \n", k);

printf ("i : %d \n", i);

}

void fct(void)

{ int k = 1 //variable locale à fct

printf ("i : %d *** k : %d \n",i, k);

i++; k++;

}

#include <stdio.h>

void fct(void) //fonction prototype

int i ; //variable globale

void main ()

{ int k = 5; //variable locale à main

i = 3;

fct();

fct();

printf ("k de main : %d \n", k);

printf ("i : %d \n", i);

}

void fct(void)

{ int k = 1 //variable locale à fct

printf ("i : %d *** k : %d \n",i, k);

i++; k++;

}

Remarques :

•Il n’existe aucun lien entre la variable k
de main et la variable k de fct. Toute
modification de l’une n’a aucune
influence sur l’autre.

•On peut avoir accès et modifier la
variable i, qui est globale, à, partir de
main() et fct().

•La variable k de fct() est réinitialisée à 1
lors de chaque entrée dans fct().

Fonctions

Passage des paramètres d’une fonction
A l'appeld'unefonction avecparamètres, la valeur ou l'adressedu paramètre
effectif esttransmise au paramètre formel correspondant.

Passage par valeur :
� Si le nom d'une variable (sauf lenom d'un tableau) apparaît dans l'appel d'une

fonction, comme paramètre effectif, alors la fonction appelée reçoit la valeur de
cette variable. Cette valeur sera recopiée dans le paramètre formel
correspondant.

� Après l'appel de cette fonction, la valeur du paramètre effectif n'est pas modifiée.

Passage par adresse :
� Lorsqu'on veut qu'une fonction puisse modifier la valeur d'une variable passée

comme paramètre effectif, il faut transmettre l'adresse de cette variable.
� La fonction appelée range l'adresse transmise dans une variable pointeur et la

fonction travaille directement sur l'objet transmis.
� Un tableau est toujours passé par adresse puisque le nom d’un tableau est un

pointeur constant (c’est-à-dire une adresse).

Fonctions

#include <stdio.h>

void fct_val(int) //passage d’argument par valeur

void fct_adr(int *) //passage d’argument par adresse

void main()

{ int i = 4 ;

fct_val(i);

printf("Après passage d’argument par valeur i :

%d\n", i);

fct_adr(&i);

printf("Après passage d’argument par adresse i :

%d\n", i);

}

void fct_val (int a) { a = a + 3; }

void fct_adr (int *a) { *a = *a + 3; }

#include <stdio.h>

void fct_val(int) //passage d’argument par valeur

void fct_adr(int *) //passage d’argument par adresse

void main()

{ int i = 4 ;

fct_val(i);

printf("Après passage d’argument par valeur i :

%d\n", i);

fct_adr(&i);

printf("Après passage d’argument par adresse i :

%d\n", i);

}

void fct_val (int a) { a = a + 3; }

void fct_adr (int *a) { *a = *a + 3; }

Exemples (passage par valeur & passage par adresse):Exemples (passage par valeur & passage par adresse):

Écrire un programme C qui saisie et
affiche un tableau d’entiers en
utilisant des fonctions

#include <stdio.h>

void saisie_N(int *n)

{ printf("n (<=20) : ? ") ; scanf("%d", n); }

void saisie_T(int T[] , int n)

{int i ; for(i=0 ; i<n ; i++) scanf("%d",&T[i]);}

void affichage_T(int T[] , int n)

{int i ; for(i=0 ; i<n ; i++) printf("%d\t",T[i]);}

int main()

{ int T[20] , N;

saisie_N(&N);

saisie_T(T , N);

affichage_T(T , N);

return 0;

}

Écrire un programme C qui saisie et
affiche un tableau d’entiers en
utilisant des fonctions

#include <stdio.h>

void saisie_N(int *n)

{ printf("n (<=20) : ? ") ; scanf("%d", n); }

void saisie_T(int T[] , int n)

{int i ; for(i=0 ; i<n ; i++) scanf("%d",&T[i]);}

void affichage_T(int T[] , int n)

{int i ; for(i=0 ; i<n ; i++) printf("%d\t",T[i]);}

int main()

{ int T[20] , N;

saisie_N(&N);

saisie_T(T , N);

affichage_T(T , N);

return 0;

}

Affichage

Après passage d’argument par valeur i : 4

Après passage d’argument par adresse i : 7

Fonctions

Exemples (passage par valeur & passage
par adresse) (suite):

Exemples (passage par valeur & passage
par adresse) (suite):� Écrire un programme C qui

saisie et affiche une matrice
d’entiers courts de M ligne et N
colonne en utilisant des fonctions

#include <stdio.h>

void saisie_M_N(short * m , short *n)

{

printf("Entrer m (<=20) et n (<=30) : ? ") ;

scanf("%hd", m , n);

}

void saisie_A(short B[][30] , int m , int n)

{int i , j ;

for(i = 0 ; i < m ; i++)

for (j = 0 ; j < n ; j++)

scanf("%hd", &B[i][j]);

}

� Écrire un programme C qui
saisie et affiche une matrice
d’entiers courts de M ligne et N
colonne en utilisant des fonctions

#include <stdio.h>

void saisie_M_N(short * m , short *n)

{

printf("Entrer m (<=20) et n (<=30) : ? ") ;

scanf("%hd", m , n);

}

void saisie_A(short B[][30] , int m , int n)

{int i , j ;

for(i = 0 ; i < m ; i++)

for (j = 0 ; j < n ; j++)

scanf("%hd", &B[i][j]);

}

void affichage_A (short C[][30] , short m, short n)

{ int i , j ;

for (i = 0 ; i < m ; i++)

{

for (j = 0 ; j < n ; j++)

printf("%hd\t", C[i][j]);

printf("\n");

}

}

int main()

{ short A[20][30] , M , N;

saisie_M_N(&M , &N);

saisie_A(A , M , N);

affichage_A(A , M, N);

return 0;

}

void affichage_A (short C[][30] , short m, short n)

{ int i , j ;

for (i = 0 ; i < m ; i++)

{

for (j = 0 ; j < n ; j++)

printf("%hd\t", C[i][j]);

printf("\n");

}

}

int main()

{ short A[20][30] , M , N;

saisie_M_N(&M , &N);

saisie_A(A , M , N);

affichage_A(A , M, N);

return 0;

}

Fonctions

Fonctions récursives
� Une fonction est récursivesi elle contient dans sa définition un appel à elle-

même
� L'ordre de calcul est l'ordre inverse de l'appel de la fonction.

