
1

Pr. Omar Megzari
Département d’Informatique

FSR

megzari@fsr.ac.ma

2

ENIAC pesait 30 tonnes

3

Schéma de la machine de Von Newman

UAL = unité arithmétique et logique

4

Ces dispositifs permettent la mise en oeuvre des
fonctions de base d'un ordinateur :

-le stockage de données,
-le traitement des données,
-le mouvement des données et
-le contrôle des périphériques.

Machine de Von Newman

5

Schéma matériel général

Unité

Centrale
(microprocesseur

+ mémoires)
Périphériques

de sortie

Périphériques

d’entrée
- clavier

- souris

- ...

- écran

- imprimante

- ...

Disquettes,

Zip, ...

Disques

durs
Périphériques

de stockage

Périphériques

de communication

réseau

6

L’unité centrale

 Le (micro)processeur ou CPU : Central Processing
Unit

 Unité arithmétique et logique (UAL) et Unité de
commande

 Il exécute les programmes :
 un programme est une suite d’instructions

7

Mémoire vive : RAM
 RAM (Random Access Memory)

 Permet de stocker des informations lorsqu’elle est

alimentée électriquement

 Lecture / Écriture

 Mémoire volatile : contient des programmes et des

données en cours d’utilisation

 Capacité variable selon les ordinateurs

8

Mémoire vive : RAM

Byte=Octet =8 bite└┘

9

Mémoire morte : ROM
 ROM (Read Only Memory)

 En lecture seule

 Mémoire permanente

 Contient les programmes de base au démarrage de

l’ordinateur BIOS (Basic Input Output System)

 Permet l’initialisation de l’ordinateur, initialisation

de périphériques, lancement du système

d’exploitation…

10

Les périphériques
 Les périphériques de stockage

 Les périphériques d’entrée

 Les périphériques de sortie

 Les périphériques de communication

11

Mémoire centrale

U.C.

S
to

c
k
a
g

e

Périphériques d’entrée

Périphériques de sortie

Contrôleurs

Niveau Matériel

Ch. 1 12

Système d’exploitation

Mémoire centrale

U.C.

S
to

c
k
a
g

e

Périphériques d’entrée

Périphériques de sortie

Contrôleurs

Fichiers

(Pilotes)

Niveau Matériel

+ SE

13

Système d’exploitation

Programmes

Données

Mémoire centrale

U.C.

S
to

c
k

a
g

e

Périphériques d’entrée

Périphériques de sortie

Contrôleurs

Fichiers

(Pilotes)

Niveau Matériel

+ SE + Programmes

14

Périphériques d’entrée

 Permettent d’envoyer des informations à l’Unité Centrale

15

Périphériques de sortie

 Permettent d ’envoyer les résultats à l’extérieur de
l’Unité Centrale

 Écrans

 taille (en pouce), résolution...

 Imprimantes

 matricielles, jet d ’encre, laser

 Enceintes

16

Les périphériques de stockage

 CD-ROM

 DVD

 Disque dur > 320 Go

 Différence entre RAM et supports de stockage

 USB(Universal Serial Bus)

17

Les périphériques de stockage

 Capacité en Go actuellement

 Plusieurs têtes de lectures

Ch. 1 18

Les BUS
Permettent le transfert des

données entre les
composants de
l’ordinateur

Différentes technologies 
plus ou moins grande
capacité de transfert

19

Système d’exploitation (SE)

 Fournit l’interface usager/machine:

 Masque les détails du matériel aux applications

 Le SE doit donc traiter ces détails

 Contrôle l’exécution des applications

 Le fait en reprenant périodiquement le contrôle de l’UCT

 Dit à l’UCT quand exécuter tel programme

 Il doit optimiser l’utilisation des ressources pour maximiser
la performance du système

20

Quelques mots sur les systèmes d’exploitation

 Définition
 Un système d'exploitation (SE; en anglais: OS =

operating system) est un ensemble de programmes
de gestion du système qui permet de gérer les
éléments fondamentaux de l'ordinateur:

Le matériel - les logiciels - la mémoire - les données –
les réseaux.

