UNIVERSITE MOHAMED PREMIER - OUJDA

Faculté Des Sciences ‘

Département De Mathématiques Et Informatique

systeme (' exploitation
|

SMI S4

Prof. Aicha Karfali

Chapitre 1:
gestion des processus

Pour exécuter les instructions d’un programme, le
orocesseur va réaliser en boucle ce gu’on appelle
e cycle fetch-decode-execute et qui consiste dans
es grandes lignes a :

— Charger l'instruction depuis la mémoire ou est stocké
le code a exécuter et dont le compteur ordinal (un
registre du processeur qui contient 'adresse de
"instruction a exécuter) donne |'adresse, puis
incrémenter le compteur (fetch) pour passer a
I"instruction suivante,

— Décoder l'instruction (decode),

— Exécuter I'instruction (execute). Pendant cette phase
le processeur peut interagir avec la mémoire pour lire
les données et écrire les résultats. Il utilise un
ensemble de registres pour stocker les données et
leurs adresses

Introduction aux processus

Ecnture des resultats

Lecture des donnees et
des instructions

Schemas simplifie d’interaction processeur-memoire

Introduction aux processus

Définition Un processus est un programme en
cours d'exécution. || possede son propre
compteur ordinal, ses registres et ses variables.

* Le processus est crée par le systeme
d'exploitation ou [|'utilisateur au moment ou
I'exécution du programme doit commencer,

* Une fois le processus terming, il est supprimé
par le systeme d'exploitation,

* Un seul programme peut nécessiter plusieurs
processus pour son exécution.

Introduction aux processus

 Un programme a une existence statique, il est
stocké sur le disque puis chargé en mémoire
afin d’étre exécuté.

e Le processus en revanche a un contact direct
avec le processeur en effet c'est |'entité
executée par le processeur

* Le systeme d'exploitation manipule deux
types de processus : ceux du systeme et ceux
des utilisateurs.

La gestion des processus

Les principales fonctionnalités du systeme d'exploitation
en matiere de gestion de processus consistent a:

* La création, suppression et interruption de processus,

* L'ordonnancement des processus an de décider d'un
ordre d'exécution équitable entre les utilisateurs tout
en privilégiant les processus du systeme,

* La synchronisation entre les processus ainsi que la
communication,

* La protection des processus d'un utilisateur contre les
actions d'un autre utilisateur

Etats d'un processus

Interruption d'un processus

* Une interruption est provoquée par un signal
genere sur occurrence d'un événement qui peut
étre interne (lié au processus) ou externe et
indépendant.

* Lorsqu'une interruption est générée, le processus
en cours d'exécution est interrompu. Il quitte le
processeur et un gestionnaire d'interruption est
chargé dans les registres du processeur et
s'execute pour traiter l'interruption.

* Dans un premier temps il est nécessaire de
connaitre quelle interruption a eu lieu.

Interruption d'un processus

* Une fois le signal de l'interruption reconnu, le
gestionnaire d'interruption accede a une table
appelée table des vecteurs d'interruptions et y

recherche |'adresse du programme associé a
executer.

* Ce programme est appelé routine d'interruption.

* Une fois l'interruption traitée, le systeme charge

un autre processus a partir de la file d'attente et
I'exécute.

Structure de lI'espace mémoire d'un
processus

adresse haute

Pile d'exécution

adresse basse =0

Le processus dans la RAM

Le contexte d'un processus

* En informatique, un contexte d'exécution
d'un processus est constitué par I'ensemble
des données utilisées par le processus en
guestion.

e C'est I'ensemble minimal de données a
sauvegarder pour permettre une interruption
de la tache a un moment donné, et une
reprise de cette exécution au point ou elle a
éte interrompue,

Le contexte.d'un processus

Le contexte d'un processus comporte les informations suivantes :

Le compteur ordinal : adresse de |la prochaine instruction a
exécuter par le processeur

Les contenus des registres généraux : ils contiennent les
résultats calculés par le processus

Les registres qui décrivent |'espace qu'il occupe en mémoire
centrale (I'adresse de début et de fin par exemple)

Le registre variable d'état qui indique I'état du processus

D'autres informations telles que la valeur de I'horloge, la
priorité du processus,

L'opération qui consiste a sauvegarder le contexte d'un
processus et a copier le contexte d'un autre processus dans
I'unité centrale s'appelle changement ou commutation de contexte

La table des processus

* C’est une structure de données qui permet au
systeme de conserver d'autres informations sur les
processus

* La table des processus contient toutes les
informations indispensables au systeme
d'exploitation pour assurer une gestion cohérente
des processus

* Elle est stockée dans |'espace mémoire du systeme
d'exploitation, ce qui signifie que les processus ne
peuvent pas y accéder

La table des processus

* Elle comporte une entrée par processus:

— des informations concernant un processus (méme
si le processus n'est pas en mémoire),

— des informations sur les fichiers qu'il manipule,

— des informations sur son occupation mémoire
(des pointeurs sur les différents segments code,
données et pile.)...

Ordonnancement de processus

* Conceptuellement, chague processus a son
processeur propre virtuel. En réalité, le vrai
processeur commute entre plusieurs processus
sous la direction d’un ordonnanceur.

* ’Ordonnanceur (scheduler) est la partie du
noyau qui s‘'occupe de 'ordonnancement des
processus

Ordonnancement de processus

Quand faut-il ordonnancer ?

* || y'a différents moments ou il est nécessaire
d'ordonnancer :
— A'la création d'un processus
— A la fin d'un processus
— Lors du blocage d'un processus
— Lors d'une interruption d'entrée / sortie

— Régulierement
* apres exécution de n instructions,
* a chaque interruption d’horloge, ...

Ordonnancement de processus

D'une facon générale, I'ordonnancement a plusieurs
objectifs :

e S’assurer que chaque processus en attente
d’exécution recoive sa part de temps processeur.

* Minimiser le temps de réponse : |'utilisateur
devant sa machine ne doit pas trop attendre

* Le processeur doit étre utilisé a 100%
* Prendre en compte des priorités.
* || faut exploiter au maximum le systeme

Environnement d'ordonnancement

Pour les systemes informatiques, on distingue 3 types
d'environnements :

 Environnement de traitements par lots dans lesquels Il n'y a
pas d'utilisateur en attente. pour améliorer les performances,
on diminue le nombre de changements de processus.

* Environnement interactif dans lequel un utilisateur interagit
avec le systeme. il faut permettre |'exécution de programmes
pas forcément interactifs et empécher un processus de
monopoliser le processeur.

* Environnement temps réel dans lequel la contrainte de temps
est tres importante. Ainsi les taches doivent pouvoir s'exécuter
qguasi immédiatement, elles ne peuvent pas se permettre
d'avoir du retard.

catégories d’algorithmes
d'ordonnancement

Dans chacun des environnements, on peut
distinguer deux catégories d’algorithmes
d'ordonnancement

* Algorithme d’Ordonnancement sans réquisition
(non préemptif): sélectionne un processus qui
continue a s'exécuter jusqu’a la fin (soit il termine
ou il se blogue sur une E/S ou en attente d’un
autre processus). Cet algorithme est inefficace:
exemple un processus qui exécute une boucle
infinie.

catéegories d’algorithmes
d'ordonnancement

* Algorithme d’'Ordonnancement avec
réquisition (préemptif) : a Chaque signal
d’horloge, il décide si le processus courant a
consomme son quantum de temps machine et
alloue éventuellement le processeur a un
autre processus

L'ordonnancement sur les systemes
de traitement par lots

L'algorithme du premier arrivé, premier servi (first

come first served)

L'ordre d’acces au processeur est réglementé suivant

I"ordre d'arrivée des processus.

Le choix d'un nouveau processus ne se fait que sur blocage
ou terminaison du processus courant.

Le processus actif occupe le processeur autant qu'il le souhaite.
Les autres processus se trouvent alors dans une file d'attente.
Lorsque le processus actif se bloque ou termine, il sera

placé a la fin de I|a file d'attente et le premier
processus de la file réquisitionne le processeur.

L'ordonnancement sur les systemes
de traitement par lots
L'algorithme du premier arrivé, premier servi
(first come first served)

* C’estun algorithme simple a comprendre et a
programmer

* Inconvénients: par exemple, certaines taches
rapides devront attendre longuement la fin
des taches précédentes.

L'ordonnancement sur les systemes
de traitement par lots

Exécution du job le plus court

e C'est un algorithme non préemptif. Il oblige a
connaitre a I'avance les temps d’exécution des
jobs (taches). Le principe est donc de donner
la priorité aux taches les plus courtes.

L'ordonnancement sur les systemes
de traitement par lots

Exécution du job le plus court

AL | cC D B
4 4

M=y
0

* Temps

Temps moyen: 1/4(tA+tC+tD+tB)=11
Avec tA=4, tC=4+4, tD=4+4+4 et tB= 4+4+4+8

Est si tous les jobs ne sont pas disponible ?
Supposons qu’on a 5 jobs A, B, C, D et E. Leurs temps d’exécution
et d'arrivé sont donnés par le tableau suivant :

L'ordonnancement sur les systemes
de traitement par lots

e Exécution du job le plus court

Processus | Temps d’exécution | Temps d’arrivage

A 3 0
B 6 1
C 4 4
D 2 6
E 1 7
Processus | Temps de séjour
A | 3-0=3
B 9-1 =8
E 10-7 =3
D 12-6 = 6
C 16-4 = 12

temps moyen = (3+8+3+6+12)/5=6,4.

L'ordonnancement sur les systemes
de traitement par lots

L'algorithme de I'exécution du temps restant suivant le plus
court

* (C'est un algorithme préemptif qui se base sur le précédent.
Son objectif est de choisir la tache dont le temps d'exécution
restant est le plus court parmi les autres

* Le temps d'exécution restant doit étre connu.

* Siune nouvelle tache est créée et que son temps d'exécution
total est plus court que le temps restant de la tache en cours,
la tache en cours est suspendue pour laisser la place au
nouveau job (préemption).

e L'avantage principal de ce principe est qu'il favorise les taches
courtes, ce qui est important sur des systemes de traitements
par lots.

L'ordonnancement sur les systemes

interactifs

L'algorithme du tourniquet (round robin, circulaire)

e Cet algorithme est ancien et tres simple. C'est
également le plus équitable (tous les processus ont la
méme priorité) et un des plus utilisés. De plus, il est

relativement simple a implémenter.

e Son principe est d'assigner un intervalle de temps
d'exécution unique (un quantum d’exécution) a

chaque processus.

E

D

C

B

A

T

Processeur

Processus suspendu

Fin

L'ordonnancement sur les systemes
interactifs

L'algorithme du tourniquet (round robin, circulaire)

* Cet algorithme alloue le processeur au processus en téte de
file (cette file contient les processus prét), pendant un
guantum de temps.

e Sile processus se bloque ou se termine avant la fin de son
qguantum, le processeur est immédiatement alloué a un
autre processus (celui en téte de file).

e Sile processus ne se termine pas au bout de son quantum,
son exécution est suspendue. Le processeur est alloué a un
autre processus (celui en téte de file) et ainsi de suite. Le
processus suspendu est inséré en queue de file.

* Les processus qui arrivent ou qui passent de I'état bloqué a
I’état prét sont insérés en queue de file.

L'ordonnancement sur les systemes
interactifs

L'algorithme du tourniquet (round robin, circulaire)

* La problématique centrale de cet algorithme est donc |la
durée de l'intervalle de temps d'exécution (quantum).