� Procédé pratique :Pour trouver une solution récursive d'un problème, on
cherche à le décomposeren plusieurs sous-problèmesde même type, mais de
taille inférieure. On procède de la manière suivante :

� Rechercher un cas trivial et sa solution (évaluation sans récursivité)

� Décomposerle cas général en cas plus simples eux aussi décomposables pour aboutir
au cas trivial.

Exemple : (Calcul de la factorielle d'un entier)

unsigned long fact(unsigned long n)
{

if (n == 0) return 1 ; /* test d'arrêt évitant la récursivité à l'infini */
else return n * fact(n - 1) ;

}

unsigned long fact(unsigned long n)
{

if (n == 0) return 1 ; /* test d'arrêt évitant la récursivité à l'infini */
else return n * fact(n - 1) ;

}

Fonctions

1. Ecrire une fonction récursive qui calcule xn , x un réel et n un entier
positif.

2. Ecrire une fonction récursive qui calcule la valeur du nèmeterme de la
suite de Fibonacci.

3. Ecrire une fonction récursive qui calcule le nombre de combinaison de p

sur n (). On démontre que et on

remarque que

4. Ecrire une fonction récursive qui retourne le nombre de chiffre d’un entier
positif donné.

5. Ecrire une fonction récursive qui affiche écrit à l’écran la représentation
en binaire d’un entier strictement positif donné.

1. Ecrire une fonction récursive qui calcule xn , x un réel et n un entier
positif.

2. Ecrire une fonction récursive qui calcule la valeur du nèmeterme de la
suite de Fibonacci.

3. Ecrire une fonction récursive qui calcule le nombre de combinaison de p

sur n (). On démontre que et on

remarque que

4. Ecrire une fonction récursive qui retourne le nombre de chiffre d’un entier
positif donné.

5. Ecrire une fonction récursive qui affiche écrit à l’écran la représentation
en binaire d’un entier strictement positif donné.

Exemples :Exemples :

)!(!

!

pnp

n
C p

n −
= p

n
p
n

p
n CCC 1

1
1 −
−

− +=
110 == n

nn CetC

Fonctions

Chaînes de caractères

� Définition

� Déclarations et Initialisations d’une chaîne de caractère

� Manipulations des chaînes de caractères

� Exemples

Chaînes de caractères

Définition

� En C, une chaîne de caractère est définie comme un tableau de caractère
(alphanumérique, signe de ponctuation, caractère de contrôle,…) , dont
le dernier élément vaut '\0' .

� C’est ce '\0' de fin qui est caractéristique des chaînes de caractères et
toutes les fonctions permettant d’en manipuler supposent que ce '\0' de
fin de chaîne est présent.

� Une chaîne de caractères est un tableau de caractères qui peut être
manipulé comme étant un tableau de caractères ou d'une manière
globale(sans le faire caractère par caractère) par le biais des fonctions
prédéfinies.

Déclaration et initialisation d’une chaîne de caractère

Déclaration

char NomChaine [longueur] ; /* sous forme de tableau */

Exemple :

char Nom[20] ; /* La variable Nom est une chaîne ne pouvant contenir
au plus que 19 caractères utiles */

Remarques :
� Pour mémoriserune chaîne de N caractères, on a besoinde N+1 octets.
� Les traitements classiques (copie , concaténation, comparaison,…) sur les

chaînes seront réalisées par le biais de fonctions prédéfinies.
� Le nom d'une chaîne de caractères est le représentant de l'adressedu 1er

caractère de la chaîne.

Chaînes de caractères

initialisation d’une chaîne de caractère
De mêmeque lestableaux, les chaînespeuvent être initialiséeslors
de leur définition.

Exemples :

char ch1[8] = {'B', 'o', 'n', 'j', 'o', 'u', 'r', '\0'} ;

char ch2[10] = "Bonjour" ; /* initialisation particulière aux

chaînes de caractères */

char ch3[] = "Bonjour" ;

char ch4[7] = "Bonjour" ; /* Erreur pendant l'exécution */

char ch5[6] = "Bonjour" ; /* Erreur pendant la compilation */

char *ch6 = "Bonjour" ; /* pointeur sur chaîne constante */

char jours_semaine[7][9] = {"Lundi" , "Mardi" , "Mercredi" ,

"Jeudi" , "Vendredi" , "Samedi" , "Dimanche" }

/* Tableau de chaînes : mémorise les jours de la semaine*/

Chaînes de caractères

Manipulation des chaînes de caractères
Les bibliothèques de fonctions de C contiennent une série de fonctions spéciales

pour le traitement de chaînes de caractères : stdio.h, string.h et stdlib.h.

