MARRAKECH
e ~ ™
UNIVERSITE CADI AYYAD FP SAFI

SMI - 54

Chapitre 1:
Introduction aux systemes d’exploitation

Cours donné par:
Pr. N. ALIOUA

Année universitaire:
2019-2020

Références bibliographigues

1.

2.

Modern operating systems fourth edition, Andrew s. Tanenbaum, Herbert
bos.

Cours et exercices corrigés, systemes d'exploitation,]. Archer Harris,
ediscience.

Conception de systéemes d’exploitation le cas linux, Patrick Cegielski,
deuxieme édition.

Systemes d’exploitation des ordinateurs: principes de conception,
CROCUS, DUNOD.

Operating system concepts, Abraham Silberschatz and al., John wiley &
sons.

Cours de systemes d’exploitation, Pr. Hatid Bourzoufi, ISTV Valenciennes,
France.

Cours de systemes d'exploitation, Pr. Audrey Queudet, université de
Nantes.

Cours Operating Systems, Pr. Geoffrey Challen, buffalo university, New
York, USA.

Quelgues regles a retenir SVP

e Contact: nawal.alioua@gmail.com

e Les TPs seront réalisés sur les stations de travail Linux
(obligatoirement en équipe de 2 étudiants).

* Les TPs pourront étre programmeés en C

* Pour chaque TP, remettre un exécutable et un rapport. Le
rapport doit contenir une introduction, le code source, les
résultats obtenus, les réponses aux questions et une courte
conclusion qui commente les résultats. S'il y a lieu, d'autres
points spécifiés dans I'énoncé du TP doivent étre inclus dans
le rapport.

* Les TPs doivent étre réalisés par les étudiants eux-mémes,
en utilisant au maximum un apprentissage par recherche de
documentation sur Internet et dans les « man » pages de
Linux.

mailto:nawal.alioua@gmail.com
mailto:nawal.alioua@gmail.com
mailto:nawal.alioua@gmail.com
mailto:nawal.alioua@gmail.com
mailto:nawal.alioua@gmail.com

Motivations

* Les systemes d’exploitation (SE) au quotidien:
* Machines a laver, consoles de jeux, Smartphones, ordinateurs,
SmartTV...

e «Le systeme démarre», «Le systeme a planté», « version 3.0.1 du
systeme », « bug systeme »,

* Académique/Professionnel:
* Génie Logiciel: le logiciel s'appuie sur un SE

e Administration réseau: Les machines du réseaux (PCs, routeurs,
serveurs, ...) possedent des SE!

* Mais encore: Les SE ont été particulierement importants
dans le développement de l'informatique, a coté de
I’évolution technologique des ressources matérielles.

4

Motivations

a®,
o TREEES™ ol
@l BigData oM,
o B

 |'étude des SE permet d’accéder a des formations avancées (Systemes distribués,

virtualisation, cloud computing, Big Data ...).
* un ordinateur se compose d’éléments matériels « Hardware » et d’éléments

logiciels « Software ».
Cependant, comment coexistent-ils?

Quel est le role joué par le SE?
Comment réalise-t-il ce role?

 Un SE est fortement lié aux ressources matérielles sur lesquelles il s‘'exécute.

* |l exploite I'ensemble des instructions exécutables par l'ordinateur (cad le matériel)
et gere ses ressources.

Chapitre 1: introduction aux SE

1. Rappel: point sur le matériel

Roles d’un SE

Définition d’un SE

Structure interne des SE

Le noyau

Quelques familles de SE

La notion de multitaches multi-utilisateurs

N O Uk WN

1. Rappel: point sur le matérie >
les d’un SE \3§\
3§ Définition d’un SE \$ N
4. Structure interne des SE
5. Le noyau
6. Quelques @aﬁles de SE C)Oé\ QC){Q
7. la notlc\ﬂ’de multitaches muItK@tlllsateurs @’
/\\ /\\ \’\\Q
o>
@ @ N\
\ \ \
Q QD Q
Q Q Q
Q»QO Q»QO Q:QO
"\ \ \
O O O

A A A '

1. Rappel: point sur le matériel!

IEERRRNEN)
AR RRRRA

CPU

WL
T

L)
LR

1)Processeur:

IRERRRNEN
IBRARRRAA

L'Unité Centrale de Traitement (UCT) ou processeur central
(CPU), est « le cerveau » de l'ordinateur qui interprete et
execute les instructions du programme situées en mémoire
centrale.

*'UCT est composée de I'Unité arithmétique et logique (UAL)
et de 'Unité de commande (ou de controle).

*'UAL effectue les opérations arithmétiques et logiques.
*’Unité de commande dirige le fonctionnement de toutes les autres

unités: UAL, mémoire, entrées / sorties, etc., en leur fournissant les
signaux de cadence (I’horloge) et de commande.

1. Rappel: point sur le matériel!

7 .
2) IVI e m Ol re . Typical access time Typical capacity
1 nsec Registers =1 KB
2 nsec Cache 4 MB
10 nsec Main memory 1-8 GB
10 msec Magnetic disk 1-4TB

* Les registres:

o type de mémoire qui sert a stocker des données a traiter, des résultats
intermédiaires ou des informations de commande.

o Le temps d’acces est minimal, tres petit espace de stockage et a prix élever.

e La mémoire cache:

o Un bloc de cette mémoire est appelé ligne de cache qui est composée de
plusieurs mots mémoire consécutifs en memoire.

o Le processeur essaie d’accéder a un mot d’abord dans la cache, avant de passer
a la mémoire principale:
» En cas d’échec (miss), le mot est gardé dans la cache pour un accés futur.
» En cas de succeés (hit), la mémoire principale n’est pas accédée.

O mémoire tres rapide, de petite taille.

* La mémoire vive:

o RAM (Random Access Memory), on peut accéder instantanément a n’importe
quelle espace mémaoire.

o Volatile et contient les données et les instructions des applications en cours.
o Mémoire rapide, de taille plus importante et a prix moyen.

Main
Memory

1. Rappel: point sur le matériel!

2)Mémoire:

Typical access time Typical capacity

1 nsec | Registers | =1 KB
2 nsec | Cache | 4 MB
10 nsec | Main memory | 1-8 GB
10 msec | Magnetic disk | 1-4TB

* Le disque: 3

* sert principalement a stocker les données d’une maniere non-volatile.

e 'acces est mécanique, introduisant un délai important en lecture/écriture
relativement a la RAM.

* Sert éventuellement a « étendre » la RAM.
* Un espace plus important et a colt bas (selon les technologies).

* La mémoire morte:
* ROM (Read Only Memory) mémoire en lecture seule.

 Permanente, contenant des microprogrammes enregistrés a |'usine sur des
puces électroniques de la carte mere, contenant les routines de démarrage de
I'ordinateur.

* C’est une mémoire non volatile, rapide et a bas cod(t.

1. Rappel: point sur le matériel!

3)Les périphérigues d’entrée/sortie (E/S):

* Permettent le dialogue (échange d’informations) avec ce qui se
trouve a l'extérieur de la machine.

* |Is se composent généralement de deux parties:

o Le matériel (physique).
o Le controleur: une puce ou un ensemble de puces qui contrble

physiguement le périphérique. Présente au systeme d'exploitation une
interface « simple », nommée Driver, pour recevoir les commandes et

retourner leurs résultats.

Monigor
e —. Hard

Keybioard LUSB printer dizk drive
RALLLLRLL I II..JF-.—,II "
;| (ree——wem) | 00000 —n
N [+<= wuse| -
Ethernei,

Video Keyboard USE [N I = USB I Cvz]"fi 1

ettt controlier coniroller controller
controller

11

Périphériques
d’entrée

1. Rappel: point sur le matériel!

Périphériques
de communication /<€
reseau

Unité Centrale
(microprocesseur
+ mémoires)

Périphériques
de sortie

- clavier
- souris

Pénphéﬁques
de stockage

- écran
....... - imprimante
Disques h
durs
Disquettes,
Zip,

Schéma matériel généeral

12

1. Rappel: point sur le materiel!

Périphériques d’entrée

—HHCOMM

IR

Périphériques de sortie Niveau Matériel

13

1. Rappel: point sur le materiel!

Périphériques d’entrée

—Hﬂcmm

Systéme d’exploitatio

t t T I Niveau Matériel

Périphériques de sortie

14

1. Rappel: point sur le materiel!

Périphériques d’entrée

—Hﬂ Gontrolenrs

Systéeme d’exploitat

/m'
4

t t i : Niveau Matériel

Périphériques de sortie

+ SE + Programmes

15

1. Rafdpel: point sur le matérie o)

le d’un SE Q) \?\Q\‘
3§ Définition d’un SE N N
4. Structure interne des SE
5. Le noyau
6. Quelques f§agﬁles de SE (:)0@ c}(}é\
7. la notlo@de multitaches multlﬁﬁ'/tlllsateurs @’
N\ N\ O
’\ ’\ é\
& & &
Q \\ Q
Q Q Q
Q)‘;)O Q)S:)O @90
"\ \ \
© © 9

A A A "

2. R6le d'un SE

« Il est plus facile de définir un systeme d’exploitation par ce qu’il fait que par ce qu’il est. »

LiLitiill

RRRRRARA
O
o
[e
Liitiittl

RN

:

o< USB

o USB

i Main
T Memory
- 4
1+ GPU
LU
T
—
Ethernet/ -
Wili
Card

Définition : ensemble de programmes
de gestion du systeme qui
permettent de gérer les éléments
fondamentaux de 'ordinateur: Le
matériel , les logiciels , la mémoire -
les données , les réseaux.

Roles majeurs:

* Cache la complexité du hardware,
qgue ce soit pour les applications ou
pour les developpeurs: diverses
technologies de stockage, de
transmission,

* Gere les ressources: allocation de
mémoire, ordre d’exécution.

* |solation et protection: des
programmes, des utilisateurs, ...

17

2. R6le d'un SE

* D’'une _maniere simple: simplifier I'interaction avec le materiel puis
controler et gérer son utilisation.

 D’une maniéere plus soutenue (académique):

O La gestion des processus: un processus est un programme en cours d' execution. Le
SE doit gérer l'allocation de ressources aux processus en proposant a chacun un
environnement dans lequel il peut s'exécuter en toute sécurité.

o La gestion de la memoire : Le SE doit gérer |'allocation de mémoire aux processus et
contrbler physiquement les emplacements auxquels peut accéder un processus.

o La gestion des périphériques: Le SE doit gérer les périphériques afin de leur
permettre d’étre partagés de maniere efficace entre les processus.

o La gestion du systeme de fichiers : Le SE doit gérer des structures de données
permettant de créer, stocker, supprimer, lire (etc. ...) les informations et de les
organiser dans des fichiers sur des mémoires secondaires (disque dur, CD-ROM, clé
USB, disques SSD, etc.).

o La protection: l'acces aux données doit étre réglementé puisqu’il existe plusieurs
utilisateurs et processus. Le SE doit Farantir qgue les fichiers, les segments de
mémoire, etc .. ne peuvent étre utilisés que par les processus ayant obtenu
I'autorisation appropriée.

o La securite: Le SE doit posséder des mécanismes pour se défendre contre les
attaques externes et internes. Elles comprennent les virus, des attaques de déni de
service (Denial of Service: DoS).

1.

Rafdpel: point sur le matérie 00}

les d’un SE Q) \?\Qx
3§ Définition d’un SE N N
4. Structure interne des SE
5. Le noyau
6. Quelques f§agﬁles de SE (:)0@ c}(}é\
7. la notlo@de multitaches multlﬁﬁ'/tlllsateurs @’
N\ N\ O
’\ ’\ é\
& & &
Q \\ Q
Q Q Q
Q)S:)O Q)S:)O Q)‘;)O
"\ \ \
© © 9

A A A N

ry [[[b)
3. définition d'un SE
* Définition: Un systeme d'exploitation est une couche logicielle indispensable pour
exploiter, d’'une maniéere simple, les ressources matériels d’un ordinateur.

E-mail Music
Web reader player
I::-rc:-wser '
@ O)
1
User mode < "““-— -*” "xh_/J
[User interface program :3>' Software
Kernmel mode -JL Operating system .
}- Hardware

 Deux modes de fonctionnement (en général):

o le mode noyau (mode superviseur, privilégié): dispose d'un acces complet a tout
le matériel et peut exécuter toutes les instructions que la machine est capable
d'exécuter.

o Le mode utilisateur: le reste du systeme s'exécute en mode utilisateur, dans
lequel seul un sous-ensemble des instructions de la machine est exécutable.

o Le programme d'interface utilisateur: le shell ou l'interface graphique,
est le niveau le plus bas du logiciel en mode utilisateur, et permet a
|'utilisateur de démarrer d'autres programmes, comme un navigateur
Web, un lecteur de courrier électronique ou un lecteur de musique...

