
Année universitaire:
 2019-2020

Chapitre 1:

Introduction aux systèmes d’exploitation

1

SMI - S4

Cours donné par:
Pr. N. ALIOUA

Références bibliographiques
1. Modern operating systems fourth edition, Andrew s. Tanenbaum, Herbert

bos.

2. Cours et exercices corrigés, systèmes d'exploitation, J. Archer Harris,
ediscience.

3. Conception de systèmes d’exploitation le cas linux, Patrick Cegielski,
deuxième édition.

4. Systèmes d’exploitation des ordinateurs: principes de conception,
CROCUS, DUNOD.

5. Operating system concepts, Abraham Silberschatz and al., John wiley &
sons.

6. Cours de systèmes d’exploitation, Pr. Hafid Bourzoufi, ISTV Valenciennes,
France.

7. Cours de systèmes d'exploitation, Pr. Audrey Queudet, université de
Nantes.

8. Cours Operating Systems, Pr. Geoffrey Challen, buffalo university, New
York, USA.

2

Quelques règles à retenir SVP
• Contact: nawal.alioua@gmail.com

• Les TPs seront réalisés sur les stations de travail Linux
(obligatoirement en équipe de 2 étudiants).

• Les TPs pourront être programmés en C

• Pour chaque TP, remettre un exécutable et un rapport. Le
rapport doit contenir une introduction, le code source, les
résultats obtenus, les réponses aux questions et une courte
conclusion qui commente les résultats. S'il y a lieu, d'autres
points spécifiés dans l'énoncé du TP doivent être inclus dans
le rapport.

• Les TPs doivent être réalisés par les étudiants eux-mêmes,
en utilisant au maximum un apprentissage par recherche de
documentation sur Internet et dans les « man » pages de
Linux.

3

mailto:nawal.alioua@gmail.com
mailto:nawal.alioua@gmail.com
mailto:nawal.alioua@gmail.com
mailto:nawal.alioua@gmail.com
mailto:nawal.alioua@gmail.com

Motivations
• Les systèmes d’exploitation (SE) au quotidien:

• Machines à laver, consoles de jeux, Smartphones, ordinateurs,
SmartTV…

• «Le système démarre», «Le système a planté» , « version 3.0.1 du
système », « bug système »,

• Académique/Professionnel:
• Génie Logiciel: le logiciel s’appuie sur un SE

• Administration réseau: Les machines du réseaux (PCs, routeurs,
serveurs, …) possèdent des SE!

• Mais encore: Les SE ont été particulièrement importants
dans le développement de l’informatique, à côté de
l’évolution technologique des ressources matérielles.

4

Motivations

• L’étude des SE permet d’accéder à des formations avancées (Systèmes distribués,
virtualisation, cloud computing, Big Data …).

• un ordinateur se compose d’éléments matériels « Hardware » et d’éléments
logiciels « Software ».

Cependant, comment coexistent-ils?
Quel est le rôle joué par le SE?
Comment réalise-t-il ce rôle?

• Un SE est fortement lié aux ressources matérielles sur lesquelles il s’exécute.

• Il exploite l’ensemble des instructions exécutables par l’ordinateur (càd le matériel)

et gère ses ressources.

5

Chapitre 1: introduction aux SE
1. Rappel: point sur le matériel

2. Rôles d’un SE

3. Définition d’un SE

4. Structure interne des SE

5. Le noyau

6. Quelques familles de SE

7. La notion de multitâches multi-utilisateurs

6

1. Rappel: point sur le matériel

2. Rôles d’un SE

3. Définition d’un SE

4. Structure interne des SE

5. Le noyau

6. Quelques familles de SE

7. La notion de multitâches multi-utilisateurs

7

1. Rappel: point sur le matériel!

1)Processeur:

L’Unité Centrale de Traitement (UCT) ou processeur central
(CPU), est « le cerveau » de l’ordinateur qui interprète et
exécute les instructions du programme situées en mémoire
centrale.

•L’UCT est composée de l’Unité arithmétique et logique (UAL)
et de l’Unité de commande (ou de contrôle).

•L’UAL effectue les opérations arithmétiques et logiques.

•L’Unité de commande dirige le fonctionnement de toutes les autres
unités: UAL, mémoire, entrées / sorties, etc., en leur fournissant les
signaux de cadence (l’horloge) et de commande.

 8

2)Mémoire:

• Les registres:
o type de mémoire qui sert à stocker des données à traiter, des résultats

intermédiaires ou des informations de commande.
o Le temps d’accès est minimal, très petit espace de stockage et à prix élever.

• La mémoire cache:
o Un bloc de cette mémoire est appelé ligne de cache qui est composée de

plusieurs mots mémoire consécutifs en mémoire.
o Le processeur essaie d’accéder à un mot d’abord dans la cache, avant de passer

à la mémoire principale:
 En cas d’échec (miss), le mot est gardé dans la cache pour un accès futur.
 En cas de succès (hit), la mémoire principale n’est pas accédée.

o mémoire très rapide, de petite taille.

• La mémoire vive:
o RAM (Random Access Memory), on peut accéder instantanément à n’importe

quelle espace mémoire.
o Volatile et contient les données et les instructions des applications en cours.
o Mémoire rapide, de taille plus importante et à prix moyen.

9

1. Rappel: point sur le matériel!

2)Mémoire:

• Le disque:
• sert principalement à stocker les données d’une manière non-volatile.

• L’accès est mécanique, introduisant un délai important en lecture/écriture
relativement à la RAM.

• Sert éventuellement à « étendre » la RAM.

• Un espace plus important et à coût bas (selon les technologies).

• La mémoire morte:
• ROM (Read Only Memory) mémoire en lecture seule.

• Permanente, contenant des microprogrammes enregistrés à l’usine sur des
puces électroniques de la carte mère, contenant les routines de démarrage de
l’ordinateur.

• C’est une mémoire non volatile, rapide et à bas coût. 10

1. Rappel: point sur le matériel!

3)Les périphériques d’entrée/sortie (E/S):

• Permettent le dialogue (échange d’informations) avec ce qui se
trouve à l’extérieur de la machine.

• Ils se composent généralement de deux parties:
o Le matériel (physique).
o Le contrôleur: une puce ou un ensemble de puces qui contrôle

physiquement le périphérique. Présente au système d'exploitation une
interface « simple », nommée Driver, pour recevoir les commandes et
retourner leurs résultats.

11

1. Rappel: point sur le matériel!

12

Schéma matériel général

Unité Centrale
(microprocesseur

+ mémoires)
Périphériques

de sortie
Périphériques

d’entrée

- clavier

- souris

- ...

- écran

- imprimante

- ...

Disquettes,

Zip, ...

Disques

durs
Périphériques

de stockage

Périphériques

de communication

réseau

1. Rappel: point sur le matériel!

13

Mémoire centrale

U.C.

S
to

c
k
a
g

e

Périphériques d’entrée

Périphériques de sortie

Contrôleurs

Niveau Matériel

1. Rappel: point sur le matériel!

14

Système d’exploitation

Mémoire centrale

U.C.

S
to

c
k
a
g

e

Périphériques d’entrée

Périphériques de sortie

Contrôleurs

Fichiers

(Pilotes)

Niveau Matériel

+ SE

1. Rappel: point sur le matériel!

15

Système d’exploitation

Programmes

Données

Mémoire centrale

U.C.

S
to

c
k
a
g

e

Périphériques d’entrée

Périphériques de sortie

Contrôleurs

Fichiers

(Pilotes)

Niveau Matériel

+ SE + Programmes

1. Rappel: point sur le matériel!

1. Rappel: point sur le matériel

2. Rôle d’un SE

3. Définition d’un SE

4. Structure interne des SE

5. Le noyau

6. Quelques familles de SE

7. La notion de multitâches multi-utilisateurs

16

Définition : ensemble de programmes
de gestion du système qui
permettent de gérer les éléments
fondamentaux de l'ordinateur: Le
matériel , les logiciels , la mémoire -
les données , les réseaux.

Rôles majeurs:

• Cache la complexité du hardware,
que ce soit pour les applications ou
pour les développeurs: diverses
technologies de stockage, de
transmission, … .

• Gère les ressources: allocation de
mémoire, ordre d’exécution.

• Isolation et protection: des
programmes, des utilisateurs, …

« Il est plus facile de définir un système d’exploitation par ce qu’il fait que par ce qu’il est. »

17

2. Rôle d’un SE

• D’une manière simple: simplifier l’interaction avec le matériel puis
contrôler et gérer son utilisation.

• D’une manière plus soutenue (académique):
o La gestion des processus: un processus est un programme en cours d' exécution. Le

SE doit gérer l'allocation de ressources aux processus en proposant à chacun un
environnement dans lequel il peut s'exécuter en toute sécurité.

o La gestion de la mémoire : Le SE doit gérer l'allocation de mémoire aux processus et
contrôler physiquement les emplacements auxquels peut accéder un processus.

o La gestion des périphériques: Le SE doit gérer les périphériques afin de leur
permettre d’être partagés de manière efficace entre les processus.

o La gestion du système de fichiers : Le SE doit gérer des structures de données
permettant de créer, stocker, supprimer, lire (etc. …) les informations et de les
organiser dans des fichiers sur des mémoires secondaires (disque dur, CD-ROM, clé
USB, disques SSD, etc.).

o La protection: l'accès aux données doit être réglementé puisqu’il existe plusieurs
utilisateurs et processus. Le SE doit garantir que les fichiers, les segments de
mémoire, etc … ne peuvent être utilisés que par les processus ayant obtenu
l'autorisation appropriée.

o La sécurité: Le SE doit posséder des mécanismes pour se défendre contre les
attaques externes et internes. Elles comprennent les virus, des attaques de déni de
service (Denial of Service: DoS).

18

2. Rôle d’un SE

1. Rappel: point sur le matériel

2. Rôles d’un SE

3. Définition d’un SE

4. Structure interne des SE

5. Le noyau

6. Quelques familles de SE

7. La notion de multitâches multi-utilisateurs

19

• Définition: Un système d’exploitation est une couche logicielle indispensable pour
exploiter, d’une manière simple, les ressources matériels d’un ordinateur.

• Deux modes de fonctionnement (en général):
o le mode noyau (mode superviseur, privilégié): dispose d'un accès complet à tout

le matériel et peut exécuter toutes les instructions que la machine est capable
d'exécuter.

o Le mode utilisateur: le reste du système s'exécute en mode utilisateur, dans
lequel seul un sous-ensemble des instructions de la machine est exécutable.

o Le programme d'interface utilisateur: le shell ou l'interface graphique,
est le niveau le plus bas du logiciel en mode utilisateur, et permet à
l'utilisateur de démarrer d'autres programmes, comme un navigateur
Web, un lecteur de courrier électronique ou un lecteur de musique…

 20

3. définition d’un SE

I. Généralités sur les SE
1. Rappel: point sur le matériel

2. Définition d’un SE

3. Rôles d’un SE

4. Structure interne des SE

5. Le noyau

6. Quelques familles de SE

7. La notion de multitâches multi-utilisateurs

21

4. Structures internes de SE
• Monolithique (d'un seul bloc) :

o L'ensemble du SE s'exécute en un seul programme en mode noyau.

o Le SE est écrit comme une collection de procédures, reliées entre elles dans un
seul programme binaire exécutable unique.

 Implémentation simple.

↓Difficile à maintenir!

o MS-DOS est un exemple d'un tel système.

• Systèmes à modes noyau et utilisateur:
o Le SE démarre en mode noyau, ce qui permet d'initialiser les périphériques et

de mettre en place des routines de service, et commute ensuite en mode
utilisateur.

o En mode utilisateur, on utilise les appels système pour avoir accès à ce qui a été
prévu par le système.

o Unix et Windows (tout au moins depuis Windows 95) sont de tels systèmes.