8.3.1 Fonctions de la Bibliothèque <stdio.h> (affichage de chaînes) :

permet d’affichertous les caractères jusqu au zéro de fin de
chaîne. puts revient à la ligne en fin de l’affichage.
Exemple

char *ch = "Bonjour" ; /* ch pointe sur la chaîne constante

"Bonjour" stockée quelque part en
mémoire */

puts(ch) ; /* est équivalente à printf("%s\n", ch) ;

Affiche Bonjour */

puts : puts(char *ch) ;

à utiliser avec le spécificateur de format %s pour afficher
une chaîne de caractères.
Exemple

char ch[] = "Bonjour tout le monde" ;

printf ("%s", ch) ; // affichage normal

printf(..)

Chaînes de caractères

Manipulation des chaînes de caractères

8.3.1 Fonctions de la Bibliothèque <stdio.h> (lecture de chaînes) (suite)

Contrairement à scanf, la fonction gets permet de saisir des

chaînes de caractères contenant des espaces et des tabulations.

Exemplechar string[80] ;

printf ("Entrez un texte (nbre caractères <=79): ") ;

gets(string) ;

printf ("Le texte lu est : %s\n", string) ;

gets : gets(char *ch) ;

à utiliser avec le spécificateur de format %s pour saisir une
chaîne de caractères.

Exemple :
char lieu[25] ;

printf ("Entrez le lieu de naissance (nbre caractères <=24): ") ;

scanf("%s", lieu) ;

scanf (…)

Chaînes de caractères

8.3.2 Fonctions de la Bibliothèque <string.h> (traitement de chaînes) :

Ajoute une copiede la chaîne s2à la fin de la chaîne s1. Le
caractère final '\0' de s1est écrasépar le 1er caractèrede s2.

Exemple:

char ch1[30] = "Bonjour" , *ch2 = " tout le monde" ;

strcat(ch1, ch2) ;

printf("%s", ch1) ; //Affiche : Bonjour tout le monde

strcat
strcat(char *s1, char *s2) ;

Retourne le nombre de caractèresprésents dans la chaîne s
(sans compter ‘\0').
Exemple:
char s[] = "Bonjour";
printf ("%d", strlen(s)); //Affiche 7

strlen
int strlen(char *s) ;

Chaînes de caractères
Manipulation des chaînes de caractères

8.3.2 Fonctions de la Bibliothèque <string.h> (traitement de chaînes) :

Copiela chaîne s2dans s1y compris le caractère '\0'.

Exemple
Char s1[20], s2[10];

strcpy(s1, "Bonjour");

strcpy(s2, s1);

puts(s2); //Affiche Bonjour

strcpy
strcpy(char *s1, char *s2) ;

Comparelexicographiquement les chaînes s1et s2, et retourne
une valeur :

= 0 si s1 et s2 sont identiques

< 0 si s1 précède s2

> 0 si s1 suit s2

Exemple : char ch1[]="abc" , ch2[]="aab" ;
if (strcmp(ch1, ch2)==0) printf("identiques\n") ;

else if (strcmp(ch1, ch2)>0) printf("%s précède %s\n", ch2, ch1)

else printf("%s suit %s\n", ch2, ch1) ;

strcmp
int strcmp(char *s1, char *s2)

Chaînes de caractères

Copie au plus les n premiers caractères de la chaîne s2
dans s1. La chaîne s1 peut ne pas comporter le caractère
terminal si la longueur de s2 vaut n ou plus.

Exemple

char ch1[8] , *ch2 = "Bonjour" ;

strncpy(ch1, ch2, 3) ; ch1[3] = '\0' ;

printf ("%s\n", ch1) ; //Affiche Bon

strncpy

char *strncpy(char *s1, char *s2, int n) ;

8.3.2 Fonctions de la Bibliothèque <string.h> (traitement de chaînes) (suite)

Ici, la comparaison est effectuée sur les n premiers
caractères.

Exemple (Etant donnée deux chaînes ch1 et ch2)

if (! strncmp(ch1 , ch2 , 3))

printf("Les 3 premier caractères sont identiques\n") ;

strncmp

int strncmp(char *s1, char *s2, int n) ;

Ajoute au maximum les n premiers caractères de la chaîne
s2 à la chaîne s1.
Exemple

char ch1[20] = "Bonjour", *ch2 = " tout le monde" ;

strncat(ch1, ch2, 5) ; // ch1 : Bonjour tout

strncat

char *strncat(char *s1, char *s2, int n) ;

Chaînes de caractères

8.3.2 Fonctions de la Bibliothèque <string.h> (traitement de chaînes) (suite)

Recherche la chaîne s2 dans la chaîne s1 . Retourne
l’adresse de la première occurence de s2 dans s1 ou NULL
si s2 n’est pas trouvé dans s1.

Exemple
#include <string.h>

char *s1 = "Bonjour tout le monde" ;

char *s2 = "tout" , *pch ;

pch = strstr(s1, s2) ;

printf("La sous-chaîne est : %s\n", pch) ; //Affiche : tout le monde

strstr
char *strstr(char *s1, char *s2) ;

Identique à strchr sauf qu'elle recherche la dernière
occurrence du caractère c dans la chaîne s.

Exemple
char *ch = "Bonjour" ;

puts(strchr (ch , 'o')) ; //Affiche : onjour
puts(strrchr (ch , 'o’)) ; //Affiche : our

strrchr
char *strrchr(char *s, char c) ;

Recherche la 1ère occurrence du caractère c dans la chaîne
s. Retourne un pointeur sur cette 1ère occurrence si c'est un
caractère de s, sinon le pointeur NULL est retourné.

strchr
char *strchr(char *s, char c) ;

Chaînes de caractères

Convertissent l'entier n, représenté en base
de numération b, dans la chaîne s.

