
UNIVERSITÉ MOHAMED PREMIER - OUJDA

 Faculté Des Sciences

Département De Mathématiques Et Informatique

UNIVERSITÉ MOHAMED PREMIER - OUJDA

 Faculté Des Sciences

SMI S4

Cours du module

II
Système d'exploitation

Prof. Aicha Karfali

Chapitre 1 :

 gestion des processus

• Pour exécuter les instructions d’un programme, le
processeur va réaliser en boucle ce qu’on appelle
le cycle fetch-decode-execute et qui consiste dans
les grandes lignes à :
– Charger l’instruction depuis la mémoire où est stocké

le code à exécuter et dont le compteur ordinal (un
registre du processeur qui contient l’adresse de
l’instruction à exécuter) donne l’adresse, puis
incrémenter le compteur (fetch) pour passer à
l’instruction suivante,

– Décoder l’instruction (decode),
– Exécuter l’instruction (execute). Pendant cette phase

le processeur peut interagir avec la mémoire pour lire
les données et écrire les résultats. Il utilise un
ensemble de registres pour stocker les données et
leurs adresses

Introduction aux processus

Introduction aux processus

Définition Un processus est un programme en
cours d'exécution. Il possède son propre
compteur ordinal, ses registres et ses variables.

• Le processus est crée par le système
d'exploitation ou l'utilisateur au moment où
l'exécution du programme doit commencer,

• Une fois le processus terminé, il est supprimé
par le système d'exploitation,

• Un seul programme peut nécessiter plusieurs
processus pour son exécution.

Introduction aux processus

• Un programme a une existence statique, il est
stocké sur le disque puis chargé en mémoire
afin d’être exécuté.

• Le processus en revanche a un contact direct
avec le processeur en effet c'est l'entité
exécutée par le processeur

• Le système d'exploitation manipule deux
types de processus : ceux du système et ceux
des utilisateurs.

La gestion des processus

Les principales fonctionnalités du système d'exploitation
en matière de gestion de processus consistent à:

• La création, suppression et interruption de processus,

• L'ordonnancement des processus an de décider d'un
ordre d'exécution équitable entre les utilisateurs tout
en privilégiant les processus du système,

• La synchronisation entre les processus ainsi que la
communication,

• La protection des processus d'un utilisateur contre les
actions d'un autre utilisateur

Etats d'un processus

Interruption d'un processus

• Une interruption est provoquée par un signal
généré sur occurrence d'un événement qui peut
être interne (lié au processus) ou externe et
indépendant.

• Lorsqu'une interruption est générée, le processus
en cours d'exécution est interrompu. Il quitte le
processeur et un gestionnaire d'interruption est
chargé dans les registres du processeur et
s'exécute pour traiter l'interruption.

• Dans un premier temps il est nécessaire de
connaître quelle interruption a eu lieu.

Interruption d'un processus

• Une fois le signal de l'interruption reconnu, le
gestionnaire d'interruption accède à une table
appelée table des vecteurs d'interruptions et y
recherche l'adresse du programme associé à
exécuter.

• Ce programme est appelé routine d'interruption.

• Une fois l'interruption traitée, le système charge
un autre processus à partir de la file d'attente et
l'exécute.

Structure de l'espace mémoire d'un

processus

Le contexte d'un processus

• En informatique, un contexte d'exécution
d'un processus est constitué par l'ensemble
des données utilisées par le processus en
question.

• C'est l'ensemble minimal de données à
sauvegarder pour permettre une interruption
de la tâche à un moment donné, et une
reprise de cette exécution au point où elle a
été interrompue,

Le contexte d'un processus

processus et à copier le contexte d'un autre processus dans
• L'opération qui consiste à sauvegarder le contexte d'un

• D'autres informations telles que la valeur de l'horloge, la
priorité du processus,

résultats calculés par le processus

• Les registres qui décrivent l'espace qu'il occupe en mémoire
centrale (l'adresse de début et de fin par exemple)

• Le registre variable d'état qui indique l'état du processus

Le contexte d'un processus comporte les informations suivantes :

• Le compteur ordinal : adresse de la prochaine instruction à
exécuter par le processeur

• Les contenus des registres généraux : ils contiennent les

l'unité centrale s'appelle changement ou commutation de contexte

La table des processus

• C’est une structure de données qui permet au
système de conserver d'autres informations sur les
processus

• La table des processus contient toutes les
informations indispensables au système
d'exploitation pour assurer une gestion cohérente
des processus

• Elle est stockée dans l'espace mémoire du système
d'exploitation, ce qui signifie que les processus ne
peuvent pas y accéder

La table des processus

• Elle comporte une entrée par processus:

– des informations concernant un processus (même
si le processus n'est pas en mémoire),

– des informations sur les fichiers qu'il manipule,

– des informations sur son occupation mémoire
(des pointeurs sur les différents segments code,
données et pile.)...

Ordonnancement de processus

• Conceptuellement, chaque processus a son
processeur propre virtuel. En réalité, le vrai
processeur commute entre plusieurs processus
sous la direction d’un ordonnanceur.

• L’Ordonnanceur (scheduler) est la partie du
noyau qui s’occupe de l’ordonnancement des
processus

Ordonnancement de processus

Quand faut-il ordonnancer ?

• Il y'a différents moments où il est nécessaire
d'ordonnancer :
– A la création d'un processus

– A la fin d'un processus

– Lors du blocage d'un processus

– Lors d'une interruption d'entrée / sortie

– Régulièrement
• après exécution de n instructions,

• à chaque interruption d’horloge, …

Ordonnancement de processus

D'une façon générale, l'ordonnancement a plusieurs
objectifs :

• S’assurer que chaque processus en attente
d’exécution reçoive sa part de temps processeur.

• Minimiser le temps de réponse : l’utilisateur
devant sa machine ne doit pas trop attendre

• Le processeur doit être utilisé à 100%

• Prendre en compte des priorités.

• Il faut exploiter au maximum le système

Environnement d'ordonnancement

Pour les systèmes informatiques, on distingue 3 types
d'environnements :

• Environnement de traitements par lots dans lesquels Il n'y a
pas d'utilisateur en attente. pour améliorer les performances,
on diminue le nombre de changements de processus.

• Environnement interactif dans lequel un utilisateur interagit
avec le système. il faut permettre l'exécution de programmes
pas forcément interactifs et empêcher un processus de
monopoliser le processeur.

• Environnement temps réel dans lequel la contrainte de temps
est très importante. Ainsi les tâches doivent pouvoir s'exécuter
quasi immédiatement, elles ne peuvent pas se permettre
d'avoir du retard.

catégories d’algorithmes
d'ordonnancement

Dans chacun des environnements, on peut
distinguer deux catégories d’algorithmes
d'ordonnancement

• Algorithme d’Ordonnancement sans réquisition
(non préemptif): sélectionne un processus qui
continue à s’exécuter jusqu’à la fin (soit il termine
ou il se bloque sur une E/S ou en attente d’un
autre processus). Cet algorithme est inefficace:
exemple un processus qui exécute une boucle
infinie.

catégories d’algorithmes
d'ordonnancement

• Algorithme d’Ordonnancement avec
réquisition (préemptif) : à Chaque signal
d’horloge, il décide si le processus courant a
consommé son quantum de temps machine et
alloue éventuellement le processeur à un
autre processus

L'ordonnancement sur les systèmes
de traitement par lots

L'algorithme du premier arrivé, premier servi (first
come first served)

• L’ordre d’accès au processeur est réglementé suivant
l’ordre d'arrivée des processus.

• Le choix d'un nouveau processus ne se fait que sur blocage
 ou terminaison du processus courant.

• Le processus actif occupe le processeur autant qu'il le souhaite.
Les autres processus se trouvent alors dans une file d'attente.

• Lorsque le processus actif se bloque ou termine, il sera
placé à la fin de la file d'attente et le premier
processus de la file réquisitionne le processeur.

L'ordonnancement sur les systèmes
de traitement par lots

L'algorithme du premier arrivé, premier servi
(first come first served)

• C’est un algorithme simple à comprendre et à
programmer

• Inconvénients: par exemple, certaines tâches
rapides devront attendre longuement la fin
des tâches précédentes.

L'ordonnancement sur les systèmes
de traitement par lots

Exécution du job le plus court

• C'est un algorithme non préemptif. Il oblige à
connaître à l’avance les temps d’exécution des
jobs (tâches). Le principe est donc de donner
la priorité aux tâches les plus courtes.

L'ordonnancement sur les systèmes
de traitement par lots

Exécution du job le plus court

Temps moyen: 1/4(tA+tC+tD+tB)=11
Avec tA=4, tC=4+4, tD=4+4+4 et tB= 4+4+4+8

et d'arrivé sont donnés par le tableau suivant :

Supposons qu’on a 5 jobs A, B, C, D et E. Leurs temps d’exécution
Est si tous les jobs ne sont pas disponible ?

L'ordonnancement sur les systèmes
de traitement par lots

• Exécution du job le plus court

temps moyen = (3+8+3+6+12)/5=6,4.

L'ordonnancement sur les systèmes
de traitement par lots

L'algorithme de l'exécution du temps restant suivant le plus
court

• C'est un algorithme préemptif qui se base sur le précédent.
Son objectif est de choisir la tâche dont le temps d'exécution
restant est le plus court parmi les autres

• Le temps d'exécution restant doit être connu.
• Si une nouvelle tâche est créée et que son temps d'exécution

total est plus court que le temps restant de la tâche en cours,
la tâche en cours est suspendue pour laisser la place au
nouveau job (préemption).

• L'avantage principal de ce principe est qu'il favorise les tâches
courtes, ce qui est important sur des systèmes de traitements
par lots.

L'ordonnancement sur les systèmes
interactifs

L'algorithme du tourniquet (round robin, circulaire)

• Cet algorithme est ancien et très simple. C'est
également le plus équitable (tous les processus ont la
même priorité) et un des plus utilisés. De plus, il est
relativement simple à implémenter.

• Son principe est d'assigner un intervalle de temps
d'exécution unique (un quantum d’exécution) à
chaque processus.

L'ordonnancement sur les systèmes
interactifs

L'algorithme du tourniquet (round robin, circulaire)
• Cet algorithme alloue le processeur au processus en tête de

file (cette file contient les processus prêt), pendant un
quantum de temps.

• Si le processus se bloque ou se termine avant la fin de son
quantum, le processeur est immédiatement alloué à un
autre processus (celui en tête de file).

• Si le processus ne se termine pas au bout de son quantum,
son exécution est suspendue. Le processeur est alloué à un
autre processus (celui en tête de file) et ainsi de suite. Le
processus suspendu est inséré en queue de file.