* Chaque changement de processus (changement du
contexte d'exécution appelé aussi commutation) nécessite
un certain nombre de taches administratives colteuses en
terme de temps (enregistrement et chargement des
registres, vidage et chargement du cache mémoire ...).

 Exemple: Si la commutation nécessite 1ms et le quantum
4ms
— 20% du temps processeurs perdu dans la commutation.

L'ordonnancement sur les systemes
interactifs

L'algorithme du tourniquet (round robin, circulaire)

Pour améliorer 'efficacité, on peu augmenter la durée du
guantum. Par exemple, si le qguantum dure 99 ms le temps perdu
n‘est d’'un 1%. Dans ce cas se pose le probleme de temps de
réponse.

Par exemple, si 10 processus (10 utilisateurs) en attente, le
dernier utilisateur doit attendre 1s pour pouvoir exécuter une
commande.

Probleme=réglage du quantum

— quantum trop petit: le processeur passe son temps a commuter

— quantum trop grand: augmentation du temps de réponse d’'une

commande (méme simple)

Il faut donc trouver la durée de quantum idéal en fonction de ce
temps nécessaire au changement de processus et du type de
taches que souhaite réaliser |'utilisateur. Un compromis
raisonnable semble étre un quantum d'environ 50 ms.

Ordonnancement dans le systeme
linux

Sous linuy, il existe trois politiques
d’ordonnancement :

* SCHED _FIFO : pour un processus temps réel non
préemptif

e SCHED RR : pour un processus temps reel
préemptif

e SCHED OTHER : pour un processus ordinaire
(temps partagé)

Ordonnancement dans le systeme
linux

* Les trois files accueilleront les processus préts
appartenant aux trois types.

* Les processus de la file SCHED FIFO sont plus
prioritaires que ceux de la file SCHED _RR qui
eux-méemes sont plus prioritaires que ceux de
la file SCHED OTHER

* En Linux, chaque processus se voit attribuer
une politigue d’'ordonnancement

Ordonnancement dans le systeme
linux

* Dans tous les cas, le processus possede aussi
une valeur de priorité, variant de 1 a 40. Plus
la valeur est élevée, plus la priorité est haute.

e Par défaut, un processus utilisateur a une
valeur de priorité de 20. Il est possible, pour
un processus, de modifier sa priorité, en
utilisant I'appel systeme nice(valeur), ou
valeur est un nombre compris entre -20 et 20.

Ordonnancement dans le systeme
linux

* Sila valeur est positive, on diminue d’autant la
priorité du processus. Réciproguement, si la
valeur est négative, on augmente la priorité. A
noter que seul root peut augmenter la priorité
d’un processus.

* Quel que soit sont type un processus Linux est
inséré dans la file associée a son type selon sa
priorité. A tout moment, le processus de type x le
plus prioritaire se trouve en téte de |la file du
méme type.

Ordonnancement dans le systeme

, linux

Temps réel

* La politigue d’'ordonnancement SCHED FIFO, garantit au
processus une utilisation illimitée du processeur. Il ne
sera interrompu que dans une des circonstances
suivantes :
— Le processus se blogue sur unappel systeme ou se

termine.

— Un autre processus de la classe SCHED FIFO de priorité
plus élevée est prét. Dans ce cas le processus actuel est

remplacé par celui-ci.
— Le processus libere lui-méme le processeur, en
exécutant l'appel systeme sched yield().

* Rien n’est plus prioritaire gu’un processus de la classe
SCHED_FIFO, a I'exception d’un autre processus de |a
méme classe qui possede une valeur de priorité supérieure.

Ordonnancement dans le systeme
linux

* La politique d’ordonnancement SCHED RR,
est, contrairement a la premiere, préemptive.
Chaque processus de cette classe se voit
attribuer un quantum (temps limite
d’exécution). Lorsque ce quantum sera écoulé,
le contrble sera donné a un autre processus
de méme priorité de la classe SCHED RR, s’il y
en a un, en appliquant I'algorithme du
tourniquet. A noter que le tourniquet ne se
fait qu’avec des processus de méme priorité

Ordonnancement dans le systeme
linux

e Sideux processus de la classe SCHED RR avec priorité
20 s’exécutent, ils alterneront dans le processeur. Si
entretemps apparait un processus de la méme classe,
mais de priorité 25, c’est ce dernier qui prend le
contrOle du processeur et ne le redonnera que lorsqu’il
se terminera. A moins, bien sir, que n‘apparaisse un
autre processus SCHED RR de priorité supérieure ou
égale, ou encore un processus SCHED_FIFO.

* Le quantum attribué a un processus de la classe
SCHED_RR est variable et établi selon les mémes
principes que ceux appliqués aux processus a temps
partagé, décrits a la section suivante.

Ordonnancement dans le systeme
linux

Temps partage

 Nous avons vu, a la section précédente, les deux
politiques d’'ordonnancement en temps réel offertes
par Linux. Il nous reste maintenant a voir la derniere
politique d’'ordonnancement, qui regroupe tous les
processus de la classe OTHER. Les processus de cette
classe se partagent le processeur de maniere inégale,
selon leur priorité et leur usage du processeur.

* Premierement, comme nous I'avons déja dit, chaque
processus possede une valeur de priorité qui lui est
attribuée au moment de sa création. C’est ce que nous
appellerons la prioriteé statique.

Ordonnancement dans le systeme
linux

* |nitialement, on attribue a chaque processus un
guantum dont la valeur utilise une unité de
temps qui correspond normalement a 10ms. La
valeur initiale du quantum est égale a la valeur de
priorité. Ainsi, un processus de priorité 25 aura
un quantum de 25 unités, ce qui correspond a
250 ms.

 Ce quantum est le temps alloué au processus. A
chaque 10 ms, on diminue de 1 |la valeur du
gquantum du processus en cours d’exécution dans
le processeur.

Ordonnancement dans le systeme
linux

* Chaque fois que 'ordonnanceur est appelé, une note
est attribuée a tous les processus. Cette note, comme
nous le verrons a la section suivante, dépend a la fois
de la priorité du processus et de |la valeur actuelle de
son guantum. C’est cette note qui permettra de
déterminer quel processus prendra le contrdle du
processeur.

 Eventuellement, on peut arriver 3 une situation ou tous
les processus sont dans une des deux situations
suivantes :

— Son quantum est 0. Il a écoulé tout le temps qui lui était
alloué.

— |l est bloqué. Il n’a pas nécessairement épuisé son quantum.

Ordonnancement dans le systeme

linux

e Dans ce cas, tous les quantums (y compris les
guantums des processus en attente qui ont encore une
valeur non nulle) sont réajustés selon la formule
suivante :

Quantum & Quantum /2+priorité

* Ceci a pour effet de favoriser les processus qui n’ont
pas utilisé tout le temps qui leur est alloué. En effet, un
processus qui n’a pas épuisé son quantum se retrouve
avec un nouveau quantum plus élevé que |'ancien.

* Comme nous le verrons dans la prochaine section, un processus qui
voit son quantum augmenter peut se retrouver avec une meilleure
note lorsque vient le moment de choisir un processus a
exécuter.

Ordonnancement dans le systeme

linux

Algorithme d’ordonnancement

Lorsque I'ordonnanceur est appelé, Linux attribue une note
a chaque processus prét, en utilisant la méthode suivante :

Si le processus est de la classe SCHED FIFO ou SCHED RR
Note = 1000 + priorité
Sinon
Si Quantum

Note = Quantum + Priorité
Sinon

Note =0

Ordonnancement dans le systeme
linux

* On remarquera qu’un processus membre d’une
des deux classes de temps réel aura toujours
priorité sur les autres. En effet, puisque le
guantum ne peut dépasser le double de la priorité
du processus, et que la valeur maximale de la
priorité d’un processus est 40, on n"aura jamais
une note supérieure a 120 pour un processus de |a
classe OTHER, ce qui est nettement inférieur au
minimum de 1000 pour un processus temps réel.

Ordonnancement dans le systeme
linux

 On remarquera aussi qu’'un processus qui a écoulé
tout son quantum reste en attente tant qu’il y a des
processus qui peuvent s’exécuter. Comme nous
I"avons déja dit, il ne se verra attribuer un nouveau
guantum que lorsque tous les autres processus
auront épuisé leur guantum ou seront bloqués.

* Exemple

Supposons trois processus A, B et C, tous de la classe
OTHER, et dont les priorités sont les suivantes:

Processus A B C
Priorité 20 18 10

Ordonnancement dans le systeme
linux

e Supposons gu’ils arrivent tous dans le systeme au
méme moment et qu’ils sont seuls. A et B sont des
processus qui s'interrompent pour faire des
appels systeme bloquant; alors que C ne se bloque
Jjamais.

* |nitialement, c’est évidemment le processus A qui
a la meilleure note.

Processus A B C
Note 20+20=40 18+18=36 10+10=20

Ordonnancement dans le systeme
linux

* Donc A qui est exécuté, ayant droit a 200 ms.
Supposons maintenant qu’il s’interrompt apres
160 ms pour exécuter un appel systeme
bloquant.

e Le systeme doit maintenant choisir entre B et C.
B est élu et s’exécute pendant 40 ms (lui aussi se
blogue sur un appel systeme).

* A ce moment, le processus C prend le contrdle et
utilise toutes les 100 ms qui lui sont accordées

Ordonnancement dans le systeme
linux

* On se retrouve alors dans la situation suivante : A et
B sont toujours bloqués, et C a un quantum nul. Le
systeme réalisera donc un réajustement du
guantum. Les processus se verront attribuer les
nouvelles valeurs suivantes (rappelons qu’il reste 40
ms a A et 140 ms a B) :

Processus A B C
Nouveau 4/2+20=22 14/2+18=25 0/2+10=10
quantum

Ordonnancement dans le systeme

linux

e Comme A et B sont toujours bloqués, I'ordonnanceur
choisit C pour étre exécuté a nouveau. Supposons
maintenant que A et B redeviennent préts durant ce
temps.-Dans ce cas I'ordonnanceur ne va pas
interrompe le processus C, mais il va le laisser épuiser
son quantum (100ms). De nouveau, pour choisir I'un
des processus, il faut leur affecter une note. Voici les
notes qui sont attribuées aux processus :

Processus A B C
Note 22+20=42 25+18=43 0

Ordonnancement dans le systeme
linux

* C’est donc B qui sera choisi, malgré sa priorité
statique plus basse. Il est favorisé parce qu’il a
utilisé une proportion plus petite du temps qui lui
avait été alloué.

* Un processus crée par un utilisateur de Linux est par
défaut de type SCHED OTHER. Un processus peut
changer la politique d’ordonnancement s'il
appartient a 'administrateur. Plusieurs primitives
permettent de lire ou de modifier la politique
d’ordonnancement et la priorité d’'un processus.

Synchronisation des processus

Introduction
Exposé du probleme

e Les processus en cours d’exécution sont généralement :
— Indépendants et Asynchrones

e Leur fonctionnement ne dépend pas a priori du travail réalisé par les
autres processus

 |Is peuvent a priori progresser a leur rythme sans se soucier les uns des
autres : lls pourraient s’exécuter en parallele

e Pourtant, ces processus peuvent étre en concurrence pour
I"utilisation de ressources

& Avoir besoin de se synchroniser et communiquer : dans ce
cas, ils seront au contraire dépendants les uns des autres

Introduction(suite)

* Des ressources peuvent étre accessibles par
plusieurs processus a la fois

* Des ressources ne peuvent étre accessibles que par
un seul processus a la fois: on parle de ressource
critique

* Lorsque deux ou plusieurs processus sont en
compétition pour le partage d’une ressource
critique, ont dit qu’ils sont des processus
concurrents.

e Lesinstructions du processus qui permettent
d’accéder a la ressource critique en lecture ou en
écriture forme ce qu’on appelle la section critique.