 Logiciel très important…

tout programme s’exécute sur un SE

21

Fonctions d’un système
d’exploitation

 Gestion de la mémoire

 Gestion des systèmes de fichiers

 Gestion des processus

 Mécanismes de synchronisation

 Gestion des périphériques

 Gestion du réseau

 Gestion de la sécurité.

22

Ressources et leur gestion
 Ressources:

 physiques: mémoire, unités E/S, UCT...

 Logiques = virtuelles: fichiers et bases de données
partagés, canaux de communication logiques, virtuels...

 les ressources logiques sont bâties par le logiciel sur les
ressources physiques

 Allocation de ressources: gestion de ressources, leur
affectation aux usagers qui les demandent, suivant
certains critères

23

Traitement par lots multiprogrammé

 Les opérations E/S sont extrêmement lentes
(comparé aux autres instructions)

 Même avec peu d’E/S, un programme passe la
majorité de son temps à attendre

 Donc: pauvre utilisation de l’UCT lorsqu’un seul
programme usager se trouve en mémoire

Ch. 1 24

Traitement par lots multiprogrammé

 Si la mémoire peut contenir plusieurs programmes,
l’UCT peut exécuter un autre programme lorsqu’un
autre attend une E/S

 C’est de la multiprogrammation

Ch. 1 25

Plusieurs programmes en mémoire
pour la multiprogrammation

26

ordinateur principal

(mainframe ou serveur)

Terminaux

‘intelligents’ (PCs)’

27

Systèmes à temps partagé (TSS)

 Le traitement par lots multiprogrammé ne supporte pas
l’interaction avec les usagers
 excellente utilisation des ressources mais frustration des

usagers!

 TSS permet à la multiprogrammation de desservir
plusieurs usagers simultanément

 Le temps d’UCT est partagé par plusieurs usagers

 Les usagers accèdent simultanément et interactivement
au système à l’aide de terminaux

28

Systèmes à temps partagé (TSS)
 Le temps de réponse humain est lent: supposons qu’un

usager nécessite, en moyenne, 2 sec du processeur par
minute d’utilisation

 Environ 30 usagers peuvent donc utiliser le système sans
délais notable du temps de réaction de l’ordinateur

 Les fonctionnalités du SE dont on a besoin sont les mêmes
que pour les systèmes multiprogrammés, plus
 la communication avec usagers

 le concept de mémoire virtuelle pour faciliter la gestion de
mémoire

 traitement central des données des usagers (partagées ou
non)

29

Retour aux concepts de TSS

 Plusieurs PC (clients) peuvent être desservis par un
ordinateur plus puissant (serveur) pour des services
qui sont trop complexes pour eux (clients/serveurs,
bases de données, etc)

 Les grands serveurs utilisent beaucoup des concepts
développés pour les systèmes TSS

Types de systèmes d’exploitation
 Ordinateur central (Mainframe)

 Grande capacité d’E/S à cause du nombre d’usagers

 Plus populaires avec l’augmentation de la vitesse des
réseaux

 Axé sur traitement de plusieurs jobs à la fois

 Lot (batch) – jobs de routine comme la production d’un
rapport

 Transaction – faire des réservations

 Partage de temps – Usagers qui accèdent une base de données

Types de systèmes d’exploitation
 Serveur

 Permet le partage des ressources matériel et logiciel

 Serveurs d’impressions, de fichiers, Web

 Multiprocesseur

 Normalement une variation d’un SE pour serveur

 Permets à plusieurs processeurs à travailler ensemble

 Plusieurs processeurs sur la même carte

Types de systèmes d’exploitation
 SE pour ordinateur personnel

 Donne une interface à un simple usager

 Windows, Linux, Macintosh

 Système d’exploitation temps-réel
 Unique parce que les programmes ont des contraintes temporelles

(deadlines): temps réel dur (avion)

 SE embarqués
 Similaire au SE temps-réel

 Assistant numérique personnel (PDAs), Contrôleur de tableau de
bord automobile, Gameboy

 Ont des préoccupations que les autres SE n’ont pas: encombrement,
puissance, mémoire.