Exemple

char s[20]; int i = 28;

itoa(i , s , 2) ; // s : "11100 "

itoa(i , s , 16); // s : "1C"

itoa(i , s , 10); // s : "28"

char *itoa(int n, char *s, int b) ;

char *ltoa(long n, char *s, int b) ;

char *ultoa(unsigned long n, char *s, int b) ;

8.3.3 Fonctions de la Bibliothèque <stdlib.h> (conversion de nombres en
chaînes de caractères) :

Remarques :

• Si n est un entier négatif et b = 10, itoa et ltoa (pas ultoa) utilisent le 1er caractère
de la chaîne s pour le signe moins.

• Si succès, les fonctions itoa, ltoa etultoarenvoient un pointeursur la chaîne résultante.
Dans le cas contraire, elles retournentNULL.

Chaînes de caractères

double atof (char *s) ;

8.3.3 Fonctions de la Bibliothèque <stdlib.h> (conversion de chaînes de
caractères en nombres) :

long atol (char *s) ;

retourne la valeur numérique représentée
par la chaîne s comme un int , long int ou
double.

Exemple :
char s1[] = " -12" , s2[] = "+5e-1" ;

int x;

double y;

x = atoi(s1) ; // x : -12

y = atof(s2) ; // y : 0.5

int atoi (char *s) ;

Remarques :

• Les espaces au début de la chaîne de caractères s sont ignorés.
• La conversion s'arrête au 1er caractère non valide (c.-à-d. non convertible).
• Si aucun caractère n'est valide, les fonctions retournent zéro.

Chaînes de caractères

Exemples
Exemple 1 :
Lesquelles des chaines de caractères suivantes sont initialisées
correctement? Corrigez les déclarations fausses.

a) char a[5] = "Cinq" ; Correct

b) char b[12] = "Un deux trois" ; � char b[14] = "Un deux trois" ;

c) char c[] = "un\ndeux\ntrois\n" ; Correct

d) char d[10] = 'x' ; � char d[10] = "x" ou char d[10] ={ 'x' , '\0'}

e) char e[] = 'abcdefg' ; � char e[] = "abcdefg" ;

f) char f[4] = { 'a' , 'b' , 'c'} ; � char f[4] = { 'a' , 'b' , 'c' , '\0'} ;

g) char g[2] = { 'a' , '\0'} ; Correct

h) char i[4] = "'o'" ; Correct

Chaînes de caractères

Exemples
Exemple 2 :
Ecrire un programme C qui demande à l’utilisateur de lui fournir un
nombre entier entre 1 et 7 et qui affiche le nom du jour de la semaine
ayant le numéro indiqué(lundi pour 1, mardi pour 2, …, dimanche pour 7).

#include <stdio.h>

main()
{

char jour[7] [9]= {"Lundi" , "Mardi" , "Mercredi" , "Jeudi" , "Vendredi" , "Samedi" ,
"Dimanche" };

short i ;

do
{

printf("donner un nombre entier entre 1 et 7 : ");
scanf("%hd",&i);

}
while ((i<=0) || (i>7));

printf("le nom du jour %d de la semaine est %s ", i , jour[i-1]);
}

Chaînes de caractères

Exemples
Exemple 3 :
Ecrire un programme C qui trie un tableau de noms selon l’ordre alphabétique. Le
tableau contiendra au maximum 30 noms et chaque nom ne dépasse pas 19
caractères. La méthode de tri Utilisée est le tri par sélection.

#include <stdio.h>

void lire_noms (char [][] , int) ;

void tri_noms (char [][] , int) ;

void afficher_noms (char [][] , int) ;

main()
{

char noms[30] [20] ;
short N ;
printf("donner le nombre des noms :? ");
scanf("%hd",&N);
lire_noms (noms , N) ;
tri_noms (noms , N) ;
afficher_noms (noms , N) ;
system("pause"); return 0;

}

void lire_noms (char noms[][20] , int N)

{ int i;

for(i = 0 ; i < N ; i++)

{ printf("\nDonner le nom %d",i+1);

gets(noms[i]); }

}

void afficher_noms (char noms[][20] , int N)

{ int i;

printf("\nVoici la liste des noms triée :");

for(i = 0 ; i < N ; i++)

printf("\n%s",noms[i]);

}

Chaînes de caractères

Exemples
Exemple 3 (suite):
Ecrire un programme C qui trie un tableau de noms selon l’ordre alphabétique. Le
tableau contiendra au maximum 30 noms et chaque nom ne dépasse pas 20
caractères. La méthode de tri Utilisée est le tri par sélection.

void tri_noms (char noms[][20] , int N) //La méthode du tri par sélection

{ char ch[20]; //variable chaine intermédiaire pour effectuer l’échange

int i , j , pos_min ;

for(i = 0 ; i < N-1 ; i++)

{ pos_min = i; //le ième noms est le premier candidat

for(j = i+1 ; j < N ; j++) if(strcmp(noms[pos_min] , noms[j]) > 0)

pos_min=j;

if(pos_min != i) //Permutation pour mettre le minimum à sa position

{ strcpy(ch , noms[pos_min]); strcpy(noms[pos_min] , noms[i]);

strcpy(noms[i] , ch) ;

}

}

}

Chaînes de caractères

Types structures

� Type structure

� Déclaration d’une structure : struct

� Utilisation des structures :

� champ par champ : accès aux champs via une variable ou
par le biais d’un pointeur

� dans leur ensemble : Opérations possibles sur les structures
� Union

Type structure

� Une structure est un nouveau type de données
composé de plusieurs champs (ou membres) qui sert à
représenterun objet réel.

� Chaque champest de type quelconque : simple (entier
; réel), pointeur ou composé (tableau ; structure ; …).