Probleme de partage des ressources

Exemple 1:

Soient pl et p2 deux processus concurrents. Chague processus
veut décrémenter une variable V dans I'espace d’adressage
qui lui est propre. Supposons la valeur initiale de chaque
variable est vO. Chaque processus exécute les instructions
suivantes (programmes Al et A2):

pl p2
Al A2
/* x dans l'espace de p1*/ /* x dans l’'espace de p2*/
1. x=V-1; 1. x=V-1;
2. V=x; 2. V=x;

alors la valeur finale de la variable V pour chaque processus est égale a
vO-1.

Probleme de partage des ressources

Exemple2

Soient p1 et p2 deux processus concurrents qui veulent
décrémenter une variable partagé V. Supposons que la
valeur initiale de V est vO. Supposons que chaque
processus exécute les instructions suivantes:

Al A2
pl p2
[* x dans l'espace de p1 */ /* x dans l'espace de p2 */
1. x=V-1; 1. x=V-1;
2. V=x; 2. V=x;

Qu’elle est la valeur finaledeV ?

Probleme de partage des ressources

Premier scénario:

Supposons que c’est le p1 qui commence
‘exécution et que I'ordonnanceur ne commute
es taches est alloue le processeur a p2 qu’apres
a fin d’exécution de l'instruction (2. V=x).

* Dans ce cas la valeur de V apres la fin du p1 est
égale a vO-1.

* Apres la fin d’exécution de p2, la valeur de V
devienne vO-2.

Probleme de partage des ressources

Deuxieme scénario:

Supposons que c’est le p1 qui commence I'exécution.
e pllitlavaleur initiale vO puis effectue l'opération x=V-1.

* Avant que p1l écrit la nouvelle valeur dans la variable V (instruction
V=x), 'ordonnanceur commute les taches et alloue le processeur a p2

e p2litlavaleurinitiale de V (soit vO) et effectue les opérations
x=V-1; et V=x. La nouvelle valeur de V devienne vO-1.

* ordonnanceur réactive le premier processus pl qui continue son
exécution au point ou il était arréte, c’est-a-dire effectue l'opération
V=x, avec la valeur de x qui est vO-1.

Les opérations des processus sont effectuées dans I'ordre suivant:
pl.1; p2.1; p2.2;pl.2.

Donc apres I'exécution des instruction dans cet

ordre, la valeur finale de'V est égale a vO-1.
(au lieu de v0-2 ce qui était attendu).

Probleme de partage des ressources
Probleme:

Acces concurrent a une variable partagée. Pour 'éviter, on doit
synchroniser les taches: s‘assurer que I'ensemble des opérations sur
cette variable (acces + mise a jour) est exécuté de maniere indivisible
(atomique). Par exemple on impose que p2 ne doit commencer son
travail gu’apres la fin d’exécution de p1.

e SjiAl et A2 sont atomiques, le résultat de I'exécution de Al et A2 ne
peut étre que celui de Al suivie de A2 ou de A2 suivide Al, a
I’exclusion de tout autre

e Ondit aussi que les séquences d’actions <1; 2 > (dans pl et p2) est
une section critique

e Une section critique est exécutée en exclusion mutuelle (un seul
processus au plus peut étre dans sa section critique a un instant
donné).

Solutions de la section critique

* Considérons n processus qui partage la méme ressources.
Le programme sous jacent a chaque processus a la
structure suivante:

Répéter
Section restante
Section critique
Jusqu' a faux

* Pendant l'exécution parallele de p1,p2,... et pn, il est
possible que plusieurs processus soient a un instant
donné entrain d’exécuter une instruction de leur section

critique.

Solutions de la section critique

e 2 grandes classes de solutions envisageables :

— Solution avec attente active : dans ce cas on integre aux codes une boucle
qui fait rien et empéche le processus d’avancer tant gu’une condition n’est
pas vérifiée

— Solutions avec blocage: dans ce cas le processus fait un appel implicite pour

accéder a une ressource partageée. Si cette ressource est disponible il le
prend sinon il se bloque en attendant sa libération.

 Les 2 classes exigent I'ajout de code de protection autour de la section
critique: Section d’entrée et Section de sortie ce qui donne:

Répéter
Section restante
Section d’entrée
Section critique
Section de sortie
jusqu’a faux

* Le processeur est un cas particulier de ressource

partagée, car la demande de son [|allocation n’est

pas faite par les processus. Mais il est allouer par
I’ordonnanceur suivant un algorithme
d’ordonnancement sans leur intervention.

Solutions de la section critique

Propriétés attendues d’une solution

1. Exclusion mutuelle : A tout instant, un processus au
plus exécute des instructions de sa section critique

2. Absence de blocage (permanent): Si plusieurs
processus attendent pour entrer en SC, et si aucun
processus n'est déja en SC, alors un des processus qui
attendent doit pouvoir entrer en SC au bout d’un
temps fini

3. Condition de progression (cad. blocage que temporaire):
Un processus qui se trouve hors de sa SC et hors du section
d’entrée ne doit pas empécher un autre processus d’entrer
dans sa SC: un processus ne doit pas ralentir un autre

Solutions de la section critique

Propriétés attendues d’une solution (suite)

4.Equité (Absence de famine): Un processus qui
est blogué a I'entrée de |la section critique
n‘attendra pas indéfiniment son tour. Pour un
processus qui veut entrer en SC, il existe une
borne supérieure au nombre de fois ou
d’autres processus exécuteront leur SC avant
lui (La valeur de la borne permet de mesurer a
quel point une solution est équitable)

Solutions avec attente active
Principe :

Un processus désirant entrer en SC attend de
facon active gu’une condition soit vérifiée.
Répéter
Section restante
Tant que (condition indique SC non libre) Faire rien
Fin tant que
<section de code critique>
Modifier condition pour refléter SC libre

Probleme : Consommation inutile de temps CPU

Solutions avec attente active

Solutions logicielles
Algorithmel

Tour une variable partagée initialisée a 1

pl
Répéter
Section restantel
Tant que tour=2 faire rien;
Section critiquel
Tour=2

Jusqu’a faux

p2
Répéter
Section restante2
Tant que tour=1 faire rien;
Section critique2
Tour=1
Jusqu’a faux

Solutions avec attente active

Solutions logicielles : Algorithme 1(suite)

* Les processus ne peuvent pas entrer tous les
deux en section critique

* Absence de blocage

* Mais Supposons que p1l est dans <section
restante> et tour=1, p2 ne peut pas entrer dans
sa section critique. Il doit attendre que p1
execute sa section critique et met tour a 2 ce qui
met en cause la condition de progression

Solutions avec attente active

Solutions logicielles : Algorithme2

pl p2

Répéter Répéter
Section restantel Section restante2
D1=vrai D2=vrai
Tant que D2 faire rien; Tant que D1 faire rien;
Section critiquel Section critique2
D1=faux D2=faux

Jusqu’a faux Jusqu’a faux

Inconvénient Blocage si D1=D2=vrai

Solutions avec attente active

Solutions logicielles :Algorithme3 [Pete rson 198 1]

On envisage alors de signaler d’abord que le
processus demande |'acces a la S.C. en affectant
un booléen, puis y entre effectivement s’il n’y a
pas de conflit d’acces, c-a-d si I'autre processus
n’a pas signalé aussi son intention d’entrer en S.C.

Solutions avec attente active

Solutions logicielles : Algorithme3(suite)

pl
Répéter
Section restantel
Dl1=vrai
Tour=2
Tant que (D2 et tour=2) faire rien;
Section critiquel
D1=faux
Jusqu’a faux

p2
Répéter
Section restante?
D2=vrai
Tour=1
Tant que (D1 et tour=1) faire rien;
Section critique2
D2=faux
Jusqu’a faux

Assure lI'exclusion mutuelle
Absence de blocage

Assure une progression d’exécution

Assure I'équité

65

Solutions avec attente active

Solution matériel
 De nombreux ordinateurs dispose d’une instruction

Nommeée test and set qui permet de Lire et écrire le

contenu d’'un mot mémoire d’'une maniere indivisible.

Cette instruction a deux opérande:
— Un registre a
— Un mot mémoire b
Procedure TS(var a,b:entier)
debut
a<b
b&l
fin

66

Solutions avec attente active

Solution matériel(suite): Algorithme4
verrou une variable partagé initialisé a 0

pl p2

Répéter Répéter

Section restantel Section restante2
TS(testl,verrou) TS(test2,verrou)

Tant que test1=1 faire Tant que test2=1 faire
TS(testl,verrou); TS(test2,verrou);
Section critiquel Section critique?2
Verrou=0 Verrou=0

Jusqu’a faux Jusqu’a faux

* Un processus qui trouve verrou=1 lorsqu’il veut
entrer.dans sa section critique effectue une
attente active

67

Solutions avec blocage

Sémaphores [Dijkstra, 1965]
e Outil général, pouvant servir a réguler d’autres
interactions de nature « Synchronisation » entre entités :

— permettre a un nombre borné (éventuellement plus grand que
1) de processus d’entrer en section critique

— Attendre qu’un nombre minimal de processus soient bloquées
avant que l'un d’eux puisse continuer (rendez-vous)

« Description

Sémaphore = structure de données (compteur + file
d’attente de processus) + interface (opérations sur la
structure de données)

Solutions avec blocage

Sémaphores (suitel)
Type semaphore=enregistrement
valeur:entier
liste_d’attente des processus
fin
P(s:semaphore):si s.valeur<=0 alors
début
<ajouter le processus a s.liste_d’attente>
<mettre le processus en attente>
fin
sinon
s.valeur=s.valeur-1
finsi

69

Solutions avec blocage

Sémaphores (suite2)
V(s:semaphore):si s.liste_d’attente non vide alors
debut

<choisir et enlever un processus de
s.liste _d’attente>

<faire passer a l'etat prét le processus
choisi>
fin
sinon
s.valeur=s.valeur+1
finsi

70

Solutions avec blocage

Sémaphores (suite3)

Les opérations P et V sur un sémaphore sont supposées étre
exécutées de maniere indivisible. Ceci signifie que, pendant qu’un
processus exécute une opération P ou V sur un sémaphore S, aucun
autre processus ne peut exécuter P ou V sur ce méme sémaphore S.

La solution au probleme de la section critique
Init(s_mut,1)
Répeter
Section restante
P(s_mut)
Section critique
V(s_mu)
Jusqu’a faux
un processus qui exécute I'opération P(S) et trouve S.valeur négative
ou nulle effectue une attente passive puisqu’il est placé en état

bloqué. Ce blocage se poursuit jusqu’a ce qu’un processus exécute V
sur le méme sémaphore et qu’il soit choisi.

Solutions avec blocage

Sémaphores (suite4)

* Les semaphore est un moyen général pour
résoudre les probleme de synchronisation

* On peut bloquer un processus sur un opération
P tant qu’une condition n’est pas réalisée.

* Sila condition est réalisé, un processus le
signhale aux autre en exécutant l'opération V, qui
réveille 'un des processus en attente

Solutions avec blocage

Sémaphores (suite5)

Exemple3

Soit p1 et p2 deux processus qui partagent un tableau d’entier.
Leur programmes sous-jacent sont les suivants:

pl p2

Section restantel Section restante?2
remplir le tableau T afficher le tableau T
suitel suite2

Si on lance I'exécution parallele de p1 et p2, on ne sait pas lequel
des processus va commencer. Par conséquent, il se peut que p2
affiche le tableau avant qu’il soit rempli par p1.