. Gé&@!lités sur les SE ‘ZJ ‘ZJ

Q- QN

1.3Rappel: point sur le materiel QO
2\.$ Définition d’un SE 3 S
3. Roles d’un SE
4. Structure intggne des SE Q Q
5. Le noyau QO (j)o (,0
6. Quelc Cfamilles de SE ‘ @ ‘ @
q\& o ’ﬁl\\?— . /\\\Q>
7. La n@tlon de multitaches multi-utilisateurs N
O o o>
Q QD Q
Q Q Q
Q)‘;)O @90 Q)‘;)O
"\ \ \
N\ O A
A A A

4. Structures internes de SE

* Monolithique (d'un seul bloc) :
o L'ensemble du SE s'exécute en un seul programme en mode noyau.

o Le SE est écrit comme une collection de procédures, reliées entre elles dans un
seul programme binaire exécutable unique.

v Implémentation simple.
J Difficile a maintenir!
o MS-DOS est un exemple d'un tel systeme.

* Systemes a modes noyau et utilisateur:

o Le SE démarre en mode noyau, ce qui permet d'initialiser les périphériques et
de mettre en place des routines de service, et commute ensuite en mode
utilisateur.

o En mode utilisateur, on utilise les appels systeme pour avoir acces a ce qui a été
prévu par le systeme.

o Unix et Windows (tout au moins depuis Windows 95) sont de tels systemes.

4. Structures internes de SE

e Systemes a modes noyau et utilisateur: Appel systeme

Mode utilisateur

main()

{

mnt1, |, id;

1=3;

td = open("fichier",
read(fd, j, 1); \

]_ rfl:J

o1) Le noyau recoit I'appel systeme,

protection

"Ny n) /rx"'f

Mode Superviseur
(privilege supérieur)

Exécution de open()

/

Vf’\/_h\//

o Exécution de
read ()
‘\

B

02) Vérifie qu'il s'agit d'une demande valable (en particulier du point de vue des

droits d'acces),
03) Exécute,
o4) Renvoie au mode utilisateur.

4. Structures internes de SE

e Systemes en couches (généralisation):

o Chaque couche réalise sa fonction en s'appuyant

exclusivement sur lI'ensemble des fonctions de la

couche qui lui est immédiatement inférieure.

o Une couche typique du SE consiste en des structures
de données et un ensemble de routines pouvant étre

invoquées par des couches de niveau supérieur.
v' Vérification et débogage relativement simples.

J Difficulté

lors de
tendance a étre moins efficaces.

Systemes a micro Kernel:

©)

Un noyau minimal (appelé micronoyau) de taille
de code réduite.

Se contente en général de gestionnaires de taches
et de mémoire simples, et un mécanisme de
communication entre processus.

Les gestionnaires de périphériques, les
gestionnaires d'appels systeme, etc.. sont
implémentés en tant que programmes systeme et
utilisateurs.

v Un SE plus simple a étendre.

J Problémes de performance.

la définition des couches;

\\\

— . i
Application File Device
Program System Driver

Iayer N
user |nterfaoe

/___-

layer O
'. hardware ." |

/

o410,

o
() o

ImerprocQ
\Communicmy

&

[]
messages 1
1] IEEEEEEEEERRES

CPU\

scheduling

microkernel 4

hardware

L4

User
mode

kernel
mode

. Gé\%é}!lités sur les SE ‘ZJ ‘b!

Q- QN

1.3Rappel: point sur le materiel J
2\.$ Définition d’un SE 3 S
3. Roéles d’un SE
4. Structure int@ne des SE Q Q
5. Lenoyau (,o O (;,0
- . @s ®‘
6. Quelg\gsﬁ@famllles. dAe SE “Qﬁ - ‘\‘Qﬁ
7. La n@tlon de multitaches n{ﬁl\tl—utlllsateurs {\
O o o>
Q \\ Q
Q& Q& Q&
Q)‘;)O ‘2’)90 Q)g)o
\ \ S
AN AN AV s

A A A

5. Le noyau

KERNEL

* Le novyau (kernel en anglais) comporte un certain nombre des plus importantes routines
(sous-programmes) du SE. Il est chargé en mémoire vive a l'initialisation du systeme. Les
autres routines, moins critiques, sont appelées des utilitaires.

* Le noyau d'un systeme d'exploitation se compose de quatre parties principales : le
gestionnaire de taches (ou des processus), le gestionnaire de mémoire, le gestionnaire
de fichiers et le gestionnaire de périphériques d'entrée-sortie.

* |l possede également deux parties auxiliaires : le chargeur du systeme d'exploitation et
I'interpréteur de commandes.
* Le chargeur du systeme d'exploitation:

o Appelé, pour PC et MAC, BIOS (pour Basic Input Output System) et est chargé a une
adresse bien déterminée en mémoire RAM.

o Ce logiciel initialise les périphériques, charge un secteur du disque, et exécute ce qui y
est placé.

* L'interpréteur de commandes (shell en anglais):
o Est souvent considéré comme une partie du SE

o Exécute une boucle infinie qui affiche une invite (montrant par la que I'on attend quelque
chose), lit le nom du programme et les parameétres saisis par |'utilisateur a ce moment-Ila
et I'exécute.

26

5. Le noyau

e Gestionnaire de taches (ordonnanceur) :
o Divise le temps en laps de temps (en anglais slices, tranches),
o Décide périodiquement d'interrompre le processus en cours et de démarrer (ou
reprendre) |'exécution d'un autre.
e Gestionnaire de mémoire:
o Connaitre les parties libres et les parties occupées de la mémoire,
o Allouer de la mémoire aux processus gqui en ont besoin,
o Récupérer la mémoire utilisée par un processus lorsque celui-ci se termine,
o Traiter le va-et-vient entre le disque et la mémoire principale lorsque cette derniere doit
étre étendue.
* Gestionnaire de fichiers:
o Faire abstraction des spécificités des disques et des autres périphériques d'entrée-sortie,
o Offrir au programmeur un modele agréable et facile d'emploi.

e Gestionnaire de périphériques:
o Envoyer les commandes aux périphérigues,
o Intercepter les interruptions,
o Traiter les erreurs.

1. Rafpel: point sur le matérie >
2. Qéflnltlon dunSE & Q\Qx
3§ Roles d’un SE N N
4. Structure interne des SE
5. Le noyau
6. Quelques gﬁﬁles de SE 00@ 00{0
7. la notlo@de multitaches multlﬁﬁ'/tlllsateurs @’
/\\ /\\ Q\\Q
o>
\s* c& ‘
S o &
Q \ Q
Q Q Q
Q)‘;)O Q)S:)O Q)‘;)O
A\ \ \
© © 9

A A A "

6. Quelques familles de SE

* L'existence des SE depuis fort longtemps ainsi que leur utilisation dans différents
domaines technologiques ont permis 'émergence de plusieurs familles de SE.
 Mainframe*:

o Ordinateurs de taille d’'une piece qu’on trouve dans les centres de données
d'entreprise.

o Grandes capacités: 1000 disques et des millions de gigaoctets de données.

o Les SE sont amenés a traiter plusieurs taches a la fois, dont la plupart
nécessitent des quantités importantes d'E/S.

6. Quelques familles de SE

* Serveurs:
o PC a ressources importantes ou des workstations ou des Mainframes.

o Les SE doivent étre capables de gérer plusieurs utilisateurs a la fois sur un
réseau et de partager des ressources matérielles et logicielles.

* Multiprocesseurs:

o Un moyen pour obtenir une puissance de calcul majeure est de connecter
plusieurs CPU dans un seul systeme.

o Ces systemes ont besoin de SE assez spéciaux, des variations de SE pour
serveurs.

30

6. Quelques familles de SE

* Personal Computer: Les SE pour PC modernes supportent la
multiprogrammation, pour fournir un bon support a un seul utilisateur.

Y)

AGH-PE

* Handheld:

o Connu auparavant sous le nom de PDA (Personal Digital Assistant), ancétre des
smartphones et des tablettes.

o La plupart de ces appareils possedent des CPU multicoeurs, GPS, caméras,
capteurs...

o lls ont des exigences particulieres ce qui nécessite des SE sophistiqués et bien
adaptés.

6. Quelques familles de SE

* Les systemes embarqués:

o S'exécutent sur des circuits pour des périphériques n’acceptant pas de futures
installations de logiciels par l'utilisateur (Ex: fours a micro-ondes, les téléviseurs,
les voitures, etc): tout est en ROM.

o Ces SE n‘ont pas besoin de considérer I'aspect de protection contre les logiciels
malveillants, ce qui entraine une simplification de la conception.

* Noeud capteur™:
o Unités qui composent un réseau de capteurs sans fil.

o Chaque nceud est composé de CPU, RAM, ROM, capteurs (température,
humidité, lumiére, mouvement ...): un vrai ordinateur.

o Le SE doit étre petit et simple car les noeuds ont peu de RAM et sont contraints
en énergie.

Antenna

External Power Connector
External RF

Power Switch Connector

Expansion
Connector

AA Bartteries

6. Quelques familles de SE

e Systemes temps réel*:
o Se caractérisent par le temps (ou le délai) comme contrainte.

o Si le systeme doit fournir des garanties absolues qu'une certaine action se
produira a un certain moment (ou dans un certain intervalle temps), on parle
d’un systeme en temps réel strict (Hard real-time).

o Si le systeme doit fournir des garanties avec une certaine probabilité et ainsi un
délai plus grand mais acceptable, on parle de temps réel souple (Soft real-time).

1.

2.

N o Uk

Rafdpel: point sur le materie >
Qéflmtlon dunSE & \3\\&\

Rb6les d’un SE N N
Structure interne des SE
Le noyau A\
Quelques fé#illes de SE ()06\ Q(><Q
La notlo\@de multitaches multlﬁ\@tlllsateurs 4
/\\ /\\ \’\\Q
o
\ \)
Q Q
Q Q Q
@90 @90 @90
A\ \ \
O O O

A A A "

/. La notion de multitaches multi-utilisateurs

e Systemes multitaches:

o Appelés aussi multi-programmeés

o Permettent I'exécution de plusieurs taches a la fois : exécuter un programme
utilisateur, lire les données d'un disque, afficher des résultats sur un terminal.

o Ce contexte fait appel aux notions suivantes:

= Processus (et non programme): un processus est une instance de
programme en exécution. Le processus est représenté par un programme
(le code), ses données et son état d’avancement communément appelés
variables d’environnement .

= Temps partagé: le micro-processeur a un instant donné, n'exécute
réellement qu'un seul processus. Faire passer le processeur d'un processus
a un autre, en exécutant chaque programme pendant quelques dizaines de
millisecondes, donne I'impression que tout s'exécute en méme temps :
c’est Le pseudo-parallélisme.

= Espace mémoire d'un processus: chaque processus possede son propre
espace mémoire, non accessible aux autres processus. On parle de I'espace
d'adressage du processus.

/. La notion de multitaches multi-utilisateurs

® Systemes multi-utilisateurs:

o Capables d'exécuter de facon concurrente et indépendante des applications appartenant
a plusieurs utilisateurs.
o Concurrente?:
= |es applications sont actives au méme moment et se disputent l'acces aux
différentes ressources.
o Indépendante?:
= chaque application peut réaliser son travail sans se préoccuper de ce que font les
applications des autres utilisateurs.

o Ce contexte fait appel aux notions suivantes:

= Utilisateurs: matérialisé par un espace privé de travail sur la machine. Chaque
utilisateur est identifié par un numéro unique, appelé l'identifiant de I'utilisateur, ou
UID (pour I'anglais User IDentifier).

= Groupe d'utilisateurs: permet de partager de facon sélective le matériel avec
d'autres utilisateurs. Un groupe est également identifié par un numéro unique
dénommé identifiant de groupe, ou GID (pour I'anglais Group IDentifier).

= Super-utilisateur: ou encore superviseur (root en anglais), un utilisateur particulier
qui peut pratiguement tout faire dans la mesure ou le SE ne lui applique jamais les
mécanismes de protection. Il peut, en particulier, accéder a tous les fichiers du
systeme et interférer sur l'activité de n'importe quel processus en cours
d'exécution.

MARRAKECH
e ik FP SAFI

SMI - 54

Chapitre 2:
Gestion des processus - Rappels

Cours donné par:
Pr. N. ALIOUA

Année universitaire:
2019-2020

1. Introduction et Définitions

2. Niveaux d’ordonnancement des processus
3. Etats des processus

4. Algorithmes d’ordonnancement

5. Superviseur des processus

6. Création de processus

1.1 Introduction et définitions

1) Qu’est-ce qu’un processus?

e Une tache fondamentale des SE est d’assurer I'exécution de divers
programmes.

* Un programme est une entité statique stockée dans le disque.

* Une fois chargé en mémoire pour s’exécuter, le programme devient
un processus, qui est une entité active.

e « Un processus peut étre définit comme étant une instance de
programme en cours d'exécution ».

* U'exécution d’'un processus est en général une alternance de calculs
effectués par I'UCT et de requétes d'E/S effectuées par les
périphériques.

* Un processus va concourir avec d’autres processus pour l'obtention
d’une ressource (UCT, périphérique E/S,...).

* La gestion d’acces aux ressources est dirigée par la partie du SE

appelée ordonnanceur. 3

1.1 Introduction et définitions

1) Qu’est-ce qu’un processus?