• Les processus qui arrivent ou qui passent de l’état bloqué à
l’état prêt sont insérés en queue de file.

L'ordonnancement sur les systèmes
interactifs

L'algorithme du tourniquet (round robin, circulaire)

• La problématique centrale de cet algorithme est donc la
durée de l'intervalle de temps d'exécution (quantum).

• Chaque changement de processus (changement du
contexte d'exécution appelé aussi commutation) nécessite
un certain nombre de tâches administratives coûteuses en
terme de temps (enregistrement et chargement des
registres, vidage et chargement du cache mémoire …).

• Exemple: Si la commutation nécessite 1ms et le quantum
4ms
– 20% du temps processeurs perdu dans la commutation.

L'ordonnancement sur les systèmes
interactifs

L'algorithme du tourniquet (round robin, circulaire)
• Pour améliorer l’efficacité, on peu augmenter la durée du

quantum. Par exemple, si le quantum dure 99 ms le temps perdu
n’est d’un 1%. Dans ce cas se pose le problème de temps de
réponse.

• Il faut donc trouver la durée de quantum idéal en fonction de ce
temps nécessaire au changement de processus et du type de
tâches que souhaite réaliser l'utilisateur. Un compromis
raisonnable semble être un quantum d'environ 50 ms.

commande (même simple)
– quantum trop grand: augmentation du temps de réponse d’une
– quantum trop petit: le processeur passe son temps à commuter

• Problème=réglage du quantum
commande.
dernier utilisateur doit attendre 1s pour pouvoir exécuter une

• Par exemple, si 10 processus (10 utilisateurs) en attente, le

Ordonnancement dans le système
linux

Sous linux, il existe trois politiques
d’ordonnancement :

• SCHED_FIFO : pour un processus temps réel non
préemptif

• SCHED _RR : pour un processus temps réel
préemptif

• SCHED _OTHER : pour un processus ordinaire
(temps partagé)

Ordonnancement dans le système
linux

• Les trois files accueilleront les processus prêts
appartenant aux trois types.

• Les processus de la file SCHED_FIFO sont plus
prioritaires que ceux de la file SCHED _RR qui
eux-mêmes sont plus prioritaires que ceux de
la file SCHED _OTHER

• En Linux, chaque processus se voit attribuer
une politique d’ordonnancement

Ordonnancement dans le système
linux

• Dans tous les cas, le processus possède aussi
une valeur de priorité, variant de 1 à 40. Plus
la valeur est élevée, plus la priorité est haute.

• Par défaut, un processus utilisateur a une
valeur de priorité de 20. Il est possible, pour
un processus, de modifier sa priorité, en
utilisant l’appel système nice(valeur), où
valeur est un nombre compris entre -20 et 20.

Ordonnancement dans le système
linux

• Si la valeur est positive, on diminue d’autant la
priorité du processus. Réciproquement, si la
valeur est négative, on augmente la priorité. À
noter que seul root peut augmenter la priorité
d’un processus.

• Quel que soit sont type un processus Linux est
inséré dans la file associée à son type selon sa
priorité. À tout moment, le processus de type x le
plus prioritaire se trouve en tête de la file du
même type.

Ordonnancement dans le système
linux

• Rien n’est plus prioritaire qu’un processus de la classe
SCHED_FIFO, à l’exception d’un autre processus de la
même classe qui possède une valeur de priorité supérieure.

exécutant l’appel système sched_yield().
– Le processus libère lui-même le processeur, en

remplacé par celui-ci.
plus élevée est prêt. Dans ce cas le processus actuel est

– Un autre processus de la classe SCHED_FIFO de priorité
termine.

– Le processus se bloque sur un appel système ou se
suivantes :
sera interrompu que dans une des circonstances
processus une utilisation illimitée du processeur. Il ne

• La politique d’ordonnancement SCHED_FIFO, garantit au
Temps réel

Ordonnancement dans le système
linux

• La politique d’ordonnancement SCHED_RR,
est, contrairement à la première, préemptive.
Chaque processus de cette classe se voit
attribuer un quantum (temps limite
d’exécution). Lorsque ce quantum sera écoulé,
le contrôle sera donné à un autre processus
de même priorité de la classe SCHED_RR, s’il y
en a un, en appliquant l’algorithme du
tourniquet. À noter que le tourniquet ne se
fait qu’avec des processus de même priorité

Ordonnancement dans le système
linux

• Si deux processus de la classe SCHED_RR avec priorité
20 s’exécutent, ils alterneront dans le processeur. Si
entretemps apparaît un processus de la même classe,
mais de priorité 25, c’est ce dernier qui prend le
contrôle du processeur et ne le redonnera que lorsqu’il
se terminera. À moins, bien sûr, que n’apparaisse un
autre processus SCHED_RR de priorité supérieure ou
égale, ou encore un processus SCHED_FIFO.

• Le quantum attribué à un processus de la classe
SCHED_RR est variable et établi selon les mêmes
principes que ceux appliqués aux processus à temps
partagé, décrits à la section suivante.

Ordonnancement dans le système
linux

Temps partagé
• Nous avons vu, à la section précédente, les deux

politiques d’ordonnancement en temps réel offertes
par Linux. Il nous reste maintenant à voir la dernière
politique d’ordonnancement, qui regroupe tous les
processus de la classe OTHER. Les processus de cette
classe se partagent le processeur de manière inégale,
selon leur priorité et leur usage du processeur.

• Premièrement, comme nous l’avons déjà dit, chaque
processus possède une valeur de priorité qui lui est
attribuée au moment de sa création. C’est ce que nous
appellerons la priorité statique.

Ordonnancement dans le système
linux

• Initialement, on attribue à chaque processus un
quantum dont la valeur utilise une unité de
temps qui correspond normalement à 10ms. La
valeur initiale du quantum est égale à la valeur de
priorité. Ainsi, un processus de priorité 25 aura
un quantum de 25 unités, ce qui correspond à
250 ms.

• Ce quantum est le temps alloué au processus. À
chaque 10 ms, on diminue de 1 la valeur du
quantum du processus en cours d’exécution dans
le processeur.

Ordonnancement dans le système
linux

• Chaque fois que l’ordonnanceur est appelé, une note
est attribuée à tous les processus. Cette note, comme
nous le verrons à la section suivante, dépend à la fois
de la priorité du processus et de la valeur actuelle de
son quantum. C’est cette note qui permettra de
déterminer quel processus prendra le contrôle du
processeur.

• Éventuellement, on peut arriver à une situation où tous
les processus sont dans une des deux situations
suivantes :
– Son quantum est 0. Il a écoulé tout le temps qui lui était

alloué.

– Il est bloqué. Il n’a pas nécessairement épuisé son quantum.

Ordonnancement dans le système
linux

• Dans ce cas, tous les quantums (y compris les
quantums des processus en attente qui ont encore une
valeur non nulle) sont réajustés selon la formule
suivante :

 Quantum ← Quantum /2+priorité

note lorsque vient le moment de choisir un processus à
voit son quantum augmenter peut se retrouver avec une meilleure

exécuter.

• Ceci a pour effet de favoriser les processus qui n’ont
pas utilisé tout le temps qui leur est alloué. En effet, un
processus qui n’a pas épuisé son quantum se retrouve
avec un nouveau quantum plus élevé que l’ancien.

• Comme nous le verrons dans la prochaine section, un processus qui

Ordonnancement dans le système
linux

Algorithme d’ordonnancement

 Note = 1000 + priorité

Sinon
 Si Quantum

 Note = Quantum + Priorité

 Note = 0

Lorsque l’ordonnanceur est appelé, Linux attribue une note
 à chaque processus prêt, en utilisant la méthode suivante :

Si le processus est de la classe SCHED_FIFO ou SCHED_RR

 Sinon

Ordonnancement dans le système
linux

• On remarquera qu’un processus membre d’une
des deux classes de temps réel aura toujours
priorité sur les autres. En effet, puisque le
quantum ne peut dépasser le double de la priorité
du processus, et que la valeur maximale de la
priorité d’un processus est 40, on n’aura jamais
une note supérieure à 120 pour un processus de la
classe OTHER, ce qui est nettement inférieur au
minimum de 1000 pour un processus temps réel.

Ordonnancement dans le système
linux

• On remarquera aussi qu’un processus qui a écoulé
tout son quantum reste en attente tant qu’il y a des
processus qui peuvent s’exécuter. Comme nous
l’avons déjà dit, il ne se verra attribuer un nouveau
quantum que lorsque tous les autres processus
auront épuisé leur quantum ou seront bloqués.

• Exemple
Supposons trois processus A, B et C, tous de la classe

OTHER, et dont les priorités sont les suivantes:
 Processus A B C
 Priorité 20 18 10

Ordonnancement dans le système
linux

• Supposons qu’ils arrivent tous dans le système au
même moment et qu’ils sont seuls. A et B sont des
processus qui s’interrompent pour faire des
appels système bloquant, alors que C ne se bloque
jamais.

• Initialement, c’est évidemment le processus A qui
a la meilleure note.

Note 20+20=40 18+18=36 10+10=20
Processus A B C

Ordonnancement dans le système
linux

• Donc A qui est exécuté, ayant droit à 200 ms.
Supposons maintenant qu’il s’interrompt après
160 ms pour exécuter un appel système
bloquant.

• Le système doit maintenant choisir entre B et C.
B est élu et s’exécute pendant 40 ms (lui aussi se
bloque sur un appel système).

• À ce moment, le processus C prend le contrôle et
utilise toutes les 100 ms qui lui sont accordées

Ordonnancement dans le système
linux

• On se retrouve alors dans la situation suivante : A et
B sont toujours bloqués, et C a un quantum nul. Le
système réalisera donc un réajustement du
quantum. Les processus se verront attribuer les
nouvelles valeurs suivantes (rappelons qu’il reste 40
ms à A et 140 ms à B) :

Processus A B C
Nouveau 4/2+20=22 14/2+18=25 0/2+10=10
quantum

Ordonnancement dans le système
linux

Note 22+20=42 25+18=43 0
Processus A B C

• Comme A et B sont toujours bloqués, l'ordonnanceur
choisit C pour être exécuté à nouveau. Supposons
maintenant que A et B redeviennent prêts durant ce
temps. Dans ce cas l'ordonnanceur ne va pas
interrompe le processus C, mais il va le laisser épuiser
son quantum (100ms). De nouveau, pour choisir l'un
des processus, il faut leur affecter une note. Voici les
notes qui sont attribuées aux processus :

Ordonnancement dans le système
linux

• C’est donc B qui sera choisi, malgré sa priorité
statique plus basse. Il est favorisé parce qu’il a
utilisé une proportion plus petite du temps qui lui
avait été alloué.