22

• Systèmes à modes noyau et utilisateur: Appel système

23

o1) Le noyau reçoit l’appel système,
o2) Vérifie qu'il s'agit d'une demande valable (en particulier du point de vue des
droits d'accès),
o3) Exécute,
o4) Renvoie au mode utilisateur.

4. Structures internes de SE

• Systèmes à micro Kernel:
o Un noyau minimal (appelé micronoyau) de taille

de code réduite.

o Se contente en général de gestionnaires de tâches
et de mémoire simples, et un mécanisme de
communication entre processus.

o Les gestionnaires de périphériques, les
gestionnaires d'appels système, etc… sont
implémentés en tant que programmes système et
utilisateurs.

 Un SE plus simple à étendre.

↓ Problèmes de performance.

 24

• Systèmes en couches (généralisation):
o Chaque couche réalise sa fonction en s'appuyant
exclusivement sur l’ensemble des fonctions de la
couche qui lui est immédiatement inférieure.
o Une couche typique du SE consiste en des structures
de données et un ensemble de routines pouvant être
invoquées par des couches de niveau supérieur.
 Vérification et débogage relativement simples.
↓ Difficulté lors de la définition des couches;

tendance à être moins efficaces.

4. Structures internes de SE

I. Généralités sur les SE
1. Rappel: point sur le matériel

2. Définition d’un SE

3. Rôles d’un SE

4. Structure interne des SE

5. Le noyau

6. Quelques familles de SE

7. La notion de multitâches multi-utilisateurs

25

5. Le noyau

• Le noyau (kernel en anglais) comporte un certain nombre des plus importantes routines
(sous-programmes) du SE. Il est chargé en mémoire vive à l'initialisation du système. Les
autres routines, moins critiques, sont appelées des utilitaires.

• Le noyau d'un système d'exploitation se compose de quatre parties principales : le
gestionnaire de tâches (ou des processus), le gestionnaire de mémoire, le gestionnaire
de fichiers et le gestionnaire de périphériques d'entrée-sortie.

• Il possède également deux parties auxiliaires : le chargeur du système d'exploitation et
l'interpréteur de commandes.

• Le chargeur du système d'exploitation:

o Appelé, pour PC et MAC, BIOS (pour Basic Input Output System) et est chargé à une
adresse bien déterminée en mémoire RAM.

o Ce logiciel initialise les périphériques, charge un secteur du disque, et exécute ce qui y
est placé.

• L'interpréteur de commandes (shell en anglais):

o Est souvent considéré comme une partie du SE

o Exécute une boucle infinie qui affiche une invite (montrant par là que l'on attend quelque
chose), lit le nom du programme et les paramètres saisis par l'utilisateur à ce moment-là
et l'exécute.

 26

• Gestionnaire de tâches (ordonnanceur) :

o Divise le temps en laps de temps (en anglais slices, tranches),

o Décide périodiquement d'interrompre le processus en cours et de démarrer (ou
reprendre) l'exécution d'un autre.

• Gestionnaire de mémoire:

o Connaître les parties libres et les parties occupées de la mémoire,

o Allouer de la mémoire aux processus qui en ont besoin,

o Récupérer la mémoire utilisée par un processus lorsque celui-ci se termine,

o Traiter le va-et-vient entre le disque et la mémoire principale lorsque cette dernière doit
être étendue.

• Gestionnaire de fichiers:

o Faire abstraction des spécificités des disques et des autres périphériques d'entrée-sortie,

o Offrir au programmeur un modèle agréable et facile d'emploi.

• Gestionnaire de périphériques:

o Envoyer les commandes aux périphériques,

o Intercepter les interruptions,

o Traiter les erreurs.

27

5. Le noyau

1. Rappel: point sur le matériel

2. Définition d’un SE

3. Rôles d’un SE

4. Structure interne des SE

5. Le noyau

6. Quelques familles de SE

7. La notion de multitâches multi-utilisateurs

28

6. Quelques familles de SE
• L’existence des SE depuis fort longtemps ainsi que leur utilisation dans différents

domaines technologiques ont permis l’émergence de plusieurs familles de SE.

• Mainframe*:
o Ordinateurs de taille d’une pièce qu’on trouve dans les centres de données

d'entreprise.

o Grandes capacités: 1000 disques et des millions de gigaoctets de données.

o Les SE sont amenés à traiter plusieurs tâches à la fois, dont la plupart
nécessitent des quantités importantes d'E/S.

29

6. Quelques familles de SE
• Serveurs:

o PC à ressources importantes ou des workstations ou des Mainframes.

o Les SE doivent être capables de gérer plusieurs utilisateurs à la fois sur un
réseau et de partager des ressources matérielles et logicielles.

• Multiprocesseurs:
o Un moyen pour obtenir une puissance de calcul majeure est de connecter

plusieurs CPU dans un seul système.

o Ces systèmes ont besoin de SE assez spéciaux, des variations de SE pour
serveurs.

30

6. Quelques familles de SE
• Personal Computer: Les SE pour PC modernes supportent la

multiprogrammation, pour fournir un bon support à un seul utilisateur.

• Handheld:
o Connu auparavant sous le nom de PDA (Personal Digital Assistant), ancêtre des

smartphones et des tablettes.

o La plupart de ces appareils possèdent des CPU multicoeurs, GPS, caméras,
capteurs…

o Ils ont des exigences particulières ce qui nécessite des SE sophistiqués et bien
adaptés.

31

6. Quelques familles de SE
• Les systèmes embarqués:

o S'exécutent sur des circuits pour des périphériques n’acceptant pas de futures
installations de logiciels par l’utilisateur (Ex: fours à micro-ondes, les téléviseurs,
les voitures, etc): tout est en ROM.

o Ces SE n’ont pas besoin de considérer l’aspect de protection contre les logiciels
malveillants, ce qui entraîne une simplification de la conception.

• Nœud capteur*:
o Unités qui composent un réseau de capteurs sans fil.

o Chaque nœud est composé de CPU, RAM, ROM, capteurs (température,
humidité, lumière, mouvement …): un vrai ordinateur.

o Le SE doit être petit et simple car les nœuds ont peu de RAM et sont contraints
en énergie.

32

6. Quelques familles de SE
• Systèmes temps réel*:

o Se caractérisent par le temps (ou le délai) comme contrainte.

o Si le système doit fournir des garanties absolues qu'une certaine action se
produira à un certain moment (ou dans un certain intervalle temps), on parle
d’un système en temps réel strict (Hard real-time).

o Si le système doit fournir des garanties avec une certaine probabilité et ainsi un
délai plus grand mais acceptable, on parle de temps réel souple (Soft real-time).

33

1. Rappel: point sur le matériel

2. Définition d’un SE

3. Rôles d’un SE

4. Structure interne des SE

5. Le noyau

6. Quelques familles de SE

7. La notion de multitâches multi-utilisateurs

34

7. La notion de multitâches multi-utilisateurs
• Systèmes multitâches:

o Appelés aussi multi-programmés

o Permettent l'exécution de plusieurs tâches à la fois : exécuter un programme
utilisateur, lire les données d'un disque, afficher des résultats sur un terminal.

o Ce contexte fait appel aux notions suivantes:

 Processus (et non programme): un processus est une instance de
programme en exécution. Le processus est représenté par un programme
(le code), ses données et son état d’avancement communément appelés
variables d’environnement .

 Temps partagé: le micro-processeur à un instant donné, n'exécute
réellement qu'un seul processus. Faire passer le processeur d'un processus
à un autre, en exécutant chaque programme pendant quelques dizaines de
millisecondes, donne l’impression que tout s’exécute en même temps :
c’est Le pseudo-parallélisme.

 Espace mémoire d'un processus: chaque processus possède son propre
espace mémoire, non accessible aux autres processus. On parle de l'espace
d'adressage du processus.

35

• Systèmes multi-utilisateurs:
o Capables d'exécuter de façon concurrente et indépendante des applications appartenant

à plusieurs utilisateurs.
o Concurrente?:

 les applications sont actives au même moment et se disputent l'accès aux
différentes ressources.

o Indépendante?:
 chaque application peut réaliser son travail sans se préoccuper de ce que font les

applications des autres utilisateurs.

o Ce contexte fait appel aux notions suivantes:

 Utilisateurs: matérialisé par un espace privé de travail sur la machine. Chaque
utilisateur est identifié par un numéro unique, appelé l'identifiant de l'utilisateur, ou
UID (pour l'anglais User IDentifier).

 Groupe d'utilisateurs: permet de partager de façon sélective le matériel avec
d'autres utilisateurs. Un groupe est également identifié par un numéro unique
dénommé identifiant de groupe, ou GID (pour l'anglais Group IDentifier).

 Super-utilisateur: ou encore superviseur (root en anglais), un utilisateur particulier
qui peut pratiquement tout faire dans la mesure où le SE ne lui applique jamais les
mécanismes de protection. Il peut, en particulier, accéder à tous les fichiers du
système et interférer sur l'activité de n'importe quel processus en cours
d'exécution.

36

7. La notion de multitâches multi-utilisateurs

Année universitaire:
 2019-2020

Chapitre 2:

Gestion des processus - Rappels

1

SMI - S4

Cours donné par:
Pr. N. ALIOUA

1. Introduction et Définitions

2. Niveaux d’ordonnancement des processus

3. Etats des processus

4. Algorithmes d’ordonnancement

5. Superviseur des processus

6. Création de processus

2

II.1 Introduction et définitions

• Une tâche fondamentale des SE est d’assurer l’exécution de divers
programmes.

• Un programme est une entité statique stockée dans le disque.

• Une fois chargé en mémoire pour s’exécuter, le programme devient
un processus, qui est une entité active.

• « Un processus peut être définit comme étant une instance de
programme en cours d'exécution ».

• L’exécution d’un processus est en général une alternance de calculs
effectués par l’UCT et de requêtes d'E/S effectuées par les
périphériques.

• Un processus va concourir avec d’autres processus pour l’obtention
d’une ressource (UCT, périphérique E/S,...).

• La gestion d’accès aux ressources est dirigée par la partie du SE
appelée ordonnanceur.

3

1) Qu’est-ce qu’un processus?

II.1 Introduction et définitions

• Un processus est composé principalement:

• Si un même programme est exécuté plusieurs fois, il correspond à
plusieurs processus.

• Un processus peut communiquer des informations avec d’autres
processus.

4

1) Qu’est-ce qu’un processus?

o Du code du programme (aussi appelé section texte du
processus).

o Du contenu des registres de l’UCT et de la valeur du compteur
de programme (activité courante du processus).

o De la pile du processus (stack), contenant les données
temporaires (paramètres des fonctions, variables locales,…).

o De la section données (data), contenant les variables globales du
programme.

o D’un tas (heap), qui est une mémoire dynamiquement allouée
pendant l’exécution du processus (pour lecture de fichiers,…)

• Un processus peut être composé d’un ou de plusieurs processus légers (threads).

• « Un thread est une unité d’exécution rattachée à un processus, chargée d’en
exécuter une partie. »

o Ex: pour un même document MS-Word, plusieurs threads: Interaction avec le clavier,
sauvegarde régulière du travail, contrôle d’orthographe…)

5

II.1 Introduction et définitions
2) Qu’est-ce qu’un processus léger (ou thread)?

• Un processus possède un ensemble de
ressources (code, fichiers, périphériques…)
que ses threads partagent.

• Cependant, chaque thread dispose :
o d'un compteur programme (pour le suivi

des instructions à exécuter)
o de registres systèmes (pour les variables

de travail en cours)
o d'une pile (pour l’historique de

l'exécution)

II.1 Introduction et définitions

• Avantages des threads:
o Réactivité: Le processus peut continuer à s’exécuter même si certaines de ses

parties sont bloquées (en chargement de fichiers par exemple).

o Economie d’espace mémoire: Partage de ressources, surtout la mémoire, entre
threads d’un même processus.

o Economie de temps: Les threads partagent les ressources du processus auquel ils
appartiennent. Ainsi, il est plus économique de créer et de gérer les threads que
les processus entre eux.

o Scalabilité: Un processus à thread unique ne peut s’exécuter que sur une CPU.
Alors qu’un processus à multithreads, peut s’exécuter sur plusieurs CPU (quand
elles existent) en même temps.