* Un processus est composé principalement:

o Du code du programme (aussi appelé section texte du

processus). stack
o Du contenu des registres de I'UCT et de la valeur du compteur i
de programme (activité courante du processus). £
o De la pile du processus (stack), contenant les données Ao

temporaires (parametres des fonctions, variables locales,...). =

o De la section données (data), contenant les variables globales du
programme.

text

o D’un tas (heap), qui est une mémoire dynamiquement allouée
pendant l'exécution du processus (pour lecture de fichiers,...)

* Si un méme programme est exécuté plusieurs fois, il correspond a
plusieurs processus.

e Un processus peut communiquer des informations avec d’autres
processus. 4

1.1 Introduction et définitions

2) Qu’est-ce qu’un processus léger (ou thread)?

* Un processus peut étre composé d’un ou de plusieurs processus légers (threads).

 « Un thread est une unité d’exécution rattachée a un processus, chargée d’en
exécuter une partie. »

o Ex: pour un méme document MS-Word, plusieurs threads: Interaction avec le clavier,
sauvegarde réguliere du travail, controle d’orthographe...)

e Un processus possede un ensemble de | coe | data || fies code || data || fes
ressources (code, fichiers, périphérigues...)
gue ses threads partagent.

« Cependant, chaque thread dispose : stack) stack]| stack
o d'un compteur programme (pour le suivi

des instructions a exécuter) thread—r; ; ; ;__thread
o de registres systemes (pour les variables
de travail en cours)
o d'une pile (pour [lhistorique de
I'exécution)

registers stack registers ||| registers ||| registers

single-threaded process multithreaded process
5

1.1 Introduction et définitions

2) Qu’est-ce qu’un processus léger (ou thread)?

* Avantages des threads:

o Réactivité: Le processus peut continuer a s’exécuter méme si certaines de ses
parties sont bloquées (en chargement de fichiers par exemple).

o Economie d’espace mémoire: Partage de ressources, surtout la mémoire, entre
threads d’'un méme processus.

o Economie de temps: Les threads partagent les ressources du processus auquel ils
appartiennent. Ainsi, il est plus économique de créer et de gérer les threads que
les processus entre eux.

o Scalabilité: Un processus a thread unique ne peut s’exécuter que sur une CPU.
Alors gu’un processus a multithreads, peut s’exécuter sur plusieurs CPU (quand
elles existent) en méme temps.

1.1 Introduction et définitions

3) Catégories des SE

Apres avoir défini ces notions, les SE peuvent étre divisés en 3 familles:

e Les SE mono-processus a thread unique(ex. DOS):

o configuration la plus simple et la plus ancienne ou un seul
processus est exécuté a la fois.

* Les SE multiprocessus a thread unique (ex. Unix):

o sur ces systemes, |'allocation des ressources et 'ordonnancement
de "'UCT agissent sur le processus et non pas les threads.

e Les SE multiprocessus multithread (ex: windows):

o sur ces systemes, des ressources sont allouées aux processus, mais
I'ordonnancement de I’"UCT agit sur les différents threads.

1.1 Introduction et déefinitions

4) Le bloc de contréle du processus PCB

* Pour localiser et gérer tous les processus, le SE maintient une structure de données
appelée «table des processus» qui contient les informations sur tous les processus
créés.

* Le Bloc de Controle de Processus (Process control Bloc ou PCB) est une entrée dans
cette table, composée principalement de:

process state

o Etat de processus (En exécution, prét, bloqué, ...) process number

o Identifiant du processus PID (unique) program counter

o Compteur de programme (adresse prochaine instruction a exécuter registers

par ce processus). -
memory limits

o Registres de I'UCT : varient en nombre et type selon 'architecture de list of open files

I'ordinateur (dont 'accumulateur, le registre d’indexe, pointeurs de pile,...)

o Information d’'ordonnancement (dont la priorité du processus, pointeurs
sur les files d’'ordonnancement, ...)

o Information sur la gestion de la mémoire (dont les limites de la mémoire attribuée au
processus).

o Information sur le statut des E/S (dont la liste des périphériques d’E/S alloués au progcessus)

1.1 Introduction et définitions

5) Le changement de contexte

Pourguoi a-t-on besoin de toutes ces données (cad PCB)?

* Dans un systeme multiprogrammé, on a souvent besoin d’interrompre un processus et de
redonner le controle de 'UCT a un autre processus.

e || faut mémoriser toutes les informations nécessaires pour pouvoir relancer le processus
courant dans le méme état.

e Le processus en cours est interrompu et un ordonnanceur est appelé. Ce dernier s'exécute en
mode noyau (kernel) pour pouvoir manipuler les PCB.

* Le changement de contexte a un colt: il va consommer de la mémoire et des cycles UCT,
pour décharger le PCB du processus qui était en cours d’exécution et charger le PCB du

processus qui va s'exécuter.

Programme A Mode kernel : Programme B

mode utilisateur E mode utilisateur

- | Sauvegarder état en PCB A I

E exécution
| Chargerétatde PCBB | —> ﬂ

| Sauvegarder état en PCB B I(:::I

: Iinterruption |
| Charger état de PCB A

1. Iné uction et Définitions» ‘Z>

2. eaux d’ordonnance@@nt des processus
. Etats des processus N
4. Algorithmes d’ordonnancement

5.S i
uPerV|seur d%&processus Q Q
6. Création de@ocessus ()0 (;Q
RN < N5
\ \\ \
S S S
N AN N\
> > >
K\ K\ N\
@‘QQ Q”QQ @90
\ \ \
NS O N\

1I.2 Niveaux d’'ordonnancement des processus

Définition générale de l'ordonnanceur: partie du SE chargée d’allouer
les ressources aux processus.

1) Notions utiles: équilibrage de travaux

* On peut distinguer entre 2 types de processus, selon le type de ressource qu’ils
utilisent le plus:

o Les processus tributaires de I’E/S: utilisent peu I’'UCT et beaucoup | 'E/S.
o Les processus tributaires de | "UCT: utilisent beaucoup I'UCT et peu d’E/S.

Quel équilibre l'ordonnanceur devrait-il réaliser?

* Le temps d’UCT non utilisé par les processus tributaires de I'E/S peut étre utilisé par
les processus tributaires de I'UCT et vice-versa.

 'UCT doit rester le moins possible inactive, sans pour autant saturer la mémoire
principale du systeme.

* Equilibrage et priorité:
o Processus Iongs et non-urgents Vs Processus courts et urgents.

o Lordonnanceur pourra donner la priorité aux deuxiemes et exécuter les premiers , quandil y a
du temps machine disponible. -

1I.2 Niveaux d’'ordonnancement des processus

1) Notions utiles: Traitement par lots Vs. traitement interactifs

* Traitement par lots (batch):

o Processus (ou Job) non-urgents qui sont soumis au systeme groupés et exécutés
les uns apres les autres (d’ou le nom par lots), pour récupérer la réponse plus
tard.

o Il existe en général une relation entre les jobs successifs.

o Exemple: Tri de fichier, calcul d’une fonction complexe, sauvegarde réguliere de
fichiers usagers, etc.

* Traitement Interactif:
o Processus qui demandent une interaction continue avec l'ordinateur.
o Lutilisateur recoit le(s) résultat(s) immédiatement.
o Exemple: édition de documents ou d’un programme.

12

1I.2 Niveaux d’'ordonnancement des processus

1) Notions utiles: les interruptions

Une interruption est un signal pour arréter un processus, qui peut avoir
plusieurs causes:

* Interruptions causées par le programme utilisateur:

o Exception: Division par 0, débordement, tentative d’exécuter une instruction
protégée, référence au dela de I'espace mémoire du programme

o Appels Systeme: demande d’entrée-sortie, demande d’autre service du SE,
minuterie établie par le programme lui-méme.

* Interruptions causées par le SE:
o Le processus doit céder 'UCT a un autre processus (Préemption).

* Interruptions causées par les périphériques ou par le matériel:
o Fin d’une E/S.

13

1I.2 Niveaux d’'ordonnancement des processus

1) Notions utiles: les files d’attente

* Les processus qui résident dans la mémoire principale et sont préts et en attente
d'exécution sont conservés sur une liste appelée File des Processus Préts (ou
Ready Queue).

* Chaque ressource a sa propre file de processus en attente.

e C’est généralement une liste chainée, contenant un pointeur vers le PCB du
processus, et un pointeur vers le PCB du processus suivant dans la file.

* En changeant d’état, les processus se déplacent d’une file a 'autre.

antéte das files PCB. PCR

d'attents ? =
e 18te - - +—
prét queus) rag stras registres
unité da . ______'//
bande =
magn. d quele . —a
unite de tats e I
bands - PCB, PCB, PCE,

magn. 1 queaue T =

unité de 1ate “1
disque 0 L

PCBE

unité de g m =

l@rminal o o LhaL e ..._________.-."

14

11.2 Niveaux d’'ordonnancement des processus

2) Définition générale des 3 niveaux d’ordonnancement

e Un processus passe une bonne partie de sa durée de vie dans divers
files d’attente.

* La sélection d’un processus a partir de ces files d’attente est effectuée
par I'ordonnanceur.

* 'ordonnanceur opéere sur 3 niveaux:

o L'ordonnanceur a long terme (ou ordonnanceur de travaux): décide du moment
ou les processus vont étre chargés en mémoire.

o L'ordonnanceur a moyen terme (ou ordonnanceur de mémoire ou permutateur):
décide de la suspension/reprise des processus lors d’'un manque de mémoire.

o L'ordonnanceur a court terme (ou ordonnanceur de processeus ou répartiteur):
décide quel processus aura le contréle de "UCT.

15

11.2 Niveaux d’'ordonnancement des processus

3) Ordonnanceur de travaux (a long terme)

Dans un systeme par lots, il existe plus de processus soumis que ceux capables d’étre
exécutés immeédiatement.

v'lIs sont alors chargés sur une file d’attente au niveau d’un périphérique de
stockage de masse (le disque) pour étre exécutés plus tard.

* Lerble de l'ordonnanceur de travaux est de:
1. Sélectionner les processus a partir de cette file d’attente.
2. Les charger dans une nouvelle file d’attente des processus préts pour accéder a I’'UCT.

3. Déterminer le niveau de multiprogrammation: nombre de processus en mémoire pouvant
étre exécutés en parallele par le SE.

o Le nombre est choisi d’'une maniere a établir un équilibre entre les processus tributaires de
I’"UCT et ceux tributaires des E/S.

* Une fois que le processus est admis par 'ordonnanceur de travauy, il n'en sort que
lorsqu'il est terminé ou s'il est détruit par le SE (suite a une erreur grave ou a la
demande de ['utilisateur).

* N.B: La plupart des systemes interactifs multiprogrammés ne disposent pas
d’ordonnanceur de travaux. Chague nouveau processus est mis en meémoire

principale pour étre pris en charge par 'ordonnanceur a court terme.
16

1I.2 Niveaux d’'ordonnancement des processus

4) Ordonnanceur de mémoire ou permutateur (a moyen terme)

* Les SE multiprogrammeés introduisent un ordonnanceur a moyen terme.

* Le r6le du permutateur est d’effectuer:

o Swap out: Supprimer un processus de la mémoire principale et le placer en
mémoire secondaire. Il ne sera plus en concurrence avec les autres pour les
ressources.

o Swap in: Ré-introduire plus tard le processus en mémoire principale et son
exécution pourra se poursuivre la ou elle a été interrompue.

o Réduire ainsi le niveau de multiprogrammation.

e Le swapping (permutation) est nécessaire pour:

o améliorer I'équilibre entre processus tributaires de I'E/S et ceux tributaires de
I"UCT

o remédier au probleme de dépassement de la mémoire principale disponible.

* Le swapping ne doit pas étre trop fréquent pour ne pas gaspiller la bande

passante des disques.
17

1I.2 Niveaux d’'ordonnancement des processus

5) Ordonnanceur de I’'UCT ou répartiteur (a court terme)

Il est utilisé par tout type de SE et son rble est principalement de:

* Choisir, parmi la file d’attente des processus préts, a quel processus
sera alloué I"'UCT et pour quel laps de temps.

 Etre tres rapide pour ne pas ralentir le SE puisqu’il est tres
freguemment utilisé.

18

1. Intraduction et Définitions> Q\(Z}
2. Niveaux d’ordonnance@t des processus 1\
. Etats des processus S

4. Algorithmes d’ordonnancement

5. Superviseur des._processus Q Q
6. Création de@ocessus ()0 (;0
@ & ©
Q¥ O Q¥
N AN AN
> > >
N\ N\ N\
Q Q Q
Q?’QO Q?’QO Q?’QQ
\\ "\ \\
O L L

A A A N

1.3 Etats des processus

1) Les états des processus dans un répartiteur (ordonnanceur de processus)

* Les processus sont concurrents et se partagent I'UCT, ils ne peuvent étre
continuellement actifs. lls ont donc, si on ne considere pour commencer que le
répartiteur, 3 états et 4 transitions possibles:

* Prét (ready): état d’'un processus qui n’est pas alloué a I’'UCT, mais qui est prét a étre
exécuté.

* En exécution (running) : état d’un processus exécuté sur une UCT.

* Blogué (blocked): état d'attente d'un événement extérieur, tel qu'une E/S,
nécessaire a la poursuite de |'exécution du processus.