Si on veut que la partie remplir le tableau T du processus p1 soit
exécuté avant la partie afficher le tableau T de p2, il faut
synchroniser ces deux processus. Une solution parmi d’autres :
utilisation des sémaphore

Solutions avec blocage

Sémaphores (suite6)
Modification des programme sous-jacent a p1 et p2.
* soit mut un sémaphore initialisé a 0

pl p2

Section restantel Section restante?2
remplir le tableau T P(mut)

V(mut) afficher latableau T
suitel suite2

* p(mut) permet de bloquer p2 tant que p1 n’a pas encore
rempli le tableau

* Apres le remplissage du tableau, pl exécute V(mut) et
débloque le processus p2 afin d’afficher le tableau T

Solutions avec blocage

Les moniteurs

 Module comprenant
— Des données
— Des procédures d’acces (P1,..,Pn)
— Une procédure d’initialisation
— Des conditions

e Les procédures sont exécutées en exclusion mutuelle

* Une condition est une structure qui permet de
bloguer un processus « a l'intérieur » du moniteur

* Une condition ressemble aux sémaphores :
manipulée au travers d’une interface:

— Opération WAIT() indivisible
— Opération SIGNAL() indivisible

Solutions avec blocage

Soit x de type condition
* X.WAIT()

— mettre le processus appelant dans x.File
— mettre ce processus dans 'état bloqué

¢ X.SIGNAL()

Si (x.File non vide) Alors
— retirer de x.File un processus
— mettre ce processus dans |'état prét
* Contrairement a V(), SIGNAL() ne laisse pas de trace. On

peut en faire plus que nécessaire, mais attention aux
signaux de réveil « perdus », car pas mémoriseés ...

* Wait() bloque toujours le processus appelant par contre

P() n’est bloquante que si la valeur du sémaphore est
négative ou nulle

Solutions avec blocage

Schéma de moniteur

type <monitor-name> =moniteur
début

<variables partagées + déclarations des conditions >
procedure P1 (...) début

Fin
procedure P2 (...) début

Fin

procedure Pn (...) début
fin

[*initialisation*/

Début

Fin
Fin /*du moniteur*/

Solutions avec blocage

Fonctionnement d’un moniteur
* Au maximum un seul processus actif dans le moniteur

e Siun processus exécute wait() et se bloque sur une variable
de condition a l'intérieur du moniteur, il doit laisser libre
I'acces au moniteur

e Siun processus a l'intérieur du moniteur exécute signal() et
réveille un autre blogué sur une variable de condition, il
doit :

— Pour Hoare : étre bloqué jusqu’a ce que le processus réveillé
quitte le moniteur

— Pour Brinch-Hansen : quitter immédiatement le moniteur

Solutions avec blocage

La synchronisation du processus qui remplit un tableau avec celui qui
I'affiche en utilisant les moniteurs se fait de la facon suivante:

Type Synchro = moniteur
début

Var fait:booléen, tab_rempli: condition

Procedure fin_ecriture()
début

Fait=vrai

Rempli.signal

Fin

procedure début_lecture
debut

Si non (fait) alors
rempli.wait();

Fin si

Fin
[*initialisation*/
début

Fait = faux

Fin

Fin

Processus P1
Remplir_tableau T
Synchro.fin_ecriture

Processus P2
Synchro.debut_lecture
Afficher _tableau T

Exemple de synchronisation

Producteur / Consommateur

Il s’agit de synchroniser deux processus : un processus producteur
dépose un message dans un tampon et un autre appelé
consommateur le retire.

=]

O O

Producteur Consommateur

* Conditions de dépot et de retrait

— Le producteur ne peut pas déposer le message si le tampon est plein,
il doit attendre que le consommateur le vide.

— Le consommateur ne peut pas prendre le message si le tampon est
vide, il doit attendre son remplissage par le producteur

Exemple de synchronisation

* Producteur / Consommateur avec les sémaphores

e 2 Sémaphores pour la synchronisation conditionnelle:

— Si le tampon n’est pas vide, le processus type producteur
attend

— Si le tampon est vide , processus type consommateur
attend

Données partagées :
» // condition de production
 Semaphore vide Init(vide,1)

e // condition de consommation

 Semaphore plein Init(plein,0)

Exemple de synchronisation

Producteur

Répéter
Produire_message()
P(vide)
tampon=message
V(plein)

Juqu’a faux

Consommateur

Répéter
P(plein)
message=tampon
V(vide)
utiliser_message()

Juqu’a faux

Exemple de synchronisation

. Producteurs / Consommateurs avec les sémaphores
* Gestion d’un buffer de N cases (N>1)

P:plein
V:.vide

* tampon (circulaire) avec nombre borné de places

e 2 Sémaphores pour la synchronisation conditionnelle :
— Si pas de place disponible, processus type producteur attend
— Si pas de place remplie, processus type consommateur attend
 Deux sémaphores pour gérer exclusion mutuelle entre

producteurs ou entre consommateurs pour ne pas accéder a
la méme case

Données partagées

Entier N : |a taille du tampon; In :indice utilisé par les producteurs, Out:indice
utilisé par les consommateurs. In et Out sont initialisés a 0

Sémaphore plein initialisé a N, compte le nombre d’emplacements occupés.
Sémaphore vide initialisé a N, compte le nombre d’emplacements libres
Sémaphore Mutex_In initialisé a 1 assure 'lacces exclusif au tampon entre les
producteurs

Sémaphore Mutex_Out initialisé a 1 assure l'acces exclusif au tampon entre

les consommateurs

Producteur Consommateur

Répéter Répéter
Produire_objet() P(plein)
P(vide) | P(mutex_Out)

Objet=tampon|out];

P(mutex_In) Out=(Out+1) mod N

tampon[In]=objet; In=(In+1) mod N V(mutex_Out)
V(mutex_In) V(vide)
V(plein) Jugu’a faux

Juqu’a faux

Exemple de synchronisation

* Producteurs / Consommateurs avec Moniteur

Type prodcon = moniteur

debut

Var nonvide, nonplein : condition
C,in,out:entier

procedure produire(m:message)
debut

Si C=Nalors

nonplein.wait();

Fin si

tampon[in] =m

In =In +1 mod N;

C++;

nonvide.signal();

Fin

Procedure consommer(m:message)
debut

Si C=0 alors
nonvide.wait();
Fin si
m=tampon[Out]
Out=Out+1 mod N
C--;
nonplein.signal();
Fin
[*initialisation*/
début
C=0;In=0;0ut=0
Fin

Fin //fin moniteur

Exemples de synchronisation

Producteurs / Consommateurs avec Moniteur

Producteur

Répeter
Constuire_message m
Prodcon.produire(m)
Jusqu’a faux

consommateur

Répeter
Prodcon.consommer(m)
Utiliser_message m
Jusqu’a faux

Interblocage

Un systeme informatique possede un nombre fini de
ressources qui doivent étre distribuées parmi un
certain nombre de processus concurrents.

Les ressources sont groupées en plusieurs types,

Chague type peut exister en plusieurs instances
identiques. L'espace mémoire, le processeur, les
periphérigues sont des exemples de types de
ressources.

Par exemple, si un systeme a 2 processeurs, on dira
gue le type de ressource processeur possede 2
instances, et si le systeme est doté de 5 imprimantes,
on dira que le type de ressource imprimante possede
5 instances.

Dans des conditions normales de fonctionnement,
un processus ne peut utiliser une ressource qu’en
suivant la séquence suivante :

Requéte — Utilisation - Libération
La requéte : le processus fait une demande pour
utiliser la ressource. Si cette demande ne peut pas
étre satisfaite immédiatement, parce que la
ressource n’est pas disponible, le processus

demandeur se met en état attente jusqu’a ce que |la
ressource devienne libre.

Utilisation : Le processus peut exploiter le ressource.

Libération : Le processus libere la ressource qui
devient disponible pour les autres processus
éventuellement en attente.

Un ensemble de processus est dans une situation d’interblocage si
chaque processus de I'ensemble attend un événement qui ne peut
étre produit que par un autre processus de I'ensemble.

Exemple : Un systeme possede une instance unique de chacun des
deux types de ressources R1 et R2 a acces exclusif. Un processus
P1 détient l'instance de la ressource R1 et un autre processus P2
détient I'instance de la ressource R2. Pour suivre son exécution, P1
a besoin de I'instance de la ressource R2, et inversement P2 a
besoin de l'instance de |la ressource R1. Une telle situation est une

situation d’interblocage.

-
-
-
’ﬂ
-
L

R1

R2

f';
-
-
-
-
,f’
-

L'acces exclusif aux deux ressources R1 et R2 a l‘aide
des sémaphore de Dijkstra peut étre fait la facon
suivante.

S1,S2:sémaphore
Init(S1,1);init(S2,1)

Processus P1

P(S1)
P(S2)
Utiliser R1
Utiliser R2
V(S1)
V(S2)

Processus P2

P(S2)
P(S1)
Utiliser R2
Utiliser R1
V(S2)
V(S1)

Supposons qu’apres I'exécution de
P(S1) par le processus P1, le systeme
alloue le processeur a P2. Ce dernier
commence son exécution, mais apres
I’exécution de P(S2), 'ordonnanceur
I"interrompe et alloue le processeur a
P1. quand P1 exécute P(S2) il se blogue
en attendant que P2 exécute V(S2).
Quand l'ordonnanceur alloue de
nouveau le processeur a P2 il se bloque
a son tour sur P(S1)en attendant que
P1 exécute V(S1) ce qui conduit un
interblocage

conditions d’interblocage

Une situation d’interblocage peut survenir si les quatre
conditions suivantes se produisent simultanément

(Habermann) :

1. Acces exclusif : Les ressources ne peuvent étre exploitées
gue par un seul processus a la fois.

2. Attente et occupation : Les processus qui demandent de
nouvelles ressources gardent celles qu'ils ont déja acquises
et attendent |a satisfaction de leur demande

3. Pas de réquisition : Les ressources déja allouées ne peuvent
pas étre réquisitionneées.

4. Attente circulaire : Les processus en attente des ressources
déja allouées forment une chaine circulaire d'attente.

GRAPHE D’ALLOCATION DES RESSOURCES

* On peut décrire I'état d’allocation des ressources d’un
systeme en utilisant un graphe. Ce graphe est composé de N
noeuds et de A arcs.

* L'ensemble des nceuds est partitionné en deux types :
— P={P1, P2, ..., Pm} : 'ensemble de tous les processus

— R={R1, R2, ..., Rn}'ensemble de tous les types de ressources du
systeme

* Un arc allant du processus Pi vers un type de ressource Rj
est noté Pi—=>Rj; il signifie que le processus Pi a demandé
une instance du type de ressource Rj. Un arc du type de
ressourceé Rj vers un processus Pi est noté Rj—-Pi ; il signifie
gu’une instance du type de ressource Rj a été alloué au
processus Pi.

Graphiguement, on représente chaque processus Pipar
un cercle et chaque type de ressource Rj comme une
rectangle.

Puisque chaque type de ressource Rj peut posséder plus
d’une instance, on représente chaque instance comme un
point dans le rectangle.

Un arc de requéte désigne seulement le rectangle Rj,
tandis que I'arc d’affectation doit aussi désigner un des
points dans le rectangle.