6

2) Qu’est-ce qu’un processus léger (ou thread)?

II.1 Introduction et définitions

Après avoir défini ces notions, les SE peuvent être divisés en 3 familles:

• Les SE mono-processus à thread unique(ex. DOS):

o configuration la plus simple et la plus ancienne où un seul
processus est exécuté à la fois.

• Les SE multiprocessus à thread unique (ex. Unix):

o sur ces systèmes, l’allocation des ressources et l’ordonnancement
de l’UCT agissent sur le processus et non pas les threads.

• Les SE multiprocessus multithread (ex: windows):

o sur ces systèmes, des ressources sont allouées aux processus, mais
l’ordonnancement de I’UCT agit sur les différents threads.

 7

3) Catégories des SE

II.1 Introduction et définitions

• Pour localiser et gérer tous les processus, le SE maintient une structure de données
appelée «table des processus» qui contient les informations sur tous les processus
créés.

• Le Bloc de Contrôle de Processus (Process control Bloc ou PCB) est une entrée dans
cette table, composée principalement de:

o État de processus (En exécution, prêt, bloqué, ...)

o Identifiant du processus PID (unique)

o Compteur de programme (adresse prochaine instruction à exécuter

par ce processus).

o Registres de l’UCT : varient en nombre et type selon l’architecture de

l’ordinateur (dont l’accumulateur, le registre d’indexe, pointeurs de pile,…)

o Information d’ordonnancement (dont la priorité du processus, pointeurs

sur les files d’ordonnancement, …)

o Information sur la gestion de la mémoire (dont les limites de la mémoire attribuée au
processus).

o Information sur le statut des E/S (dont la liste des périphériques d’E/S alloués au processus)

8

4) Le bloc de contrôle du processus PCB

II.1 Introduction et définitions

Pourquoi a-t-on besoin de toutes ces données (càd PCB)?

• Dans un système multiprogrammé, on a souvent besoin d’interrompre un processus et de
redonner le contrôle de l’UCT à un autre processus.

• Il faut mémoriser toutes les informations nécessaires pour pouvoir relancer le processus
courant dans le même état.

• Le processus en cours est interrompu et un ordonnanceur est appelé. Ce dernier s'exécute en
mode noyau (kernel) pour pouvoir manipuler les PCB.

• Le changement de contexte a un coût: il va consommer de la mémoire et des cycles UCT,
pour décharger le PCB du processus qui était en cours d’exécution et charger le PCB du
processus qui va s'exécuter.

9

5) Le changement de contexte

1. Introduction et Définitions

2. Niveaux d’ordonnancement des processus

3. Etats des processus

4. Algorithmes d’ordonnancement

5. Superviseur des processus

6. Création de processus

10

II.2 Niveaux d’ordonnancement des processus

• On peut distinguer entre 2 types de processus, selon le type de ressource qu’ils
utilisent le plus:
o Les processus tributaires de l’E/S: utilisent peu l’UCT et beaucoup l ’E/S.
o Les processus tributaires de l ’UCT: utilisent beaucoup l’UCT et peu d’E/S.

Quel équilibre l’ordonnanceur devrait-il réaliser?

• Le temps d’UCT non utilisé par les processus tributaires de l’E/S peut être utilisé par
les processus tributaires de l’UCT et vice-versa.

• L’UCT doit rester le moins possible inactive, sans pour autant saturer la mémoire
principale du système.

• Equilibrage et priorité:
o Processus longs et non-urgents Vs Processus courts et urgents.

o L’ordonnanceur pourra donner la priorité aux deuxièmes et exécuter les premiers , quand il y a
du temps machine disponible.

11

Définition générale de l’ordonnanceur: partie du SE chargée d’allouer
les ressources aux processus.

1) Notions utiles: équilibrage de travaux

II.2 Niveaux d’ordonnancement des processus

• Traitement par lots (batch):
o Processus (ou Job) non-urgents qui sont soumis au système groupés et exécutés

les uns après les autres (d’où le nom par lots), pour récupérer la réponse plus
tard.

o Il existe en général une relation entre les jobs successifs.

o Exemple: Tri de fichier, calcul d’une fonction complexe, sauvegarde régulière de
fichiers usagers, etc.

• Traitement Interactif:
o Processus qui demandent une interaction continue avec l’ordinateur.

o L’utilisateur reçoit le(s) résultat(s) immédiatement.

o Exemple: édition de documents ou d’un programme.

12

1) Notions utiles: Traitement par lots Vs. traitement interactifs

II.2 Niveaux d’ordonnancement des processus

Une interruption est un signal pour arrêter un processus, qui peut avoir
plusieurs causes:

• Interruptions causées par le programme utilisateur:
o Exception: Division par 0, débordement, tentative d’exécuter une instruction

protégée, référence au delà de l’espace mémoire du programme

o Appels Système: demande d’entrée-sortie, demande d’autre service du SE,
minuterie établie par le programme lui-même.

• Interruptions causées par le SE:
o Le processus doit céder l’UCT à un autre processus (Préemption).

• Interruptions causées par les périphériques ou par le matériel:
o Fin d’une E/S.

13

1) Notions utiles: les interruptions

II.2 Niveaux d’ordonnancement des processus

• En changeant d’état, les processus se déplacent d’une file à l’autre.

14

• Les processus qui résident dans la mémoire principale et sont prêts et en attente
d'exécution sont conservés sur une liste appelée File des Processus Prêts (ou
Ready Queue).

• Chaque ressource a sa propre file de processus en attente.

• C’est généralement une liste chaînée, contenant un pointeur vers le PCB du
processus, et un pointeur vers le PCB du processus suivant dans la file.

1) Notions utiles: les files d’attente

• Un processus passe une bonne partie de sa durée de vie dans divers
files d’attente.

• La sélection d’un processus à partir de ces files d’attente est effectuée
par l’ordonnanceur.

• L’ordonnanceur opère sur 3 niveaux:
o L’ordonnanceur à long terme (ou ordonnanceur de travaux): décide du moment

où les processus vont être chargés en mémoire.

o L’ordonnanceur à moyen terme (ou ordonnanceur de mémoire ou permutateur):
décide de la suspension/reprise des processus lors d’un manque de mémoire.

o L’ordonnanceur à court terme (ou ordonnanceur de processeus ou répartiteur):
décide quel processus aura le contrôle de l’UCT.

15

2) Définition générale des 3 niveaux d’ordonnancement

II.2 Niveaux d’ordonnancement des processus

 Dans un système par lots, il existe plus de processus soumis que ceux capables d’être
exécutés immédiatement.

 Ils sont alors chargés sur une file d’attente au niveau d’un périphérique de
stockage de masse (le disque) pour être exécutés plus tard.

• Le rôle de l’ordonnanceur de travaux est de:
1. Sélectionner les processus à partir de cette file d’attente.

2. Les charger dans une nouvelle file d’attente des processus prêts pour accéder à l’UCT.

3. Déterminer le niveau de multiprogrammation: nombre de processus en mémoire pouvant
être exécutés en parallèle par le SE.

o Le nombre est choisi d’une manière à établir un équilibre entre les processus tributaires de
l’UCT et ceux tributaires des E/S.

• Une fois que le processus est admis par l’ordonnanceur de travaux, il n'en sort que
lorsqu'il est terminé ou s'il est détruit par le SE (suite à une erreur grave ou à la
demande de l'utilisateur).

• N.B: La plupart des systèmes interactifs multiprogrammés ne disposent pas
d’ordonnanceur de travaux. Chaque nouveau processus est mis en mémoire
principale pour être pris en charge par l’ordonnanceur à court terme.

16

3) Ordonnanceur de travaux (à long terme)

II.2 Niveaux d’ordonnancement des processus

• Les SE multiprogrammés introduisent un ordonnanceur à moyen terme.

• Le rôle du permutateur est d’effectuer:
o Swap out: Supprimer un processus de la mémoire principale et le placer en

mémoire secondaire. Il ne sera plus en concurrence avec les autres pour les
ressources.

o Swap in: Ré-introduire plus tard le processus en mémoire principale et son
exécution pourra se poursuivre là où elle a été interrompue.

o Réduire ainsi le niveau de multiprogrammation.

• Le swapping (permutation) est nécessaire pour:
o améliorer l’équilibre entre processus tributaires de l’E/S et ceux tributaires de

l’UCT

o remédier au problème de dépassement de la mémoire principale disponible.

• Le swapping ne doit pas être trop fréquent pour ne pas gaspiller la bande
passante des disques.

17

4) Ordonnanceur de mémoire ou permutateur (à moyen terme)

II.2 Niveaux d’ordonnancement des processus

Il est utilisé par tout type de SE et son rôle est principalement de:

• Choisir, parmi la file d’attente des processus prêts, à quel processus
sera alloué l’UCT et pour quel laps de temps.

• Etre très rapide pour ne pas ralentir le SE puisqu’il est très
fréquemment utilisé.

18

5) Ordonnanceur de l’UCT ou répartiteur (à court terme)

II.2 Niveaux d’ordonnancement des processus

1. Introduction et Définitions

2. Niveaux d’ordonnancement des processus

3. Etats des processus

4. Algorithmes d’ordonnancement

5. Superviseur des processus

6. Création de processus

19

II.3 Etats des processus

• Les processus sont concurrents et se partagent l’UCT, ils ne peuvent être
continuellement actifs. Ils ont donc, si on ne considère pour commencer que le
répartiteur, 3 états et 4 transitions possibles:

• Prêt (ready): état d’un processus qui n’est pas alloué à l’UCT, mais qui est prêt à être
exécuté.

• En exécution (running) : état d’un processus exécuté sur une UCT.

• Bloqué (blocked): état d'attente d'un événement extérieur, tel qu'une E/S,
nécessaire à la poursuite de l'exécution du processus.

20

1) Les états des processus dans un répartiteur (ordonnanceur de processus)

Prêt
En

exécution

bloqué

Élu par le
répartiteur

Interruption

Attente E/S ou
événement

E/S ou
événement
terminé

2 états sont ajoutés aux états précédents lorsqu’un ordonnanceur de travaux est
utilisé:

• Nouveau (New): le processus vient d'être créé mais n’est pas encore admis par
l’ordonnanceur de travaux pour concurrencer à l’accès à l’UCT.

• Terminé (Terminated): le processus a achevé sa tâche. Il sera détruit prochainement
par le SE pour libérer l’espace. Il est parfois conservé pendant un temps à l'état
terminé en attendant qu'une E/S s'achève ou que les données de ce processus
soient exploitées par un autre processus. On parle alors de processus " zombie".

21

2) Les états des processus dans un ordonnanceur de travaux

Prêt
En

exécution

bloqué

Élu par le
répartiteur

Interruption

Attente E/S ou
événement

E/S ou
événement
terminé

Nouveau Terminé

Admis
Fin

N.B: Quelque soit son état, un processus peut prendre fin suite à une action externe: le SE ou un
autre processus peuvent mettre fin à un processus, en le passant en état terminé.

II.3 Etats des processus

2 états sont ajoutés aux états précédents lorsqu’un permutateur est utilisé:

• Permuté-prêt (Swapped-ready): le processus est pour l'instant transféré en
mémoire secondaire. Le processus est réintroduit plus tard par le permutateur.

• Permuté-bloqué (Swapped-blocked): le processus était bloqué en attendant une
E/S par exemple, puis a été transféré sur la mémoire secondaire pour faire de la
place en mémoire principale. Lorsqu’il termine ses E/S, il passe à l’état permuté-
prêt.