Types de systèmes d’exploitation
 Les SE Smart Card

 Similaire à embarqués

 Opère sur les cartes de la grosseur d’une carte de crédit
avec un processeur

 Contraintes sévères de mémoire et de puissance de
calcul

 Systèmes d’exploitation répartis:

 Le SE exécute à travers un ensemble de machines qui
sont reliées par un réseau

Processus

Processus
 Le processus est LE concept central dans les

systèmes d’exploitation

 Un processus est une abstraction d’un programme
en exécution
 Auquel on a donné des ressources

 Un certain nombre de processus (2 ou plus)
s’exécutant en même temps forment un système
multitâche, multithread, ou multiprogrammé.

 Est-ce que ces programmes s’exécute vraiment en
parallèle?

Processus
 Le model des processus est tout simplement l’idée que

tout logiciel qui est exécutable est organisé en un
nombre de processus séquentiels incluant le SE.

 Pseudo-parallélisme est parfois utilisé pour référer à
des processus multiples s’exécutant sur un seul
processeur

 Ceci diffère du parallélisme sur un système à
multiprocesseurs

Processus

Conceptuel

Écoulement du prog

Temps d’exécution des processus

Création de Processus
 Les systèmes communs ont besoin de créer des

nouveaux processus durant l’opération.

 Initialisation du système

 Création de processus appelé par un processus
en exécution

 Demande d’un utilisateur pour créer un
processus

 Initialisation d’un job batch

Création de processus
 Les processus peuvent créer d’autres processus,

formant une hiérarchie (instruction fork ou
semblables)

Arbre de

processus

en UNIX

États des processus

 Quand le processus est en exécution ‘running’ il
utilise le CPU pour faire son travail

 Quand le processus est prêt ‘ready’, il voudrait
s’exécuter mais le CPU est alloué à un autre.

États des processus

 En état attente ‘blocked’, le processus ne peut s’exécuter
parce qu’il attend après une condition (entrée/sortie,
expiration du chrono, attente d’un autre processus
etc...)

 Des fois, des commandes sont appelées pour entrer
dans l’état bloqué (block, pause,wait).

 Parfois le système cause la transition automatiquement
à l’état prêt ‘ready’ (ordonnancement)

Implémentation des Processus
 En multiprogrammation, un processus s’exécute

sur l’UCT de façon intermittente

 Chaque fois qu’un processus reprend l’UCT
(transition prêt  exécution) il doit la reprendre
dans la même situation où il l’a laissée (même
contenu de registres UCT, etc.)

 Donc au moment où un processus sort de l’état
exécution il est nécessaire de sauvegarder ses
informations essentielles, qu’il faudra récupérer
quand il retourne à cet état

Implémentation des Processus
 Comment le SE implémente le model des

processus?

 La table des processus, un tableau ou liste chaînée de
structures avec une entrée par processus.

 Information typique:
 État des Processus

 Compteur ordinal

 Pointeur de pile

 Allocation de la mémoire

 État des fichiers ouverts

 Information de gestion/ordonnancement...

 Et encore plus! PCB = Process Control Block

Commutation de processus
  Aussi appelé

 commutation de contexte

 Changement de contexte

 context switching

 Quand l’UCT passe de l’exécution d’un processus 0 à
l’exécution d’un proc 1, il faut

 mettre à jour le PCB de 0

 sauvegarder le PCB de 0

 reprendre le PCB de 1, qui avait été sauvegardé avant

 remettre les registres d’UCT, compteur
d ’instructions etc. dans la même situation qui est
décrite dans le PCB de 1

Commutation de processeur (context switching)