Interruption

n En
Pret & :

répartiteur
E/S ou Attente E/S ou

événement) événement
terminé bloque

20

1.3 Etats des processus

2) Les états des processus dans un ordonnanceur de travaux

2 états sont ajoutés aux états précédents lorsqu’'un ordonnanceur de travaux est
utilisé:

* Nouveau (New): le processus vient d'étre créé mais n’est pas encore admis par
I'ordonnanceur de travaux pour concurrencer a l'acces a I’'UCT.

* Terminé (Terminated): le processus a achevé sa tache. Il sera détruit prochainement
par le SE pour libérer I'espace. Il est parfois conservé pendant un temps a I'état
terminé en attendant qu'une E/S s'achéve ou que les données de ce processus
soient exploitées par un autre processus. On parle alors de processus " zombie".

Interruption Fin
Admis En
Prét & i

répartiteur
E/S ou Attente E/S ou

événement) evénement
terminé bloque

N.B: Quelque soit son état, un processus peut prendre fin suite a une action externe: le SE ou un
autre processus peuvent mettre fin a un processus, en le passant en état terminé. 21

Terminé

1I.3 Etats des processus

3) Les états des processus dans un permutateur

2 états sont ajoutés aux états précédents lorsqu’un permutateur est utilisé:

* Permuté-prét (Swapped-ready): le processus est pour linstant transféré en
meémoire secondaire. Le processus est réintroduit plus tard par le permutateur.

* Permuté-bloqué (Swapped-blocked): le processus était bloqué en attendant une
E/S par exemple, puis a été transféré sur la mémoire secondaire pour faire de la
place en mémoire principale. Lorsqu’il termine ses E/S, il passe a I'’état permuté-
prét.

Terminé

Interruption Fin
Admis En
Prét & ;
Elu par le execution
_ Permutateur E/S ou répartiteur
Fin £/ événement Attente E/S ou

terminé) événement
< bloqué
Permutateur 2

1. Intraduction et Définitions>

2. Niveaux d’ordonnance@eﬁt des processus
. Etats des processus

4. Algorithmes d’ordonnancement

5. Superviseur d%\processus Q
(Z?‘QQ (Z?’QO
A A
N N
00} >
& &
R R
Q& Q&
" "
/\@ O

A

&)
R

23

11.4 Algorithmes d’ordonnancement

1) Généralités
 Role: décider de l'allocation d’'une ressource aux processus qui
I'attendent: algos d’ordonnancement pour I’UCT.

* Objectif: aboutir a un partage efficace du temps d’utilisation de ["UCT:
Mais que veut dire efficace?
o Lalgo doit identifier le processus qui conduira a la «meilleure»
performance possible du systeme.

o Il existe différents criteres pour mesurer la performance et dont
I"importance est relative a I'algo lui méme.

24

11.4 Algorithmes d’ordonnancement

2) Les criteres de performance

e Utilisation UCT a maximiser: pourcentage d’utilisation pendant une période
d’observation donnée.

 Débit (ou rendement, Throughput) a maximiser: nombre de processus complétés
pendant une période d’observation donnée.

* Temps de rotation (ou de service, turnaround time) a minimiser: Temps écoulé entre le
moment ou un processus devient prét a s'exécuter et le moment ou il finit de s'exécuter.

* Temps d’attente (waiting time) a minimiser : somme de tout le temps passé en file prét.

* Temps de réponse (response time) a minimiser: utile pour les systemes interactifs.
Temps écoulé entre la soumission d'une requéte et la premiere réponse obtenue.

* Equité : degré auquel tous les processus recoivent une chance égale de s’exécuter. On
essaie ainsi d’éviter la famine: c’est le cas ou un processus n‘obtient pas la ressource

* Priorités :attribue un traitement préférentiel aux processus dont le niveau de priorité est
élevé.
Remarque: En général, on tente d’optimiser les valeurs moyennes pour tous les processus

mis en jeu pendant une période d'observation donnée, pour les temps d’attente, de
rotation et de réponse.

25

11.4 Algorithmes d’ordonnancement

3) Non préemptif Vs Préemptif

Il existe 2 types d’algo. Ordonnancement:

* Non préemptif (ou coopératif ou sans réquisition):

e Définition: le processus sélectionné garde le contrbéle de 'UCT jusqu’a
ce qu’il se blogue ou qu’il termine.

v’ Avantages: facile a mettre en oceuvre. Ne nécessite pas de mécanismes
matériels spécifiques (horloges, ...)

JInconvénients: Correspond difficilement aux systemes interactifs ou le
temps de réponse est important.
* Préemptif (avec réquisition) :

* Définition: l'algo retire I'UCT au processus en cours d’exécution pour

I'attribuer a un autre processus. Ce type est indispensable pour les
systeme interactifs.

v Avantages: Convient aux systémes interactifs

JInconvénients: Commutation fréqguente de contexte des processus, ce
qui peut diminuer le débit.

26

11.4 Algorithmes d’ordonnancement

4) First come first served (FCFS)

* Algo non préemptif tres simple. Il est aussi appelé PAPS (Premier Arrivé
Premier Servi).

* L'ordonnancement est fait dans |'ordre d'arrivée en gérant une file FIFO
(First In First Out) unique des processus préts, sans priorité ni réquisition :
le processus élu est celui qui est en téte de liste.

* Chaque processus s’exécute jusqu’a son terme.

v’ Avantages:

e Simple

* Pas de famine
J Inconvénients:

* Temps d’attente moyen tres important.
* Non adapté aux systemes interactifs.

27

11.4 Algorithmes d’ordonnancement

4) First come first served (FCFS) — Exemple
e Soient les processus P1, P2, P3 qui arrivent a l'instant O dans cet ordre.

Processus | Cycle UCT
P1 24
P2 3
P3 3

* Le diagramme de Gant suivant correspondant a |'algo FCFS:

P, P, P,
0 24 27 30
* Les mesures de performances sont: Processus | Temps Temps de
» Utilisation UCT=30/30 (100%) attente | rotation
P1 0 24

* Temps d’attente moyen= (0+24+27)/3=17
* Temps de rotation moyen=(24+27+30)/3=27 P2 24 27

» Débit=3/30=0.1 P3 27 30

28

11.4 Algorithmes d’ordonnancement

4) First come first served (FCFS) — Exemple 2

* Soient les mémes processus P1, P2, P3 qui arrivent a l'instant O dans l'ordre P2, P3,

& Processus | Cycle UCT
P1 24
P2 3
P3 3
P, P P,
e Le diagramme de Gant correspondant a I'algo FCFS: ! !] 1
* Les mesures de performances sont: n < - -
« Temps d’attente moyen= (6+0+3)/3=3 rocessus ;mF;S ETF? e
* Temps de rotation moyen=(30+3+6)/3=13 atiente rotation
* Débit=3/30=0.1 P1 6 30
P2 0 3
P3 3 6

* Remarque: Lorsque les processus les plus courts sont arrivés en premier (donc élu
en premier), les performances sont nettement meilleurs. On pourrait donc penser a
utiliser un algo qui avantage les processus courts => algo SJF ”

11.4 Algorithmes d’ordonnancement

5) Shortest Job First (SJF)

e Algo non préemptif. Il est aussi appelé Plus court temps d’exécution (PCTE)

e Le processus qui a le cycle UCT le plus court est exécuté en premier.
* Le FCFS est utilisé en cas d’égalité.

v’ Avantages:
* Le meilleur pour le temps d’attente moyen (lorsque tous les processus
arrivent en méme temps.)
J Inconvénients:
e Risque de famine: les processus longs peuvent ne jamais s’exécuter

* Nécessite de connaitre a I'avance le temps du cycle UCT (adapté aux
traitements par lots ou une estimation de la durée du cycle est donnée).
Sinon, il devrait étre prédit

30

11.4 Algorithmes d’ordonnancement

5) Shortest Job First (SJF) — Exemple

* Soit les processus P1, P2, P3, P4 qui arrivent selon différents temps d’arrivée.

* Le diagramme de Gant correspondant a 'algo SJF

* Les mesures de performances sont:

* Temps d’attente moyen= (0+6+3+7)/4=4
* Temps de rotation moyen=(7+10+4+11)/4=8

* Débit=4/16=0.25

Processus | Arrivée Cycle
UCT
P1 0 7
P2 2 4
P3 4 1
P4 5 4
P, Py P, P,
l::-III Il?alllmll*xa
Processus | Temps Temps de
attente rotation
P1 0 7
P2 8-2=6 12-2=10
P3 7-4=3 8-4=4
P4 12-5=7 16-5=11

11.4 Algorithmes d’ordonnancement

6) Shortest Remaining Time First(SRTF)

* C’est la version préemptive du SJF. Il est aussi appelé Plus court temps
d’exécution avec Réquisition (PCTER)

* Chaque fois qu’un nouveau processus est introduit dans la file des processus
préts, 'ordonnanceur compare sa durée du cycle UCT a la durée restante du
processus en cours d’exécution. Si la durée du nouveau processus est
inférieure, le processus en cours d’exécution est réquisitionné.

v’ Avantages:

* Plus efficace que SJF, car le temps d’attente moyen optimal est garantit
quelque soit le moment d’arrivée des processus

J Inconvénients:
* Risque de famine
* Besoin de connaitre la durée du cycle UCT a 'lavance

32

11.4 Algorithmes d’ordonnancement

6) Shortest Remaining Time First (SRTF)

Soit les processus P1, P2, P3, P4 qui arrivent selon différents temps d’arrivée.

Le diagramme de Gant correspondant a 'algo SRTF:

Les mesures de performances sont:
* Temps d’attente moyen= (9+1+0+2)/4=3
* Temps de rotation moyen=(16+5+1+6)/4=7

» Débit=4/16=0.25

Processus | Arrivée Cycle
UCT
P1 0 7
P2 2 4
P3 4 1
P4 5 4
P, P, | P, P, P, P,
]]]]] L]] 1
| | | | | | | | | 1
D 2 4 5 '1.1 '1.5
Processus | Temps Temps de
attente rotation
P1 9 16
P2 1 7-2=5
P3 0 5-4=1
P4 2 11-5=6

11.4 Algorithmes d’ordonnancement
7) Round-Robin (RR)=Tourniquet

* Algo préemptif le plus utilisé en pratique.

* A chaque processus est allouée une tranche de temps, appelée
guantum (généralement entre 10 et 100 ms.), pour s’exécuter.

e S’il s’exécute pour un quantum entier (sans autres interruptions), il est
interrompu par la minuterie et 'UCT est donnée a un autre processus.
Le processus interrompu redevient prét (en fin de file d’attente).

v'Avantages:
o Pas de monopolisation de I"UCT, équitable
o Pas de famine
o Bon temps de réponse

J Inconvénients:
o Temps d’attente moyen en général important.

o Influence de la valeur du quantum, difficile a déterminer (grand :
FIFO, petit: perte de temps dans les changements de contexte)

11.4 Algorithmes d’ordonnancement

7) Round-Robin (RR)=Tourniquet - Exemple
Soit les processus P1 , P2, P3, P4. Le diagramme de Gant correspondant a
I'algo RR avec quantum =20

Processus Cycle UCT
P1 53
P2 17 Pyl Pe] Ps PalPi|Ps|Pa|Pi|Ps]Ps
P3 68
o1 ay D 20 37 57 77 97 117 121 134 154 182
Processus Temps de
Les mesures de performances sont: rotation
e Utilisation UCT= 162/162=100% P1 134
P2 37
e Temps de rotation moyen=(134+37+162+121)/4=113.5 - =
* Débit= 4/162=0025 P4 121

* Temps de rotation et temps d’attente moyens sont beaucoup plus élevés que
les algos précédents, mais meilleur temps de réponse moyen.

 Le RR suppose que tous les processus sont aussi importants, mais en
pratique, ce n’est pas le cas (processus vidéo plus important que processus

qui affiche I'heure) => Algo HPF

11.4 Algorithmes d’ordonnancement

8) Comparaison
Soit les processus P1, P2, P3, P4.

Processus | Arrivée | Cycle UCT
P1 0 7
-) 4 Remarques:
e SRTF fournit le meilleur temps d’attente
b3 2 ! moyen.
P4 3 > * RR avec petit quantum augmente le temps
d’attente moyen.
Temps d’attente:
Processus | FCFS SJF SRTF | RR(2) | RR(5) | RR(10)
P1 0 0 9 14 14 0
P2 6 6 0 7 4 6
P3 9 14 14 14 14 9
P4 15 8 2 14 11 15
Moyenne | 7.5 7 6.25 | 12.25 | 10.75| 7.5

36

11.4 Algorithmes d’ordonnancement

8) HPF (Highest Priority First ou haute priorité d’abord)

» Affectation d’une priorité a chague processus (souvent nombre entier, avec O
la plus haute).L'UCT est donnée au processus prét avec la plus haute priorité.

* Peut étre préemptif ou non. Quand un nouveau processus arrive:

o Cas préemptif: comparer sa priorité a celle du processus en cours d’exécution.
L'UCT est alors réquisitionnée en cas de plus haute priorité. Le processus sorti
sera remis en téte de la liste d’attente prét correspondant a sa priorité.

o Cas non préemptif: placer le processus dans la file d’attente FIFO correspondant

a sa priorité. Une fois qu’il sera élu, il ne sera pas interrompu par
I'ordonnanceur.