22

3) Les états des processus dans un permutateur

Prêt
En

exécution

bloqué

Élu par le
répartiteur

Interruption

Attente E/S ou
événement

E/S ou
événement
terminé

Nouveau Terminé
Admis

Fin

Permuté
-prêt

Permuté
-bloqué

Permutateur

Permutateur

Fin E/S

II.3 Etats des processus

1. Introduction et Définitions

2. Niveaux d’ordonnancement des processus

3. Etats des processus

4. Algorithmes d’ordonnancement

5. Superviseur des processus

23

II.4 Algorithmes d’ordonnancement

24

• Rôle: décider de l’allocation d’une ressource aux processus qui
l’attendent: algos d’ordonnancement pour l’UCT.

• Objectif: aboutir à un partage efficace du temps d’utilisation de l’UCT:
Mais que veut dire efficace?

o L’algo doit identifier le processus qui conduira à la «meilleure»
performance possible du système.

o Il existe différents critères pour mesurer la performance et dont
l’importance est relative à l’algo lui même.

1) Généralités

II.4 Algorithmes d’ordonnancement

• Utilisation UCT à maximiser: pourcentage d’utilisation pendant une période
d’observation donnée.

• Débit (ou rendement, Throughput) à maximiser: nombre de processus complétés
pendant une période d’observation donnée.

• Temps de rotation (ou de service, turnaround time) à minimiser: Temps écoulé entre le
moment où un processus devient prêt à s'exécuter et le moment où il finit de s'exécuter.

• Temps d’attente (waiting time) à minimiser : somme de tout le temps passé en file prêt.

• Temps de réponse (response time) à minimiser: utile pour les systèmes interactifs.
Temps écoulé entre la soumission d'une requête et la première réponse obtenue.

• Equité : degré auquel tous les processus reçoivent une chance égale de s’exécuter. On
essaie ainsi d’éviter la famine: c’est le cas où un processus n’obtient pas la ressource

• Priorités :attribue un traitement préférentiel aux processus dont le niveau de priorité est
élevé.

Remarque: En général, on tente d’optimiser les valeurs moyennes pour tous les processus
mis en jeu pendant une période d'observation donnée, pour les temps d’attente, de
rotation et de réponse.

25

2) Les critères de performance

II.4 Algorithmes d’ordonnancement

Il existe 2 types d’algo. Ordonnancement:

• Non préemptif (ou coopératif ou sans réquisition):
• Définition: le processus sélectionné garde le contrôle de l’UCT jusqu’à

ce qu’il se bloque ou qu’il termine.

Avantages: facile à mettre en œuvre. Ne nécessite pas de mécanismes
matériels spécifiques (horloges, …)

↓Inconvénients: Correspond difficilement aux systèmes interactifs ou le
temps de réponse est important.

• Préemptif (avec réquisition) :
• Définition: l’algo retire l’UCT au processus en cours d’exécution pour

l’attribuer à un autre processus. Ce type est indispensable pour les
système interactifs.

Avantages: Convient aux systèmes interactifs

↓Inconvénients: Commutation fréquente de contexte des processus, ce
qui peut diminuer le débit.

26

3) Non préemptif Vs Préemptif

II.4 Algorithmes d’ordonnancement

• Algo non préemptif très simple. Il est aussi appelé PAPS (Premier Arrivé
Premier Servi).

• L'ordonnancement est fait dans l'ordre d'arrivée en gérant une file FIFO
(First In First Out) unique des processus prêts, sans priorité ni réquisition :
le processus élu est celui qui est en tête de liste.

• Chaque processus s’exécute jusqu’à son terme.

Avantages:

• Simple

• Pas de famine

↓Inconvénients:

• Temps d’attente moyen très important.

• Non adapté aux systèmes interactifs.

27

4) First come first served (FCFS)

II.4 Algorithmes d’ordonnancement

• Soient les processus P1 , P2 , P3 qui arrivent à l’instant 0 dans cet ordre.

• Le diagramme de Gant suivant correspondant à l’algo FCFS:

• Les mesures de performances sont:
• Utilisation UCT= 30/30 (100%)

• Temps d’attente moyen= (0+24+27)/3=17

• Temps de rotation moyen=(24+27+30)/3=27

• Débit= 3/30=0.1

28

4) First come first served (FCFS) – Exemple

Processus Cycle UCT

P1 24

P2 3

P3 3

Processus Temps
attente

Temps de
rotation

P1 0 24

P2 24 27

P3 27 30

II.4 Algorithmes d’ordonnancement

• Soient les mêmes processus P1 , P2 , P3 qui arrivent à l’instant 0 dans l’ordre P2, P3,
P1

• Le diagramme de Gant correspondant à l’algo FCFS:

• Les mesures de performances sont:
• Temps d’attente moyen= (6+0+3)/3=3

• Temps de rotation moyen=(30+3+6)/3=13

• Débit= 3/30=0.1

• Remarque: Lorsque les processus les plus courts sont arrivés en premier (donc élu
en premier), les performances sont nettement meilleurs. On pourrait donc penser à
utiliser un algo qui avantage les processus courts => algo SJF 29

4) First come first served (FCFS) – Exemple 2

Processus Cycle UCT

P1 24

P2 3

P3 3

Processus Temps
attente

Temps de
rotation

P1 6 30

P2 0 3

P3 3 6

II.4 Algorithmes d’ordonnancement

• Algo non préemptif. Il est aussi appelé Plus court temps d’exécution (PCTE)

• Le processus qui a le cycle UCT le plus court est exécuté en premier.

• Le FCFS est utilisé en cas d’égalité.

Avantages:

• Le meilleur pour le temps d’attente moyen (lorsque tous les processus
arrivent en même temps.)

↓Inconvénients:

• Risque de famine: les processus longs peuvent ne jamais s’exécuter

• Nécessite de connaitre à l’avance le temps du cycle UCT (adapté aux
traitements par lots où une estimation de la durée du cycle est donnée).
Sinon, il devrait être prédit

30

5) Shortest Job First (SJF)

II.4 Algorithmes d’ordonnancement

• Soit les processus P1 , P2 , P3, P4 qui arrivent selon différents temps d’arrivée.

• Le diagramme de Gant correspondant à l’algo SJF:

• Les mesures de performances sont:
• Temps d’attente moyen= (0+6+3+7)/4=4

• Temps de rotation moyen=(7+10+4+11)/4=8

• Débit= 4/16=0.25

31

5) Shortest Job First (SJF) – Exemple

Processus Arrivée Cycle
UCT

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Processus Temps
attente

Temps de
rotation

P1 0 7

P2 8-2=6 12-2=10

P3 7-4=3 8-4=4

P4 12-5=7 16-5=11

II.4 Algorithmes d’ordonnancement

• C’est la version préemptive du SJF. Il est aussi appelé Plus court temps
d’exécution avec Réquisition (PCTER)

• Chaque fois qu’un nouveau processus est introduit dans la file des processus
prêts, l’ordonnanceur compare sa durée du cycle UCT à la durée restante du
processus en cours d’exécution. Si la durée du nouveau processus est
inférieure, le processus en cours d’exécution est réquisitionné.

Avantages:

• Plus efficace que SJF, car le temps d’attente moyen optimal est garantit
quelque soit le moment d’arrivée des processus

↓Inconvénients:

• Risque de famine

• Besoin de connaitre la durée du cycle UCT à l’avance

32

6) Shortest Remaining Time First(SRTF)

II.4 Algorithmes d’ordonnancement

Soit les processus P1 , P2 , P3, P4 qui arrivent selon différents temps d’arrivée.

Le diagramme de Gant correspondant à l’algo SRTF:

Les mesures de performances sont:
• Temps d’attente moyen= (9+1+0+2)/4=3

• Temps de rotation moyen=(16+5+1+6)/4=7

• Débit= 4/16=0.25

33

6) Shortest Remaining Time First (SRTF)

Processus Arrivée Cycle
UCT

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Processus Temps
attente

Temps de
rotation

P1 9 16

P2 1 7-2=5

P3 0 5-4=1

P4 2 11-5=6

II.4 Algorithmes d’ordonnancement

• Algo préemptif le plus utilisé en pratique.

• A chaque processus est allouée une tranche de temps, appelée
quantum (généralement entre 10 et 100 ms.), pour s’exécuter.

• S’il s’exécute pour un quantum entier (sans autres interruptions), il est
interrompu par la minuterie et l’UCT est donnée à un autre processus.
Le processus interrompu redevient prêt (en fin de file d’attente).

Avantages:
oPas de monopolisation de l’UCT, équitable

oPas de famine

oBon temps de réponse

↓Inconvénients:
o Temps d’attente moyen en général important.

o Influence de la valeur du quantum, difficile à déterminer (grand :
FIFO, petit: perte de temps dans les changements de contexte)

34

7) Round-Robin (RR)=Tourniquet

II.4 Algorithmes d’ordonnancement

Soit les processus P1 , P2 , P3, P4. Le diagramme de Gant correspondant à
l’algo RR avec quantum = 20

Les mesures de performances sont:

• Utilisation UCT= 162/162=100%

• Temps de rotation moyen=(134+37+162+121)/4=113.5

• Débit= 4/162=0.025

• Temps de rotation et temps d’attente moyens sont beaucoup plus élevés que
les algos précédents, mais meilleur temps de réponse moyen.

• Le RR suppose que tous les processus sont aussi importants, mais en
pratique, ce n’est pas le cas (processus vidéo plus important que processus
qui affiche l’heure) => Algo HPF

35

7) Round-Robin (RR)=Tourniquet - Exemple

Processus Cycle UCT

P1 53

P2 17

P3 68

P4 24

Processus Temps de
rotation

P1 134

P2 37

P3 162

P4 121

II.4 Algorithmes d’ordonnancement

Soit les processus P1 , P2 , P3, P4.

Temps d’attente:

36

8) Comparaison

Processus Arrivée Cycle UCT

P1 0 7

P2 1 4

P3 2 7

P4 3 5

Processus FCFS SJF SRTF RR (2) RR(5) RR(10)

P1 0 0 9 14 14 0

P2 6 6 0 7 4 6

P3 9 14 14 14 14 9

P4 15 8 2 14 11 15

Moyenne 7.5 7 6.25 12.25 10.75 7.5

Remarques:
• SRTF fournit le meilleur temps d’attente

moyen.
• RR avec petit quantum augmente le temps

d’attente moyen.

II.4 Algorithmes d’ordonnancement

• Affectation d’une priorité à chaque processus (souvent nombre entier, avec 0
la plus haute).L’UCT est donnée au processus prêt avec la plus haute priorité.

• Peut être préemptif ou non. Quand un nouveau processus arrive:
o Cas préemptif: comparer sa priorité à celle du processus en cours d’exécution.

L’UCT est alors réquisitionnée en cas de plus haute priorité. Le processus sorti
sera remis en tête de la liste d’attente prêt correspondant à sa priorité.

o Cas non préemptif: placer le processus dans la file d’attente FIFO correspondant
à sa priorité. Une fois qu’il sera élu, il ne sera pas interrompu par
l’ordonnanceur.

• N.B: Il y a une file d’attente prêt pour chaque niveau de priorité. HPF choisit
toujours dans la file la plus prioritaire.

Avantages:
• Simple, Prise en compte de l’importance des processus

↓Inconvénients:
• Risque de famine pour les processus moins prioritaire.

• Solution: Augmenter la priorité des processus qui attendent depuis longtemps.