• Un processus créé par un utilisateur de Linux est par
défaut de type SCHED _OTHER. Un processus peut
changer la politique d’ordonnancement s’il
appartient à l’administrateur. Plusieurs primitives
permettent de lire ou de modifier la politique
d’ordonnancement et la priorité d’un processus.

Introduction

Exposé du problème

• Les processus en cours d’exécution sont généralement :

– Indépendants et Asynchrones
• Leur fonctionnement ne dépend pas a priori du travail réalisé par les

autres processus

• Ils peuvent a priori progresser à leur rythme sans se soucier les uns des
autres : Ils pourraient s’exécuter en parallèle

• Pourtant, ces processus peuvent être en concurrence pour
l’utilisation de ressources

• & Avoir besoin de se synchroniser et communiquer : dans ce
cas, ils seront au contraire dépendants les uns des autres

Synchronisation des processus

Introduction(suite)

• Des ressources peuvent être accessibles par

• Les instructions du processus qui permettent
d’accéder à la ressource critique en lecture ou en
écriture forme ce qu’on appelle la section critique.

compétition pour le partage d’une ressource
critique, ont dit qu’ils sont des processus
concurrents.

un seul processus à la fois: on parle de ressource
critique

plusieurs processus à la fois
• Des ressources ne peuvent être accessibles que par

• Lorsque deux ou plusieurs processus sont en

Exemple 1:

Soient p1 et p2 deux processus concurrents. Chaque processus
veut décrémenter une variable V dans l’espace d’adressage
qui lui est propre. Supposons la valeur initiale de chaque
variable est v0. Chaque processus exécute les instructions
suivantes (programmes A1 et A2):

 p1 p2

/* x dans l’espace de p1*/ /* x dans l’espace de p2*/

 1. x=V-1; 1. x=V-1;

 2. V=x; 2. V=x;

A1 A2

Problème de partage des ressources

alors la valeur finale de la variable V pour chaque processus est égale à
v0-1.

Exemple2

Soient p1 et p2 deux processus concurrents qui veulent
décrémenter une variable partagé V. Supposons que la
valeur initiale de V est v0. Supposons que chaque
processus exécute les instructions suivantes:

 p1 p2

A1 A2

Problème de partage des ressources

Qu’elle est la valeur finale de V ?

/* x dans l’espace de p1 */ /* x dans l’espace de p2 */

 1. x=V-1; 1. x=V-1;

 2. V=x; 2. V=x;

Premier scénario:

 Supposons que c’est le p1 qui commence
l’exécution et que l’ordonnanceur ne commute
les tâches est alloue le processeur à p2 qu’après
la fin d’exécution de l’instruction (2. V=x).

Problème de partage des ressources

devienne v0-2.
• Après la fin d’exécution de p2, la valeur de V

égale à v0-1.
• Dans ce cas la valeur de V après la fin du p1 est

Deuxième scénario:
Supposons que c’est le p1 qui commence l’exécution.

• p1 lit la valeur initiale v0 puis effectue l’opération x=V-1.

• Avant que p1 écrit la nouvelle valeur dans la variable V (instruction
V=x), l’ordonnanceur commute les tâches et alloue le processeur à p2

• p2 lit la valeur initiale de V (soit v0) et effectue les opérations
x=V-1; et V=x. La nouvelle valeur de V devienne v0-1.

• L’ordonnanceur réactive le premier processus p1 qui continue son
exécution au point où il était arrêté, c’est-à-dire effectue l’opération
V=x, avec la valeur de x qui est v0-1.

Les opérations des processus sont effectuées dans l’ordre suivant:

p1.1; p2.1; p2.2; p1.2.

Problème de partage des ressources

Donc après l’exécution des instruction dans cet
ordre, la valeur finale de V est égale à v0-1.

 (au lieu de v0-2 ce qui était attendu).

Problème:

 Accès concurrent à une variable partagée. Pour l’éviter, on doit
synchroniser les tâches: s’assurer que l’ensemble des opérations sur
cette variable (accès + mise à jour) est exécuté de manière indivisible
(atomique). Par exemple on impose que p2 ne doit commencer son
travail qu’après la fin d’exécution de p1.

• Si A1 et A2 sont atomiques, le résultat de l’exécution de A1 et A2 ne
peut être que celui de A1 suivie de A2 ou de A2 suivi de A1, à
l’exclusion de tout autre

• On dit aussi que les séquences d’actions <1; 2 > (dans p1 et p2) est
une section critique

• Une section critique est exécutée en exclusion mutuelle (un seul
processus au plus peut être dans sa section critique à un instant
donné).

Problème de partage des ressources

Solutions de la section critique

• Considérons n processus qui partage la même ressources.
Le programme sous jacent à chaque processus a la
structure suivante:

 Répéter
 Section restante
 Section critique
 Jusqu' à faux

• Pendant l’exécution parallèle de p1,p2,… et pn, il est
possible que plusieurs processus soient à un instant
donné entrain d’exécuter une instruction de leur section
critique.

• 2 grandes classes de solutions envisageables :
– Solution avec attente active : dans ce cas on intègre aux codes une boucle

qui fait rien et empêche le processus d’avancer tant qu’une condition n’est
pas vérifiée

– Solutions avec blocage: dans ce cas le processus fait un appel implicite pour
accéder à une ressource partagée. Si cette ressource est disponible il le
prend sinon il se bloque en attendant sa libération.

• Les 2 classes exigent l’ajout de code de protection autour de la section
critique: Section d’entrée et Section de sortie ce qui donne:

 Répéter
 Section restante
 Section d’entrée
 Section critique
 Section de sortie
 jusqu’à faux

Solutions de la section critique

• Le processeur est un cas particulier de ressource
partagée, car la demande de son l’allocation n’est
pas faite par les processus. Mais il est allouer par
l’ordonnanceur suivant un algorithme
d’ordonnancement sans leur intervention.

Solutions de la section critique

Propriétés attendues d’une solution

1. Exclusion mutuelle : A tout instant, un processus au
plus exécute des instructions de sa section critique

2. Absence de blocage (permanent): Si plusieurs
processus attendent pour entrer en SC, et si aucun
processus n’est déjà en SC, alors un des processus qui
attendent doit pouvoir entrer en SC au bout d’un
temps fini

3. Condition de progression (cad. blocage que temporaire):
Un processus qui se trouve hors de sa SC et hors du section
d’entrée ne doit pas empêcher un autre processus d’entrer
 dans sa SC: un processus ne doit pas ralentir un autre

Solutions de la section critique

Propriétés attendues d’une solution (suite)

4.Equité (Absence de famine): Un processus qui
est bloqué à l’entrée de la section critique
n’attendra pas indéfiniment son tour. Pour un
processus qui veut entrer en SC, il existe une
borne supérieure au nombre de fois où
d’autres processus exécuteront leur SC avant
lui (La valeur de la borne permet de mesurer à
quel point une solution est équitable)

Solutions avec attente active
Principe :

Un processus désirant entrer en SC attend de
façon active qu’une condition soit vérifiée.

Répéter

 Section restante

 Tant que (condition indique SC non libre) Faire rien

 Fin tant que

 <section de code critique>

 Modifier condition pour refléter SC libre

Problème : Consommation inutile de temps CPU

Solutions logicielles

Algorithme1

Tour une variable partagée initialisée à 1

 p1

Répéter

 Section restante1

 Tant que tour=2 faire rien;

 Section critique1

 Tour=2

Jusqu’à faux

p2

Répéter

 Section restante2

 Tant que tour=1 faire rien;

 Section critique2

 Tour=1

Jusqu’à faux

Solutions avec attente active

Solutions logicielles : Algorithme 1(suite)

• Les processus ne peuvent pas entrer tous les
deux en section critique

• Absence de blocage

• Mais Supposons que p1 est dans <section
restante> et tour=1, p2 ne peut pas entrer dans
sa section critique. Il doit attendre que p1
exécute sa section critique et met tour à 2 ce qui
met en cause la condition de progression

Solutions avec attente active

p1

Répéter

 Section restante1

 D1=vrai

 Tant que D2 faire rien;

 Section critique1

 D1=faux

Jusqu’à faux

p2

Répéter

 Section restante2

 D2=vrai

 Tant que D1 faire rien;

 Section critique2

 D2=faux

Jusqu’à faux

Solutions logicielles : Algorithme2

Solutions avec attente active

Inconvénient Blocage si D1=D2=vrai

Solutions logicielles :Algorithme3 [Peterson 1981]
On envisage alors de signaler d’abord que le

processus demande l’accès à la S.C. en affectant
un booléen, puis y entre effectivement s’il n’y a
pas de conflit d’accès, c-à-d si l’autre processus
n’a pas signalé aussi son intention d’entrer en S.C.

Solutions avec attente active

Assure l’exclusion mutuelle
Absence de blocage
Assure une progression d’exécution
Assure l’équité

p1

Répéter

 Section restante1

 D1=vrai

 Tour=2

 Tant que (D2 et tour=2) faire rien;

 Section critique1

 D1=faux

Jusqu’à faux

p2

Répéter

 Section restante2

 D2=vrai

 Tour=1

 Tant que (D1 et tour=1) faire rien;

 Section critique2

 D2=faux

Jusqu’à faux

65

Solutions logicielles : Algorithme3(suite)

Solutions avec attente active

Solutions avec attente active

Solution matériel

• De nombreux ordinateurs dispose d’une instruction

 Nommée test and set qui permet de Lire et écrire le
contenu d’un mot mémoire d’une manière indivisible.