 N.B: Il y a une file d’attente prét pour chaque niveau de priorité. HPF choisit
toujours dans la file la plus prioritaire.

v’ Avantages:
e Simple, Prise en compte de I'importance des processus
J Inconvénients:

e Risque de famine pour les processus moins prioritaire.
e Solution: Augmenter la priorité des processus qui attendent depuis Iongt%mps.

11.4 Algorithmes d’ordonnancement

8) HPF (Highest Priority First ou haute priorité d’abord) - Exemple

Soit les processus P1, P2, P3, P4, P5. Le diagramme de Gant correspondant a

I'algo HPF:
* préemptif: Temps de rotation moyen=
(29+32+18+14+3)/5 =19.2

P3 P1

P3

P3 ol

P1

p2

0 5 15 18 23 24 29

34

* Non préemptif: Temps de rotation moyen=

(10+32+20+19+13)/5 =18.8

P1 P3 Py P4

p2

0 10 25 28 29

* Avec HPF non préemptif, les processus

prioritaire risquent d’attendre plus longtemps.

34

Processus | Arrivée | Cycle UCT | Priorité
P1 0 10 3
P2 2 5 7
P3 5 15 2
P4 10 1 2
P5 15 3 1
Processus Temps de Temps
rotation rotation non
préemptif préemptif
P1 29 10
P2 34-2=32 34-2=32
P3 23-5=18 25-5=20
P4 24-10=14 29-10=19
P5 18-15=3 28-%85=13

11.4 Algorithmes d’ordonnancement

9) Files multiples (a plusieurs niveaux)

* La file prét est séparée en plusieurs files. Par exemple une pour processus
d’arriere-plan (background - batch) et une autre pour processus de premier
plan (foreground - interactive).

e Chaque file a son propre algo d ‘ordonnancement. Par exemple: FCFS pour
arriere-plan, RR pour premier plan.
e Comment ordonnancer entre les files?
o Priorité fixe a chaque file
o Ou bien chaque file recoit un certain pourcentage de temps UCT, (exemple: 20%
pour arriere-plan, 80% pour premier plan)

v Avantages:
o Permet une catégorisation des taches accomplies par le systeme.

J Inconvénients:
o Risque de famine (cas priorité fixe)
o Priorités statiques (dépendent de la nature du processus)

39

11.4 Algorithmes d’ordonnancement

9) Files multiples avec feedback

 Un processus peut passer d’une file a une autre, par exemple quand il a
passé trop de temps dans une file, il passe a une autre plus prioritaire.
* Ce type d’algo d’'ordonnancement est défini par :
 nombre de files, ordonnanceur pour chaque file.
* regles pour changer un processus de file (vers le haut ou vers le bas).
* regles pour décider de la file initiale d’'un processus.

v Avantages:
o Le plus général.
o Flexibilité (nb files, algo pour chaque file, quantum, certains types de
tache peuvent commencer dans une file peu prioritaire).
J Inconvénients:
o Le plus complexe a mettre en place. Ajustement délicat des parametres.
o Risque de famine.
o Nombreux changements de contexte.

40

11.4 Algorithmes d’ordonnancement

9) Files multiples avec feedback - exemple

* Trois files: Q0: RR g=8 ms | Q1: RR g= 16 ms |Q2: FCFS

* Exemple de Schéma d’ordonnancement:
e Un nouveau processus entre dans QO, il recoit 8 ms d’UCT
e S’il ne finit pas dans les 8 ms, il est mis dans Q1, il recoit 16 ms
additionnels
* S’il ne finit pas encore, il est interrompu et mis dans Q2

Qo ﬁ .
tranche detemps =8
Q1 a——— z
tranche de temps = 16 b— >
>
- —-ﬂ;’

41

1. Intraduction et Définitions> Q\(Z}
2. Niveaux d’ordonnance@t des processus 1\
. Etats des processus N

4. Algorithmes d’ordonnancement

5. Superviseur des processus {Q {Q
6. Création defocessus O O
@ & ©
Q¥ O Q¥
AN N N
> > >
Q Q \\
Q Q Q
Q?‘QO Q?’é) Q?’QQ
A\ \ \
O O O

A A A -

11.5 Superviseur des processus

1) Création de processus

* Pendant son exécution, un processus (pere) peut créer de nouveaux processus (fils),
qui peuvent a leur tour créer des fils, formant ainsi une arborescence de processus.

* La majorité des SE identifient les processus par un numéro unique (process id ou
PID) et font référence au pere par son PID noté PPID.

* Pour le SE Linux par exemple, lorsque le SE démarre, il crée un processus initial
nommeé init (avec pid=1). Si un utilisateur souhaite se connecter, init crée le

processus login(pid 8415).
logln kthreadd azhd
pld = B415 pid = 2 pid = 3028

bash khelper pdflush zzhd
plid = 8416 pld = & pid = 200 pid = 3810

os emacs tcach
pid = 9248 pld = 9204 pid = 4005

43

11.5 Superviseur des processus

1) Création de processus

La majorité des SE proposent des mécanismes de création de processus fils a
partir du processus pere:
* Fork():

* Le SE crée un nouveau PCB pour le fils et y copie les mémes éléments du PCB du
pere.

* Pere et fils continuent leur exécution a partir de l'instruction suivant le fork(),
puisque les deux processus ont les mémes valeurs des registres dans leur PCB.

e La valeur de retour de fork() est 0 pour le fils, alors que pour le pere, elle
correspond au PID du fils. Avec un code qui teste cette valeur, le pere et le fils
peuvent étre dirigés vers différents segments du code.

* Exec():

* Typiquement, apres l'appel systeme fork(), le fils utilise I'appel systeme exec() pour
remplacer les éléments de son PCB par un nouveau programme.

 De cette maniere, les deux processus peuvent communiquer facilement et
effectuer chacun leur exécution.

* Le pere peut se placer en attente jusqu’a la terminaison de son fils 44

11.5 Superviseur des processus

2) Terminaison de processus

3 appels systemes sont liés a la terminaison des processus:

e wait() : Permet a un processus peéere d'attendre jusqu'a ce que son fils
termine. Il retourne l'identifiant du processus fils et son état de terminaison.

 exit() : Permet au processus de finir volontairement son exécution car il a
terminé ses instructions et retourne son état de terminaison.

e kill(): Permet de forcer I'arrét d’un autre processus. Habituellement, un tel
appel ne peut étre invoqué que par le pere du processus qui doit étre
terminé.

* Un pere peut mettre fin a I'exécution de I'un de ses enfants pour diverses
raisons:
* Le fils a dépassé son utilisation de certaines des ressources allouées.
e Latache assignée au fils n'est plus nécessaire.
* Le parent sort et le SE ne permet pas au fils de continuer si son parent se termine.

Remarque: Sur certains SE, lorsqu’un pere prend fin, tous ses fils se terminent
automatiquement. Puis, les fils de ces derniers s’achevent a leur tour, ce
mécanisme est connu sous le nom de terminaison en cascade. 45

1.5 Superviseur des processus

2) Terminaison de processus — le processus zombie

e Lorsqu'un processus se termine, ses ressources sont désaffectées par
le SE. Cependant, son PCB doit rester dans la table des processus
jusgu'a ce que son pere appelle wait().

 Un processus qui s'est terminé, mais dont le pere n'a pas encore
appelé wait(), est connu sous le nom de processus zombie.

 Tous les processus passent a cet état lorsqu'ils terminent, mais
généralement ils n’y restent que brievement. Une fois que le pere
appelle wait(), le PID du zombie et son PCB sont libérés.

* Si un pere n’a pas appelé wait () et a terminé, ses processus fils vont
devenir orphelins.

e Linux et UNIX attribuent le processus d'initialisation (init) en tant que
nouveau pere des processus orphelins. Init invoque périodiqguement
wait(), ce qui permet de collecter le statut de sortie de tout processus
orphelin et de libérer son PID et son PCB.

46

1. Intraduction et Définitions> Q\(Z}
2. Niveaux d’ordonnance@t des processus 1\
. Etats des processus N

4. Algorithmes d’ordonnancement

5. Superviseur des._processus Q Q
6. Création ded@ocessus 00 (;0
@ & ©
Q¥ O Q¥
N AN AN
> > >
N\ N\ N\
Q Q Q
Q?‘QO Q?’QO Q)’QQ
\\ "\ \\
O L L

A A A !

11.6 Création de processus

1) La primitive systeme fork()

* Recopie les données et les attributs du processus péere vers son
processus fils auquel il attribue un nouveau pid.

* Le fils continue son exécution a partir de cette primitive

Processus pere Processus Fils
‘ Code
Données ==-| Donnees
Tas == Tas
[Pile) == Pile)
| Attributs = Attributs

48

11.6 Création de processus

1) La primitive systeme fork() — avant vs apres

Avant fork()

Table de
processus ‘»

Codelff———_
Données i }

f=fork(j-e—— Compteur ordinal

Apres fork()

Compteur ordinal

Table des
processus =

Données
Cellule £ du pere

| Pid_du fils |

“‘“{D?DD:‘?NDbbbb?bkbbbbb bbbbb

J—
_— |
——

|
\X\\\\\\\\\\%\\

B

Données
—— du fils

11.6 Création de processus

1) La primitive systeme fork() — Arborescence

* l'itération de fork() conduit a une .
arborescence a partir du processus init (pid =1) _Pid=1

Processus
 Différencier le pere du fils : Code de m
retour du fork() ol
* Dans le pere : le fork retourne le pid
du processus fils @

e Dans le fils : le fork retourne O

* Pourquoi ?
* Le fils peut connaitre le pid de son pere avec getppid().

* Alors que pour le pere, le seul moyen pour connaitre le pid du
processus fils est le retour du fork.

50

11.6 Création de processus

1) La primitive systeme fork() — porté du code

#include =stdio.h=

#include <sys/types.hs Valeur retournee par la fonction fork: 3952

#include <unistd h= Je suls le processus numero 3951

int main () { Valeur retournee par la fonction fork: @
int f; Je suls le processus numero 3952

f = fork(); -

printf (" Valeur retournee par la fonction fork: %d\n", (int)f);
printf (" Je suis le processus numero %d\n", (int)getpid()};
return 0;

}

#include <stdio.h=
#include =sys/types.h=
#include <unistd.h=
int main(){

int k- Je suls seul au monde
. N) . SN Je suis le processus pere
Eiigﬁigj?e suls seul au monde\n"); Et la qui suis-je 2850
- 1 : NE e Farlf 1] Je suis le processus fils
;f (k==-1) { printf("Erreur fork()"); Et la qui suis-je 2851
if (k== 8) {
printf("Je suis le processus fils\n"};
}
else
printf("Je suis le processus pere\n"};
printf("Et la qui suis-je %d\n",getpid())}; 51

H

11.6 Création de processus

1) La primitive systeme fork() - porté des variables

#include <stdio.h=
#include =sys/types.h=
#include <unistd.h=
int main(){

int i,j,k :

i=5; j=2; pere 2906

if ((k=fork()) == -1) { P1d:2906 1:6 j:2
printf("Erreur fork()"); fils 29087

¥ - A .5 4.
if (ke= 0) { Pid:2907 1:5 j:1
/* code du fils */ I

printf("fils %d “n",getpid());

j--i

¥

else

{

printf("pere %d\n",getpid());

1++;

¥

printf("Pid:%d i:%d j:%d\n", getpid(),i,j);

IS

* Les passage des variables se fait par valeur!!
* Le changement d’une variable par I'un des processus n’affecte pas la valeur de la variable
dans l'autre processus 52

11.6 Création de processus

1) La primitive systeme fork() - relation pere/fils

* Le pere est toujours prévenu de la fin d’un fils
* Le fils est toujours prévenu de la fin du pere
* Mais il faut que le pere soit en attente

* Si la fin d’un fils n'est pas traitée par le pere ce processus devient
un processus zombie.

53

11.6 Création de processus

2) Les appels systeme wait et exit

Void exit (int)
e La Valeur du int est transmise au pere, c’est le code de retour
* Fin du processus fils apres exit

* Par convention (défaut) une fin correcte donne un code de retour
nul.

int wait (int *)

* Entier retourné : pid du fils qui s’est terminé depuis I'invocation
du wait

 Si aucun fils susceptible de se terminer alors renvoi de -1

* 'entier pointé enregistre I'état du fils lorsqu’il se finit (valeur en
parametre dans exit)

54

11.6 Création de processus

2) Les appels systeme wait et exit

#include <unistd.h=

#include <sys/walt.h=

#include <=sys/types.h= Fils 3156
#include <stdio.h= E—) w:3156 s5:3584
int main() { int r,s,w;

if ((r=fork())==0) {
printf("“Fils %d\n",getpid());
// Traitement long

exit(14);

} else {

// P ere doit attendre la

S/ mort de son fils.
w=wait(&s);

printf("w:%d s:%d\n",w,5);}
ﬁ

La valeur de s=la valeur du parametre de wait * 256

55

11.6 Création de processus

3) Mise en sommeil d’un processus

e Suspend |'exécution du processus appelant pour une durée
de n secondes : Int sleep(int n)

#include <unistd.h=
#include <sys/wait.h=
#include <sys/types.h=
#include <stdio.h=

main() processus fils 3559

{int PID, status ; processus pere 3558 . o
if (fork() == @) sortie du wait <= IZ%TLZES&Q??M

1 o PID = 3539 status= 2560 dermire tne

printf{"processus fils %d \n ", getpid(});

exit(18);

H

PID=walt(&status);

printf("processus pére %d\n ", getpid()});
printf("sortie du wait “\n") ;

sleep(15);

printf("PID = %d status= %d “\n",PID, status);
exit(e);

}

56

11.6 Création de processus

4) U'appel systéme exec et execl

e Un processus peut changer de code par un appel systeme a
exec ou execl.

o Code et données remplacés
o Pointeur d’instruction réinitialisé

57

MARRAKECH
R =Sre ~ ™
UNIVERSITE CADI AYYAD FP SAFI

SMI - S4
Chapitre 3:
Communication interprocessus &
Synchronisation

Cours donné par:
Pr. N. ALIOUA

Année universitaire:
2019-2020

1. Notions de base
2. Mécanismes de communication
3. Mécanismes de synchronisation

1. Notions

* Les processus, concurrents ou distants, sont amenés a communiquer et a
synchroniser durant leur cycle de vie.