37

8) HPF (Highest Priority First ou haute priorité d’abord)

II.4 Algorithmes d’ordonnancement

Soit les processus P1 , P2 , P3, P4, P5. Le diagramme de Gant correspondant à
l’algo HPF:

• préemptif: Temps de rotation moyen=

(29+32+18+14+3)/5 =19.2

• Non préemptif: Temps de rotation moyen=

(10+32+20+19+13)/5 =18.8

• Avec HPF non préemptif, les processus

prioritaire risquent d’attendre plus longtemps.
38

Processus Arrivée Cycle UCT Priorité

P1 0 10 3

P2 2 5 7

P3 5 15 2

P4 10 1 2

P5 15 3 1

Processus Temps de
rotation

préemptif

Temps
rotation non

préemptif

P1 29 10

P2 34-2=32 34-2=32

P3 23-5=18 25-5=20

P4 24-10=14 29-10=19

P5 18-15=3 28-15=13

8) HPF (Highest Priority First ou haute priorité d’abord) - Exemple

II.4 Algorithmes d’ordonnancement

• La file prêt est séparée en plusieurs files. Par exemple une pour processus
d’arrière-plan (background - batch) et une autre pour processus de premier
plan (foreground - interactive).

• Chaque file a son propre algo d ’ordonnancement. Par exemple: FCFS pour
arrière-plan, RR pour premier plan.

• Comment ordonnancer entre les files?
o Priorité fixe à chaque file

o Ou bien chaque file reçoit un certain pourcentage de temps UCT, (exemple: 20%
pour arrière-plan, 80% pour premier plan)

Avantages:
o Permet une catégorisation des tâches accomplies par le système.

↓Inconvénients:
o Risque de famine (cas priorité fixe)

o Priorités statiques (dépendent de la nature du processus)

 39

9) Files multiples (à plusieurs niveaux)

II.4 Algorithmes d’ordonnancement

• Un processus peut passer d’une file à une autre, par exemple quand il a
passé trop de temps dans une file, il passe à une autre plus prioritaire.

• Ce type d’algo d’ordonnancement est défini par :

• nombre de files, ordonnanceur pour chaque file.

• règles pour changer un processus de file (vers le haut ou vers le bas).

• règles pour décider de la file initiale d’un processus.

Avantages:
o Le plus général.

o Flexibilité (nb files, algo pour chaque file, quantum, certains types de
tâche peuvent commencer dans une file peu prioritaire).

↓Inconvénients:
o Le plus complexe à mettre en place. Ajustement délicat des paramètres.

o Risque de famine.

o Nombreux changements de contexte.

40

9) Files multiples avec feedback

II.4 Algorithmes d’ordonnancement

• Trois files: Q0: RR q= 8 ms | Q1: RR q= 16 ms |Q2: FCFS

• Exemple de Schéma d’ordonnancement:
• Un nouveau processus entre dans Q0, il reçoit 8 ms d’UCT

• S’il ne finit pas dans les 8 ms, il est mis dans Q1, il reçoit 16 ms
additionnels

• S’il ne finit pas encore, il est interrompu et mis dans Q2

41

9) Files multiples avec feedback - exemple

Q0

Q1

Q2

1. Introduction et Définitions

2. Niveaux d’ordonnancement des processus

3. Etats des processus

4. Algorithmes d’ordonnancement

5. Superviseur des processus

6. Création de processus

42

II.5 Superviseur des processus

• Pendant son exécution, un processus (père) peut créer de nouveaux processus (fils),
qui peuvent à leur tour créer des fils, formant ainsi une arborescence de processus.

• La majorité des SE identifient les processus par un numéro unique (process id ou
PID) et font référence au père par son PID noté PPID.

• Pour le SE Linux par exemple, lorsque le SE démarre, il crée un processus initial
nommé init (avec pid=1). Si un utilisateur souhaite se connecter, init crée le
processus login(pid 8415).

43

1) Création de processus

II.5 Superviseur des processus

La majorité des SE proposent des mécanismes de création de processus fils à
partir du processus père:

• Fork():

• Le SE crée un nouveau PCB pour le fils et y copie les mêmes éléments du PCB du
père.

• Père et fils continuent leur exécution à partir de l’instruction suivant le fork(),
puisque les deux processus ont les mêmes valeurs des registres dans leur PCB.

• La valeur de retour de fork() est 0 pour le fils, alors que pour le père, elle
correspond au PID du fils. Avec un code qui teste cette valeur, le père et le fils
peuvent être dirigés vers différents segments du code.

• Exec():

• Typiquement, après l’appel système fork(), le fils utilise l’appel système exec() pour
remplacer les éléments de son PCB par un nouveau programme.

• De cette manière, les deux processus peuvent communiquer facilement et
effectuer chacun leur exécution.

• Le père peut se placer en attente jusqu’à la terminaison de son fils

44

1) Création de processus

II.5 Superviseur des processus

3 appels systèmes sont liés à la terminaison des processus:

• wait() : Permet à un processus père d'attendre jusqu'à ce que son fils
termine. Il retourne l'identifiant du processus fils et son état de terminaison.

• exit() : Permet au processus de finir volontairement son exécution car il a
terminé ses instructions et retourne son état de terminaison.

• kill(): Permet de forcer l’arrêt d’un autre processus. Habituellement, un tel
appel ne peut être invoqué que par le père du processus qui doit être
terminé.

• Un père peut mettre fin à l'exécution de l'un de ses enfants pour diverses
raisons:

• Le fils a dépassé son utilisation de certaines des ressources allouées.

• La tâche assignée au fils n'est plus nécessaire.

• Le parent sort et le SE ne permet pas au fils de continuer si son parent se termine.

Remarque: Sur certains SE, lorsqu’un père prend fin, tous ses fils se terminent
automatiquement. Puis, les fils de ces derniers s’achèvent à leur tour, ce
mécanisme est connu sous le nom de terminaison en cascade.

45

2) Terminaison de processus

• Lorsqu'un processus se termine, ses ressources sont désaffectées par
le SE. Cependant, son PCB doit rester dans la table des processus
jusqu'à ce que son père appelle wait().

• Un processus qui s'est terminé, mais dont le père n'a pas encore
appelé wait(), est connu sous le nom de processus zombie.

• Tous les processus passent à cet état lorsqu'ils terminent, mais
généralement ils n’y restent que brièvement. Une fois que le père
appelle wait(), le PID du zombie et son PCB sont libérés.

• Si un père n’a pas appelé wait () et a terminé, ses processus fils vont
devenir orphelins.

• Linux et UNIX attribuent le processus d'initialisation (init) en tant que
nouveau père des processus orphelins. Init invoque périodiquement
wait(), ce qui permet de collecter le statut de sortie de tout processus
orphelin et de libérer son PID et son PCB.

46

II.5 Superviseur des processus
2) Terminaison de processus – le processus zombie

1. Introduction et Définitions

2. Niveaux d’ordonnancement des processus

3. Etats des processus

4. Algorithmes d’ordonnancement

5. Superviseur des processus

6. Création de processus

47

• Recopie les données et les attributs du processus père vers son
processus fils auquel il attribue un nouveau pid.

• Le fils continue son exécution à partir de cette primitive

48

II.6 Création de processus
1) La primitive système fork()

Avant fork()

49

Après fork()

II.6 Création de processus
1) La primitive système fork() – avant vs après

Avant fork()

Arborescence

50

• L’itération de fork() conduit à une
arborescence à partir du processus init (pid =1)

Init
Pid=1

Processus
2

Processus
3

Processus4
Processus

5

II.6 Création de processus
1) La primitive système fork() – Arborescence

• Différencier le père du fils : Code de
retour du fork()

• Dans le père : le fork retourne le pid
du processus fils

• Dans le fils : le fork retourne 0

• Pourquoi ?

• Le fils peut connaitre le pid de son père avec getppid().

• Alors que pour le père, le seul moyen pour connaitre le pid du
processus fils est le retour du fork.

51

II.6 Création de processus
1) La primitive système fork() – porté du code

52

II.6 Création de processus
1) La primitive système fork() - porté des variables

• Les passage des variables se fait par valeur!!
• Le changement d’une variable par l’un des processus n’affecte pas la valeur de la variable

dans l’autre processus

Synchronisation

53

• Le père est toujours prévenu de la fin d’un fils

• Le fils est toujours prévenu de la fin du père

• Mais il faut que le père soit en attente

• Si la fin d’un fils n’est pas traitée par le père ce processus devient
un processus zombie.

II.6 Création de processus
1) La primitive système fork() - relation père/fils

Appels système wait et exit

54

 Void exit (int)
• La Valeur du int est transmise au père, c’est le code de retour
• Fin du processus fils après exit
• Par convention (défaut) une fin correcte donne un code de retour
nul.

int wait (int *)
• Entier retourné : pid du fils qui s’est terminé depuis l’invocation
du wait
• Si aucun fils susceptible de se terminer alors renvoi de −1
• L’entier pointé enregistre l’état du fils lorsqu’il se finit (valeur en
paramètre dans exit)

II.6 Création de processus
2) Les appels système wait et exit

55

II.6 Création de processus
2) Les appels système wait et exit

La valeur de s=la valeur du paramètre de wait * 256

56

• Suspend l'exécution du processus appelant pour une durée
de n secondes : Int sleep(int n)

II.6 Création de processus
3) Mise en sommeil d’un processus

57

• Un processus peut changer de code par un appel système à
exec ou execl.
oCode et données remplacés

oPointeur d’instruction réinitialisé

II.6 Création de processus
4) L’appel système exec et execl

Année universitaire:
 2019-2020

Chapitre 3:

 Communication interprocessus &
Synchronisation

1

SMI - S4

Cours donné par:
Pr. N. ALIOUA

1. Notions de base

2. Mécanismes de communication

3. Mécanismes de synchronisation

2

1. Notions
• Les processus, concurrents ou distants, sont amenés à communiquer et à

synchroniser durant leur cycle de vie.

• Processus concurrents: sont en compétition pour le partage de ressources.
o Coopérants: qui partagent des données, se trouvant en mémoire principale ou en mémoire

secondaire, avec d’autres processus, et peuvent s’affecter mutuellement en cours d’exécution .

o Indépendants: ne partagent pas de données avec d’autres processus et sont ordonnancés
indépendamment les uns des autres.

Communications inter-

système

Communications intra-

système

Processus concurrents Processus distants

3

1. Notions: Ressource
• Ressource: toute entité dont a besoin un processus pour qu’il puisse évoluer

o Matérielle: mémoire, UCT, périphériques

o Logicielle: données, variables

• Ressource locale à un processus:

o Ne peut être utilisée que par ce processus

o Doit obligatoirement disparaitre à la destruction de ce processus puisqu'elle n'est plus
utilisable.

• Ressource commune: n'est locale à aucun processus.

• Une ressource commune partageable avec n points d'accès (n >= 1): une ressource qui
peut être attribuée, au même instant, à n processus au plus.

• Une ressource critique: partageable à un point d’accès (n=1 ou non partageable).
o Exemple: L’UCT est une ressource à un seul point d’accès.

• Le mode d'accès à une ressource peut évoluer dynamiquement:
o Un fichier est une ressource à n points d'accès quand il est ouvert en lecture, critique

quand il est ouvert en écriture.

• Section Critique: Soit une ressource critique c, la section critique d'un processus p, pour
la ressource c, est une phase du processus p pendant laquelle il utilise c, qui devient
donc inaccessible aux autres processus.

.

4

1. Notions: Ressource

Les processus coopérants sont confrontés à deux grands problèmes : la famine et
l'inter-blocage(deadlock).

• Famine: Monopolisation d’une ressource. Si un processus émet un flux constant de
requêtes (de lecture par exemple) et si toutes ses requêtes sont satisfaites en
premier, il pourrait arriver que les requêtes d'autres processus ne soient jamais
satisfaites.

Attente indéfinie

5

1. Notions: Ressource
• Inter-blocage: survient lorsque deux ou plusieurs processus demandent à obtenir

des ressources en même temps, et que les ressources requises par les uns sont
occupées par les autres et vice versa.