� Le nom d'une structure n'est pas un nom de variable.
C'est un nom de type ou modèle de structure.

Types structures et unions

Type structure : Exemples

� Une date est un objet réel défini par : jour (entier), mois
(entier ou chaîne) et année(entier).

� Un nombre complexe est défini par sa parties réelle (réel)
et sa partie imaginaire (réel).

� Un étudiant est défini par : nom (chaîne), prénom
(chaîne), num_CIN (chaîne), code (entier), num_CNE
(entier),….

� Un article est défini par : numéro (entier), libellé
(chaine), quantité en stock (entier), prix (réel).

Types structures et unions

Déclaration d'une structure (struct)

struct nom_structure

{

type1 nom_champ1;

type2 nom_champ2;

…

typeN nom_champN;

} ;

Par l' intermédiaire du nom de la structure, on peut déclarer plusieurs
variables de ce type de structure chaque fois que c'est nécessaire.

Types structures et unions

Déclaration d'une structure (Exemples)

Exemple 1 :
Un article est défini par : numéro (entier : short), libellé (chaîne de 29 caractères),
quantité en stock (entier : short), prix (réel : float).

/* Déclaration du type structure article*/
struct article
{ short numero ; // un numéro qui identifie l’artic le

char libelle[30]; // le nom de l’article
short qte_stock; //la quantité disponible en stock de l’article
float prix; //le prix avec lequel est commercialisé l’article

} ;

/*Déclaration des variables du type structure article */

struct article art1 ; // art1 est une variable structure article
struct article art1 , art2; // art1 et art2 deux variables structure article
struct article *Pt_art; // Pt_date est une variable pointeur susceptible de pointer une variable

// structure article
struct article tab_art[30] ; // tab_art est une variable tableau de 30 éléments de type structure

// article : tableau des articles

/* Déclaration du type structure article*/
struct article
{ short numero ; // un numéro qui identifie l’artic le

char libelle[30]; // le nom de l’article
short qte_stock; //la quantité disponible en stock de l’article
float prix; //le prix avec lequel est commercialisé l’article

} ;

/*Déclaration des variables du type structure article */

struct article art1 ; // art1 est une variable structure article
struct article art1 , art2; // art1 et art2 deux variables structure article
struct article *Pt_art; // Pt_date est une variable pointeur susceptible de pointer une variable

// structure article
struct article tab_art[30] ; // tab_art est une variable tableau de 30 éléments de type structure

// article : tableau des articles

Types structures et unions

Déclaration d'une structure (Exemples)

Exemple 2 :

Un étudiant est défini par : code (entier :short) ; nom (chaîne : 29) ; prénom (chaîne :
19) ; adresse (une adresse)

Une adresse est défini par : numéro de domicile (entier : short) ; nom de la rue (
chaîne : 29) code postale (entier : short) ; nom de la ville (chaîne : 19) ; nom du pays
(chaîne : 19).

struct adresse
{

short n_domicile ; /* numéro de la maison */
char rue[30] ; /* nom de la rue */
short code_postale; // le code postale
char ville[20] ; /* nom de la ville */

char pays[20] ; /* nom du pays */
} ; // type structure adresse

/Déclaration des variables du type structure étudiant*/
struct etudiant etd1 , edt2 , // etd1 et edt2 deux variables structure étudiant

*Pt_etd , // Pt_date est une variable pointeur susceptible de pointer une structure étudiant

tab_etd[30] ; // tab_art est tableau de 30 étudiants

struct adresse
{

short n_domicile ; /* numéro de la maison */
char rue[30] ; /* nom de la rue */
short code_postale; // le code postale
char ville[20] ; /* nom de la ville */

char pays[20] ; /* nom du pays */
} ; // type structure adresse

/Déclaration des variables du type structure étudiant*/
struct etudiant etd1 , edt2 , // etd1 et edt2 deux variables structure étudiant

*Pt_etd , // Pt_date est une variable pointeur susceptible de pointer une structure étudiant

tab_etd[30] ; // tab_art est tableau de 30 étudiants

struct etudiant
{

short code ; /* code de l’étudiant */
char nom[30] ; /* nom de l’étudiant */
char prenom[20] ; // prénom de l’étudiant
struct adresse adr ; // l’adresse de l’étudiant

} ; // type structure etudiant

Types structures et unions

Utilisation de structures

Les structures peuvent être manipulées champ par champou dans leur ensemble.

Opérations sur les champs :

Accès à un champ d'une structure: variable_structure . champ_structure

Exemple :
struct article art;
/* Initialisation, depuis le clavier, des champs de la structure art */
scanf("%d %d %f",& art.numero , & art.qte_stoc, &art.prix) ;
gets(art.libelle);

/* Affichage du contenu de la structure art */
printf("Cette article a pour : \n");
printf("\tnuméro : %d \n",art.numero);
printf("\tlibellé : %s \n", art.libelle) ;
printf("\tquantité en stck : %d \n", art.qte_stock) ;
printf("\tprix : %f \n", art.prix) ;

struct article
{

short numero ;
char libelle[30];
short qte_stock;
float prix;

} ;

struct article
{

short numero ;
char libelle[30];
short qte_stock;
float prix;

} ;

L’opérateur point

Types structures et unions

Utilisation de structures :
Opérations sur les champs (suite):

Accès à un champ via un pointeur de structure:
pointeur_structure -> champ_structure

Exemple :
struct article *pt_art, art ;
pt_art = &art ;

/* Initialisation, depuis le clavier, des champs de la structure art via la variable pointeur pt_art*/
scanf("%d %d %f",&(pt_art->numero) , &(pt_art->qte_ stock), &(pt_art->prix)) ;
gets(pt_art->libelle);