Quand un processus Pi demande une instance du type de
ressource Rj, un arc de requéte est inséré dans le graphe
d’allocation des ressources.

Quand cette requéte peut étre satisfaite, I'arc de requéte
est instantanément transformé en un arc d’affectation.

Quand plus tard, le processus libere la ressource |'arc
d’affection est supprimé.

Exemple : U'état d’allocation d’un systeme est décrit par les
ensembles suivants :

 Ensemble des processus P={P1, P2, P3}
« Ensemble des ressources R={R1, R2, R3, R4}

* Ensemble des arcs A={P1->R1, P2->R3, R1->P2, R2-5P2,
R2->P1, R3—->P3}

 Le nombre d’instances par ressources est donné par ce
tableau :

Type de ressources Nombre d’instances
R1 1
R2 2
R3 2
R4 3

* Voici le graphe d’allocation des ressources associé a ce
systeme :

R1 R3

A \
// /1

v

R2

Si le graphe d’allocation contient un circuit, alors il peut
exister une situation d’interblocage. C’est le cas du Graphe
d’allocation des ressources suivant:

e Lacondition d’existence de circuit est nécessaire mais pas
suffisante. Par exemple ce graphe contient un circuit mais sans

interblocage
R1
—>
-
/1 —

e &
S
6

R2

Méthodes de traitement des interblocages

* |gnorer les interblocages (politique de I'autruche)
Exemple : le systeme Unix

* Détection des interblocages

— Laisser se produire les interblocages , ensuite tenter de les
détecter et de les supprimer.

— Si chaque ressource existe en un seul exemplaire, alors un
interblocage existe si le graphe d’allocation des ressources
contient un cycle

— L'existence d’un cycle dans le graphe d’allocation n’est pas une
CNS pour détecter les interblocages si une ressource peut
exister en plusieurs exemplaires

* Eviter dynamiqguement les interblocages en allouant les
ressources avec précaution

* Les prévenir en empéchant I'apparition des 4 conditions de
leur existence

Chapitre 2: Gestion de la mémoire

e L'exécution d'un processus demandant que le code du
programme et les données utilisées soient présents en
mémoire, cette derniere est une ressource essentielle du
systeme d'exploitation.

e La gestion de la mémoire est confiee a un allocateur qui
I'attribuera au(x) processus demandeur(s). L'objet de ce
chapitre est donc |'étude de l'allocation de la ressource
meémoire au sein d'un systeme d'exploitation

* Le terme "mémoire" fait surtout référence a la mémoire
principale, c'est a dire a la RAM, mais la gestion de celle-ci
demande la contribution de la mémoire auxiliaire (mémoire
de masse, spacieuse mais lente) et a la mémoire cache (
rapide mais de taille restreinte).

Role du gestionnaire memoire:

— Connaitre les parties libres et les parties en cours
d’utilisation de la mémoire physique.

— Allouer de la mémoire au processus qui en ont
besoin en essayant d’éviter le gaspillage

— Récupérer la mémoire libérer par la terminaison
d’un processus

— Gérer le va et vient (ou swapping) entre |la
meémoire principale et le disque lorsque Ia
meémoire principale disponible est trop petite pour
contenir tous les processus

On distingue deux modes de programmation

La monoprogrammation (cas simple)

— Un programme peut se trouver en mémoire

— Pour exécuter un second programme, on doit d’abord décharger
le 1ler programme de la mémoire puis charger le second

— Ce mode n’est plus utilisé aujourd’hui

La Miultiprogrammation

— Plusieurs programmes peuvent cohabiter en méme temps en
meémoire

— Mécanisme de protection qui empéche deux programmes
d’interférer entre eux.

— Comment organiser la mémoire le plus efficacement possible ?

— La réponse a cette question fait 'objet de la suite de ce chapitre

Les stratégies d'allocation de la mémoire

En multiprogrammation, on trouve essentiellement deux modes
d’allocation de la mémoire centrale : le mode contigu et celui
non contigu.

Selon le mode d’allocation qui est appliqué, lorsqu'un
programme est chargé en mémoire centrale a partir du disque,
le programme sera placé dans une seule zone (allocation
contigué) ou réparti entre plusieurs zones (allocation non
contigueé)..

la zone de mémoire allouée a'un programme est de taille
limitée, or tout programme est amené a augmenter de taille lors
de son exécution. En effet, des résultats sont calculés et des
variables peuvent étre créées dynamiquement.

On distingue alors des systemes qui utilisent des zones de taille
fixe et d'autres qui permettent au programme de s'étendre sur
I'espace avoisinant si celui-ci est libre.

Le mode d'allocation contigué n'est plus appliqué de nos jours,
nous n'en donnerons qu'un rapide apercu en guise d'historique.

Allocation contigué en mémoire centrale

Les partitions de taille fixe

* Alinitialisation du systeme, la mémoire est divisée en n
partitions de taille fixe, pas nécessairement égales
(méthode MFT [Multiprogramming with a Fixed number
of Tasks] apparue avec les IBM 360). Il existe deux
méthodes d’affectation:

1. On.crée une file d'attente par partition . Chaque
nouveau processus est placé dans la file d'attente de Ia
plus petite partition pouvant le contenir.

Inconvénients :

- on perd en général de la place au sein de chaque
partition.

- il peut y avoir des partitions inutilisées (leur file
d'attente est vide).

2. On crée une seule file d'attente globale. Il existe deux
stratégies:

- des qu'une partition se libere, on lui affecte la premiere
tache de la file qui peut y tenir.

Inconvénient : on peut ainsi affecter une partition de
grande taille a une petite tache et perdre beaucoup de
place

- des qu'une partition se libere, on lui affecte la plus
grande tache de la file qui peut y tenir.

Inconvénient : on pénalise les processus de petite taille.

* Un autre inconvénient de |'allocation par partition de taille
fixe est la saturation, un processus peut rapidement
occuper I'ensemble de la partition qui lui est allouée et
I'exécution du processus serait ainsi terminée pour faute
d'espace supplémentaire. La seule issue dans une telle
situation est le déplacement du processus sur une autre
partition.

File d’attente

multiple
800K
. . Partition 4
700K
Partition 3
400K
B— Partition 2
200K
I r Partition 1
Systéme | 1008
D’exgloitation 0

File d’attente
unique

BB

Partition 4

Partition 3

Partition 2

Partition 1

Systeme

D’exgloitation 0

800K

700K

400K

200K

100K

Les partitions de taille variable avec va et vient

* Dans les systemes multiprogrammeés, des que le
nombre de processus devient supérieur au nombre
de partitions, il faut stocker temporairement sur
disque des images de processus afin de libérer de |la
mémoire centrale pour d'autres processus. Il faut
ramener régulierement les processus stocker sur le
disque en mémoire. Le mouvement des processus
entre [a mémoire et le disque est appelé va et vient
(recouvrement ou swapping).

* En pratique on utilise des partitions de taille
variable, car le nombre, la taille et |a position des
processus peuvent varier dynamiquement au cours
du temps. On n'est plus limité par des partitions trop

randes ou trop petites comme avec les partitions
IXes.

Processus C

Processus C

Processus

Processus (

Processus C

Processus B

Processus B

Processus B

Processus B

Processos A

Processus A

Processus A

Proce ssus E

Processus [J

Processus [J

Prosessus [J

Sy steme
d exploitation

Sysieme
d'explotation

Sysieme
d'exploitation

Systeme
d exploitation

SysEme
d'explortation

Systeme
d'explonaton

Systeme
d'exploitation

On améliore ainsi grandement l'utilisation de la mémoire en
rendant cependant les politiques d’allocation et de libération
plus compliquées

e Un probleme important concerne la taille des partitions
attribuée a chaque processus, car celle-ci tend a augmenter avec
le temps.

* Une solution consiste a allouer a chaque processus un espace
légerement plus grand que sa taille actuelle comme le montre la
figure suivante:

0 - Pile B Utilise
sponible . .
1 Eponihie ' } [hsponible
. Donnees B .
Processus B Utlise Utalise
= y Processus B
Di » Pile A Uilise
spomible . .
1' Epombie ' } [hsponible
. Donnees A .
Processus A Utlise o Utilise
Processus A
Systeme Systeme
d’exploitation d'exploitation

Gestion de la mémoire
Dans tous les cas, il faut disposer d’'un mécanisme pour mémoriser les

zones libre s et occupées, minimiser I'espace perdu lors d’une allocation
et réduire autant que possible la fragmentation. Il existe trois maniere
de mémoriser I'occupation de la mémoire: les tables de bit, les listes et
les subdivisions

1. Gestion de la mémoire par table de bits

On divise la MC en unités d'allocations de quelques octets a quelques
Ko. A chague unité, correspond un bit de la table de bits : valeur O si
I'unité est libre, 1 sinon. Cette table est stockée en mémoire centrale.
Plus la taille moyenne des unités est faible, plus la table occupe de place.

A chague swap (charger un processus en mémoire), le gestionnaire doit
chercher une zone libre suffisamment grande pour contenir le processus
(rechercher suffisamment de O consécutifs dans la table)

L'exemple suivant montre une partie de la mémoire avec 4 processus et
3 trous (zones libres). Le tableau au dessous montre le table des bits
correspondant.

A B C D |||

0 3 8 15 17
111111001111100101111

2. Gestion de la mémoire par liste chainée

On utilise une liste chainée des segments de mémoire
occupés et libres ; dans cette liste, un segment est soit un
processus (P), soit un trou (zone Libre) entre deux
processus. La mémoire de la figure précédente peut étre
représentée par une liste chainée ou chaque entrée de
cette liste indique un trou (T) ou un processus (P),
I'adresse a laquelle il débute et éventuellement sa taille, et
elle spécifie un pointeur sur la prochaine entrée.

P Jo 3]

P 23] 1 ls |2 |5—

o Jo[])

C

T 132 |

’P‘15‘1‘—|—’T‘16‘1‘

A I'achevement d'un processus ou a son transfert sur disque, il
faut du temps (mise a jour des liste chainées) pour examiner si un
regroupement avec ses voisins est possible pour éviter une
fragmentation excessive de |la mémoire.

A la libération d’'une zone mémoire, trois cas peuvent se
présenter

a. La zone occupée est située entre deux zones libres
b. La zone occupée est situées ente deux zones occupées

c. La zone occupée est située ente.une zone occupée et une zone
libre.

Dans le cas a, il faut fusionner les 2 zones libres avec la zone
libérée. Dans le cas ¢, il faut fusionner la zone libre adjacente
avec la zone libérée.

(a) X devient

(b) A X B devient A B

(c) A X devient A

Pour le chargement d’un processus, si on ne trouve pas
de zone de taille suffisante mais qu’en réalité |la
somme des espaces libres est supérieur a la taille
demandée (phénomene de fragmentation), la solution
est d’appliquer un algorithme de compactage (ou
ramasse miette, garbage collector en anglais) qui
regroupe les espaces libres en'un seul bloc en faisant
des déplacements en mémoire des zones mémoires
occupees.

* En résumé, les listes chainées sont une solution plus
rapide que la précédente pour l'allocation, mais plus
lente pour la libération.

Allocation de la mémoire

Plusieurs algorithmes peuvent servir a allouer de la
mémoire a un processus nouvellement crée ou un
processus existant chargé depuis le disque.

algorithme de la premiere zone libre (first fit): La liste est
parcourue jusqu’a trouver une zone libre qui soit assez
grand. Le bloc libre trouvé est ensuite divisé en deux
partie, I'une destinée au processus et I'autre a |la
meémoire non utilisée. Lalgorithme de la premiere zone
libre est rapide parce qu‘il limite ses recherches autant
gue possible.

algorithme du meilleur ajustement (best fit): La liste est
entierement parcourue, et on prend le plus petit bloc
dont la taille est supérieure a celle de la mémoire
demandée.