On considère deux processus P1 et P2 utilisant deux ressources critiques R1 et R2 comme suit :
Processus P1 Processus P2

Début Début

acquérir R1 acquérir R2

acquérir R2 acquérir R1

utiliser R1 et R2 utiliser R2 et R1

Fin Fin

Attente infinie 6

1. Notions: Ressource
• Incohérence de données : problème de la synchronisation relative à

l'exécution des processus

• Exemple: incrémenter un compte client de 100 depuis deux
opérations bancaires simultanées.

• N: solde initial, Account: numéro du compte client.

Une solution?
7

1. Notions: Exclusion mutuelle
• Soit deux processus p et q qui produisent des données devant être

imprimées sur une imprimante unique. L'emploi de cette imprimante
par p exclut son emploi par q tant que l'impression pour p n'est pas
terminée.

• Un mécanisme d'exclusion mutuelle sert à assurer l'atomicité des
sections critiques relatives à une ressource critique.

• Autrement: s'assurer que les ressources non partageables ne soient
attribuées qu'à un seul processus à la fois.

• Un processus désirant entrer dans une section critique doit être mis
en attente si la ressource relative à la section critique n’est pas libre.

• Mais Comment peut-on attendre?

o Active : procédure entrer_Section_Critique matérialisée par boucle dont la
condition est un test qui porte sur des variables indiquant la présence ou non
d’un processus en section critique

o Non active : le processus passe dans l’état endormi et ne sera réveillé que
lorsqu’il sera autorisé à entrer en section critique.

 8

1. Notions: Exclusion mutuelle

• Un mécanisme d’exclusion mutuelle doit satisfaire les
conditions suivantes:

1. Exclusion mutuelle: Si le processus Pi s'exécute dans sa section
critique, alors aucun autre processus peut s'exécuter dans sa section
critique.

2. Interblocage: aucun processus suspendu en dehors d’une section
critique ne doit bloquer les autres processus d’entrer en section
critique.

3. Attente bornée: aucun processus ne doit attendre indéfiniment
avant d’entrer en section critique.

4. Aucune hypothèse ne doit être faite sur les vitesses relatives des
processus.

9

1. Notions: Accès concurrents aux ressources
• Comment gérer les accès concurrents aux ressources ?

• Mécanismes de:
o Communication: Echange de données entre processus, tout en maintenant la

protection ainsi que l’isolation entre processus communicants.

o Synchronisation: La relation de dépendance logique entre processus qui
cadence leur évolution et fixe l’ordre de leur exécution dans le temps (i.e.
s’affecter mutuellement).

10

1. Notions de base

2. Mécanismes de communication

3. Mécanismes de synchronisation

11

2. Mécanismes de Communications

• Les ouvriers partagent un espace de
travail: un dépôt d’outils et de pièces
nécessaires pour la confection de
voitures.

• Les ouvriers appellent les uns et les
autres: expliciter les demandes et les
réponses.

• Besoin de synchronisation: l’un
commence sa tâche après la fin de celle
de l’autre.

• Les processus partagent un espace de
travail: une mémoire partagée.

• Les processus appellent les uns et les
autres: passage de messages (message
passing).

• Besoin de synchronisation: mécanismes
de synchronisation.

• La communication interprocessus (IPC: interprocess communication)
comparée à la communication entre ouvriers.

12

2. Mécanismes de Communications

• IPC: un ensemble de mécanismes que l’OS supporte pour
permettre aux processus d’interagir entre eux (coordiner,
communiquer).

• Les mécanismes IPC sont catégorisés comme suit:
oMécanismes à passage de messages (messages passing)

oMécanismes à mémoire partagée (shared memory)

• On verra que les IPC comprennent la notion de
synchronisation.

13

2. Mécanismes de Communications

• Les processus créent des messages, puis les envoient (écrire) ou les reçoivent (lire).

• Le noyau OS établi et maintient le canal qui sera utilisé pour transmettre les
messages entre les processus et est requis pour effectuer toutes les opérations IPC.

• Le canal (ou le lien), qui peut être implémenté sous forme d’une file d'attente FIFO
par exemple, est responsable de transmettre le message d'un processus à un autre.

• Ce lien peut être unidirectionnel ou bidirectionnel.

Principe

Utilisateur

Noyau
Canal = Lien

1)Message Passing
1.1)Principes

14

2. Mécanismes de Communications

• Coût des opérations:
o L'envoi: appel système + copie du message depuis l’espace adresse du processus vers le

canal.
o La réception: appel système +copie du message depuis le canal vers l’espace adresse du

processus de réception.
o 1 communication= 2 copies de données + 2 passages utilisateur/noyau.

• Inconvénients:
o coût généré (overhead) dû aux multiples copies de données en entrée et en

sortie depuis ou vers le noyau + les passages multiples utilisateur/noyau.

Avantages:
o Le noyau du SE prend en charge toutes les opérations, concernant la gestion des canaux.
o La synchronisation: le noyau s'assurera que les données ne sont pas écrasées ou

corrompues d'une façon ou d'une autre, quand les processus tentent d'envoyer ou de
recevoir en même temps.

Utilisateur

Noyau Canal

1.1)Principes

1)Message Passing

15

2. Mécanismes de Communications

• Le Message passing peut être bloquant ou non-bloquant.

• Bloquant c’est à dire synchrone
o Envoie bloquant: l'expéditeur est bloqué jusqu'à la réception du

message.

oRéception bloquante: le récepteur est bloqué jusqu'à ce qu'un
message soit disponible.

• Non-bloquant c’est à dire asynchrone
o Envoi non-bloquant: l'expéditeur envoie le message et continue.

o Réception non-bloquante: le récepteur reçoit sans attendre.

• Si à la fois envoyer et recevoir bloquent, nous avons besoin
d’un rendez-vous.

1.1)Principes

1)Message Passing

16

2. Mécanismes de Communications

• Le message passing implémente la notion de port.

• Le port est une interface par laquelle un processus peut, entre autres,
envoyer ou recevoir un message.

Utilisateur

Noyau Canal

Ports

1.1)Principes

1)Message Passing

17

2. Mécanismes de Communications

• Les pipes ordinaires permettent à deux processus de communiquer de la manière
standard producteur-consommateur: le producteur écrit à une extrémité du tuyau
(WRITE_END) et le consommateur lit à l'autre extrémité (READ_END).

• Il n'y a pas de message en soi mais plutôt un flux d'octets poussés dans le pipe
depuis un processus puis reçu dans un autre.

• Les pipes ordinaires sont unidirectionnels.

• Les pipes peuvent être accédées en utilisant les appels système read () et write ().

• Un pipe ordinaire n'est pas accessible depuis l'extérieur du processus qui l'a créé:
o Le processus parent crée un pipe et l'utilise pour communiquer avec un processus fils qu'il

crée via fork ().

• Les pipes ordinaires peuvent être utilisés uniquement pour la communication entre
les processus sur la même machine.

• Une fois que les processus ont fini de communiquer et sont terminés, le pipe
ordinaire cesse d'exister.

Utilisateur

Noyau Pipe

a) Pipe ordinaire

1)Message Passing
1.2)Les pipes

18

2. Mécanismes de Communications

• La communication pour les pipes nommés peut être bidirectionnelle et
aucune relation parent-enfant n'est requise.

• Une fois qu'un pipe nommé est établi, plusieurs processus peuvent l'utiliser
pour la communication.

• Les pipes nommés continuent d'exister après la fin des processus
communicants jusqu'à ce qu'ils soient explicitement supprimés du système
de fichiers.

• UNIX:
o Seule la transmission half-duplex est autorisée.
o Si les données doivent passer dans les deux sens simultanément, deux pipes sont

généralement utilisés.
o Les processus de communication doivent résider sur la même machine.
o Si une communication inter-machine est requise, les sockets doivent être utilisées.

• WINDOWS:
o La communication en full-duplex est autorisée.
o Les processus en communication peuvent résider sur la même machine ou des

machines différentes.

b) Pipe nommé

1)Message Passing
1.2)Les pipes

19

2. Mécanismes de Communications

• Un processus émetteur doit envoyer un message correctement formaté au canal, puis le canal
fournira un message correctement formaté au processus destinataire, selon le protocole de
communication établi entre ces deux processus.

• Plusieurs types de files de messages possibles:
o File d’attente sans mémoire:

 La file ne stock pas les messages.
 Ce que l’émetteur dépose dans la file doit immédiatement être retiré par le destinataire.

L’émetteur doit bloquer jusqu'à ce que le destinataire reçoive le message.
o File d'attente à longueur finie n:

 Si la file d'attente n'est pas pleine lorsqu'un nouveau message est envoyé, le message est placé
dans la file d'attente et l’émetteur peut continuer l'exécution sans attendre.

 Si elle est pleine, l’émetteur doit bloquer jusqu'à ce qu'un espace soit disponible dans la file
d'attente.

o File d’attente à capacité illimitée:
 La longueur de la file est potentiellement infinie.
 L‘émetteur ne bloque jamais.

• Le SE fournit des mécanismes aux niveaux des files d'attente de messages pour intégrer
également la notion de priorités des messages ou la planification des envoies des messages.

Utilisateur

Noyau
(File)

1)Message Passing
1.3)Les files d’attente de messages

a)Principe

20

2. Mécanismes de Communications

• Les sockets permettent aux processus d'envoyer des messages à l'intérieur et à
l'extérieur du buffer de communication dans le noyau.

• Un socket est identifié par une adresse IP concaténée à un numéro de port.

• En général, les sockets utilisent une architecture client-serveur.

• L'appel socket():
o Crée une mémoire buffer au niveau du noyau.
o Associe tout le traitement nécessaire au niveau du noyau pour la transmission du message.

• Le socket peut être un socket TCP/IP, ce qui signifie que l'ensemble de la pile de
protocoles TCP/IP est associé au mouvement des données dans le noyau.

• Le SE est suffisamment intelligent pour comprendre que si deux processus sont sur la
même machine, il n'a pas vraiment besoin d'exécuter la pile de protocoles complète pour
envoyer les données sur le réseau, puis de le recevoir et le passer au processus.

Utilisateur

Noyau Canal

Sockets

(Buffer)

b)Les sockets

1)Message Passing
1.3)Les files d’attente de messages

21

2)Mémoire partagée
2.1)Principe

Utilisateur

Noyau

Mémoire Principale

Mémoire partagée

• Les processus envoient (écrire) ou reçoivent (lire) les messages dans une région
partagée de la mémoire.

• Le noyau SE établi la mémoire partagée entre les processus.

• Un même espace de la mémoire physique peut être accessible par ces processus.
C’est à dire qu’une adresse logique de P1 et une autre de P2 vont correspondre à la
même adresse physique dans la mémoire principale.

• Normalement, le SE empêche un processus d'accéder à la mémoire des autres
processus. Lorsque le mécanisme de mémoire partagée est utilisé, cela nécessite
que les processus communicants suppriment cette restriction.

2. Mécanismes de Communications

22

2. Mécanismes de Communications
2)Mémoire partagée

• Une mémoire partagée réside dans l'espace d'adressage du processus qui l’a créé.
Les autres processus qui souhaitent communiquer à l'aide de cette région doivent la
joindre à leur espace d'adressage.

• Les processus peuvent ensuite échanger des informations en lisant et écrivant des
données dans la région partagée.

• Les processus sont également responsables de s'assurer qu'ils n'écrivent pas au
même endroit simultanément. Cela est géré par les mécanismes de
synchronisation.

2.1)Principe

Utilisateur

Noyau

Mémoire partagée

Mémoire Principale

23

2. Mécanismes de Communications

Avantages:
o Plus rapide que le message passing car les appels système sont requis

uniquement pour établir la région de la mémoire partagée.

o Réduction du nombre de copies de données. Un processus peut utiliser
une donnée dans la mémoire partagée sans avoir besoin de la copier.

• Inconvénient:
o C’est au programmeur de gérer les accès et l’organisation de la mémoire

partagée. La difficulté majeur est de gérer la synchronisation: les
processus doivent synchroniser explicitement leurs accès à la mémoire
partagée.