/* Affichage du contenu de la structure art via la variable pointeur pt_art*/
printf("Cette article a pour : \n");
printf("\tnuméro : %d \n", pt_art->numero);
printf("\tlibellé : %s \n", pt_art->libelle) ;
printf("\tquantité en stck : %d \n", pt_art->qte_stoc k) ;
printf("\tprix : %f \n", pt_art->prix) ;

Remarque: Il y a équivalence entre
art.nom_champ , pt_art->nom_champ et
(*pt_art).nom_champ

Le symbole moins '-' suivi du
symbole supérieur '>'

struct article
{

short numero ;
char libelle[30];

short qte_stock;

float prix;

} ;

struct article
{

short numero ;
char libelle[30];

short qte_stock;

float prix;

} ;

Types structures et unions

Opérations sur les variables structures :

Initialisation à la déclaration : Il est possible d’initiation une variable structure lors de son déclaration
Exemple :

struct article art = {1, "Ecran TFT 19",12 , 2500.00} ;

Affectation simple = : Les variables structures doivent être de même type
Exemple :

struct article art1, art2 = {1, "Ecran TFT 19" ,12 , 2500.00} ;
art1 = art2 ;

/*après cette affectation la structure art1 contient les mêmes données que art2*/

Opérateur d'adresse & : L’opérateur & permet de récupérer l’adresse d’une variable structure.
Exemple :

struct article art= {1, "Ecran TFT 19" ,12 , 2500.0} , *pt_art ;
pt_art = &art ;
pt_art->qte_stck = 10; // On modifie la quantité en stock
pt_art->prix = 2000.0; //On modifie le prix : l’ar ticle est en promotion

Opérateur sizeof :L’opérateur sizeof permet de récupérer la taille d’un type ou d’une variable structure.
Exemple :

struct article art;
printf("taille en octets de la structure article : %d\n", sizeof(art)) ;

/* ou */ printf("taille en octets de la structure article : %d\n", sizeof(struct article)) ;

struct article
{

short numero ;
char libelle[30];
short qte_stock;
float prix;

} ;

struct article
{

short numero ;
char libelle[30];
short qte_stock;
float prix;

} ;

Types structures et unions

Exemple :
Ecrire un programme C qui manipule les nombres complexes : Saisie d’un nombre complexe,

Affichage d’un nombre complexe, Addition et Multiplication de deux nombres complexes.

#include <stdio.h>

#include <stdlib.h>

struct complexe{ double reelle , imaginaire ; };

void Saisir (struct complexe *);

void Afficher (struct complexe);

struct complexeSomme (struct complexe,

struct complexe);

void Multiplication (struct complexe,

struct complexe , struct complexe*);

#include <stdio.h>

#include <stdlib.h>

struct complexe{ double reelle , imaginaire ; };

void Saisir (struct complexe *);

void Afficher (struct complexe);

struct complexeSomme (struct complexe,

struct complexe);

void Multiplication (struct complexe,

struct complexe , struct complexe*);

int main()

{ struct complexex , y , z;

printf("Saisie de x : \n"); Saisir(&x); Afficher(x);

printf("Saisie de y : \n"); Saisir(&y); Afficher(y);

printf("Calcul de x+y : \n");

z=Somme(x , y);

Afficher(z);

printf("Calcul de x*y : \n");

Multiplication (x , y , &z);

Afficher (z);

system("PAUSE");

return 0;

}

int main()

{ struct complexex , y , z;

printf("Saisie de x : \n"); Saisir(&x); Afficher(x);

printf("Saisie de y : \n"); Saisir(&y); Afficher(y);

printf("Calcul de x+y : \n");

z=Somme(x , y);

Afficher(z);

printf("Calcul de x*y : \n");

Multiplication (x , y , &z);

Afficher (z);

system("PAUSE");

return 0;

}

Types structures et unions

void Saisir (struct complexe *ptr_NC)

{

printf("La partie reelle : ?"); scanf("%lf", &(ptr_NC->reelle));

printf("La partie imaginaire : ?"); scanf("%lf", &(ptr_NC->imaginaire));

}

void Afficher (struct complexe NC)

{

printf("La valeur du nombre complexe est %lf + %lf i \n", NC.reelle , NC.imaginaire);

}

struct complexe Somme (struct complexe NC1 , struct complexe NC2)

{ struct complexe NC;

NC.reelle = NC1.reelle+NC2.reelle;

NC.imaginaire = NC1.imaginaire + NC2.imaginaire;

return NC;

}

void Multiplication (struct complexe NC1 , struct complexe NC2 , struct complexe *ptr_NC)

{

ptr_NC->reelle = NC1.reelle * NC2.reelle - NC1.imaginaire * NC2.imaginaire ;

ptr_NC->imaginaire = NC1.reelle * NC2.imaginaire + NC2.reelle * NC1.imaginaire ;

}

void Saisir (struct complexe *ptr_NC)

{

printf("La partie reelle : ?"); scanf("%lf", &(ptr_NC->reelle));

printf("La partie imaginaire : ?"); scanf("%lf", &(ptr_NC->imaginaire));

}

void Afficher (struct complexe NC)

{

printf("La valeur du nombre complexe est %lf + %lf i \n", NC.reelle , NC.imaginaire);

}

struct complexe Somme (struct complexe NC1 , struct complexe NC2)

{ struct complexe NC;

NC.reelle = NC1.reelle+NC2.reelle;

NC.imaginaire = NC1.imaginaire + NC2.imaginaire;

return NC;

}

void Multiplication (struct complexe NC1 , struct complexe NC2 , struct complexe *ptr_NC)

{

ptr_NC->reelle = NC1.reelle * NC2.reelle - NC1.imaginaire * NC2.imaginaire ;

ptr_NC->imaginaire = NC1.reelle * NC2.imaginaire + NC2.reelle * NC1.imaginaire ;

}

Types structures et unions

Union
Déclaration

union nom_uion

{

type1 nom_champ1;

type2 nom_champ2;

…

typeN nom_champN;

} ;

un objet union est constitué d'un seul champ choisi parmi tous les

champs définis.