* Processus concurrents: sont en compétition pour le partage de ressources.

o Coopérants: qui partagent des données, se trouvant en mémoire principale ou en mémoire
secondaire, avec d’autres processus, et peuvent s’affecter mutuellement en cours d’exécution .

o Indépendants: ne partagent pas de données avec d’autres processus et sont ordonnancés

indépendamment les uns des autres.

Processus concurrents

Processus
utilisateur

Processus
utilisateur

N/

Noyau du SE

Machine

Communications intra-

systeme

Processus distants

Processus Processus
utilisateur utilisateur
Noyau du SE Noyau du SE
Machine Machine

Communications inter-

systeme

1. Notions: Ressource

* Ressource: toute entité dont a besoin un processus pour gu’il puisse évoluer
o Mateérielle: mémoire, UCT, périphériques
o Logicielle: données, variables
* Ressource locale a un processus:
o Ne peut étre utilisée que par ce processus
o Doit obligatoirement disparaitre a la destruction de ce processus puisqu'elle n'est plus
utilisable.
* Ressource commune: n'est locale a aucun processus.

* Une ressource commune partageable avec n points d'acces (n >= 1): une ressource qui
peut étre attribuée, au méme instant, a n processus au plus.

* Une ressource critique: partageable a un point d’acces (n=1 ou non partageable).
o Exemple: UUCT est une ressource a un seul point d’acces.

* Le mode d'acces a une ressource peut évoluer dynamiguement:

o Un fichier est une ressource a n points d'acces quand il est ouvert en lecture, critique
guand il est ouvert en écriture.

* Section Critique: Soit une ressource critique ¢, la section critique d'un processus p, pour
la ressource ¢, est une phase du processus p pendant laquelle il utilise ¢, qui devient
donc inaccessible aux autres processus. 4

1. Notions: Ressource

Les processus coopérants sont confrontés a deux grands problemes : |a famine et
I'inter-blocage(deadlock).

* Famine: Monopolisation d’une ressource. Si un processus émet un flux constant de
requétes (de lecture par exemple) et si toutes ses requétes sont satisfaites en
premier, il pourrait arriver que les requétes d'autres processus ne soient jamais
satisfaites.

processa3 processs2
Attente indéfinie - rend utilise
LH'-"'-..
Ressourcel?
process#1 _ processs4
" —

ulifisy

1. Notions: Ressource

* Inter-blocage: survient lorsque deux ou plusieurs processus demandent a obtenir
des ressources en méme temps, et que les ressources requises par les uns sont
occupeées par les autres et vice versa.

On considere deux processus Piet P2 utilisant deux ressources critiqgues Riet R2comme suit :

Processus P: Processus P
Début Début

acquérir R acquérir Ro
acquérir Ro acquérir Ri
utiliser Ri et Ro utiliser Rzet R
Fin Fin

processl tilise Resrourcel!

. dtend PrOCEsSE2
HHH".IIIIIII
~
stiend ™ Aﬁ

Attente infinie

1. Notions: Ressource

* Incohérence de données : probleme de |la synchronisation relative a
|'exécution des processus

« Exemple: incrémenter un compte client de 100 depuis deux
opérations bancaires simultanées.

* N:solde initial, Account: numéro du compte client.

processs processs#2

lire (N, Acoount) . | Procesms

lire (M, Account) l

N = + 100 Proces st

éaorire (N, Acoount) l_. .—
“ =.“ * m m »an - -
dorire {H, Acocunt}) : :

1 .

Une solution?

1. Notions: Exclusion mutuelle

* Soit deux processus p et g qui produisent des données devant étre
imprimées sur une imprimante unique. L'emploi de cette imprimante
par p exclut son emploi par q tant que I'impression pour p n'est pas
terminée.

* Un mécanisme d'exclusion mutuelle sert a assurer l'atomicité des
sections critiques relatives a une ressource critique.

« Autrement: s'assurer que les ressources non partageables ne soient
attribuées qu'a un seul processus a la fois.

* Un processus désirant entrer dans une section critique doit étre mis
en attente si la ressource relative a la section critique n’est pas libre.

* Mais Comment peut-on attendre?

o Active : procédure entrer_Section Critique matérialisée par boucle dont la
condition est un test qui porte sur des variables indiquant la présence ou non
d’un processus en section critique

o Non active : le processus passe dans |'état endormi et ne sera réveillé que
lorsqu’il sera autorisé a entrer en section critique.

1. Notions: Exclusion mutuelle

e Un meécanisme d’exclusion mutuelle doit satisfaire les
conditions suivantes:

1. Exclusion mutuelle: Si le processus Pi s'exécute dans sa section
critique, alors aucun autre processus peut s'exécuter dans sa section
critique.

2. Interblocage: aucun processus suspendu en dehors d’une section
critigue ne doit bloquer les autres processus d’entrer en section
critique.

3. Attente bornée: aucun processus ne doit attendre indéfiniment
avant d’entrer en section critique.

4. Aucune hypothese ne doit étre faite sur les vitesses relatives des
processus.

1. Notions: Acces concurrents aux ressources
« Comment gérer les acces concurrents aux ressources ?

e Mécanismes de:

o Communication: Echange de données entre processus, tout en maintenant la
protection ainsi que l'isolation entre processus communicants.

o Synchronisation: La relation de dépendance logique entre processus qui
cadence leur évolution et fixe I'ordre de leur exécution dans le temps (i.e.
s’affecter mutuellement).

10

1. Not!’gs de base ‘ZJ O

2. canismes de comm@‘l‘i\‘étion \3\@
. Mécanismes de syncﬁ}\})nisation N
<& & &
Qr‘QQ Q;’QO Q)(;)O
\\ \ \\
L P P
75 75 >
\ \ \
Q Q Q
& & &
N4 N N

2. Méecanismes de Communications

e La communication interprocessus (IPC: interprocess communication)
comparée a la communication entre ouvriers.

* Les ouvriers partagent un espace de * Les processus partagent un espace de
travail: un dépot d’outils et de pieces travail: une mémoire partagée.
nécessaires pour la confection de
voitures.

* Les processus appellent les uns et les
autres: passage de messages (message
passing).

* Les ouvriers appellent les uns et les
autres: expliciter les demandes et les
réponses.

* Besoin de synchronisation: mécanismes

e Besoin de synchronisation: I'un oL
de synchronisation.

commence sa tache apres la fin de celle

de l'autre. 12

2. Méecanismes de Communications

* IPC: un ensemble de mécanismes que I'OS supporte pour
permettre aux processus d’interagir entre eux (coordiner,
communiquer).

* Les mécanismes IPC sont catégorisés comme suit:
o Mécanismes a passage de messages (messages passing)
o Mécanismes a mémoire partagée (shared memory)

* On verra que les IPC comprennent la notion de
synchronisation.

13

2. Méecanismes de Communications

1)Message Passing
1.1)Principes

Utilisateur

Noyal [Canal = Lien I

* Les processus créent des messages, puis les envoient (écrire) ou les recoivent (lire).

* Le noyau OS établi et maintient le canal qui sera utilisé pour transmettre les
messages entre les processus et est requis pour effectuer toutes les opérations IPC.

* Le canal (ou le lien), qui peut étre implémenté sous forme d’une file d'attente FIFO
par exemple, est responsable de transmettre le message d'un processus a un autre.

e Ce lien peut étre unidirectionnel ou bidirectionnel.

14

2. Méecanismes de Communications

1)Message Passing
1.1)Principes

Utilisateur

Noyau | Canal |

e Colt des opérations:

o L'envoi: appel systeme + copie du message depuis 'espace adresse du processus vers le
canal.

o La réception: appel systeme +copie du message depuis le canal vers I'espace adresse du
processus de réception.

o 1 communication= 2 copies de données + 2 passages utilisateur/noyau.

* |[nconvénients:

o colit généré (overhead) d(aux multiples copies de données en entrée et en
sortie depuis ou vers le noyau + les passages multiples utilisateur/noyau.

v'Avantages:

o Le noyau du SE prend en charge toutes les opérations, concernant la gestion des canaux.

o La synchronisation: le noyau s'assurera que les données ne sont pas écrasées ou
corrompues d'une facon ou d'une autre, quand les processus tentent d'envoyer ou de

recevoir en méme temps. -

2. Méecanismes de Communications

1)Message Passing
1.1)Principes

* Le Message passing peut étre bloguant ou non-bloquant.

* Bloquant c’est a dire synchrone

o Envoie bloguant: I'expéditeur est blogué jusqu'a la réception du
message.

o Reception bloquante: le récepteur est bloqué jusqu'a ce qu'un
message soit disponible.
* Non-blogquant c’est a dire asynchrone
o Envoi non-bloquant: I'expéditeur envoie le message et continue.
o Réception non-bloguante: le récepteur recoit sans attendre.

* Si a la fois envoyer et recevoir bloguent, nous avons besoin
d’un rendez-vous.

2. Méecanismes de Communications

1)Message Passing
1.1)Principes

Ports

Utilisateur

Noyau Canal |

* Le message passing implémente la notion de port.

* Le port est une interface par laquelle un processus peut, entre autres,
envoyer ou recevoir un message.

17

2. Méecanismes de Communications

1)Message Passing
1.2)Les pipes

a) Pipe ordinaire

Utilisateur

Noyau Pipe I

* Les pipes ordinaires permettent a deux processus de communiquer de la maniere
standard producteur-consommateur: le producteur écrit a une extremité du tuyau
(WRITE_END) et le consommateur lit a I'autre extrémité (READ_END).

* Il n'y a pas de message en soi mais plutot un flux d'octets poussés dans le pipe
depuis un processus puis recu dans un autre.

* Les pipes ordinaires sont unidirectionnels.
* Les pipes peuvent étre accédées en utilisant les appels systeme read () et write ().

* Un pipe ordinaire n'est pas accessible depuis |'extérieur du processus qui I'a créé:
o Le processus parent crée un pipe et l'utilise pour communiquer avec un processus fils qu'il
crée via fork ().

* Les pipes ordinaires peuvent étre utilisés uniqguement pour la communication entre
les processus sur la méme machine.

* Une fois que les processus ont fini de communiquer et sont terminés, le pipe
ordinaire cesse d'exister.

2. Méecanismes de Communications

1)Message Passing
1.2)Les pipes

b) Pipe nommé

La communication pour les pipes nommeés peut étre bidirectionnelle et
aucune relation parent-enfant n'est requise.

Une fois qu'un pipe nomme est etabli, plusieurs processus peuvent ['utiliser
pour la communication.

Les pipes nommes continuent d'exister apres la fin des processus
(cjor?.n;]qmcants jusqu'a ce qu'ils soient explicitement supprimés du systeme
e fichiers.

UNIX:

o Seule la transmission half-duplex est autorisée.

o Si les données doivent passer dans les deux sens simultanement, deux pipes sont
généralement utilisés.

o Les processus de communication doivent résider sur la méme machine.
o Si une communication inter-machine est requise, les sockets doivent étre utilisées.

WINDOWS:

o La communication en full-duplex est autorisée.

o Les processus en communication peuvent résider sur la méme machine ou des
machines différentes.

2. Mécanismes de Communications
1)Message Passing

1.3)Les files d’attente de messages

a)Principe Utilisateur

Noyau [= == == |

* Un processus émetteur doit envoyer un message correctement formaté au canal, puis le canal
fournira un message correctement formaté au processus destinataire, selon le protocole de
communication établi entre ces deux processus.

* Plusieurs types de files de messages possibles:
o File d’attente sans mémoire:
> La file ne stock pas les messages.

> Ce que I'’émetteur dépose dans la file doit immédiatement étre retiré par le destinataire.
L'émetteur doit bloquer jusqu'a ce que le destinataire recoive le message.

o File d'attente a longueur finie n:

> Sila file d'attente n'est ﬁ)gs pleine lorsqu'un nouveau message est envoyé, le message est place
dans la file d'attente et 'émetteur peut continuer I'exécution sans attendre.