 Cette instruction a deux opérande:

– Un registre a

– Un mot mémoire b

 Procedure TS(var a,b:entier)

 debut

 ab

 b1

 fin
66

Solution matériel(suite): Algorithme4
verrou une variable partagé initialisé à 0

• Un processus qui trouve verrou=1 lorsqu’il veut
entrer dans sa section critique effectue une
attente active

p1

Répéter

 Section restante1

 TS(test1,verrou)

 Tant que test1=1 faire

TS(test1,verrou);

 Section critique1

 Verrou=0

Jusqu’à faux

p2

Répéter

 Section restante2

 TS(test2,verrou)

 Tant que test2=1 faire

TS(test2,verrou);

 Section critique2

 Verrou=0

Jusqu’à faux

67

Solutions avec attente active

Sémaphores [Dijkstra, 1965]

• Outil général, pouvant servir à réguler d’autres
interactions de nature « Synchronisation » entre entités :

– permettre à un nombre borné (éventuellement plus grand que
1) de processus d’entrer en section critique

– Attendre qu’un nombre minimal de processus soient bloquées
avant que l’un d’eux puisse continuer (rendez-vous)

– …

• Description

 Sémaphore = structure de données (compteur + file
d’attente de processus) + interface (opérations sur la
structure de données)

Solutions avec blocage

Sémaphores (suite1)
Type semaphore=enregistrement
 valeur:entier
 liste_d’attente des processus
 fin
P(s:semaphore):si s.valeur<=0 alors

 début

 <ajouter le processus à s.liste_d’attente>

 <mettre le processus en attente>

 fin

 sinon

 s.valeur=s.valeur-1

 finsi

69

Solutions avec blocage

Sémaphores (suite2)

V(s:semaphore):si s.liste_d’attente non vide alors

 debut

 <choisir et enlever un processus de

 s.liste_d’attente>

 <faire passer à l’état prêt le processus

 choisi>

 fin

 sinon

 s.valeur=s.valeur+1

 finsi
70

Solutions avec blocage

Sémaphores (suite3)
• Les opérations P et V sur un sémaphore sont supposées être

exécutées de manière indivisible. Ceci signifie que, pendant qu’un
processus exécute une opération P ou V sur un sémaphore S, aucun
autre processus ne peut exécuter P ou V sur ce même sémaphore S.

• La solution au problème de la section critique
 Init(s_mut,1)

 Répeter

 Section restante

 P(s_mut)

 Section critique

 V(s_mu)

 Jusqu’à faux
• un processus qui exécute l’opération P(S) et trouve S.valeur négative

ou nulle effectue une attente passive puisqu’il est placé en état
bloqué. Ce blocage se poursuit jusqu’à ce qu’un processus exécute V
sur le même sémaphore et qu’il soit choisi.

71

Solutions avec blocage

Sémaphores (suite4)

• Les sémaphore est un moyen général pour
résoudre les problème de synchronisation

• On peut bloquer un processus sur un opération
P tant qu’une condition n’est pas réalisée.

• Si la condition est réalisé, un processus le
signale aux autre en exécutant l’opération V, qui
réveille l’un des processus en attente

72

Solutions avec blocage

Sémaphores (suite5)
Exemple3
Soit p1 et p2 deux processus qui partagent un tableau d’entier.

Leur programmes sous-jacent sont les suivants:

Si on lance l’exécution parallèle de p1 et p2, on ne sait pas lequel

des processus va commencer. Par conséquent, il se peut que p2
affiche le tableau avant qu’il soit rempli par p1.

Si on veut que la partie remplir le tableau T du processus p1 soit
exécuté avant la partie afficher le tableau T de p2, il faut
synchroniser ces deux processus. Une solution parmi d’autres :
utilisation des sémaphore

p1

Section restante1

 remplir le tableau T

suite1

p2

Section restante2

 afficher le tableau T

suite2

73

Solutions avec blocage

Sémaphores (suite6)

Modification des programme sous-jacent à p1 et p2.

• soit mut un sémaphore initialisé à 0

• p(mut) permet de bloquer p2 tant que p1 n’a pas encore
rempli le tableau

• Après le remplissage du tableau, p1 exécute V(mut) et
débloque le processus p2 afin d’afficher le tableau T

p1

Section restante1

 remplir le tableau T

V(mut)

suite1

p2

Section restante2

P(mut)

 afficher la tableau T

suite2

74

Solutions avec blocage

Les moniteurs
• Module comprenant

– Des données
– Des procédures d’accès (P1,..,Pn)
– Une procédure d’initialisation
– Des conditions

• Les procédures sont exécutées en exclusion mutuelle
• Une condition est une structure qui permet de

bloquer un processus « à l’intérieur » du moniteur
• Une condition ressemble aux sémaphores :

manipulée au travers d’une interface:
– Opération WAIT() indivisible
– Opération SIGNAL() indivisible

Solutions avec blocage

Soit x de type condition
• x.WAIT()

– mettre le processus appelant dans x.File
– mettre ce processus dans l’état bloqué

• x.SIGNAL()
 Si (x.File non vide) Alors

– retirer de x.File un processus
– mettre ce processus dans l’état prêt

• Contrairement à V(), SIGNAL() ne laisse pas de trace. On
peut en faire plus que nécessaire, mais attention aux
signaux de réveil « perdus », car pas mémorisés …

• Wait() bloque toujours le processus appelant par contre
P() n’est bloquante que si la valeur du sémaphore est
négative ou nulle

Solutions avec blocage

Schéma de moniteur
type <monitor-name> =moniteur
début
<variables partagées + déclarations des conditions >
procedure P1 (…) début
. . .
Fin
procedure P2 (…) début
. . .
Fin
. . .
procedure Pn (…) début
. . .
fin
/*initialisation*/
Début
 . . .
Fin
Fin /*du moniteur*/

Solutions avec blocage

Fonctionnement d’un moniteur

• Au maximum un seul processus actif dans le moniteur

• Si un processus exécute wait() et se bloque sur une variable
de condition à l’intérieur du moniteur, il doit laisser libre
l’accès au moniteur

• Si un processus à l’intérieur du moniteur exécute signal() et
réveille un autre bloqué sur une variable de condition, il
doit :

– Pour Hoare : être bloqué jusqu’à ce que le processus réveillé
quitte le moniteur

– Pour Brinch-Hansen : quitter immédiatement le moniteur

Solutions avec blocage

Type Synchro = moniteur

début

Var fait:booléen, tab_rempli: condition

Procedure fin_ecriture()

début

Fait=vrai

Rempli.signal

Fin

Processus P1

……………

Remplir_tableau T

Synchro.fin_ecriture

…………….

procedure début_lecture

debut

Si non (fait) alors

rempli.wait();

Fin si

Fin

/*initialisation*/

début

Fait = faux

Fin

Fin

Processus P2

……………

Synchro.debut_lecture

Afficher_tableau T

…………….

La synchronisation du processus qui remplit un tableau avec celui qui
l’affiche en utilisant les moniteurs se fait de la façon suivante:

Solutions avec blocage

• Conditions de dépôt et de retrait
– Le producteur ne peut pas déposer le message si le tampon est plein,

il doit attendre que le consommateur le vide.
– Le consommateur ne peut pas prendre le message si le tampon est

vide, il doit attendre son remplissage par le producteur

Exemple de synchronisation

Producteur / Consommateur
Il s’agit de synchroniser deux processus : un processus producteur
dépose un message dans un tampon et un autre appelé
consommateur le retire.

Exemple de synchronisation
• Producteur / Consommateur avec les sémaphores

• 2 Sémaphores pour la synchronisation conditionnelle:

– Si le tampon n’est pas vide, le processus type producteur
attend

– Si le tampon est vide , processus type consommateur
attend

Données partagées :

• // condition de production

• Semaphore vide Init(vide,1)

• // condition de consommation

• Semaphore plein Init(plein,0)

Producteur

Répéter

 Produire_message()

 P(vide)

 tampon=message

 V(plein)

Juqu’à faux

Consommateur
Répéter
 P(plein)
 message=tampon
 V(vide)
 utiliser_message()
Juqu’à faux

Exemple de synchronisation

Exemple de synchronisation
• Producteurs / Consommateurs avec les sémaphores
• Gestion d’un buffer de N cases (N>1)

P:plein
V:vide

• tampon (circulaire) avec nombre borné de places
• 2 Sémaphores pour la synchronisation conditionnelle :

– Si pas de place disponible, processus type producteur attend
– Si pas de place remplie, processus type consommateur attend

• Deux sémaphores pour gérer exclusion mutuelle entre
producteurs ou entre consommateurs pour ne pas accéder à
la même case

P

P

P

P
P P

V
V

V

V
V

V

V
V

V
Out

In

Sens du dépôt

Producteur

Répéter

 Produire_objet()

 P(vide)

 P(mutex_In)

tampon[In]=objet; In=(In+1) mod N

 V(mutex_In)

 V(plein)

Juqu’à faux

Données partagées
Entier N : la taille du tampon; In :indice utilisé par les producteurs, Out:indice
utilisé par les consommateurs. In et Out sont initialisés à 0
Sémaphore plein initialisé à N, compte le nombre d’emplacements occupés.
Sémaphore vide initialisé à N, compte le nombre d’emplacements libres
Sémaphore Mutex_In initialisé à 1 assure l’accès exclusif au tampon entre les
producteurs
Sémaphore Mutex_Out initialisé à 1 assure l’accès exclusif au tampon entre
les consommateurs

Consommateur

Répéter

 P(plein)

 P(mutex_Out)

Objet=tampon[out];

Out=(Out+1) mod N

 V(mutex_Out)

 V(vide)

Juqu’à faux

• Producteurs / Consommateurs avec Moniteur

Exemple de synchronisation

Type prodcon = moniteur

debut

Var nonvide, nonplein : condition

C,in,out:entier

procedure produire(m:message)

debut

Si C=N alors

nonplein.wait();

Fin si

tampon[In] = m

In = In + 1 mod N;

C++;

nonvide.signal();

Fin

Procedure consommer(m:message)

debut

Si C=0 alors

nonvide.wait();

Fin si

m=tampon[Out]

Out=Out+1 mod N

C--;

nonplein.signal();

Fin

/*initialisation*/

début

C=0;In=0;Out=0

Fin

Fin //fin moniteur

Producteur

Répeter

Constuire_message m

Prodcon.produire(m)

Jusqu’à faux

consommateur

Répeter

Prodcon.consommer(m)

Utiliser_message m

Jusqu’à faux

Producteurs / Consommateurs avec Moniteur

Exemples de synchronisation

Interblocage

• Un système informatique possède un nombre fini de
ressources qui doivent être distribuées parmi un
certain nombre de processus concurrents.

• Les ressources sont groupées en plusieurs types,
• Chaque type peut exister en plusieurs instances

identiques. L’espace mémoire, le processeur, les
périphériques sont des exemples de types de
ressources.

• Par exemple, si un système a 2 processeurs, on dira
que le type de ressource processeur possède 2
instances, et si le système est doté de 5 imprimantes,
on dira que le type de ressource imprimante possède
5 instances.

• Dans des conditions normales de fonctionnement,
un processus ne peut utiliser une ressource qu’en
suivant la séquence suivante :

 Requête – Utilisation - Libération

• La requête : le processus fait une demande pour
utiliser la ressource. Si cette demande ne peut pas
être satisfaite immédiatement, parce que la
ressource n’est pas disponible, le processus
demandeur se met en état attente jusqu’à ce que la
ressource devienne libre.

• Utilisation : Le processus peut exploiter le ressource.

• Libération : Le processus libère la ressource qui
devient disponible pour les autres processus
éventuellement en attente.

• Un ensemble de processus est dans une situation d’interblocage si
chaque processus de l’ensemble attend un événement qui ne peut
être produit que par un autre processus de l’ensemble.