Types structures et unions

Introduction

� Le C offre la possibilité de lire et d'écrire des donnéesdans un fichier.
� Les accès à un fichier se font par l'intermédiaire d'une mémoire-tampon

(buffer), ce qui permet de réduire le nombre d'accès aux périphériques
(disque...).

� Pour pouvoir manipuler un fichier, un programme a besoin d'un certain
nombre d'informations : l'adresse de l'endroit de la mémoire-tampon où se
trouve le fichier, la position de la tête de lecture, le mode d'accès au fichier
(lecture ou écriture) ...Ces informations sont rassemblées dans une structure
dont le type, FILE * , est défini dans stdio.h. Un objet de type FILE * est
appeléflot de données(en anglais, stream).

Fichiers

Ouverture et fermeture d’un fichier

Fonction fopen
Fonction de type FILE* ouvre un fichier et lui associe un flot de données.

Syntaxe fopen("nom-de-fichier"," mode")

� Elle retourne un flot de données et si erreur elle retourne le pointeur NULL .
� Le premier argument de fopen est le nom du fichier en une chaîne de

caractères.
� Le second argument, mode, est une chaîne de caractères qui spécifie lemode

d'accès au fichier. Les spécificateurs de mode d'accès diffèrent suivant le
type de fichier considéré.

� Les fichiers textes, pour lesquels les caractères de contrôle (retour à la ligne
...) seront interprétés en tant que tels lors de la lecture et de l'écriture ;

� les fichiers binaires, pour lesquels les caractères de contrôle ne sont pas
interprétés.

Fichiers

Ouverture et fermeture d’un fichier

Fonction fopen
Modes d’accès

Fichiers

"r" ouverture d'un fichier texte en lecture

"w" ouverture d'un fichier texte en écriture

"a" ouverture d'un fichier texte en écriture à la fin

"rb" ouverture d'un fichier binaire en lecture

"wb" ouverture d'un fichier binaire en écriture

"ab" ouverture d'un fichier binaire en écriture à la fin

"r+" ouverture d'un fichier texte en lecture/écriture

"w+" ouverture d'un fichier texte en lecture/écriture

"a+" ouverture d'un fichier texte en lecture/écriture à la fin

"r+b" ouverture d'un fichier binaire en lecture/écriture

"w+b" ouverture d'un fichier binaire en lecture/écriture

"a+b" ouverture d'un fichier binaire en lecture/écriture à la fin

Ouverture et fermeture d’un fichier

Fonction fopen
Modes d’accès
� Si le mode contient la lettre r , le fichier doit exister.
� Si le mode contient la lettre w, le fichier peut ne pas exister. Dans ce cas, il

sera créé. Si le fichier existe déjà, son ancien contenu sera perdu.
� Si le mode contient la lettre a, le fichier peut ne pas exister. Dans ce cas, il

sera créé. Si le fichier existe déjà, les nouvelles données seront ajoutées à la
fin du fichier précédent.

Flots standart
Ils peuvent être utilisés en C sans les ouvrir ou de les fermer :
� stdin (standard input) : unité d'entrée (le clavier) ;
� stdout (standard output) : unité de sortie (l'écran) ;
� stderr (standard error) : unité d'affichage des messages d'erreur (l'écran).

Fichiers

Ouverture et fermeture d’un fichier

Fonction fclose
Elle permet de fermer le flot qui a été associé à un fichier par la fonction fopen.

Syntaxe fclose(flot)

� où flot est le flot de type FILE* retourné par la fonction fopen
correspondant.

� La fonction fclose retourne un entier qui vaut zéro si l'opération s'est
déroulée normalement (et une valeur non nulle en cas d'erreur).

Fichiers

Les E\S formatés

Fonction d’écriture fprintif
Analogue à printf , permet d'écrire des données dans un fichier.

Syntaxe
fprintf(flot," chaîne de contrôle", expression-1, ...,expression-n)

� où flot est le flot de données retourné par la fonction fopen. Les
spécifications de format utilisées pour la fonction fprintf sont les mêmes que
pour printf .

Fichiers

Les E\S formatés

Fonction de lecture fscanf
Analogue à scanf, permet de lire des données dans un fichier.

Syntaxe
fscanf(flot," chaîne de contrôle", argument-1,...,argument-n)

� où flot est le flot de données retourné par la fonction fopen. Les
spécifications de format utilisées pour la fonction fscanfsont les mêmes que
pour scanf.

Fichiers

Impression et lecture de caractères

� Similaires aux fonctions getcharet putchar, les fonctions fgetcet fputc
permettent respectivement de lire et d'écrire un caractèredans un fichier .

� La fonction fgetc, de type int , retourne le caractère lu dans le fichier. Elle
retourne la constante EOF lorsqu'elle détecte la fin du fichier.

Prototype : int fgetc(FILE* flot);

� où flot est le flot de type FILE* retourné par la fonction fopen. Comme pour
la fonction getchar, il est conseillé de déclarer de type int la variable destinée
à recevoir la valeur de retour de fgetcpour pouvoir détecter correctement la
fin de fichier.

Fichiers

Impression et lecture de caractères

La fonction fputc écrit caracteredans le flot de données :

Prototype int fputc(int caractere, FILE * flot)
� Elle retourne l'entier correspondant au caractère (ou la constante EOF en

cas d'erreur).