> 3i elle est pleine, I'émetteur doit bloquer jusqu'a ce qu'un espace soit disponible dans la file
'attente.

o File d’attente a capacité illimitée:
» La longueur de la file est potentiellement infinie.
» L'émetteur ne bloque jamais.

* Le SE fournit des mécanismes aux niveaux des files d'attente de messages pour intégrer
également la notion de priorités des messages ou la planification des envoies des messages.

20

2. Mécanismes de Communications
1)Message Passing

1.3)Les files d’attente de messages

b)Les sockets Sockets

Utilisateur

Noyau I Canal I (Buffer)

* Les sockets permettent aux processus d'envoyer des messages a l'intérieur et a
I'extérieur du buffer de communication dans le noyau.

* Un socket est identifié par une adresse IP concaténée a un numéro de port.
* En général, les sockets utilisent une architecture client-serveur.

* L'appel socket():
o Crée une mémoire buffer au niveau du noyau.
o Associe tout le traitement nécessaire au niveau du noyau pour la transmission du message.

* Le socket peut étre un socket TCP/IP, ce qui signifie que l'ensemble de la pile de
protocoles TCP/IP est associé au mouvement des données dans le noyau.

* Le SE est suffisamment intelligent pour comprendre que si deux processus sont sur la
méme machine, il n'a pas vraiment besoin d'executer la pile de protocoles complete pour
envoyer les données sur le réseau, puis de le recevoir et le passer au processus.

2. Méecanismes de Communications

2)Mémoire partagée
2.1)Principe

Utilisateur

Noyau
@ | Meémoire Principale |

* Les processus envoient (écrire) ou regoivent (lire) les messages dans une région
partagée de la mémoire.

* Le noyau SE établi la mémoire partagée entre les processus.

* Un méme espace de la mémoire physique peut étre accessible par ces processus.
C’est a dire qu’une adresse logique de P1 et une autre de P2 vont correspondre a la
méme adresse physigue dans la mémoire principale.

* Normalement, le SE empéche un processus d'accéder a la mémoire des autres
processus. Lorsque le mécanisme de mémoire partagée est utilisé, cela nécessite
que les processus communicants suppriment cette restriction.

2. Méecanismes de Communications

2)Mémoire partagée
2.1)Principe

Utilisateur

Noyau
I Mémoire Principale I

* Une mémoire partagée réside dans l'espace d'adressage du processus qui |'a créé.
Les autres processus qui souhaitent communiquer a l'aide de cette région doivent la
joindre a leur espace d'adressage.

* Les processus peuvent ensuite échanger des informations en lisant et écrivant des
données dans la région partagée.

* Les processus sont également responsables de s'assurer gu'ils n'écrivent pas au
méme endroit simultanément. Cela est géré par les meécanismes de
synchronisation.

2. Mécanismes de Communlcatlons

2)Mémoire partagée
2.1)Principe

Utilisateur .

Noyau
| Mémoire Principale |
v'Avantages:

o Plus rapide que le message passing car les appels systeme sont requis
uniquement pour établir la région de la mémoire partagée.

o Réduction du nombre de copies de données. Un processus peut utiliser
une donnée dans la mémoire partagée sans avoir besoin de la copier.

* [Inconvénient:

o C’est au programmeur de gérer les acces et 'organisation de la mémoire
partagée. La difficulté majeur est de gérer la synchronisation: les
processus doivent synchroniser explicitement leurs acces a la mémoire
partagée.

24

2. Méecanismes de Communications

2)Mémoire partagée
2.2) Probléme du producteur/consommateur

Le probleme majeur de la mémoire partagée est la gestion de la synchronisation.

La synchronisation permet de gérer les acces a la mémoire partagée grace a
plusieurs mécanismes.

Un mécanisme simple est d’utiliser le concept du

o Le processus producteur (P) ne peut que produire (écrire) des informations.
o Le processus consommateur (C) ne peut que consommer (lire) ces informations

Déroulement:

o Pour permettre I'exécution simultanée de P et C, un buffer est rempli par P et est
vidé par C. Le buffer réside dans la région mémoire partagée par P et C.

o P peut produire une information pendant que C consomme une autre.

oP et C doivent étre synchronisés, de sorte que C n'essaie pas de consommer une
information qui n'a pas encore été produite.

o Buffer: tableau circulaire avec deux pointeurs in (modifié par P et indique la
prochaine case vide) et out (modifié par C et indigue la premiére case pleine).

2. Méecanismes de Communications

2)Mémoire partagée

2.2) Probléme du producteur/consommateur
in
O 1 2 3 4

out

//mémoire partagée
#define B S 5 /* taille du buffer */
typedef struct {

} item;

item buffer[B S];
int in = 0;
int out = 0;

1) Etatinitial:

- buffer vide: in=out

- Si P ne produit rien, C ne peut
rien consommer

//Producteur P

item next prod;

while (true) {

/* Tester si production est possible*/
while(((in + 1) % B_S) out) ;

/* si buffer plein, ne rien faire */
buffer[in] = next prod; //produire

] (in + 1) % B S; }

in =

//Consommateur C
item next cons;

while (true) {
while (in == out)’ ;/* si buffer
vide, ne rien faire */

next cons =

out

}

= (out + 1) $ B S;

26

buffer|[out];//consommer

2. Méecanismes de Communications

2)Mémoire partagée
2.2) Probléme du producteur/consommateur

in

0O 1 2 3 4 2) P produit I'item a dans next_prod:

- next_prod est mis dans la case O

d - in est incrémenté par 1
out
//mémoire partagée
#define B S 5 /* taille du buffer */
typedef struct {
} item;
item buffer[B S];
int in = 0;
int out = 0;
//Producteur P //Consommateur C
item next prod; item next cons;
while (true) { while (true) {
/* Tester si production est/possible*/ |while (in == out) ;/* si buffer
while(((in + 1) % B S) == 0ut); vide, ne rien faire */
/* si buffer plein, ne rjen faire */ next cons = buffer[out];//consommer
buffer[in] = next prod;¥//produire out = (out + 1) % B S; .
in = (in + 1) % B S; } }

2. Mécanismes de C

2)Mémoire partagée

ommunications

2.2) Probléme du producteur/consommateur

in
O 1 2 3 4
al/b|c|d
out

//mémoire partagée
#define B S 5 /* taille du buffer
typedef struct {

} item;

item buffer[B S];
int in = 0;

int out = 0;

3) P produit 3 autres items:

- A chaque itération, next_prod est mis
dans la case in

in est incrémentée et atteint case 4
4) P ne pourra par produire un 5&me
item: apres cela, il devra pointer sur la
case 0 (= 5 mod 5) contenant un item
pas encore lu par C (pointé par out).

//Producteur P

item next prod;

while (true) {

/* Tester si production est posgible*/
while(((in + 1) % B_S) out) ;

/* si buffer plein, ne rien faire */
buffer[in] = next prod; //produire

in (in + 1) B S; }

o

=

[¢]

//Consommateur C

item next cons;

while (true) {

while (1 out) ;/* si buffer

vide, ne rien faire */

next cons
out (out + 1)
}

buffer|[out];//consommer
% B S;

=

[¢]

28

2. Méecanismes de Communications

2)Mémoire partagée
2.2) Probléme du producteur/consommateur

in
O 1 2 3 4
b|lc|d
out

//mémoire partagée
#define B S 5 /* taille du buffer */
typedef struct {

} item;

item buffer[B S];
int in = 0;

int out = 0;

5) C consomme un item:

- Uitem a la case pointée par out (=0)
est mis dans next_cons

- out est incrémentée

//Producteur P

item next prod;

while (true) {

/* Tester si production est possible*/
while(((in + 1) % B_S) out) ;

/* si buffer plein, ne rien faire */
buffer[in] = next prod; //produire

] (in + 1) % B S; }

in =

//Consommateur C
item next cons;
while (true) {
while (1 out)

:/* si buffer

vide, ne rien faire */
next cons = buffer[out];//consommer
out = (out + 1) % B S;

29

}

2. Méecanismes de Communications

2)Mémoire partagée

2.2) Probléme du producteur/consommateur
in
O 1 2 3 4

b|lc|d|e

out

//mémoire partagée
#define B S 5 /* taille du buffer */
typedef struct {

} item;

item buffer[B S];
int in = 0;

int out = 0;

4-bis) P pourra produire un 5&me
item: le contenu de la case 0 est
consommé, elle est libre d’acces
(car in # out)

//Producteur P

item next prod;

while (true) {

/* Tester si production est possible*/
while(((in + 1) % B_S) out) ;

/* si buffer plein, ne rien faire */
buffer[in] = next prod; //préduire

] (in + 1) % B S; }

in =

//Consommateur C
item next cons;
while (true) {
while (in == out) ;/* si buffer
vide, ne rien faire */
buffer|[out];//consommer
B S;

next cons =
out = (out + 1) %
}

30

2. Méecanismes de Communications

2)Mémoire partagée
2.2) Probléme du producteur/consommateur

in in
O 1 2 3 14 O 1 2 3 4
X
out out

//mémoire partagée
#define B S 5 /* taille du buffer */
typedef struct {

} item;

item buffer[B S];
int in = 0;

int out = 0;

6) Supposant la configuration a
gauche (out précede in de 1) et C
consomme le contenu de la case 1:
- out pointe alors sur case 2 (= in).
-C ne pourra plus consommer
d’item (car in=out)

//Producteur P

item next prod;

while (true) {

/* Tester si production est possible*/
while(((in + 1) % B_S) out) ;

/* si buffer plein, ne rien faire */
buffer[in] = next prod; //produire

] (in + 1) % B S; }

in =

//Consommateur C
item next cons;

while
while
vide,
next cons =

out =

}

(true) {
(in == out) ;/* si buffer
ne rien faire */

(out + 1) % B S;

31

buffer|[out];//consommer

2. Méecanismes de Communications

2)Mémoire partagée
2.2) Probléme du producteur/consommateur

Pb: i . i
bO 1 2 3 IE Sol: IB 1 2 3 4
a|blc|d alblcldl e
out out

Probleme de l'algo: Si B_S =5, P ne peut
déposer que 4 items a la fois (étape 4).

//mémoire partagée
#define B S 5 /* taille du buffer */
typedef struct {

} item;

item buffer[B S];
int in = 0;

int out = 0;

int counter=0;

Solution: Introduire une variable globale
(counter):

* initialiséea 0

* utilisée dans les boucles while.

* incrémentée a chaque production

* décrémentée a chaque consommation.

//Producteur P
item next prod;

while (true) {

/* produire un item dans next prod */
While (counter == B S); //buffer
plein, ne rien faire

buffer[in] = next prod;

in = (in + 1) % B _S;

counter++; }

//Consommateur C
item next cons;

while (true) {

while (counter ==);//buffer
vide, ne rien faire

next cons = buffer[out];

out = (out + 1) % B S;

counter--;
/* consommer un item dans

32
next cons */ }

1. Notions de base > >

2. Mécanismes de communication” \3§X
écanismes de synchronisation N\
'\ N\)
@90 @90 Q)g}o
\ \ \
O O O
? > >
N N N
& Q Q
& & &P

3. Mécanismes de synchronisation

1) Introduction

e Synchronisation: elle se présente comme un ensemble de
meécanismes qui permettent aux processus d’accéder a leur
section critique en garantissant |I'exclusion mutuelle.

* Les mécanismes de synchronisation sont catégorisés comme
suit:
o Mécanismes logiciels
o Mécanismes matériels
o Combinaison des deux

On introduit la synchronisation a travers la solution proposée
(i.e. variable counter) au probleme rencontré dans
'algorithme du producteur/consommateur.

3. Mécanismes de synchronisation

1) Introduction
1.1) Probleme de I'algo du producteur/consommateur

* l’incrémentation et décrémentation counter++ : counter-- :
Vé Vé o :I_: [} —
de counter est exécutée sous forme regl=counter regz = counter
de 3i . bl . * regl = regl+l * reg2 = reg2-1
e 3 instructions en assembleur: . counter = regl . counter = reg?

* On se positionne dans le cas ou les processus s’exécutent en parallele et que P
exécute counter++ et C counter--. Considérons que counter = 5 et que les
instructions s’exécutent dans cet ordre:

o InstO: P exécute regl = counter {regl =5}

o Instl: P exécute regl =regl + 1 {regl = 6}

o Inst2: C exécute reg?2 = counter {reg2 = 5}

o Inst3: C exécute reg2 =reg2 — 1 {reg2 = 4}

o Inst4: P exécute counter = regl {counter =6}

o Inst5: C exécute counter = reg2 {counter =4} Cette valeur doit étre =5

* Probleme: les processus P et C accedent en méme temps a une
variable partagée counter

» Solution: introduire une section critique pour I'acces a counter

3. Mécanismes de synchronisation

1) Introduction
1.2) Section critique

e La structure générale d’'un programme utilisant une section critique :

do {
Entrée section critique
// code section critique
Sortie section critique
// code non critique
}while{true}

e Rappel: Lorsqu’on introduit une section critique, il faut s’assurer de
satisfaire les conditions d’exclusion mutuelle:
1. Exclusion mutuelle
2. Pas d’Interblocage
3. Attente bornée

4. Pas d’hypothese sur les vitesses relatives des processus.

3. Mécanismes de synchronisation

2) Mécanisme logiciel
2.1) Introduction

* Synchronisation par mécanisme logiciel: I'lacces a la section critique
est controlé par un algorithme uniquement et n’a pas besoin de circuit
spécial.