Il se peut que beaucoup de temps passe avant le retour

au processus 0, et que beaucoup d’autres proc soient

exécutés entre temps

Commutation de processus

T

système

P1

P2

Figure 1 Le multi-tâche

Comme l’ordinateur n’a, la plupart du temps, qu’un

processeur, il résout ce problème grâce à un pseudo-

parallélisme

Les cycles d’un processus

 Cycles (bursts) d’UCT et E/S: l’exécution d’un processus consiste de
séquences d’exécution sur UCT et d’attentes E/S

Notion d’ordonnancement
 L’ordonnancement sur les systèmes d’exploitation initiaux

était facile: exécute le prochain programme sur le ruban
magnétique

 Les ordinateurs personnels ont changé cet environnement
parce ce que nous donnons la priorité au processus qui
interagit avec l’utilisateur

 Avec plusieurs processus qui sont en compétition pour les
précieux cycles du CPU, une décision doit être faite pour
savoir quel processus va s’exécuter

 L’ordonnanceur est la partie du système d’exploitation qui
fait ce choix, basé sur un algorithme d’ordonnancement

 L’ordonnanceur peut faire une très grande différence dans
la performance qui est perçu par l’utilisateur

Ordonnanceurs (schedulers)
 Trois types d`ordonnanceurs :

 À court terme: sélectionne quel processus doit exécuter la transition
prêt  exécution. Il est exécuté très souvent (millisecondes)

 doit être très efficace

 À long terme: sélectionne quels processus peuvent exécuter la

transition nouveau  prêt. Il doit être exécuté beaucoup plus rarement
 Il contrôle le niveau de multiprogrammation

 À moyen terme: le manque de ressources peut parfois forcer le SE à

suspendre des processus, il sélectionne donc quels processus sortir
temporairement de la mémoire pour palier au manque de celle-ci
 ils ne seront plus en concurrence avec les autres pour les ressources
 ils seront repris plus tard quand les ressources deviendront

disponibles
 Ces processus sont enlevés de mémoire centrale et mis en mémoire secondaire,

pour être repris plus tard

 ‘swap out’, ‘swap in’ , va-et-vient

Ordonnanceur court terme

Ordonnancement des Processus

La multiprogrammation est conçue pour
obtenir une utilisation maximale des
ressources, surtout l’UCT

L’ordonnanceur UCT est la partie du SE qui
décide quel processus dans la file ready/prêt
obtient l’UCT quand elle devient libre

L’ordonnanceur doit viser à une utilisation
optimale de l’UCT

 Il y a normalement plusieurs processus dans la file
d’attente des processus prêt

 Quand l’UCT devient disponible, lequel choisir?

 L’idée générale est d’effectuer le choix dans l’intérêt
de l’efficacité d’utilisation de la machine

 Mais cette dernière peut être jugée selon différents
critères…

Buts des algorithmes d’ordonnancement

 Utilisation UCT: pourcentage d’utilisation

 Débit = Throughput: nombre de processus qui
complètent dans l ’unité de temps

 Temps de rotation = turnaround: le temps pris par le
proc de son arrivée à sa terminaison.

 Temps d’attente: attente dans la file prêt (somme de
tout le temps passé en file prêt)

 Temps de réponse (pour les systèmes interactifs): le
temps entre une demande et la réponse

Buts des algorithmes d’ordonnancement

Critères d’ordonnancement

 Utilisation UCT:

 à maximiser

 Débit (Throughput):

 à maximiser

 Temps de rotation (turnaround):

 à minimiser

 Temps d’attente:

 à minimiser

 Temps de réponse

 à minimiser

Files d’attente

 Les ressources d’ordinateur sont souvent limitées par
rapport aux processus qui en demandent

 Chaque ressource a sa propre file de processus en
attente

 En changeant d’état, les processus se déplacent d ’une
file à l’autre

 File prêt: les processus en état prêt=ready

 Files associés à chaque unité E/S

 etc.