� Il existe également deux versions optimisées des fonctions fgetcet fputc qui
sont implémentées par des macros. Il s'agit respectivement de getc et putc.
Leur syntaxe est similaire à celle de fgetcet fputc :

� int getc(FILE* flot)
� int putc(int caractere, FILE * flot)

Fichiers

Exemple

Fichiers

#include <stdio.h>
#include <stdlib.h>
#define ENTREE "entree.txt"
#define SORTIE "sortie.txt"
int main(void) {

FILE *f_in, *f_out; int c;
if ((f_in = fopen(ENTREE,"r")) == NULL) {

fprintf(stderr, "\nErreur: Impossible de lire le fic hier %s\n",ENTREE);
return(EXIT_FAILURE); }

if ((f_out = fopen(SORTIE,"w")) == NULL) {
fprintf(stderr, "\nErreur: Impossible d'ecrire ds le f ichier %s\n", \ SORTIE);
return(EXIT_FAILURE); }

while ((c = fgetc(f_in)) != EOF)
fputc(c, f_out);

fclose(f_in);
fclose(f_out);
return(EXIT_SUCCESS); }

Relecture d'un caractère
� Il est possible de replacer un caractère dans un flot au moyen de la fonction

ungetc:

Prototype int ungetc(int caractere, FILE * flot);

� Cette fonction place le caractère caractere(converti en unsigned char) dans
le flot flot. En particulier, si caractereest égal au dernier caractère lu dans le
flot, elle annule le déplacement provoqué par la lecture précédente.
Toutefois, ungetcpeut être utilisée avec n'importe quel caractère (sauf
EOF).

Fichiers

Exemple

sur le fichier entree.txt dont le contenu est 097023 affiche à l'écran 0.970.23

Fichiers

#include <stdio.h> #include <stdlib.h>
#define ENTREE "entree.txt"
int main(void) {
FILE *f_in; int c;
if ((f_in = fopen(ENTREE,"r")) == NULL) {

fprintf(stderr, "\nErreur: Impossible de lire le fic hier %s\n",ENTREE);
return(EXIT_FAILURE); }

while ((c = fgetc(f_in)) != EOF) {
if (c == '0')

ungetc('.',f_in);
putchar(c); }

fclose(f_in);
return(EXIT_SUCCESS); }

� Les fonctions entrées-sorties binaires
� Elle permettent de transférer des données dans un fichier sans transcodage.

Elles sont donc plus efficaces que les fonctions d‘E\S standard, mais les
fichiers produits ne sont pas portables(le codage dépend des machines).

� Elles sont utiles pour manipuler des données de grande taille ou ayant un
type composé.

Prototypes:
size_t fread(void *pointeur, size_ttaille, size_tnombre, FILE * flot);
size_t fwrite(void *pointeur, size_ttaille, size_tnombre, FILE * flot);

� où pointeurest l'adresse du début des données à transférer, taille la taille des
objets à transférer, nombreleur nombre.

� le type size_t, défini dans stddef.h, correspond au type du résultat de
l'évaluation de sizeof. Il s'agit du plus grand type entier non signé.

� La fonction fread lit les données sur le flot flot et la fonction fwrite les écrit.
Elles retournent toutes deux le nombre de données transférées.

Fichiers

� Les fonctions entrées-sorties binaires
� #include <stdio.h>

� #include <stdlib.h>

� #define NB 50

� #define F_SORTIE "sortie"

� int main(void) {

� FILE *f_in, *f_out; int *tab1, *tab2; int i;

� tab1 = (int*)malloc(NB * sizeof(int)); tab2 = (int*)malloc(NB * sizeof(int));

� for (i = 0 ; i < NB; i++) tab1[i] = i;

� if ((f_out = fopen(F_SORTIE, "w")) == NULL) {

� fprintf(stderr, "\nImpossible d'ecrire dans le fichier %s\n",F_SORTIE);

� return(EXIT_FAILURE); }

� fwrite(tab1, NB * sizeof(int), 1, f_out);

� fclose(f_out);

� if ((f_in = fopen(F_SORTIE, "r")) == NULL) {

� fprintf(stderr, "\nImpossible de lire dans le fichier %s\n",F_SORTIE);
return(EXIT_FAILURE); }

� fread(tab2, NB * sizeof(int), 1, f_in);

� fclose(f_in);

� for (i = 0 ; i < NB; i++) printf("%d\t",tab2[i]); printf("\n");

� return(EXIT_SUCCESS); }

Fichiers

Positionnement dans un fichier
� Les fonctions d‘E\S permettent d'accéder à un fichier en mode séquentiel:

les données du fichier sont lues ou écrites les unes à la suite des autres. Il est
également possible d'accéder à un fichier en mode direct, c'est-à-dire que
l'on peut se positionner à n'importe quel endroit du fichier.

� La fonction fseekpermet de se positionner à un endroit précis ;

Prototype : int fseek(FILE * flot, long deplacement, int origine);

� Où deplacementdétermine la nouvelle position en nombre d’octets par
rapport à l’origine dans le fichier, origine peut prendre trois valeurs :

� SEEK_SET(égale à 0) : début du fichier ;
� SEEK_CUR (égale à 1) : position courante ;
� SEEK_END (égale à 2) : fin du fichier.
� La fonction int rewind(FILE * flot); permet de se positionner au début du

fichier. Elle est équivalente à fseek(flot, 0, SEEK_SET);
� La fonction long ftell(FILE * flot); retourne la position courante dans le

fichier (en nombre d'octets depuis l'origine).

Fichiers