2)Mémoire partagée
2.1)Principe

Utilisateur

Noyau

Mémoire partagée

Mémoire Principale

24

2. Mécanismes de Communications
2)Mémoire partagée

• Le problème majeur de la mémoire partagée est la gestion de la synchronisation.

• La synchronisation permet de gérer les accès à la mémoire partagée grâce à
plusieurs mécanismes.

• Un mécanisme simple est d’utiliser le concept du problème du
producteur/consommateur:

o Le processus producteur (P) ne peut que produire (écrire) des informations.

o Le processus consommateur (C) ne peut que consommer (lire) ces informations.

• Déroulement:

oPour permettre l'exécution simultanée de P et C, un buffer est rempli par P et est
vidé par C. Le buffer réside dans la région mémoire partagée par P et C.

oP peut produire une information pendant que C consomme une autre.

oP et C doivent être synchronisés, de sorte que C n'essaie pas de consommer une
information qui n'a pas encore été produite.

oBuffer: tableau circulaire avec deux pointeurs in (modifié par P et indique la
prochaine case vide) et out (modifié par C et indique la première case pleine).

2.2) Problème du producteur/consommateur

25

2. Mécanismes de Communications
2)Mémoire partagée
2.2) Problème du producteur/consommateur

//mémoire partagée

#define B_S 5 /* taille du buffer */

typedef struct {

. . .

} item;

item buffer[B_S];

int in = 0;

int out = 0;

//Producteur P

item next_prod;

while (true) {

/* Tester si production est possible*/

while(((in + 1) % B_S) == out);

/* si buffer plein, ne rien faire */

buffer[in] = next_prod; //produire

in = (in + 1) % B_S; }

//Consommateur C

item next_cons;

while (true) {

while (in == out) ;/* si buffer

vide, ne rien faire */

next_cons = buffer[out];//consommer

 out = (out + 1) % B_S;

}

0 1 2 3 4
in

out

1) Etat initial:
- buffer vide: in=out
- Si P ne produit rien, C ne peut
rien consommer

26

2. Mécanismes de Communications
2)Mémoire partagée
2.2) Problème du producteur/consommateur

//mémoire partagée

#define B_S 5 /* taille du buffer */

typedef struct {

. . .

} item;

item buffer[B_S];

int in = 0;

int out = 0;

//Producteur P

item next_prod;

while (true) {

/* produire un item dans next_prod */

while(((in + 1) % B_S) == out);

/* buffer plein, ne rien faire */

buffer[in] = next_prod;

in = (in + 1) % B_S; }

0 1 2 3 4
in

out

2) P produit l’item a dans next_prod:
- next_prod est mis dans la case 0
- in est incrémenté par 1

a

//Producteur P

item next_prod;

while (true) {

/* Tester si production est possible*/

while(((in + 1) % B_S) == out);

/* si buffer plein, ne rien faire */

buffer[in] = next_prod; //produire

in = (in + 1) % B_S; }

//Consommateur C

item next_cons;

while (true) {

while (in == out) ;/* si buffer

vide, ne rien faire */

next_cons = buffer[out];//consommer

 out = (out + 1) % B_S;

}
27

2. Mécanismes de Communications
2)Mémoire partagée
2.2) Problème du producteur/consommateur

//mémoire partagée

#define B_S 5 /* taille du buffer */

typedef struct {

. . .

} item;

item buffer[B_S];

int in = 0;

int out = 0;

0 1 2 3 4
in

out

3) P produit 3 autres items:
- A chaque itération, next_prod est mis
dans la case in
- in est incrémentée et atteint case 4
4) P ne pourra par produire un 5ème
item: après cela, il devra pointer sur la
case 0 (= 5 mod 5) contenant un item
pas encore lu par C (pointé par out).

a b c d

//Producteur P

item next_prod;

while (true) {

/* Tester si production est possible*/

while(((in + 1) % B_S) == out);

/* si buffer plein, ne rien faire */

buffer[in] = next_prod; //produire

in = (in + 1) % B_S; }

//Consommateur C

item next_cons;

while (true) {

while (in == out) ;/* si buffer

vide, ne rien faire */

next_cons = buffer[out];//consommer

 out = (out + 1) % B_S;

}
28

2. Mécanismes de Communications
2)Mémoire partagée
2.2) Problème du producteur/consommateur

//mémoire partagée

#define B_S 5 /* taille du buffer */

typedef struct {

. . .

} item;

item buffer[B_S];

int in = 0;

int out = 0;

0 1 2 3 4
in

out

5) C consomme un item:
- L’item à la case pointée par out (=0)
est mis dans next_cons
- out est incrémentée

b c d

//Producteur P

item next_prod;

while (true) {

/* Tester si production est possible*/

while(((in + 1) % B_S) == out);

/* si buffer plein, ne rien faire */

buffer[in] = next_prod; //produire

in = (in + 1) % B_S; }

//Consommateur C

item next_cons;

while (true) {

while (in == out) ;/* si buffer

vide, ne rien faire */

next_cons = buffer[out];//consommer

 out = (out + 1) % B_S;

}
29

2. Mécanismes de Communications
2)Mémoire partagée
2.2) Problème du producteur/consommateur

//mémoire partagée

#define B_S 5 /* taille du buffer */

typedef struct {

. . .

} item;

item buffer[B_S];

int in = 0;

int out = 0;

0 1 2 3 4
in

out

4-bis) P pourra produire un 5ème
item: le contenu de la case 0 est
consommé, elle est libre d’accès
(car in ≠ out)

b c d e

//Producteur P

item next_prod;

while (true) {

/* Tester si production est possible*/

while(((in + 1) % B_S) == out);

/* si buffer plein, ne rien faire */

buffer[in] = next_prod; //produire

in = (in + 1) % B_S; }

//Consommateur C

item next_cons;

while (true) {

while (in == out) ;/* si buffer

vide, ne rien faire */

next_cons = buffer[out];//consommer

 out = (out + 1) % B_S;

}
30

2. Mécanismes de Communications
2)Mémoire partagée
2.2) Problème du producteur/consommateur

//mémoire partagée

#define B_S 5 /* taille du buffer */

typedef struct {

. . .

} item;

item buffer[B_S];

int in = 0;

int out = 0;

6) Supposant la configuration à
gauche (out précède in de 1) et C
consomme le contenu de la case 1:
- out pointe alors sur case 2 (= in).
-C ne pourra plus consommer
d’item (car in=out)

//Producteur P

item next_prod;

while (true) {

/* Tester si production est possible*/

while(((in + 1) % B_S) == out);

/* si buffer plein, ne rien faire */

buffer[in] = next_prod; //produire

in = (in + 1) % B_S; }

//Consommateur C

item next_cons;

while (true) {

while (in == out) ;/* si buffer

vide, ne rien faire */

next_cons = buffer[out];//consommer

 out = (out + 1) % B_S;

}

in

0 1 2 3 4

out

in

0 1 2 3 4

out

x

31

2. Mécanismes de Communications

//mémoire partagée

#define B_S 5 /* taille du buffer */

typedef struct {

. . .

} item;

item buffer[B_S];

int in = 0;

int out = 0;

int counter=0;

//Producteur P

item next_prod;

while (true) {

/* produire un item dans next_prod */

While(counter == B_S); //buffer

plein, ne rien faire

buffer[in] = next_prod;

in = (in + 1) % B_S;

counter++; }

//Consommateur C

item next_cons;

while (true) {

while (counter == 0);//buffer

vide, ne rien faire

next_cons = buffer[out];

out = (out + 1) % B_S;

counter--;

/* consommer un item dans

next_cons */ }

0 1 2 3 4
in

out
a b c d

Problème de l’algo: Si B_S = 5, P ne peut
déposer que 4 items à la fois (étape 4).

Solution: Introduire une variable globale
(counter):
• initialisée à 0
• utilisée dans les boucles while.
• incrémentée à chaque production
• décrémentée à chaque consommation.

Pb:
0 1 2 3 4
in

out
a b c d

Sol:

e

2)Mémoire partagée
2.2) Problème du producteur/consommateur

32

1. Notions de base

2. Mécanismes de communication

3. Mécanismes de synchronisation

33

3. Mécanismes de synchronisation

• Synchronisation: elle se présente comme un ensemble de
mécanismes qui permettent aux processus d’accéder à leur
section critique en garantissant l’exclusion mutuelle.

• Les mécanismes de synchronisation sont catégorisés comme
suit:
oMécanismes logiciels

oMécanismes matériels

oCombinaison des deux

On introduit la synchronisation à travers la solution proposée
(i.e. variable counter) au problème rencontré dans
l’algorithme du producteur/consommateur.

1) Introduction

34

3. Mécanismes de synchronisation

• On se positionne dans le cas où les processus s’exécutent en parallèle et que P
exécute counter++ et C counter--. Considérons que counter = 5 et que les
instructions s’exécutent dans cet ordre:

o Inst0: P exécute reg1 = counter {reg1 = 5}

o Inst1: P exécute reg1 = reg1 + 1 {reg1 = 6}

o Inst2: C exécute reg2 = counter {reg2 = 5}

o Inst3: C exécute reg2 = reg2 – 1 {reg2 = 4}

o Inst4: P exécute counter = reg1 {counter = 6 }

o Inst5: C exécute counter = reg2 {counter = 4} Cette valeur doit être = 5

• Problème: les processus P et C accèdent en même temps à une
variable partagée counter

• Solution: introduire une section critique pour l’accès à counter

1) Introduction

counter++ :

• reg1=counter

• reg1 = reg1+1

• counter = reg1

counter-- :

• reg2 = counter

• reg2 = reg2–1

• counter = reg2

1.1) Problème de l’algo du producteur/consommateur

• L’incrémentation et décrémentation
de counter est exécutée sous forme
de 3 instructions en assembleur:

35

3. Mécanismes de synchronisation

• La structure générale d’un programme utilisant une section critique :

• Rappel: Lorsqu’on introduit une section critique, il faut s’assurer de
satisfaire les conditions d’exclusion mutuelle:

1. Exclusion mutuelle

2. Pas d’Interblocage

3. Attente bornée

4. Pas d’hypothèse sur les vitesses relatives des processus.

1) Introduction
1.2) Section critique

do{

 // code section critique

 // code non critique

}while{true}

Entrée section critique

Sortie section critique

36

3. Mécanismes de synchronisation

• Synchronisation par mécanisme logiciel: l’accès à la section critique
est contrôlé par un algorithme uniquement et n’a pas besoin de circuit
spécial.

• La Solution de Peterson en est un exemple:

o Elle est adaptée au cas de deux processus

o Les processus partagent deux variables :

 Int turn: indique l’indice du processus (1 ou 2) qui entre dans la
section critique

 Boolean flag[2]: flag[k]==True indique que le processus « k+1 »
souhaite entrer dans la section critique

o Remarque: i est l’indice du processus courant, j est l’indice de
l’autre processus

2) Mécanisme logiciel
2.1) Introduction

37

3. Mécanismes de synchronisation

do{// le processus

// code section critique

// code non critique

}while{true};

flag[i-1] = true; // inst 1

turn = j; // inst 2

while(flag[j-1] && turn = =

j); // inst 3

flag[i-1] = false; // inst

4

• 2 processus P1 et P2 s’exécutent en même temps

• Initialement:

• P1 puis P2 →inst 1

• P1 → inst 2:

• P1 → inst 3:

• P2 → inst 2:

• P1 → inst 3:

• P2 → inst 3:

• P1 termine SC → inst 4:

• P2 → inst 3:

• P1 entre en section non critique, puis termine

• P2 termine SC → inst 4:

• P2 entre en section non critique, puis termine

turn=0 | flag=[F,F]

turn=0 | flag=[T,T]

turn=2 | flag = [T,T]

While(F), P1 entre en SC

While(T), P2 boucle et ne

peut pas accéder à sa SC

turn=1 | flag=[F,T]

While(F), P2 entre en SC

turn=1 | flag=[F,F]

Les conditions de l’exclusion mutuelle
sont satisfaites:
1) Pas d’accès simultané à la SC
2) Pas d’interblocage
3) Les processus ont accédé à leur SC.
4) Pas de supposition sur la vitesse des

processus

2) Mécanisme logiciel
2.2) Solution de Peterson

While(T), P1 boucle et ne

peut pas accéder à sa SC

turn=1 | flag = [T,T]

38

3. Mécanismes de synchronisation

• La Solution de Peterson peut poser un problème lorsqu’on dispose
d’un processeur superscalaire (comporte plusieurs unités de calcul).