Algorithme du plus grand résidu (worst fit): similaire au
précédent mais on prend la plus grande zone libre.
Risque de perdre des zones qui ne seront plus
utilisables.

Algorithme de placement rapide (quick fit): on crée des
listes séparées pour chacune des tailles les plus
courantes, et la recherche est considérablement
accélérée. Le probleme est la complication au niveau
fusion des zones libres.

3. Gestion de la mémoire par subdivisions

Le gestionnaire mémorise une liste de blocs libres dont |a taille
est une puissance de 2 (1, 2, 4, 8 octets,, jusqu'a la taille
maximale de la mémoire).

Par exemple, avec une mémoire de 1 Mo, initialement, la
mémoire est vide.

1M

Un processus A demande 70 Ko : la mémoire est fragmentée
en deux blocs de 512 Ko; l'un d'eux est fragmenté en deux
blocs de 256 Ko; I'un d'eux est fragmenté en deux blocs de 128
Ko et on loge A dans l'un d'eux, puisque 64 <70< 128

A 128 256 512

 Un processus B demande 35 Ko : |'un des deux blocs de 128 Ko
est fragmenté en deux blocs de 64 Ko et on loge B dans ['un
d'eux puisque 32<35<64:

A B | &4 256 o512

o Un processus C demande 80 Ko : le bloc de 256 Ko est
fragmenteé en deux blocs de 128 Ko et on loge C dans l'un d'eux
puisque 64 <80<128 :

A B|leal C 128 512

o« As'acheve et libere son bloc de 128 Ko. Puis un processus D
demande 60 Ko : le bloc libéré par A est fragmenté en deux de
64 Ko, dont I'un logera D :

D 64L|3 sal C 128 512

B s'acheve, permettant la reconstitution d'un bloc de 128 Ko :

D|esa| 128 C 128 512

D s'achéve, permettant la reconstitution d'un bloc de 256 Ko ,
etc...

256 C 128 512

e L'allocation et la libération des blocs sont tres simples. La fusion

se fait tres rapidement, mais il peut y avoir beaucoup de perte
meémoire. Un processus de taille 2"+ 1 octets utilisera un bloc
de 2" octets ! Il y a beaucoup de perte de place en mémoire.

Allocation non contigué en mémoire centrale

C’est le mode d’allocation qui est appliqué par les
systemes actuels, ainsi un fichier peut étre chargé a des
adresses dispersées en mémoire. La correspondance
entre les adresses est réalisée au cours de |'exécution.

La mémoire peut étre allouée par zones de taille fixe ou
variable.

Quand toutes les zones ont la méme taille, on parle de
page et de systemes paginés.

Quand leur taille peut varier, on parle de segments et de
systemes segmentés.

On peut combiner les deux modes: des segments
composes de pages.

Mémoire virtuelle et segmentation

* On désigne par mémoire virtuelle, une méthode de gestion
de la mémoire physique permettant de faire exécuter une
tache dans un espace mémoire plus grand que celui de Ia
meémoire centrale MC. Par exemple dans Windows et dans
Linux, un processus fixé se voit alloué un espace mémoire de
4 Go. Si la mémoire centrale physique possede une taille de
512 Mo, le mécanisme de mémoire virtuelle permet de ne
mettre a un instant donné dans les 512 Mo de la MC, que les
éléments strictement nécessaires a |'exécution du processus,
les autres éléments restant stockés sur le disque dur, préts a
étre ramenés en MC a la demande.

 Un moyen employé pour gérer la topographie de cette
meémoire virtuelle se nomme la segmentation, nous figurons
ci-apres une carte mémoire segmentée d'un processus.

Segment de mémoire

— Un segment de mémoire est un ensemble de cellules mémoires
contigues.

— Le nombre de cellules d'un segment est appelé la taille du
segment, ce nombre n'est pas nécessairement le méme pour
chague segment, toutefois tout segment ne doit pas dépasser
une taille maximale fixée.

— La premiere cellule d'un segment a pour adresse 0, la derniere
cellule d'un segment adr, est bornée par la taille maximale

autorisée pour un segment.

segment 1

0 adr,

segment 2

segment n

Un segment contient généralement des informations de méme
type (du code, une pile, une liste, une table, ...) sa taille peut
varier au cours de I'exécution (dans la limite de la taille
maximale), par exemple une liste de données contenues dans

un segment peut augmenter ou diminuer au cours de
I'exécution.

— Les cellules d'un segment ne sont pas toutes nécessairement
entierement utilisées.

0 adrl

segment 1

0 adr,

segment 2

segment n

L'adresse d'une cellule a l'intérieur d'un segment
s'appelle I'adresse relative au segment ou
déplacement. On utilise plus habituellement |la
notion d'adresse logique permettant d'accéder a
une donnée dans un segment, par opposition a
I'adresse physique qui représente une adresse
effective en mémoire centrale.

* C'est un ensemble de plusieurs segments que le
systeme de gestion de la mémoire utilise pour
allouer de la place mémoire aux divers processus
qu'il gere.

* Chaque processus est segmenté en un nombre
de segments qui dépend du processus lui-méme.

Adresse logique ou virtuelle

* Une adresse logique aussi nommeée adresse
virtuelle comporte deux parties : le numéro du
segment auquel elle se réfere et I'adresse relative
de la cellule mémoire a l'intérieur du segment lui-
méme.

0 adrl
® 0 li adr,
——
}
2 k, 1
adresse virtuelle 0 adr,

()

Remarques:

* Le nombre de segments présents en MC n'est pas
fixe.

* La taille effective d'un segment peut varier
pendant |'exécution

* Pendant |'exécution de plusieurs processus, la MC
est divisée en deux catégories de blocs : les blocs
de mémoire libre (libéré par la suppression d'un
segment devenu inutile) et les blocs de mémoire
occupée (par les segments actifs).

Fragmentation mémoire

* Le partitionnement de la MC entre blocs libres et blocs alloués se
dénomme la fragmentation mémoire, au bout d'un certain temps, |la
meémoire contient une multitude de blocs libres qui deviendront
statistiguement de plus en plus petits jusqu'a ce que le systeme ne
puisse plus allouer assez de mémoire contigué a un processus.

Exemple

Soit une MC fictive de 100 Ko segmentable en segments de taille
maximale 40 Ko, soit un processus P segmenté par le systeme en 6
segments dont nous donnons |a taille dans le tableau suivant :

Numeéro du segment Taille du segment
1 5 Ko
2 35 Ko
3 20 Ko
4 40 Ko
5 15 Ko
6 23 Ko

Supposons qu'au départ, les segments 1 a 4 sont.chargés
dans la MC:

SKo

35 Ko

20 Ko

ONONCAC

40 Ko

LY L

Supposons que le segment n°2 devenu inutile soit désalloué :

D| S5Ko

35 Ko

20 Ko

)

40 Ko

*

MC

Puis chargeons en MC |le segment n°5 de taille 15 Ko dans
I'espace libre qui passe de 35 Ko a 20 Ko :

(1) 5 Ko
(5) 15 Ko
20 Ko
(3)| 20Ko
(4) 40 Ko
MC

La taille du bloc d'espace libre diminue.
Continuons |'exécution du processus P en supposant que ce
soit maintenant le segment n°1 qui devienne inutile :

3 Ko
5 15 Ko

20 Ko
(3)| 20Ko
4)| 40Ko

MC

* Ily a maintenant séparation de |'espace libre (fragmentation) en deux
blocs, I'un de 5 Ko de mémoire contigué, I'autre de 20 Ko de mémoire
contigué, soit un total de 25 Ko de mémaoire libre. Il est toutefois
impossible au systeme de charger le segment n°6 qui occupe 23 Ko
de mémoire, car il lui faut 23 Ko de mémoire contigué. Les systeme
doit alors procéder a une réorganisation de la mémoire libre afin
d'utiliser "au mieux" ces 25 Ko de mémoire libre.

®
@ Algorithme @
B de 3)
5 Compactage (4)
@
MC MC

La figure précédente montre a gauche, une mémoire fragmentée, et a
droite la méme mémoire une fois compactée.

Adresse virtuelle - adresse physique

Nous avons parlé d'adresse logique d'une donnée. Comment le
systeme de gestion d'une mémoire segmentée retrouve-t-il I'adresse
physique associée ?

I'OS dispose pour cela d'une table décrivant la "carte"” mémoire de |la
MC.

Cette table est dénommée table des segments, elle contient une
entrée par segment actif et présent dans la MC.

Une entrée de |a table des segments comporte le numéro du
segment, I'adresse physique du segment dans la MC et la taille du
segment.

0’ segment | adresse segment | taille segment

n° segment | adresse segment | taille segment

n° segment | adresse segment| taille segment

n* segment | adresse segment | taille segment

Liaison entre Table des segments et le segment lui-méme en MC:

adresse
n° adresse taille 0
1 .
* * ' ® 1005
k
1005 100 » 100 Ko
. . . 1104
n .
Table des segments MC

Lorsque le systeme de gestion mémoire rencontre une adresse
virtuelle de cellule (n° segment, Déplacement), il va chercher dans
la table I'entrée associée au numéro de segment, récupere dans
cette entrée l'adresse de départ en MC du segment et y ajoute le
déplacement de |'adresse virtuelle et obtient ainsi I'adresse
physiquede la cellule.

En reprenant I'exemple de |a figure précédente, supposons que hous
présentons |'adresse virtuelle (k-, 8). Il s'agit de référencer la cellule
d'adresse 8 a l'intérieur du segment numéro k. Comme le segment n°k
est physiqguement implanté en MC a partir de I'adresse 1005, la cellule
cherchée dans le segment se trouve donc a l'adresse physique 1005+8

=1013. adrt;:}sse

n“ adresse taille
1

1005
1013

| k| 1005_ | 100 ®
’—l» : : 100 K
k| 8 4— | : %1104

adresse virtnelle

8 10035

MC

—h[1ﬂ05+3 = 11]13]

La segmentation mémoire n'est pas la seule méthode utilisée pour gérer
de la mémoire virtuelle, nous proposons une autre technique de gestion
de la mémoire virtuelle tres employée : la pagination mémoire. Les OS
actuels employant un mélange de ces deux techniques,

Mémoire virtuelle et pagination

* Comme dans la segmentation mémoire, la pagination
est une technique visant a partitionner la mémoire
centrale en blocs (nommeés ici cadres de pages) de taille
fixée contrairement aux segments de taille variable.

* Lors de l'exécution de plusieurs processus découpés
chacun en plusieurs pages nommees pages virtuelles,
on parle alors de mémaoire virtuelle paginée. Le nombre
total de mémoire utilisée par les pages virtuelles de tous
les processus, excede généralement le nombre de
cadres de pages disponibles dans la MC.

Le systeme de gestion de la mémoire virtuelle paginée est
chargé de gérer l'allocation et la désallocation des pages
dans les cadres de pages.

La MC est divisée en un nombre de cadres de pages fixé par
le systeme (généralement la taille d'un cadre de page est
une puissance de 2 inférieure ou égale a 64 Ko).

La taille d'une page virtuelle est exactement [a méme que
celle d'un cadre de page.