* La Solution de Peterson en est un exemple:

o Elle est adaptée au cas de deux processus
o Les processus partagent deux variables :

" |nt turn: indique l'indice du processus (1 ou 2) qui entre dans la
section critique

= Boolean flag[2]: flag[k]==True indique que le processus « k+1 »
souhaite entrer dans la section critique

o Remarque: i est l'indice du processus courant, j est l'indice de
I'autre processus

3. Mécanismes de synchronisation

2) Mécanisme logiciel
2.2) Solution de Peterson

do{// le processus

flag[i-1] = true; // inst 1
turn = j; // inst 2
while(flag[j-1] && turn = =
j); // inst 3

// code section critique
flag[i-1] = // 1nst
4

// code non critique
}while{true};

false;

Les conditions de I'exclusion mutuelle

sont satisfaites:

1) Pas d’acces simultané a la SC

2) Pas d’interblocage

3) Les processus ont accédé a leur SC.

4) Pas de supposition sur la vitesse des
processus

e 2 processus P1 et P2 s’exécutent en méme temps

Initialement:

P1 puis P2 2inst 1

P1 - inst 2:
P1 - inst 3:

P2 = inst 2:
P1 - inst 3:
P2 = inst 3:

P1 termine SC - inst 4:

P2 = inst 3:

turn=0 | flag=[F,F]

turn=0 | flag=[T,T]

turn=2 | flag = [T,T]

While(T), Pl boucle et ne
peut pas accéder a sa SC

turn=1 | flag = [T,T]
While (F), Pl entre en SC
While(T), P2 boucle et ne

peut pas accéder a sa SC

turn=1 | flag=[F,T]

While (F), P2 entre en SC

P1 entre en section non critique, puis termine

P2 termine SC - inst 4:

turn=1 | flag=[F, F]

P2 entre en section non critique, puis termine

3. Mécanismes de synchronisation

2) Mécanisme logiciel
2.2) Solution de Peterson

* La Solution de Peterson peut poser un probleme lorsqu’on dispose
d’un processeur superscalaire (comporte plusieurs unités de calcul).

* Ce processeur peut exécuter plusieurs instructions simultanément
parmi une suite d'instructions. Soit les instructions suivantes traitées
par processeur qui exécute 2 instructions a la fois :

. Mov
. Mov
. Mov
. SN
. Mov

oo w N

. Mov
. Mov
. Mov
. Mov

S o o N

. Inc

eix'g * Le processeur choisit a chaque fois 2 instructions qui
ebx, . A .
cax,2 N’agissent pas sur les mémes registres.
edx . Il peut alors exécuter : (1,2); (3,5); (4)
ecx, .
* Cela produit un changement dans l'ordre des
eax, 0 instructions ().
ebx, 1
edx, 2
ecx, 3
edx

3. Mécanismes de synchronisation

2) Mécanisme logiciel
2.2) Solution de Peterson

*Si la solution de Peterson rencontre un changement d’ordre des
instructions. On peut imaginer le scénario suivant:

do{// le processus

flag[i-1] = true; // inst 1
turn = j; // inst 2
while (flag[j-1] && turn = =

; // inst 3

J)

// code section critique

flag[i-1] = false; // inst
4
// code non critique
}while{true}

Une condition de I'exclusion mutuelle
n’est pas satisfaite:

1) acces simultané a la SC par les deux

processus

Initialement:

turn=0

| flag

= [F, F]

P1 —=inst 2 puis P1 - inst 3:

turn= |

flag=[F, F]

et Pl entre en SC

P2 = inst 2 puis P2 = inst 3:

turn=1 | flag=[F,F] et P2 entre en SC
Pl->instl | turn=1 | flag [T, F]
P2 2> instl: | turn=1 | flag [T, T]

Solution: Mécanisme matériel

3. Mécanismes de synchronisation

2) Mécanisme matériel

e Synchronisation par mécanisme matériel: I'acces a la section critique
est controlé par un circuit spécial atomique qui ne peut pas étre
interrompu pendant son exécution.

* Le principe commun des mécanismes matériels est d’utiliser un verrou
(lock) pour bloquer/débloquer I'acces a la section critique.

do{
AGGUITE L2 s [WETOU G * || existe plusieurs mécanismes
// code section critique matériels, parmi eux:
: : o La solution test_and_set()
Release Lock (déverrouillage) — —
o Mutex (API)
// code non critique
}while{true}

* Note: les algorithmes des solutions matérielles présentés ci-apres
décrivent le comportement du circuit atomique utilisé. Ce circuit ne
peut jamais étre utilisé par deux ou plusieurs processus a la fois.

3. Mécanismes de synchronisation

2) Mécanisme matériel
2.1) Solution test_and_set()

boolean lock = false; //initialisation

boolean test and set (boolean
*oldLock) // circuit atomique
{

boolean newLock=*oldLock;

*oldLock=true;

return newlLock;

}

do{// le processus

while (test and set(&lock)) ;//inst 1

* lock est une variable globale et son

passage se fait par référence (&lock).

Cas de deux processus:

P1 —inst 2| 10ck=r |P1 dans SNC

P2 =>inst 2| 10ck=r |P2 dans SNC

// code section critique

lock = false; // inst 2

// code non critique
}while{true}

Pl 2inst1l | 1ock=T | while(P1 dans SC.

Les conditions de I'exclusion mutuelle
sont satisfaites:

1) Pas d’acces simultané a la SC

2) Pas d’interblocage

3) Les processus ont accédé a leur SC.

P2 —inst 1 | lock=T | while(P2 attend. 4) Pas de supposition sur la vitesse des

processus

P2 2inst 1| 10ck=T | while (F) | P2 dans SC

3. Mécanismes de synchronisation

2) Mécanisme matériel

2.1) Solution test_and_set()

boolean lock = false; //initialisation

do{// le processus

boolean test_and_set(boolean *oldLock)

// circuit atomique

{

}

*oldLock=true;
return newlLock;

boolean newlLock=*oldLock;

Cas de trois processus:

P1 —2inst 1
P2 2inst 1
P1 —inst 2
P2 2inst 1
P3->inst 1
P1-inst 1
P2 —inst 2
P1->inst 1

lock=T | while (F)
lock=T | while(
lock= P1 dans SNC.
lock=T | while(
lock=T | while(
lock= | while (
lock=F | P2 dans SNC.
lock= | while (F)

while (test and set(&lock)) ;//inst 1

// code section critique

| lock = false; // inst 2

// code non critique
}while{true}

P1 dans SC. Une condition de I'exclusion mutuelle
P attend. n‘est pz’;\s satlsfaltle: K
3) P3 n’a pas accédé a sa SC, alors que P1
y a accédé deux fois.
P2 dans SC
P3 attend.
P1 attend. Solution:
Réécrire le code en ajoutant d’autres
variables pour que les processus
P1 dans SC.

puissent accéder autant de fois les uns
et les autres

3. Mécanismes de synchronisation

2) Mécanisme matériel
2.2) Mutex

e Pour simplifier ['utilisation des solutions matérielles aux
programmeurs, les concepteurs des SE ont proposé des outils logiciels
(AP1) permettant I'appel de ses solutions.

* Le verrou mutex en fait partie. Il permet d’appeler un mécanisme de
synchronisation matériel tel que test_and_set():

o La fonction acquire() permet d’établir le verrou sur la section critique
o La fonction release() libere le verrou.

do{

acquire () ?Cquire 0
while (test and set (&lock));

// busy wait (attente active)

}

release ()
// code non critique {

// code section critique

release ()

lock=true;

}while (true) ; }

3. Mécanismes de synchronisation

2) Mécanisme matériel
2.3) Probleme du busy wait

e Lorsqu’un processus entre dans la section critique, les autres
processus sont occupés a attendre () sa libération:

o Dans le cas de la solution test and set (), la boucle
while (test and set (&lock)); occupe le processeur tous
le temps d’attente de la libération de |a section critique

* [nconvénient: gaspille des cycles processeur.

v'Avantage:
o Pas de changement de contexte.

o Lorsque la section critique est de courte durée, cela peut étre plus
avantageux que de céder le processeur a un autre processus et
gaspiller du temps en changement de contexte.

* Le probleme du busy wait est résolu par

3. Mécanismes de synchronisation

3) Les sémaphores

3.1) Définition

Dans le domaine ferroviaire, un sémaphore est un signal permettant de
déterminer si l'acces a la voie est libre (sémaphore ouvert) ou non
(sémaphore fermé).

Pour résoudre le probleme du busy wait, on utilise un sémaphore représenté
par une variable entiere qui garantit I'exclusion mutuelle, accompagnée
d’une liste de processus en attente pour accéder a la SC.

En dehors de l'initialisation, le sémaphore n'est accessible que par deux
opérations wait () et signal () (aussi notées dans la littérature P ()
et V(), down () et up()).

46

/ .
3. Mecanisme =atinn____
Semaphore S | S.value=1 | S.list=@Q// initialisation

3) Les Sémaphores RQ UCT=@ // liste attente prét de 1’ UCT

3.2) Solution au busy wait *P1 2inst 1| s.value=0| P1dans SC.

while (true) {//Processus

wait (8S): //inst 1 *PB =inst 1| s.value= | S.list= P3 est block.
//section critique
signal (&S); //inst 2 *PR =inst 1| S.value= | S.1ist=P3, P2 est block.
//section non critique
} *Pll inst 2| S.value=-1 | S.list= 1¢" proc (P3) de
typedef struct{ . . .)
int value: S.list wakeup et ro UCT= . P1 accede a SNC et termine.
struct process *list;
} semaphore; *P3 accede a 'UCT| RQ_UCT= et entre en SC.
walt (semaphore *3) { .)
5. v ue——; *P3 2inst 2| S.value=0]s.1list=0 | P2 wakeup| RQ_UCT=
;gd (Erzzll(gel;g; { et P3 accede a SNC et termine.
block () ;}}
* P2 acceéde a I'UCT| RQ_UCT= et entre en SC.

signal (semaphore *S) {
S.value++;
i S.value= - > i
if (S.value <= 0) *P2 Sinst 2| >-va.u P2 accede a SNC et termine.
Proc=remove Proc(S.list);
wakeup (Proc) ; }}

47

3. Mécanismes de synchronisation

3) Les sémaphores
3.2) Solution au busy wait

* Le busy wait est annulé:

olLorsque un processus est placé dans S.list, cela implique un changement de
contexte.

o L'appel de la fonction block() empéche le processus de demander |'acces a I'UCT.
* Les conditions de I’exclusion mutuelle sont satisfaites:
1.Pas d’acces simultané a la SC
2.Pas d’interblocage

3.Les processus ont accédé a leur SC: S.list permet d’ordonner I'acces a la file
d’attente prét de 'UCT (pas comme dans test_and_set() cas 3 processus).

4.Pas de supposition sur la vitesse des processus

* Le sémaphore est une solution logicielle pour le probleme du busy wait, il y a donc
un risque de changement d’ordre des instructions.

3. Mécanismes de synchronisation

4) Solution combinée: Sémaphore & mutex

while (true) {//Processus
acquire () ;
wait (&S); //inst 1
release() ;
//section critique
signal (&S); //inst 2
//section non critique

}

Semaphore S | S.value=1 | S.list=@//initialisation

* Pour résoudre le probleme du memory reordering, on

* On inclut donc un mutex autour de I'appel du wait(&S)

typedef struct{

int value;

struct process *list;
} semaphore;

wait (semaphore *S) {
S.value-—;
if (S.value < 0){
add Proc(S.list);
block();}}

«/Rappelons que nous avons introduit le sémaphore pour
résoudre le probleme du busy wait provoqué par
mutex et les solutions matérielles en général.

* En réalité, établir mutex autour de wait(&S) permet de
réduire le degré du busy wait (la fonction n’est
composée que de 3 instructions), comparé a celui
engendré par mutex autour de la section critique
(généralement beaucoup plus longue).

signal (semaphore *S) {
S.value++;
if (S.value <= 0){

Proc=remove Proc(S.list);

wakeup (Proc) ; }}

3. Mécanismes de synchronisation

5) Probleme d’interblocage

* Interblocage: deux ou plusieurs processus attendent indéfiniment

I'arrivée d’un événement qui ne peut étre engendré que par un des
processus en attente.

Ay P,
* Exemple: Soit PO et P1 deux processus wait(s); wait(Q) ;

. - wait (Q) ; wait(S) ;
partageant deux sections critiques, 'une
controlée par le sémaphore S et l'autre =~ signal(@)

signal (Q) ; signal (5) ;

par le sémaphore Q:

o PO exécute wait(S), puis P1 éxécute wait(Q).

o PO exécute wait(Q) mais il est block(), puis P1 exécute wait(S) et il est block().

o Aucun processus ne peut avancer dans son exécution, car il a besoin que 'autre
processus le débloque par signal(). c’est I'interblocage

* || est donc nécessaire de bien programmer les mécanismes de
synchronisation pour éviter ce probleme.