• Exemple : Un système possède une instance unique de chacun des
deux types de ressources R1 et R2 à accès exclusif. Un processus
P1 détient l’instance de la ressource R1 et un autre processus P2
détient l’instance de la ressource R2. Pour suivre son exécution, P1
a besoin de l’instance de la ressource R2, et inversement P2 a
besoin de l’instance de la ressource R1. Une telle situation est une
situation d’interblocage.

R2 R1

P1

P2

L’accès exclusif aux deux ressources R1 et R2 à l’aide
des sémaphore de Dijkstra peut être fait la façon
suivante:

S1,S2:sémaphore
Init(S1,1);init(S2,1)

Processus P1
. . .
P(S1)
P(S2)
Utiliser R1
Utiliser R2
V(S1)
V(S2)
. . .

Processus P2
. . .
P(S2)
P(S1)
Utiliser R2
Utiliser R1
V(S2)
V(S1)
. . .

Supposons qu’après l’exécution de
P(S1) par le processus P1, le système
alloue le processeur à P2. Ce dernier
commence son exécution, mais après
l’exécution de P(S2), l’ordonnanceur
l’interrompe et alloue le processeur à
P1. quand P1 exécute P(S2) il se bloque
en attendant que P2 exécute V(S2).
Quand l’ordonnanceur alloue de
nouveau le processeur à P2 il se bloque
à son tour sur P(S1)en attendant que
P1 exécute V(S1) ce qui conduit un
interblocage

Une situation d’interblocage peut survenir si les quatre
conditions suivantes se produisent simultanément
(Habermann) :

1. Accès exclusif : Les ressources ne peuvent être exploitées
que par un seul processus à la fois.

2. Attente et occupation : Les processus qui demandent de
nouvelles ressources gardent celles qu'ils ont déjà acquises
et attendent la satisfaction de leur demande

3. Pas de réquisition : Les ressources déjà allouées ne peuvent
pas être réquisitionnées.

4. Attente circulaire : Les processus en attente des ressources
déjà allouées forment une chaîne circulaire d'attente.

conditions d’interblocage

GRAPHE D’ALLOCATION DES RESSOURCES

• On peut décrire l’état d’allocation des ressources d’un
système en utilisant un graphe. Ce graphe est composé de N
nœuds et de A arcs.

• L’ensemble des nœuds est partitionné en deux types :
– P={P1, P2, …, Pm} : l’ensemble de tous les processus

– R={R1, R2, …, Rn} l’ensemble de tous les types de ressources du
système

• Un arc allant du processus Pi vers un type de ressource Rj
est noté Pi→Rj ; il signifie que le processus Pi a demandé
une instance du type de ressource Rj. Un arc du type de
ressourcé Rj vers un processus Pi est noté Rj→Pi ; il signifie
qu’une instance du type de ressource Rj a été alloué au
processus Pi.

• Graphiquement, on représente chaque processus Pi par
un cercle et chaque type de ressource Rj comme une
rectangle.

• Puisque chaque type de ressource Rj peut posséder plus
d’une instance, on représente chaque instance comme un
point dans le rectangle.

• Un arc de requête désigne seulement le rectangle Rj,
tandis que l’arc d’affectation doit aussi désigner un des
points dans le rectangle.

• Quand un processus Pi demande une instance du type de
ressource Rj, un arc de requête est inséré dans le graphe
d’allocation des ressources.

• Quand cette requête peut être satisfaite, l’arc de requête
est instantanément transformé en un arc d’affectation.

• Quand plus tard, le processus libère la ressource l’arc
d’affection est supprimé.

Exemple : L’état d’allocation d’un système est décrit par les
ensembles suivants :

• Ensemble des processus P={P1, P2, P3}

• Ensemble des ressources R={R1, R2, R3, R4}

• Ensemble des arcs A={P1→R1, P2→R3, R1→P2, R2→P2,
R2→P1, R3→P3}

• Le nombre d’instances par ressources est donné par ce
tableau :

 Type de ressources Nombre d’instances

R1 1

R2 2

R3 2

R4 3

• Voici le graphe d’allocation des ressources associé à ce
système :

P2 P3 P1

R1

R2

R3

R4

Si le graphe d’allocation contient un circuit, alors il peut
exister une situation d’interblocage. C’est le cas du Graphe
d’allocation des ressources suivant:

P2 P3 P1

R1

R2

R3

R4

• La condition d’existence de circuit est nécessaire mais pas
suffisante. Par exemple ce graphe contient un circuit mais sans
interblocage

P2

P3
P1

R1

R2

P4

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Méthodes de traitement des interblocages

• Ignorer les interblocages (politique de l’autruche)
 Exemple : le système Unix
• Détection des interblocages

– Laisser se produire les interblocages , ensuite tenter de les
détecter et de les supprimer.

– Si chaque ressource existe en un seul exemplaire, alors un
interblocage existe si le graphe d’allocation des ressources
contient un cycle

– L’existence d’un cycle dans le graphe d’allocation n’est pas une
CNS pour détecter les interblocages si une ressource peut
exister en plusieurs exemplaires

• Eviter dynamiquement les interblocages en allouant les
ressources avec précaution

• Les prévenir en empêchant l’apparition des 4 conditions de
leur existence

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Chapitre 2: Gestion de la mémoire
• L'exécution d'un processus demandant que le code du

programme et les données utilisées soient présents en
mémoire, cette dernière est une ressource essentielle du
système d'exploitation.

• La gestion de la mémoire est confiée à un allocateur qui
l'attribuera au(x) processus demandeur(s). L'objet de ce
chapitre est donc l'étude de l'allocation de la ressource
mémoire au sein d'un système d'exploitation

• Le terme "mémoire" fait surtout référence à la mémoire
principale, c'est à dire à la RAM, mais la gestion de celle-ci
demande la contribution de la mémoire auxiliaire (mémoire
de masse, spacieuse mais lente) et à la mémoire cache (
rapide mais de taille restreinte).

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Rôle du gestionnaire mémoire:

– Connaître les parties libres et les parties en cours
d’utilisation de la mémoire physique.

– Allouer de la mémoire au processus qui en ont
besoin en essayant d’éviter le gaspillage

– Récupérer la mémoire libérer par la terminaison
d’un processus

– Gérer le va et vient (ou swapping) entre la
mémoire principale et le disque lorsque la
mémoire principale disponible est trop petite pour
contenir tous les processus

Merci de nous rendre visite sur
http://fso.umpoujda.com/

On distingue deux modes de programmation

La monoprogrammation (cas simple)

– Un programme peut se trouver en mémoire

– Pour exécuter un second programme, on doit d’abord décharger
le 1er programme de la mémoire puis charger le second

– Ce mode n’est plus utilisé aujourd’hui

La Multiprogrammation

– Plusieurs programmes peuvent cohabiter en même temps en
mémoire

– Mécanisme de protection qui empêche deux programmes
d’interférer entre eux.

– Comment organiser la mémoire le plus efficacement possible ?

– La réponse à cette question fait l’objet de la suite de ce chapitre

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Les stratégies d'allocation de la mémoire
• En multiprogrammation, on trouve essentiellement deux modes

d’allocation de la mémoire centrale : le mode contigu et celui
non contigu.

• Selon le mode d’allocation qui est appliqué, lorsqu'un
programme est chargé en mémoire centrale à partir du disque,
le programme sera placé dans une seule zone (allocation
contiguë) ou réparti entre plusieurs zones (allocation non
contiguë)..

• la zone de mémoire allouée à un programme est de taille
limitée, or tout programme est amené à augmenter de taille lors
de son exécution. En effet, des résultats sont calculés et des
variables peuvent être créées dynamiquement.

• On distingue alors des systèmes qui utilisent des zones de taille
fixe et d'autres qui permettent au programme de s'étendre sur
l'espace avoisinant si celui-ci est libre.

• Le mode d'allocation contiguë n'est plus appliqué de nos jours,
nous n'en donnerons qu'un rapide aperçu en guise d'historique.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Les partitions de taille fixe

• A l’initialisation du système, la mémoire est divisée en n
partitions de taille fixe, pas nécessairement égales
(méthode MFT [Multiprogramming with a Fixed number
of Tasks] apparue avec les IBM 360). Il existe deux
méthodes d’affectation:

1. On crée une file d'attente par partition . Chaque
nouveau processus est placé dans la file d'attente de la
plus petite partition pouvant le contenir.

Inconvénients :

- on perd en général de la place au sein de chaque
partition.

- il peut y avoir des partitions inutilisées (leur file
d'attente est vide).

Allocation contiguë en mémoire centrale

Merci de nous rendre visite sur
http://fso.umpoujda.com/

2. On crée une seule file d'attente globale. Il existe deux
stratégies:
- dès qu'une partition se libère, on lui affecte la première

tâche de la file qui peut y tenir.
 Inconvénient : on peut ainsi affecter une partition de

grande taille à une petite tâche et perdre beaucoup de
place

- dès qu'une partition se libère, on lui affecte la plus

grande tâche de la file qui peut y tenir.
 Inconvénient : on pénalise les processus de petite taille.

• Un autre inconvénient de l'allocation par partition de taille
fixe est la saturation, un processus peut rapidement
occuper l'ensemble de la partition qui lui est allouée et
l'exécution du processus serait ainsi terminée pour faute
d'espace supplémentaire. La seule issue dans une telle
situation est le déplacement du processus sur une autre
partition.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Système

D’exploitation

400K

200K

100K

0

Partition 2

Partition 1

700K

Partition 3

Partition 4

800K

File d’attente
multiple

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Système

D’exploitation

400K

200K

100K

0

File d’attente
unique

Partition 2

Partition 1

700K

Partition 3

Partition 4

800K

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Les partitions de taille variable avec va et vient
• Dans les systèmes multiprogrammés, dès que le

nombre de processus devient supérieur au nombre
de partitions, il faut stocker temporairement sur
disque des images de processus afin de libérer de la
mémoire centrale pour d'autres processus. Il faut
ramener régulièrement les processus stocker sur le
disque en mémoire. Le mouvement des processus
entre la mémoire et le disque est appelé va et vient
(recouvrement ou swapping).

• En pratique on utilise des partitions de taille

variable, car le nombre, la taille et la position des
processus peuvent varier dynamiquement au cours
du temps. On n'est plus limité par des partitions trop
grandes ou trop petites comme avec les partitions
fixes.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

On améliore ainsi grandement l’utilisation de la mémoire en
rendant cependant les politiques d’allocation et de libération
plus compliquées

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Un problème important concerne la taille des partitions
attribuée à chaque processus, car celle-ci tend à augmenter avec
le temps.