• Ce processeur peut exécuter plusieurs instructions simultanément
parmi une suite d'instructions. Soit les instructions suivantes traitées
par processeur qui exécute 2 instructions à la fois :

1. Mov eax,0

2. Mov ebx,1

3. Mov edx,2

4. Inc edx

5. Mov ecx,3

• Le processeur choisit à chaque fois 2 instructions qui
n’agissent pas sur les mêmes registres.

• Il peut alors exécuter : (1,2); (3,5); (4)
• Cela produit un changement dans l’ordre des

instructions (memory reordering).

2) Mécanisme logiciel
2.2) Solution de Peterson

1. Mov eax,0

2. Mov ebx,1

3. Mov edx,2

5. Mov ecx,3

4. Inc edx

39

3. Mécanismes de synchronisation

• Si la solution de Peterson rencontre un changement d’ordre des
instructions. On peut imaginer le scénario suivant:

do{// le processus

// code section critique

// code non critique

}while{true}

flag[i-1] = true; // inst 1

turn = j; // inst 2

while(flag[j-1] && turn = = j)

; // inst 3

flag[i-1] = false; // inst

4

• Initialement:

• P1 →inst 2 puis P1 → inst 3:

• P2 → inst 2 puis P2 → inst 3:

• P1 → inst 1

• P2 → inst 1:

• …..

turn=0 | flag = [F,F]

turn=2 | flag=[F,F] et P1 entre en SC

turn=1 | flag=[F,F] et P2 entre en SC

turn=1 | flag = [T,F]

turn=1 | flag = [T,T]

Une condition de l’exclusion mutuelle
n’est pas satisfaite:
1) accès simultané à la SC par les deux

processus

2) Mécanisme logiciel
2.2) Solution de Peterson

Solution: Mécanisme matériel
40

3. Mécanismes de synchronisation

• Synchronisation par mécanisme matériel: l’accès à la section critique
est contrôlé par un circuit spécial atomique qui ne peut pas être
interrompu pendant son exécution.

• Le principe commun des mécanismes matériels est d’utiliser un verrou
(lock) pour bloquer/débloquer l’accès à la section critique.

• Note: les algorithmes des solutions matérielles présentés ci-après
décrivent le comportement du circuit atomique utilisé. Ce circuit ne
peut jamais être utilisé par deux ou plusieurs processus à la fois.

do{

 // code section critique

 // code non critique

}while{true}

Acquire Lock (verrouillage)

Release Lock (déverrouillage)

• Il existe plusieurs mécanismes
matériels, parmi eux:
o La solution test_and_set()
o Mutex (API)

2) Mécanisme matériel

41

3. Mécanismes de synchronisation
2) Mécanisme matériel
2.1) Solution test_and_set()

boolean test_and_set(boolean

*oldLock) // circuit atomique

{

 boolean newLock=*oldLock;

 *oldLock=true;

 return newLock;

}

do{// le processus

// code section critique

// code non critique

}while{true}

while(test_and_set(&lock)) ;//inst 1

lock = false; // inst 2

boolean lock = false; //initialisation

Cas de deux processus:

• P1 →inst 1 P1 dans SC.

• P2 →inst 1 P2 attend.

• P1 →inst 2 P1 dans SNC

• P2 →inst 1 P2 dans SC

• P2 →inst 2 P2 dans SNC

lock=T | while(F)

lock=T | while(T)

lock=F

lock=T | while(F)

lock=F

Les conditions de l’exclusion mutuelle
sont satisfaites:
1) Pas d’accès simultané à la SC
2) Pas d’interblocage
3) Les processus ont accédé à leur SC.
4) Pas de supposition sur la vitesse des

processus

• lock est une variable globale et son
passage se fait par référence (&lock).

42

3. Mécanismes de synchronisation
2) Mécanisme matériel
2.1) Solution test_and_set()

boolean test_and_set(boolean *oldLock)

// circuit atomique

{

 boolean newLock=*oldLock;

 *oldLock=true;

 return newLock;

}

do{// le processus

// code section critique

// code non critique

}while{true}

while(test_and_set(&lock)) ;//inst 1

lock = false; // inst 2

Cas de trois processus:

• P1 →inst 1 P1 dans SC.

• P2 →inst 1 P2 attend.

• P1 →inst 2 P1 dans SNC.

• P2 →inst 1 P2 dans SC

• P3→inst 1 P3 attend.

• P1→inst 1 P1 attend.

• P2 →inst 2 P2 dans SNC.

• P1→inst 1 P1 dans SC.

• ……

lock=T | while(F)

lock=T | while(T)

lock=F

lock=T | while(F)

lock=F

Une condition de l’exclusion mutuelle
n’est pas satisfaite:
3) P3 n’a pas accédé à sa SC, alors que P1
y a accédé deux fois.

lock=T | while(T)

lock=T | while(F)

lock=T | while(T) Solution:
Réécrire le code en ajoutant d’autres
variables pour que les processus
puissent accéder autant de fois les uns
et les autres

boolean lock = false; //initialisation

43

3. Mécanismes de synchronisation

• Pour simplifier l’utilisation des solutions matérielles aux
programmeurs, les concepteurs des SE ont proposé des outils logiciels
(API) permettant l’appel de ses solutions.

• Le verrou mutex en fait partie. Il permet d’appeler un mécanisme de
synchronisation matériel tel que test_and_set():

o La fonction acquire() permet d’établir le verrou sur la section critique

o La fonction release() libère le verrou.

do{

 // code section critique

 // code non critique

}while(true);

acquire ()

release ()

2) Mécanisme matériel
2.2) Mutex

acquire()

{

while(test_and_set(&lock));

// busy wait (attente active)

}

release()

{

 lock=true;

}
44

3. Mécanismes de synchronisation

• Lorsqu’un processus entre dans la section critique, les autres
processus sont occupés à attendre (busy wait) sa libération:

o Dans le cas de la solution test_and_set(), la boucle
while(test_and_set(&lock)); occupe le processeur tous
le temps d’attente de la libération de la section critique

• Inconvénient: gaspille des cycles processeur.

Avantage:
o Pas de changement de contexte.

o Lorsque la section critique est de courte durée, cela peut être plus
avantageux que de céder le processeur à un autre processus et
gaspiller du temps en changement de contexte.

• Le problème du busy wait est résolu par les sémaphores

2) Mécanisme matériel
2.3) Problème du busy wait

45

3. Mécanismes de synchronisation

• Dans le domaine ferroviaire, un sémaphore est un signal permettant de
déterminer si l’accès à la voie est libre (sémaphore ouvert) ou non
(sémaphore fermé).

• Pour résoudre le problème du busy wait, on utilise un sémaphore représenté
par une variable entière qui garantit l’exclusion mutuelle, accompagnée
d’une liste de processus en attente pour accéder à la SC.

• En dehors de l'initialisation, le sémaphore n'est accessible que par deux
opérations wait() et signal() (aussi notées dans la littérature P()
et V(), down() et up()).

3) Les sémaphores
3.1) Définition

46

3. Mécanismes de synchronisation

•P1 →inst 1 P1 dans SC.

•P3 →inst 1 P3 est block.

•P2 →inst 1 P2 est block.

•P1 →inst 2 1er proc (P3) de

S.list wakeup et . P1 accède à SNC et termine.

•P3 accède à l’UCT et entre en SC.

•P3 →inst 2 P2 wakeup

et P3 accède à SNC et termine.

• P2 accède à l’UCT et entre en SC.

•P2 →inst 2 P2 accède à SNC et termine.

3) Les sémaphores

typedef struct{

int value;

struct process *list;

} semaphore;

wait(semaphore *S){

 S.value--;

 if (S.value < 0){

 add_Proc(S.list);

 block();}}

signal(semaphore *S){

 S.value++;

 if (S.value <= 0){

Proc=remove_Proc(S.list);

 wakeup(Proc);}}

S.value=0

Semaphore S | S.value=1 | S.list=∅ // initialisation
RQ_UCT=∅ // liste attente prêt de l’ UCT

S.value=-1 | S.list=P3

S.value=-2 | S.list=P3,P2

S.value=-1 | S.list=P2

RQ_UCT=P3

S.value=0|S.list=∅

RQ_UCT= ∅

RQ_UCT=P2

RQ_UCT= ∅

S.value=1

3.2) Solution au busy wait

while(true){//Processus

 wait(&S); //inst 1

 //section critique

 signal(&S); //inst 2

//section non critique

}

47

3. Mécanismes de synchronisation

• Le busy wait est annulé:

oLorsque un processus est placé dans S.list, cela implique un changement de
contexte.

oL’appel de la fonction block() empêche le processus de demander l’accès à l’UCT.

• Les conditions de l’exclusion mutuelle sont satisfaites:

1.Pas d’accès simultané à la SC

2.Pas d’interblocage

3.Les processus ont accédé à leur SC: S.list permet d’ordonner l’accès à la file
d’attente prêt de l’UCT (pas comme dans test_and_set() cas 3 processus).

4.Pas de supposition sur la vitesse des processus

• Le sémaphore est une solution logicielle pour le problème du busy wait, il y a donc
un risque de changement d’ordre des instructions.

3) Les sémaphores
3.2) Solution au busy wait

48

3. Mécanismes de synchronisation

• Pour résoudre le problème du memory reordering, on
combine le sémaphore (solution logicielle) avec une
solution matérielle.

• On inclut donc un mutex autour de l’appel du wait(&S)

• Rappelons que nous avons introduit le sémaphore pour
résoudre le problème du busy wait provoqué par
mutex et les solutions matérielles en général.

• En réalité, établir mutex autour de wait(&S) permet de
réduire le degré du busy wait (la fonction n’est
composée que de 3 instructions), comparé à celui
engendré par mutex autour de la section critique
(généralement beaucoup plus longue).

4) Solution combinée: Sémaphore & mutex

typedef struct{

int value;

struct process *list;

} semaphore;

wait(semaphore *S){

 S.value--;

 if (S.value < 0){

 add_Proc(S.list);

 block();}}

signal(semaphore *S){

 S.value++;

 if (S.value <= 0){

Proc=remove_Proc(S.list);

 wakeup(Proc);}}

Semaphore S | S.value=1 | S.list=∅ //initialisation while(true){//Processus

 acquire();

 wait(&S); //inst 1

 release();

 //section critique

 signal(&S); //inst 2

//section non critique

}

49

3. Mécanismes de synchronisation

• Interblocage: deux ou plusieurs processus attendent indéfiniment
l’arrivée d’un événement qui ne peut être engendré que par un des
processus en attente.

oP0 exécute wait(S), puis P1 éxécute wait(Q).

oP0 exécute wait(Q) mais il est block(), puis P1 exécute wait(S) et il est block().

o Aucun processus ne peut avancer dans son exécution, car il a besoin que l’autre
processus le débloque par signal(). c’est l’interblocage

• Il est donc nécessaire de bien programmer les mécanismes de
synchronisation pour éviter ce problème.

5) Problème d’interblocage

• Exemple: Soit P0 et P1 deux processus
partageant deux sections critiques, l’une
contrôlée par le sémaphore S et l’autre
par le sémaphore Q:

50