Files d’attente

File des

prêts

Nous ferons l’hypothèse que le premier processus dans une file est celui

qui utilise la ressource: ici, processus 7 s’exécute, processus 3 utilise

disque 0, etc.

Ce sont les PCBs qui sont dans les files d’attente

Les PCBs

ready

disk unit 0

. . . PCB4

. . .

PCB2 PCB3 PCB5 PCB6 PCB7 PCB14

term. unit 0

 Les PCBs ne sont pas déplacés en mémoire pour être
mis dans les différentes files:
ce sont les pointeurs qui changent.

Catégories d’algorithmes d’ordonnancement

Différent algorithmes sont utilisés sur différents systèmes.

Trois catégories majeurs pour algorithmes :
 Systèmes de lots

 Séries de programmes qui attendent pour exécution

 Systèmes interactifs
 Utilisateurs aux terminaux qui attendent pour leurs réponses

 Systèmes en temps réel
 Exécutent généralement dans un environnement où les

processus coopèrent pour finir une tâche

Ordonnancement des systèmes par lots

 Premier-arrivé premier-servis(PAPS)

 First-Come First-Served(FCFS)

 L’algorithme le plus simple

 Non-préemptif (sans réquisition)

 Une seule file de processus prêts

 Chacun a le CPU et s’exécute jusqu’à ce qu’il bloque

 Avantages:

 Facile à comprendre et implémenter

 impartial

Premier-arrivé premier-servis(PAPS) –
First-Come First-Served(FCFS)

•Non-préemptif

•Applicable pour les jobs de grandeur connue

Exemple: Processus Temps de cycle

 P1 24

 P2 3

 P3 3

Si les processus arrivent au temps 0 dans l’ordre: P1 , P2 , P3 Le diagramme

Gantt est:

Temps d’attente pour P1= 0; P2= 24; P3= 27

Temps attente moyen: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 30 0

Tenir compte du temps d’arrivée!

 Dans le cas où les processus arrivent à des moments

différents, il faut soustraire le temps d’arrivée

 P0 arrive à temps 0

 P1 arrive à temps 2

 P3 arrive à temps 5

Temps d’attente pour P1= 0; P2= 24-2=22; P3= 27-5=22

Temps attente moyen: (0 + 22 + 22)/3 = 14,6 < 17

Si les mêmes processus arrivent à l’instant 0 mais dans l’ordre

 P2 , P3 , P1 .

Le diagramme de Gantt est:

 Temps d’attente pour P1 = 6 P2 = 0 P3 = 3

 Temps moyen d’attente: (6 + 0 + 3)/3 = 3

 Beaucoup mieux!

 Donc pour cette technique, le temps d’attente moyen peut
varier grandement

P1 P3 P2

6 3 30 0

Premier-arrivé premier-servis(PAPS) –
First-Come First-Served(FCFS)

Ordonnancement des systèmes de lots
Avec l’exemple précédent et le suivant on voie, qu’en exécutant

les plus court en premier on obtient un meilleur temps
d’attente ou de réponse moyen d’où:

 L’algorithme du plus petit job en premier - Shortest Job First

 Non-préemptif

 Applicable pour les jobs de grandeur connue, ie: différent types de
réclamations dans une compagnie d’assurance

 Les processus mit dans cet ordre produisent le plus petit temps de
réponse (généralement)

Temps de réponse moyen

= [8+(8+4)+(8+4+4)+(8+4+4+4)]/4

= 14

Temps de réponse moyen

= [4+(4+4)+(4+4+4)+(4+4+4+8)]/4

= 11

Shortest Job First (SJF)

 Notez que le système est optimale quand tout les travaux
sont disponibles en même temps

 Si un long job est en exécution quand un nombre de petits
travaux arrivent, le délais restant du job long est ajouté à tous
les nouveaux travaux

 Est-ce qu’il y a une solution à ce problème?