Comme le nombre de pages virtuelles est plus grand que le
nombre de cadres de pages on dit aussi que |'espace
d'adressage virtuel est plus grand que I'espace d'adressage
physique. Seul un certain nombre de pages virtuelles sont
présentes en MC a un instant fixé.

e Comme le cas de la segmentation, |'adresse
virtuelle (logique) d'une donnée dans une
page virtuelle, est composée par le numéro
d'une page virtuelle et le déplacement dans
cette page. L'adresse virtuelle est transformée
en une adresse physique réelle en MC, par
une entité se nommant la MMU (Memory
Management Unit) assistée d'une table des
pages semblable a |a table des segments.

La table des pages virtuelles

* Nous avons vu dans le cas de la segmentation que la table des
segments était plutot une liste (ou table dynamique) ne
contenant que les segments présent en MC, le numéro du
segment étant contenu dans l'entrée. La table des pages
virtuelles quant a elle, est un vrai tableau indicé sur les
numeéros de pages. Le numeéro d'une page est l'indice dansla
table des pages, d'une cellule contenant les informations
permettant d'effectuer la conversion d'une adresse virtuelle
en une adresse physique.

e Comme la table des pages doit référencer toutes les pages
virtuelles et que seulement quelques unes d'entre elles sont
physiqguement présentes en MC, chaque page virtuelle se voit
attribuer un drapeau de présence (représenté par un bit, la
valeur O indique que |a table est actuellement absente, |la
valeur 1 de ce bit indique qu'elle est actuellement présente
en MCQC).

Le schéma simplifié d'une gestion de MC paginée (page d'une taille
de 64Ko) suivant illustre le méme exemple que pour la segmentation.
Soit un acces a une donnée d'adresse 8 dans la page derangk, le
cadre de page en MC ayant pour adresse 1005, la page étant

présente en MC::
64Ko

adresse Présence

64K o adr
— s 201 + 8

> adr 1 K

L

. 64K o
LR -

adresse virtuelle : .

s adr
_(aars — 64Ko

lapage est présente @

Lorsque la méme demande d'acces a une donnée d'une page a lieu sur
une page qui n'est pas présente en MC, la MMU se doit de la charger
en MC pour poursuivre les opérations.

* Le systeme d'exploitation utilise une structure de données pour
décrire les pages d'un processus. Une entrée de la table contient
les informations suivantes :

it de Bit de Bits de Bit de Adresse surle [Numero de la
resence |modification [protection freference DD Case MEmoire

* Le bit de présence indique si la page est chargée en mémoire ou
non

* Les bits de protection définissent le mode d'acces a la page en
lecture ou en écriture

* Le bit de modification permet d’économiser une recopie sur le
disque si la case va étre allouée a une autre page.

* Le bit de référence indique que la page placée dans cette case a
ete réeférencée c'est-a-dire accédée, cette information sert aux
algorithmes de remplacement de pages.

La table des pages virtuelles multiniveaux

chaque processus a sa propre table qui doit étre
chargée en mémoire,

La table des pages contient une entrée pour chaque
page de |'espace d'adressage.

Si le systeme d'exploitation applique la mémoire
virtuelle avec un registre d’adresse de 32 bits, I'espace
adressable contient 232 adresses.

Si-la taille de chaque page est 4 KO, une page peut
contenir 4096 adresses. Le nombre des pages est égal a
la taille de la mémoire virtuelle divisé par la taille d'une
page. Soit 4 GO/4 KO = 2?° environ 1 million de pages.

Ainsi le principal inconvénient des systemes paginés est
la taille gigantesque de |a table des pages.

* La solution a été proposée avec la pagination multi-
niveaux ou la table des pages est décomposée en
petites tables de taille raisonnable qui sont chargées au
fur et a mesure que le systeme en a besoin.

* On peut souligner deux intéréts a cette organisation :
partant du fait qu'une adresse n'appartient a I'espace
d'adressage d'un processus que si elle est utilisée par le
processus, les tables sont allouées au fur et a mesure
gue les adresses qu'elles comportent sont utilisées.

e Par ailleurs on ne charge a partir du disque que les
tables dont on se sert, ainsi on charge a la demande ce
qui évite d'avoir toutes les tables en mémoire centrale.
On dit alors que la table des pages est elle-méme
paginée.

1023

Bits <~ 10 10 12
PT1 | PT2| Offset

(a)

O —=-NW,~ OO

Top-level
page table

(C

1023

O = NWwWwPh,oo

))

C

P2

PYTYIyy

J))

FIYYYYY

Page
table for
[the top
4M of
memory

IEEREEZN

To
pages

* Latable du premier niveau comporte 1024 entrées et
permet d'adresser autant de tables de pages (1024 =
210). Ainsi les 10 premiers bits de I'adresse logique
sont considérés comme index dans cette table.

* Une fois qu'on a accédé a I'entrée adéquate, on
trouve l'adresse de la case mémoire ou se trouve la
table des pages (de second niveau). Les 10 autres bits
sont alors utilisés comme index dans cette table et

'‘entrée nous délivre la case mémoire associée a la

nage virtuelle.

* Les pages ayant une taille de 4 KO soit 212, on
retrouve les 32 bits de |'adresse logique (10 + 10 +
12).

Prenons l'exemple de I'adresse virtuelle 5269875 que
'‘on écrit 506973 en hexadécimal. Les 12 bits de
ooids faible donnent un déplacement de 973. Le
nombre 506 en hexadécimal s'écrit sur 12 bits en
pinaire (010100000110), , si nous retenons les 10
nits correspondants a l'index dans la seconde table,
nous obtenons un numéro de page = 100000110 soit
I'entrée 262 dans la table de deuxieme niveau et les
2 bits restants (01), I'entrée n° 1 dans la table de
premier niveau.

La pagination a 2 niveaux ne résout pas
définitivement le probleme de la taille de la table des
Pages. C'est pour cette raison que les systemes
d'exploitation utilisent des tables a plusieurs niveaux
généralement 3 ou 4. Il va de soi que le nombre de
niveaux est décidé par le mateériel, donc lié au MMU
utilisé pour gérer la pagination

Défaut de page

 Nous dirons qu'il y a défaut de page lorsque le processeur
envoie une adresse virtuelle localisée dans une page
virtuelle dont le bit de présence indique que cette page est
absente de la mémoire centrale. Dans cette éventualité, le
systeme doit interrompre le processus en cours
d'exécution, il doit ensuite lancer une opération d'entrée-
sortie dont I'objectif est de rechercher et trouver un cadre
de page libre disponible dans la MC dans lequel il pourra
mettre la page virtuelle qui était absente, enfin il mettra a
jour dans la table des pages le bit de présence de cette
page et |'adresse de son cadre de page.

e Le défaut de page peut entrainer un remplacement si le
systeme d'exploitation ne trouve aucune case libre.

adr

0
able des pages
6dko
adr,
aldresse présence
1
641{0' ﬂﬂl'z
¥ ﬂlﬁ'g 0 k — '..L’_'ar]w de page e
: . — =
r!'{ 3 : ;
adresse virtuelle
adr
recherche de la page
chargement
de 64Ko

V3 lapage

La figure précédente illustre un défaut de page d'une page P, qui avait
été anciennement chargée dans le cadre d'adresse adr,, mais qui est
actuellement absente. La MMU recherche cette page par exemple sur
le disque, recherche un cadre de page libre (ici le bloc d'adresse adr,
est libre) puis charge |la page dans le.cadre de page et I'on se retrouve
ramené au cas d'une page présente en MC :

Table des pages @
64Ko

présence

adresse et hit de présence _adresse
sont mis ajour

: 64K0| oqy,
i " . — — (1, - 3
| 4
B ‘ & 64K
K 54— = :
adresse virtuelle : .
3 adr,
{ ade, + 8] 64Ko

En fait, lorsqu'un défaut de page se produit tous les cadres de pages
contiennent des pages qui sont marquées présentes en MC, il faut
donc en sacrifier une pour pouvoir caser la nouvelle page demandée. Il
est tout a fait possible de choisir aléatoirement un cadre de page, de le

sauvegarder sur disque et de I'écraser en MC par le contenu de |la
nouvelle page.

* Cette attitude qui consiste a faire
systématiguement avant tout chargement d'une
nouvelle page une sauvegarde de |la page que |'on
va écraser, n'est pas optimisée car si la page que
I'on sauvegarde est souvent utilisée elle pénalisera
plus les performances de I'OS (car il faudra que le
systeme recharge souvent) qu'une page qui est
tres peu utilisée (qu'on ne rechargera pas
souvent).

e Cette recherche d'un "bon" bloc a libérer en MC
lors d'un défaut de page est effectuée selon
plusieurs algorithmes appelés algorithmes de
remplacement(voir TD)

Chapitre 3 :gestion des fichiers

e Le systeme de gestion de fichiers (SGF) est la
partie la plus visible d’'un systeme d’exploitation
qui se charge de gérer le stockage et |a
manipulation de fichiers (sur une unité de
stockage : partition, disque, CD, disquette.

* Un SGF a pour principal role de gérer les fichiers
et d’offrir les primitives pour manipuler ces
fichiers.

Le concept de fichier

* Un fichier est l'unité de stockage logique mise a la
disposition des utilisateurs pour I'enregistrement de leurs
données. Le SE établi la correspondance entre le fichier et le
systeme binaire utilisé lors du stockage de maniere
transparente pour les utilisateurs.

* Dans un fichier on peut écrire du texte, des images, des
calculs, des programmes...

e Lesfichiers sont généralement créés par les utilisateurs.
Toutefois certains fichiers sont générés par les systemes ou
certains outils tels que les compilateurs.

* Afin de différencier les fichiers entre eux, chaque fichier a un
ensemble d’attributs qui le décrivent. Parmi ceux-ci on
retrouve : le nom, I'extension, la date et I’heure de sa
création ou de sa derniere modification, la taille, la
protection.

La notion de répertoire

Un répertoire est une entité crée pour l'organisation des fichiers.
En effet on peut enregistrer des milliers, voir des millions de
fichiers sur un disque dur et il devient alors impossible de s’y
retrouver.

Avec la multitude de fichiers créés, le systeme d’exploitation a
besoin d’une organisation afin de structurer ces fichiers et de
pouvoir y accéder rapidement. Cette organisation est réalisée au
moyen de répertoires également appelés catalogues ou
directory.

Un répertoire est lui-méme un fichier puisqu’il est stocké sur le
disque et est destiné a contenir des fichiers.

Du point de vue SGF, un répertoire est un fichier qui dispose
d’une structure logique : il est considéré comme un tableau qui
contient une entrée par fichier. U'entrée du répertoire permet
d’associer au nom du fichier (nom externe au SGF) les
informations stockées en interne par le SGF.

Chaque entrée peut contenir des informations sur le fichier
(attributs du fichier) ou faire référence a (pointer sur) des
structures qui contiennent ces informations.

Nom 1-noeud

) Répertoire i-nioeud 342
..)
mp | 4 / -)
users 342 . 2 Répertoire i-noeud 256
Mane {430
st 318 Jeant 256) _&
. 3z 342
Reépertoire 1-noeud 2 — e e 758
textes 3265

Roles d’un systeme de gestion de fichiers

Un SGF a pour principal role de gérer les fichiers et d’offrir les
primitives pour manipuler ces fichiers. Il effectue généralement les

taches suivantes :

* Fournit une interface conviviale pour manipuler les fichiers (vue

fournie a 'utilisateur).