• Une solution consiste à allouer à chaque processus un espace
légèrement plus grand que sa taille actuelle comme le montre la
figure suivante:

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Gestion de la mémoire
Dans tous les cas, il faut disposer d’un mécanisme pour mémoriser les

zones libre s et occupées, minimiser l’espace perdu lors d’une allocation
et réduire autant que possible la fragmentation. Il existe trois manière
de mémoriser l’occupation de la mémoire: les tables de bit, les listes et
les subdivisions

 1. Gestion de la mémoire par table de bits
 On divise la MC en unités d'allocations de quelques octets à quelques

Ko. A chaque unité, correspond un bit de la table de bits : valeur 0 si
l'unité est libre, 1 sinon. Cette table est stockée en mémoire centrale.
Plus la taille moyenne des unités est faible, plus la table occupe de place.

• A chaque swap (charger un processus en mémoire), le gestionnaire doit
chercher une zone libre suffisamment grande pour contenir le processus
(rechercher suffisamment de 0 consécutifs dans la table)

• L’exemple suivant montre une partie de la mémoire avec 4 processus et
3 trous (zones libres). Le tableau au dessous montre le table des bits
correspondant.

111111001111100101111

3 0 8 15 17

A B C D

Merci de nous rendre visite sur
http://fso.umpoujda.com/

2. Gestion de la mémoire par liste chaînée

 On utilise une liste chaînée des segments de mémoire
occupés et libres ; dans cette liste, un segment est soit un
processus (P), soit un trou (zone Libre) entre deux
processus. La mémoire de la figure précédente peut être
représentée par une liste chaînée où chaque entrée de
cette liste indique un trou (T) ou un processus (P),
l’adresse à laquelle il débute et éventuellement sa taille, et
elle spécifie un pointeur sur la prochaine entrée.

P 0 3 P 3 3 T 6 2 P 8 5

T 13 2 P 15 1 T 16 1

Merci de nous rendre visite sur
http://fso.umpoujda.com/

A l'achèvement d'un processus ou à son transfert sur disque, il
faut du temps (mise à jour des liste chaînées) pour examiner si un
regroupement avec ses voisins est possible pour éviter une
fragmentation excessive de la mémoire.
A la libération d’une zone mémoire, trois cas peuvent se
présenter
a. La zone occupée est située entre deux zones libres
b. La zone occupée est situées ente deux zones occupées
c. La zone occupée est située ente une zone occupée et une zone
libre.
Dans le cas a, il faut fusionner les 2 zones libres avec la zone
libérée. Dans le cas c, il faut fusionner la zone libre adjacente
avec la zone libérée.

X

A X B A B

A X A

devient

devient

devient

(a)

(c)

(b)

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Pour le chargement d’un processus, si on ne trouve pas
de zone de taille suffisante mais qu’en réalité la
somme des espaces libres est supérieur à la taille
demandée (phénomène de fragmentation), la solution
est d’appliquer un algorithme de compactage (ou
ramasse miette, garbage collector en anglais) qui
regroupe les espaces libres en un seul bloc en faisant
des déplacements en mémoire des zones mémoires
occupées.

• En résumé, les listes chaînées sont une solution plus

rapide que la précédente pour l'allocation, mais plus
lente pour la libération.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Allocation de la mémoire

Plusieurs algorithmes peuvent servir à allouer de la
mémoire à un processus nouvellement crée ou un
processus existant chargé depuis le disque.

algorithme de la première zone libre (first fit): La liste est
parcourue jusqu’à trouver une zone libre qui soit assez
grand. Le bloc libre trouvé est ensuite divisé en deux
partie, l’une destinée au processus et l’autre à la
mémoire non utilisée. L’algorithme de la première zone
libre est rapide parce qu‘il limite ses recherches autant
que possible.

algorithme du meilleur ajustement (best fit): La liste est
entièrement parcourue, et on prend le plus petit bloc
dont la taille est supérieure à celle de la mémoire
demandée.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Algorithme du plus grand résidu (worst fit): similaire au
précédent mais on prend la plus grande zone libre.
Risque de perdre des zones qui ne seront plus
utilisables.

Algorithme de placement rapide (quick fit): on crée des
listes séparées pour chacune des tailles les plus
courantes, et la recherche est considérablement
accélérée. Le problème est la complication au niveau
fusion des zones libres.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

3. Gestion de la mémoire par subdivisions

• Le gestionnaire mémorise une liste de blocs libres dont la taille
est une puissance de 2 (1, 2, 4, 8 octets,, jusqu'à la taille
maximale de la mémoire).

• Par exemple, avec une mémoire de 1 Mo, initialement, la
mémoire est vide.

1M

 Un processus A demande 70 Ko : la mémoire est fragmentée
en deux blocs de 512 Ko; l'un d'eux est fragmenté en deux
blocs de 256 Ko; l'un d'eux est fragmenté en deux blocs de 128
Ko et on loge A dans l'un d'eux, puisque 64 < 70 < 128 :

A 128 256 512

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Un processus B demande 35 Ko : l'un des deux blocs de 128 Ko
est fragmenté en deux blocs de 64 Ko et on loge B dans l'un
d'eux puisque 32 < 35 < 64 :

A 256 512B 64

 Un processus C demande 80 Ko : le bloc de 256 Ko est
fragmenté en deux blocs de 128 Ko et on loge C dans l'un d'eux
puisque 64 < 80 < 128 :

A 512B 64 C 128

 A s'achève et libère son bloc de 128 Ko. Puis un processus D
demande 60 Ko : le bloc libéré par A est fragmenté en deux de
64 Ko, dont l'un logera D :

512B 64 C 128D 64

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• B s'achève, permettant la reconstitution d'un bloc de 128 Ko :

512C 128D 64 128

D s'achève, permettant la reconstitution d'un bloc de 256 Ko ,
etc...

512C 128256

• L'allocation et la libération des blocs sont très simples. La fusion
se fait très rapidement, mais il peut y avoir beaucoup de perte
mémoire. Un processus de taille 2n + 1 octets utilisera un bloc
de 2n+1 octets ! Il y a beaucoup de perte de place en mémoire.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Allocation non contiguë en mémoire centrale

• C’est le mode d’allocation qui est appliqué par les
systèmes actuels, ainsi un fichier peut être chargé à des
adresses dispersées en mémoire. La correspondance
entre les adresses est réalisée au cours de l’exécution.

• La mémoire peut être allouée par zones de taille fixe ou
variable.

• Quand toutes les zones ont la même taille, on parle de
page et de systèmes paginés.

• Quand leur taille peut varier, on parle de segments et de
systèmes segmentés.

• On peut combiner les deux modes: des segments
composés de pages.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Mémoire virtuelle et segmentation
• On désigne par mémoire virtuelle, une méthode de gestion

de la mémoire physique permettant de faire exécuter une
tâche dans un espace mémoire plus grand que celui de la
mémoire centrale MC. Par exemple dans Windows et dans
Linux, un processus fixé se voit alloué un espace mémoire de
4 Go. Si la mémoire centrale physique possède une taille de
512 Mo, le mécanisme de mémoire virtuelle permet de ne
mettre à un instant donné dans les 512 Mo de la MC, que les
éléments strictement nécessaires à l'exécution du processus,
les autres éléments restant stockés sur le disque dur, prêts à
être ramenés en MC à la demande.

• Un moyen employé pour gérer la topographie de cette
mémoire virtuelle se nomme la segmentation, nous figurons
ci-après une carte mémoire segmentée d'un processus.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Segment de mémoire

– Un segment de mémoire est un ensemble de cellules mémoires
contiguës.

– Le nombre de cellules d'un segment est appelé la taille du
segment, ce nombre n'est pas nécessairement le même pour
chaque segment, toutefois tout segment ne doit pas dépasser
une taille maximale fixée.

– La première cellule d'un segment a pour adresse 0, la dernière
cellule d'un segment adrk est bornée par la taille maximale

autorisée pour un segment.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Un segment contient généralement des informations de même
type (du code, une pile, une liste, une table, ...) sa taille peut
varier au cours de l'exécution (dans la limite de la taille
maximale), par exemple une liste de données contenues dans
un segment peut augmenter ou diminuer au cours de
l'exécution.

– Les cellules d'un segment ne sont pas toutes nécessairement
entièrement utilisées.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

L'adresse d'une cellule à l'intérieur d'un segment
s'appelle l'adresse relative au segment ou
déplacement. On utilise plus habituellement la
notion d'adresse logique permettant d'accéder à
une donnée dans un segment, par opposition à
l'adresse physique qui représente une adresse
effective en mémoire centrale.

• C'est un ensemble de plusieurs segments que le
système de gestion de la mémoire utilise pour
allouer de la place mémoire aux divers processus
qu'il gère.

• Chaque processus est segmenté en un nombre
de segments qui dépend du processus lui-même.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Adresse logique ou virtuelle

• Une adresse logique aussi nommée adresse
virtuelle comporte deux parties : le numéro du
segment auquel elle se réfère et l'adresse relative
de la cellule mémoire à l'intérieur du segment lui-
même.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Remarques :

• Le nombre de segments présents en MC n'est pas
fixe.

• La taille effective d'un segment peut varier
pendant l'exécution

• Pendant l'exécution de plusieurs processus, la MC
est divisée en deux catégories de blocs : les blocs
de mémoire libre (libéré par la suppression d'un
segment devenu inutile) et les blocs de mémoire
occupée (par les segments actifs).

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Fragmentation mémoire

• Le partitionnement de la MC entre blocs libres et blocs alloués se
dénomme la fragmentation mémoire, au bout d'un certain temps, la
mémoire contient une multitude de blocs libres qui deviendront
statistiquement de plus en plus petits jusqu'à ce que le système ne
puisse plus allouer assez de mémoire contiguë à un processus.

 Exemple

• Soit une MC fictive de 100 Ko segmentable en segments de taille
maximale 40 Ko, soit un processus P segmenté par le système en 6
segments dont nous donnons la taille dans le tableau suivant :

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Supposons qu'au départ, les segments 1 à 4 sont chargés
dans la MC :

Supposons que le segment n°2 devenu inutile soit désalloué :

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Puis chargeons en MC le segment n°5 de taille 15 Ko dans
l'espace libre qui passe de 35 Ko à 20 Ko :

La taille du bloc d'espace libre diminue.
Continuons l'exécution du processus P en supposant que ce
soit maintenant le segment n°1 qui devienne inutile :

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Il y a maintenant séparation de l'espace libre (fragmentation) en deux
blocs, l'un de 5 Ko de mémoire contiguë, l'autre de 20 Ko de mémoire
contiguë, soit un total de 25 Ko de mémoire libre. Il est toutefois
impossible au système de charger le segment n°6 qui occupe 23 Ko
de mémoire, car il lui faut 23 Ko de mémoire contiguë. Les système
doit alors procéder à une réorganisation de la mémoire libre afin
d'utiliser "au mieux" ces 25 Ko de mémoire libre.

La figure précédente montre à gauche, une mémoire fragmentée, et à
droite la même mémoire une fois compactée.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Adresse virtuelle - adresse physique

• Nous avons parlé d'adresse logique d'une donnée. Comment le
système de gestion d'une mémoire segmentée retrouve-t-il l'adresse
physique associée ?

• l'OS dispose pour cela d'une table décrivant la "carte" mémoire de la
MC.

• Cette table est dénommée table des segments, elle contient une
entrée par segment actif et présent dans la MC.

• Une entrée de la table des segments comporte le numéro du
segment, l'adresse physique du segment dans la MC et la taille du
segment.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Liaison entre Table des segments et le segment lui-même en MC :

Lorsque le système de gestion mémoire rencontre une adresse
virtuelle de cellule (n° segment, Déplacement), il va chercher dans
la table l'entrée associée au numéro de segment, récupère dans
cette entrée l'adresse de départ en MC du segment et y ajoute le
déplacement de l'adresse virtuelle et obtient ainsi l'adresse
physique de la cellule.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

En reprenant l'exemple de la figure précédente, supposons que nous
présentons l'adresse virtuelle (k , 8). Il s'agit de référencer la cellule
d'adresse 8 à l'intérieur du segment numéro k. Comme le segment n°k
est physiquement implanté en MC à partir de l'adresse 1005, la cellule
cherchée dans le segment se trouve donc à l'adresse physique 1005+8
= 1013.

La segmentation mémoire n'est pas la seule méthode utilisée pour gérer
de la mémoire virtuelle, nous proposons une autre technique de gestion
de la mémoire virtuelle très employée : la pagination mémoire. Les OS
actuels employant un mélange de ces deux techniques,

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Comme dans la segmentation mémoire, la pagination
est une technique visant à partitionner la mémoire
centrale en blocs (nommés ici cadres de pages) de taille
fixée contrairement aux segments de taille variable.

• Lors de l'exécution de plusieurs processus découpés
chacun en plusieurs pages nommées pages virtuelles,
on parle alors de mémoire virtuelle paginée. Le nombre
total de mémoire utilisée par les pages virtuelles de tous
les processus, excède généralement le nombre de
cadres de pages disponibles dans la MC.

Mémoire virtuelle et pagination

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Le système de gestion de la mémoire virtuelle paginée est
chargé de gérer l'allocation et la désallocation des pages
dans les cadres de pages.

• La MC est divisée en un nombre de cadres de pages fixé par
le système (généralement la taille d'un cadre de page est
une puissance de 2 inférieure ou égale à 64 Ko).

• La taille d'une page virtuelle est exactement la même que
celle d'un cadre de page.

• Comme le nombre de pages virtuelles est plus grand que le
nombre de cadres de pages on dit aussi que l'espace
d'adressage virtuel est plus grand que l'espace d'adressage
physique. Seul un certain nombre de pages virtuelles sont
présentes en MC à un instant fixé.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Comme le cas de la segmentation, l'adresse
virtuelle (logique) d'une donnée dans une
page virtuelle, est composée par le numéro
d'une page virtuelle et le déplacement dans
cette page. L'adresse virtuelle est transformée
en une adresse physique réelle en MC, par
une entité se nommant la MMU (Memory
Management Unit) assistée d'une table des
pages semblable à la table des segments.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

La table des pages virtuelles
• Nous avons vu dans le cas de la segmentation que la table des

segments était plutôt une liste (ou table dynamique) ne
contenant que les segments présent en MC, le numéro du
segment étant contenu dans l'entrée. La table des pages
virtuelles quant à elle, est un vrai tableau indicé sur les
numéros de pages. Le numéro d'une page est l'indice dans la
table des pages, d'une cellule contenant les informations
permettant d'effectuer la conversion d'une adresse virtuelle
en une adresse physique.

• Comme la table des pages doit référencer toutes les pages
virtuelles et que seulement quelques unes d'entre elles sont
physiquement présentes en MC, chaque page virtuelle se voit
attribuer un drapeau de présence (représenté par un bit, la
valeur 0 indique que la table est actuellement absente, la
valeur 1 de ce bit indique qu'elle est actuellement présente
en MC).

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Le schéma simplifié d'une gestion de MC paginée (page d'une taille
de 64Ko) suivant illustre le même exemple que pour la segmentation.
Soit un accès à une donnée d'adresse 8 dans la page de rang k, le
cadre de page en MC ayant pour adresse 1005, la page étant
présente en MC :

Lorsque la même demande d'accès à une donnée d'une page a lieu sur
une page qui n'est pas présente en MC, la MMU se doit de la charger
en MC pour poursuivre les opérations.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Le système d'exploitation utilise une structure de données pour
décrire les pages d'un processus. Une entrée de la table contient
les informations suivantes :

• Le bit de présence indique si la page est chargée en mémoire ou
non

• Les bits de protection définissent le mode d'accès à la page en
lecture ou en écriture

• Le bit de modification permet d’économiser une recopie sur le
disque si la case va être allouée à une autre page.

• Le bit de référence indique que la page placée dans cette case a
été référencée c'est-à-dire accédée, cette information sert aux
algorithmes de remplacement de pages.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• chaque processus a sa propre table qui doit être
chargée en mémoire,

• La table des pages contient une entrée pour chaque
page de l'espace d'adressage.

• Si le système d'exploitation applique la mémoire
virtuelle avec un registre d’adresse de 32 bits, l’espace
adressable contient 232 adresses.

• Si la taille de chaque page est 4 KO, une page peut
contenir 4096 adresses. Le nombre des pages est égal à
la taille de la mémoire virtuelle divisé par la taille d'une
page. Soit 4 G0/4 KO = 220 environ 1 million de pages.

• Ainsi le principal inconvénient des systèmes paginés est
la taille gigantesque de la table des pages.

La table des pages virtuelles multiniveaux

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• La solution a été proposée avec la pagination multi-
niveaux où la table des pages est décomposée en
petites tables de taille raisonnable qui sont chargées au
fur et à mesure que le système en a besoin.

• On peut souligner deux intérêts à cette organisation :
partant du fait qu'une adresse n'appartient à l'espace
d'adressage d'un processus que si elle est utilisée par le
processus, les tables sont allouées au fur et à mesure
que les adresses qu'elles comportent sont utilisées.

• Par ailleurs on ne charge à partir du disque que les
tables dont on se sert, ainsi on charge à la demande ce
qui évite d'avoir toutes les tables en mémoire centrale.
On dit alors que la table des pages est elle-même
paginée.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• La table du premier niveau comporte 1024 entrées et
permet d'adresser autant de tables de pages (1024 =
210). Ainsi les 10 premiers bits de l'adresse logique
sont considérés comme index dans cette table.

• Une fois qu'on a accédé à l'entrée adéquate, on
trouve l'adresse de la case mémoire où se trouve la
table des pages (de second niveau). Les 10 autres bits
sont alors utilisés comme index dans cette table et
l'entrée nous délivre la case mémoire associée à la
page virtuelle.

• Les pages ayant une taille de 4 KO soit 212, on
retrouve les 32 bits de l'adresse logique (10 + 10 +
12).

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Prenons l'exemple de l'adresse virtuelle 5269875 que
l'on écrit 506973 en hexadécimal. Les 12 bits de
poids faible donnent un déplacement de 973. Le
nombre 506 en hexadécimal s'écrit sur 12 bits en
binaire (010100000110)2 , si nous retenons les 10
bits correspondants à l'index dans la seconde table,
nous obtenons un numéro de page = 100000110 soit
l'entrée 262 dans la table de deuxième niveau et les
2 bits restants (01)2 l'entrée n° 1 dans la table de
premier niveau.

• La pagination à 2 niveaux ne résout pas
définitivement le problème de la taille de la table des
Pages. C'est pour cette raison que les systèmes
d'exploitation utilisent des tables à plusieurs niveaux
généralement 3 ou 4. Il va de soi que le nombre de
niveaux est décidé par le matériel, donc lié au MMU
utilisé pour gérer la pagination

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Défaut de page
• Nous dirons qu'il y a défaut de page lorsque le processeur

envoie une adresse virtuelle localisée dans une page
virtuelle dont le bit de présence indique que cette page est
absente de la mémoire centrale. Dans cette éventualité, le
système doit interrompre le processus en cours
d'exécution, il doit ensuite lancer une opération d'entrée-
sortie dont l'objectif est de rechercher et trouver un cadre
de page libre disponible dans la MC dans lequel il pourra
mettre la page virtuelle qui était absente, enfin il mettra à
jour dans la table des pages le bit de présence de cette
page et l'adresse de son cadre de page.

• Le défaut de page peut entraîner un remplacement si le
système d'exploitation ne trouve aucune case libre.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

La figure précédente illustre un défaut de page d'une page Pk qui avait
été anciennement chargée dans le cadre d'adresse adr0, mais qui est
actuellement absente. La MMU recherche cette page par exemple sur
le disque, recherche un cadre de page libre (ici le bloc d'adresse adr2
est libre) puis charge la page dans le cadre de page et l'on se retrouve
ramené au cas d'une page présente en MC :

Merci de nous rendre visite sur
http://fso.umpoujda.com/

En fait, lorsqu'un défaut de page se produit tous les cadres de pages
contiennent des pages qui sont marquées présentes en MC, il faut
donc en sacrifier une pour pouvoir caser la nouvelle page demandée. Il
est tout à fait possible de choisir aléatoirement un cadre de page, de le
sauvegarder sur disque et de l'écraser en MC par le contenu de la
nouvelle page.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Cette attitude qui consiste à faire
systématiquement avant tout chargement d'une
nouvelle page une sauvegarde de la page que l'on
va écraser, n'est pas optimisée car si la page que
l'on sauvegarde est souvent utilisée elle pénalisera
plus les performances de l'OS (car il faudra que le
système recharge souvent) qu'une page qui est
très peu utilisée (qu'on ne rechargera pas
souvent).

• Cette recherche d'un "bon" bloc à libérer en MC
lors d'un défaut de page est effectuée selon
plusieurs algorithmes appelés algorithmes de
remplacement(voir TD)

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Chapitre 3 :gestion des fichiers

• Le système de gestion de fichiers (SGF) est la
partie la plus visible d’un système d’exploitation
qui se charge de gérer le stockage et la
manipulation de fichiers (sur une unité de
stockage : partition, disque, CD, disquette.