— |l Sagit de simplifier la gestion des fichiers pour |'utilisateur (généralement,
I"utilisateur fournis seulement les attributs nom et extension du fichier, les

autres attributs sont gérés implicitement par le SGF)

— Cette interface fournit la possibilité d’effectuer plusieurs opérations sur les
fichiers. Ces opérations permettent généralement d’ouvrir, de fermer, de
copier, de renommer des fichiers et des répertoires.

* La gestion de l'organisation des fichiers sur le disque (allocation de
I'espace disque aux fichiers)
* La gestion de I'espace libre sur le disque dur

* La gestion des fichiers dans un environnement Multi-Utilisateurs,
la donnée d’utilitaires pour le diagnostic, |la récupération en cas
d’erreurs, I'organisation des fichiers.

Structure du disque dur
Adresse d'un secteur : n°face, n°cylindre,n°secteur

*_h # # &
Cylindre : ensemble des pistes accessibles

L ’ ~
sans déplacement des tétes

A

7N

s

~L N

plateau

Tl

NS S AN S

LN

7

Face : 20 a 1500 pistes

Piste : ensemble de secteurs (4 a 32) Alimentation

Secteur : plus petite unité d'information accesstble
32 2 4096 octets

* 'unité d’allocation surle disque dur est le bloc
physique. Il est composé de 1 a n secteurs.

* Un bloc composé de deux secteurs de 512 octets
a une taille égale a 1KO

* Les opérations de lecture et d'écriture du SGF se
font bloc par bloc.

sect sect 6 sect sect

N/

Bloc 1 Bloc 2 Bloc 3 Bloc 4

Allocation des fichiers dans les blocs

* Un fichier physique est constitué d’'un ensemble de
blocs physique.

* Ala création d’un fichier, le SGF doit :
— Attribuer de I'espace sur disque (c’est I'allocation) ;

— Mémoriser son implantation et son organisation sur le
disque.

— Maintenir ces informations en cas de modifications de
fichiers.

* || existe plusieurs méthodes d’allocation des blocs
physiques :
— allocation contigué (séquentielle simple)
— allocation par blocs chainés
— allocation indexée

Allocation contigué

Un fichier occupe un ensemble de blocs contigus sur le
disque. Elle est bien adapté au méthodes d'acces

sequentielles et directes

Difficultés :
— création d'un nouveau fichier
— extension du fichier

v
:
!
}

—

fichier 1 : adresse bloe I, longueur 3 blocs

—. fichier 2 : adresse bloc 13, longueur 5 blocs

 Pourcréer un nouveau fichier, il faut allouer un nombre de
blocs suffisants dépendant de la taille du fichier. Par
exemple si on veut stocker deux autres fichiers nommés
fichier3 (4 blocs) et fichierd (6 blocs), le systeme doit
chercher pour chacun des fichier les blocs nécessaires pour
leur stockage. Pour le fichier3, on peut lui trouver une
place comme il le montre la figure.

/N %
. . ﬂ D D Fichier 3 : 4 blocs

* On ne possede pas 6 blocs contigus, donc,
Comment stocker le fichier4 ?

* Pour trouver un trou suffisant, il faut utiliser la
technigue de compactage

—

Compactage

*

NN 1 =

\

+_.__- -

S g

Fichier 4 : 6 blocs

 maintenant, si on veut étendre le fichierl d'un
bloc ??7?

_ =
Ly 'y A T
AZREN w=) AAENN
... . . Déplacer les II I . .
111 oty |

Allocation par blocs chainés

® Un fichier est constitué comme une liste chainée de blocs
physiques, qui peuvent étre dispersés n'importe ou.

— Extension simple du fichier : allouer un nouveau bloc et le chainer au

dernier
— Pas de fragmentation

Difficultés :
— mode séquentiel seul
— Je chainage du bloc suivant occupe
de la place dans un bloc

Adresse/n°du bloc suivant

Données

ichier 2 §/ :\I

* Allocation par bloc chainée : variante

 Une table d'allocation des fichiers (File allocation table - FAT)
regroupe l'ensemble des chainages. (exemple systemes windows)

N bloc Fin de fichier

-

o S
2 Libre N Bloc non alloué % . .
3 5 k

: N |
4 Libre §
5 NULL %
. 6 Libre N l
fichier 1
7 1 .
§_. |7
12 | Libre S —
13 15
. 14 Libre

fichier 2 15 3 inconvénient : autant d'entrée dans
16 Libre la table qu'il y a de bloc sur le
17 13 disque.

Allocation indexée : la solution Unix /Linux

Les 10 premieres entrées de la table contiennent 'adresse d’un
bloc de données du fichier

Bloc = 1024 octets donc 10 Ko alloués

10
11
12

10K

Acces aux blocs de données 02 9 :

Table d'allocation I acces disque
13 entrées

e Lalleme entrée de la table contient I'adresse d’un bloc d’index
INDIRECT _1. Ce bloc d’index contient des adresses de blocs de

données
* Bloc_index = 1024 octets ; adresse de bloc_données = 4 octets

— 256 entrées dans le bloc d’index

0 INDIRECT 1

9 256 entrees 256 Ko alloues
f/

10

11

12 Accés aux blocs de données en premiére indirection :

2 acces disque

Table d'allocation
13 entrées

e Lal2eme entrée de la table contient I'adresse d’un bloc d’index
INDIRECT _2. Ce bloc d’index contient des adresses de blocs
d’index INDIRECT_2_i(ide 1 a 256).

 Chaque bloc d’index INDIRECT 2 i contient des adresses de blocs
de données

10
11
12

Acces aux blocs de données en seconde indirection :

3 acceés disque

INDIRECT 2

Table d'allocation
13 entrées

INDIRECT 2 1

256 * 256 Ko alloueés

La 13eme entrée de la table contient I'adresse
d’un bloc d’index INDIRECT _3. Ce bloc d'index
contient des adresses de blocs d’index

INDIRECT 3 i.

Chaque bloc ©
adresses de b

Chaque bloc ©

‘index INDIRECT 3 i contient des
ocs d’index INDIRECT 3 i j.

‘index INDIRECT _3 i _j contient

des adresses de blocs de données

Bloc = 1024 octets ; adresse de bloc = 4 octets
256 entrées dans le bloc d’index

(i et j évolue de 1 a 256)

10

1)

12 ~

Table d'allocation
13 entrées

Acces aux blocs de données en troisiéme indirection :
4 acces disque

INDIRECT 3

INDIRECT 3 1)

INDIRECT 3 i

256 *256 * 256 Ko alloués

l

1

* On peut représenter les différents niveaux d'indirections
de la facon suivante :

0 Accés direct

Acceés direct

9 Acces direct

10 I indirection ™ —4——0o,

11 2 indirections

12 3 indirections \ A —

\ —

Table d'allocation
13 entrees

En mémoire centrale Sur disque

* Allocation de I'espace disque pour un fichier de 526 Ko
donc 526 blocs

— 10 blocs en acces direct

— 256 blocs de données pointés par le bloc index INDIRECT 1

— restent 526 — 10 — 256 = 260 blocs . Tous ces blocs sont pointés a
partir du bloc d’index INDIRECT _2. deux blocs d’index
INDIRECT _2_1 et INDIRECT_2 2 sont nécessaires a ce niveau .

e Sion suppose que la taille'd’un bloc est de 1Ko, un fichier
peut avoir |a taille maximale suivante : 10 x 1Ko + 256 x
1Ko + 256 x 256 x 1Ko + 256 x 256 x 256 x 1Ko, ce qui
donne en théorie plus de 16Go

Structure d’un I-Node

Cette structure possede plusieurs entrées, elle permet au systeme de
disposer d’un certain nombre de données sur le fichier :

la taille,

I"identité du propriétaire et du groupe : un fichier en Unix est crée
par un propriétaire, qui appartient a un groupe,

Les droits d’acces : pour chaque fichier, Unix définit trois droits
d’acces (lecture (r), écriture (w) et exécution (x)) pour chaque classe
d’utilisateurs (trois types d’utilisateur {propriétaire, membre du
méme groupe que le propriétaire, autres}). Donc a chaque fichier,
Unix associe neuf droits,

les dates de création, de derniere consultation et de derniere
modification,

le nombre de références existant pour ce fichier dans le systeme,
les dix premiers blocs de données,

« d’autres entrées contiennent l'adresse d’autres blocs (on parle
alors de bloc d’indirection) :

— une entrée pointe sur un bloc d'index qui contient 256 pointeurs sur bloc de
données (simple indirection)

— Une entrée pointe sur un bloc d'index qui contient 256 pointeurs sur bloc
d'index dont chacun contient 256 pointeurs sur bloc de données (double
indirection)

— Une entrée pointe sur un bloc d'index qui contient 256 pointeurs sur bloc
d'index dont chacun contient 256 pointeurs sur bloc d'index dont chacun
contient 256 pointeurs sur bloc de données (triple indirection)

e Lastructure d’I-Node est congue afin d’alléger le répertoire et d’en
eliminer les attributs du fichier ainsi que les informations sur

I'emplacement des données.

* Une entrée dans un I-Node d’un répertoire contiendra donc un
nom d’un fichier ou sous-répertoire et I'Inode associé.

bioc132

Répearoireracine

1

1

4 bin

7 dev
14 lib

g etc

¥ usr

8 tmp
I-node 202

mode
taillo™®

I-node B
—>

mode 6 .

taille 1

dates "

= 147 | pierre —
30 yWes
28 | jean
160 | cathy

o . .

l-node 147

Ll

mode
taille

dates

392

hloe 392

Ll

147

b

66

[

202

courrie

684

notes

4

taille

dates
0 -
1 __... T
2| e
3 e
4l 1™ | 10blocs
5 - de donneas — -
5 1w
A .
| tam
a| L™ -

256 blocs

10 — I de donnees
1] e
12| -

-

- 256

pomteurs

b —.

—-

Ll

—.- .

——

256 blocs
ll:le donneas

-

.

—.-

N

I:-‘E-Eblm:s

de données

256 blocs
e donsdas

-

286 hlocs
de données

256 blocs
de pointeurs
surhblocs

256 blocs
de pointeurs
surblocs

Gestion de l'espace libre

Le systeme maintient une liste d'espace libre, qui
meémorise tous les blocs disque libres (non alloués)

Création d'un fichier : recherche dans la liste
d'espace libre de la quantité requise d'espace et
allocation au fichier : I'espace alloué est supprime
de la liste

Destruction d'un fichier : I'espace libéré est intégre
a la liste d'espace libre

Il existe différentes représentations possibles de
I'espace libre

— vecteur de bits

— liste chainée des blocs libres

Gestion de lI'espace libre par un vecteur de bits

La liste d'espace libre est représentée par un vecteur binaire, dans
lequel chaque bloc est figuré par un bit.

. Bloc libre : bita 1 - _—

. Bloc alloué : bit 3 0 N B E
01010101110101010111 N

| B[|E

< I

e pour cette technique, il est facile de trouver n
blocs libres consécutifs . C'est la technique utilisé
dans les Systeme Macintosh

Gestion de l'espace libre par liste chainée

La liste d'espace libre est représentée par une liste chainée des
blocs libres Liste des blocs libres

Parcours de la liste

— couteux
Difficile de trouver un groupe de blocs libres
Variante par comptage

NUETB
@f bE
gl

_T L

F%

7

E\,

Gestion de I'espace libre par liste chainée: variante avec
comptage

* Le premier bloc libre d’'une zone libre contient I'adresse du

premier bloc libre dans la zone suivante et le nombre de blocs
libres dans la zone courante.

Liste des blocs libres Liste des blocs libres

\ T —

X
\
e

\%
\ »

7%

AN

i
\

=
>17
=

—\