• Un SGF a pour principal rôle de gérer les fichiers
et d’offrir les primitives pour manipuler ces
fichiers.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Le concept de fichier

• Un fichier est l’unité de stockage logique mise à la
disposition des utilisateurs pour l’enregistrement de leurs
données. Le SE établi la correspondance entre le fichier et le
système binaire utilisé lors du stockage de manière
transparente pour les utilisateurs.

• Dans un fichier on peut écrire du texte, des images, des
calculs, des programmes…

• Les fichiers sont généralement créés par les utilisateurs.
Toutefois certains fichiers sont générés par les systèmes ou
certains outils tels que les compilateurs.

• Afin de différencier les fichiers entre eux, chaque fichier a un
ensemble d’attributs qui le décrivent. Parmi ceux-ci on
retrouve : le nom, l’extension, la date et l’heure de sa
création ou de sa dernière modification, la taille, la
protection.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

La notion de répertoire
• Un répertoire est une entité crée pour l’organisation des fichiers.

En effet on peut enregistrer des milliers, voir des millions de
fichiers sur un disque dur et il devient alors impossible de s’y
retrouver.

• Avec la multitude de fichiers créés, le système d’exploitation a
besoin d’une organisation afin de structurer ces fichiers et de
pouvoir y accéder rapidement. Cette organisation est réalisée au
moyen de répertoires également appelés catalogues ou
directory.

• Un répertoire est lui-même un fichier puisqu’il est stocké sur le
disque et est destiné à contenir des fichiers.

• Du point de vue SGF, un répertoire est un fichier qui dispose
d’une structure logique : il est considéré comme un tableau qui
contient une entrée par fichier. L’entrée du répertoire permet
d’associer au nom du fichier (nom externe au SGF) les
informations stockées en interne par le SGF.

• Chaque entrée peut contenir des informations sur le fichier
(attributs du fichier) ou faire référence à (pointer sur) des
structures qui contiennent ces informations.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Rôles d’un système de gestion de fichiers

Un SGF a pour principal rôle de gérer les fichiers et d’offrir les
primitives pour manipuler ces fichiers. Il effectue généralement les
tâches suivantes :

• Fournit une interface conviviale pour manipuler les fichiers (vue
fournie à l’utilisateur).
– Il s’agit de simplifier la gestion des fichiers pour l’utilisateur (généralement,

l’utilisateur fournis seulement les attributs nom et extension du fichier, les
autres attributs sont gérés implicitement par le SGF)

– Cette interface fournit la possibilité d’effectuer plusieurs opérations sur les
fichiers. Ces opérations permettent généralement d’ouvrir, de fermer, de
copier, de renommer des fichiers et des répertoires.

• La gestion de l’organisation des fichiers sur le disque (allocation de
l’espace disque aux fichiers)

• La gestion de l’espace libre sur le disque dur

• La gestion des fichiers dans un environnement Multi-Utilisateurs,
la donnée d’utilitaires pour le diagnostic, la récupération en cas
d’erreurs, l’organisation des fichiers.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Structure du disque dur

 Adresse d'un secteur : n°face, n°cylindre,n°secteur

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• L’unité d’allocation sur le disque dur est le bloc
physique. Il est composé de 1 à n secteurs.

• Un bloc composé de deux secteurs de 512 octets
a une taille égale à 1KO

• Les opérations de lecture et d'écriture du SGF se
font bloc par bloc.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Allocation des fichiers dans les blocs
• Un fichier physique est constitué d’un ensemble de

blocs physique.

• A la création d’un fichier, le SGF doit :
– Attribuer de l’espace sur disque (c’est l’allocation) ;

– Mémoriser son implantation et son organisation sur le
disque.

– Maintenir ces informations en cas de modifications de
fichiers.

• Il existe plusieurs méthodes d’allocation des blocs
physiques :
– allocation contiguë (séquentielle simple)

– allocation par blocs chainés

– allocation indexée

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Allocation contiguë
• Un fichier occupe un ensemble de blocs contigus sur le

disque. Elle est bien adapté au méthodes d'accès
séquentielles et directes

• Difficultés :
– création d'un nouveau fichier
– extension du fichier

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Pour créer un nouveau fichier, il faut allouer un nombre de
blocs suffisants dépendant de la taille du fichier. Par
exemple si on veut stocker deux autres fichiers nommés
fichier3 (4 blocs) et fichier4 (6 blocs), le système doit
chercher pour chacun des fichier les blocs nécessaires pour
leur stockage. Pour le fichier3, on peut lui trouver une
place comme il le montre la figure.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• On ne possède pas 6 blocs contigus, donc,
Comment stocker le fichier4 ?

• Pour trouver un trou suffisant, il faut utiliser la
technique de compactage

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• maintenant, si on veut étendre le fichier1 d'un
bloc ???

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Allocation par blocs chainés

• Un fichier est constitué comme une liste chainée de blocs

physiques, qui peuvent être dispersés n'importe où.
– Extension simple du fichier : allouer un nouveau bloc et le chainer au

dernier

– Pas de fragmentation

Difficultés :
– mode séquentiel seul

– le chaînage du bloc suivant occupe

 de la place dans un bloc

 Adresse/n°du bloc suivant

Données

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Allocation par bloc chainée : variante

• Une table d'allocation des fichiers (File allocation table - FAT)
regroupe l'ensemble des chainages. (exemple systèmes windows)

inconvénient : autant d'entrée dans
la table qu'il y a de bloc sur le
disque.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Allocation indexée : la solution Unix /Linux

• Les 10 premières entrées de la table contiennent l’adresse d’un
bloc de données du fichier

• Bloc = 1024 octets donc 10 Ko alloués

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• La 11ème entrée de la table contient l’adresse d’un bloc d’index
INDIRECT_1. Ce bloc d’index contient des adresses de blocs de
données

• Bloc_index = 1024 octets ; adresse de bloc_données = 4 octets
– 256 entrées dans le bloc d’index

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• La 12ème entrée de la table contient l’adresse d’un bloc d’index
INDIRECT_2. Ce bloc d’index contient des adresses de blocs
d’index INDIRECT_2_i (i de 1 à 256).

• Chaque bloc d’index INDIRECT_2_i contient des adresses de blocs
de données

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• La 13ème entrée de la table contient l’adresse
d’un bloc d’index INDIRECT_3. Ce bloc d’index
contient des adresses de blocs d’index
INDIRECT_3_i.

• Chaque bloc d’index INDIRECT_3_i contient des
adresses de blocs d’index INDIRECT_3_i_j.

• Chaque bloc d’index INDIRECT_3_i_j contient
des adresses de blocs de données

• Bloc = 1024 octets ; adresse de bloc = 4 octets
256 entrées dans le bloc d’index

• (i et j évolue de 1 à 256)

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• On peut représenter les différents niveaux d'indirections
de la façon suivante :

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Allocation de l’espace disque pour un fichier de 526 Ko
donc 526 blocs

– 10 blocs en accès direct

– 256 blocs de données pointés par le bloc index INDIRECT 1

– restent 526 – 10 – 256 = 260 blocs . Tous ces blocs sont pointés à
partir du bloc d’index INDIRECT_2. deux blocs d’index
INDIRECT_2_1 et INDIRECT_2_2 sont nécessaires à ce niveau .

• Si on suppose que la taille d’un bloc est de 1Ko, un fichier
peut avoir la taille maximale suivante : 10 x 1Ko + 256 x
1Ko + 256 x 256 x 1Ko + 256 x 256 x 256 x 1Ko, ce qui
donne en théorie plus de 16Go

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• Structure d’un I-Node

• Cette structure possède plusieurs entrées, elle permet au système de
disposer d’un certain nombre de données sur le fichier :

• la taille,

• l’identité du propriétaire et du groupe : un fichier en Unix est crée
par un propriétaire, qui appartient à un groupe,

• Les droits d’accès : pour chaque fichier, Unix définit trois droits
d’accès (lecture (r), écriture (w) et exécution (x)) pour chaque classe
d’utilisateurs (trois types d’utilisateur {propriétaire, membre du
même groupe que le propriétaire, autres}). Donc à chaque fichier,
Unix associe neuf droits,

• les dates de création, de dernière consultation et de dernière
modification,

• le nombre de références existant pour ce fichier dans le système,

• les dix premiers blocs de données,

Merci de nous rendre visite sur
http://fso.umpoujda.com/

• d’autres entrées contiennent l’adresse d’autres blocs (on parle
alors de bloc d’indirection) :
– une entrée pointe sur un bloc d'index qui contient 256 pointeurs sur bloc de

données (simple indirection)

– Une entrée pointe sur un bloc d'index qui contient 256 pointeurs sur bloc
d'index dont chacun contient 256 pointeurs sur bloc de données (double
indirection)

– Une entrée pointe sur un bloc d'index qui contient 256 pointeurs sur bloc
d'index dont chacun contient 256 pointeurs sur bloc d'index dont chacun
contient 256 pointeurs sur bloc de données (triple indirection)

• La structure d’I-Node est conçue afin d’alléger le répertoire et d’en
éliminer les attributs du fichier ainsi que les informations sur
l’emplacement des données.

• Une entrée dans un I-Node d’un répertoire contiendra donc un
nom d’un fichier ou sous-répertoire et l’Inode associé.

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Gestion de l'espace libre
 • Le système maintient une liste d'espace libre, qui

mémorise tous les blocs disque libres (non alloués)

• Création d'un fichier : recherche dans la liste
d'espace libre de la quantité requise d'espace et
allocation au fichier : l'espace alloué est supprimé
de la liste

• Destruction d'un fichier : l'espace libéré est intégré
à la liste d'espace libre

• Il existe différentes représentations possibles de
l'espace libre
– vecteur de bits

– liste chainée des blocs libres

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Gestion de l'espace libre par un vecteur de bits
La liste d'espace libre est représentée par un vecteur binaire, dans

lequel chaque bloc est figuré par un bit.

• Bloc libre : bit à 1

• Bloc alloué : bit à 0

• pour cette technique, il est facile de trouver n
blocs libres consécutifs . C'est la technique utilisé
dans les Système Macintosh

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Gestion de l'espace libre par liste chainée
• La liste d'espace libre est représentée par une liste chainée des

blocs libres

• Parcours de la liste
– couteux

• Difficile de trouver un groupe de blocs libres

• Variante par comptage

Merci de nous rendre visite sur
http://fso.umpoujda.com/

Gestion de l'espace libre par liste chainée: variante avec
comptage

• Le premier bloc libre d’une zone libre contient l’adresse du
premier bloc libre dans la zone suivante et le nombre de blocs
libres dans la zone courante.