 Le temps du premier processus a plus d’impacte sur le
temps de réponse de tous les autres d’où:

SJF avec préemption (réquisition)= SRTF

Shortest Remaining Time First (SRTF)

 Le plus petit temps restant est le Prochain -Shortest
Remaining Time First (ou Next)

 Similaire à SJF, mais préemptif

 Si un job qui arrive a besoin de moins de temps pour
compléter que le job en court, on commence à exécuter
le nouveau job

 Donne un bon service au nouveaux jobs qui sont courts

 Processus Arrivée Cycle

 P1 0 7

 P2 2 4

 P3 4 1

 P4 5 4

 SJF (sans préemption)

 Temps d’attente moyen = (0 + 6 + 3 + 7)/4 = 4

Example de SJF

P1 P3 P2

7 3 16 0

P4

8 12

P2 arr. P3 arr. P4 arr

Exemple de SRTF=SJF avec préemption

 Processus Arrivée Cycle

 P1 0 7

 P2 2 4

 P3 4 1

 P4 5 4

 SJF (préemptive, avec réquisition)

 Temps moyen d`attente = (9 + 1 + 0 +2)/4 = 3
 P1 attend de 2 à 11, P2 de 4 à 5, P4 de 5 à 7

P1 P3 P2

4 2 11 0

P4

5 7

P2 P1

16

P2 arr. P3 arr. P4 arr

Le plus court d’abord SJF: critique

 Difficulté d’estimer la longueur à l’avance

 Les processus longs souffriront de famine lorsqu’il y a
un apport constant de processus courts

 La préemption est nécessaire pour environnements à
temps partagé

 Un processus long peut monopoliser l’UCT s’il
est le 1er à entrer dans le système et il ne fait pas
d’E/S

 Il y a assignation implicite de priorités:
préférences aux travaux plus courts

Ordonnancement des systèmes interactifs

 Quelqu’un quelque part est assit à un clavier et
entre de l’information

 On se rappelle de nos objectifs:

 Temps de réponse rapide

 Proportionnalité (Les choses que les usagers
pensent qui devraient prendre peu de temps; le
devraient)

 Tout les algorithmes pour les systèmes interactifs
peuvent être utilisés dans les systèmes de lots

Tourniquet = Round-Robin (RR)

 Chaque processus se voit alloué une tranche de temps appelé

quantum de temps (p.ex. 10-100 millisecondes.) pour s’exécuter
(tranche de temps)

 S’il s’exécute pour un quantum entier sans autres interruptions, il
est interrompu par la minuterie et l ’UCT est alloué à un autre
processus

 Le processus interrompu redevient prêt (à la fin de la file)

 Méthode préemptive

 Seul décision d’implémentation :

combien de temps est assigné pour un quantum?

P[0] P[1]

P[7] P[2]

P[6] P[3]

P[4] P[5]

La file prêt est un

cercle (dont RR)

Exemple: Tourniquet
 Quantum = 20

 Processus Cycle

 P1 53

 P2 17

 P3 68

 P4 24

 Normalement,

 temps de rotation (turnaround) plus élevé que SJF

 mais temps attente moyen meilleur – contrôlez!

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Ordonnancement des systèmes interactifs

 Ordonnancement de type tourniquet
 Combien de temps dans un quantum?

 Le changement de processus prend du temps: sauvegarde/charge le
PCB

 Pour un changement de contexte qui prend 1 ms combien de temps
devrait être un quantum? Considérez l’overhead:

Longueur du

quantum

1ms 4ms 10ms 20ms 50ms

Overhead 50% 20% 9.1% 4.8% 2%

Un petit quantum augmente les
commutations de contexte (l’overhead)

Ordonnancement des systèmes interactifs
 Ordonnancement par priorité

 Basé sur les utilisateurs: Si nous partagions un mainframe alors
l’ordre des priorités pourrait être: chercheurs, étudiants,…

 Basé sur les processus: même sur un PC avec utilisateur unique il va
y avoir des processus multiples. Qu’est-ce qui est plus prioritaire: le
mouvement de la souris ou envoyer les courriels?

 Comment est-ce que l’on assigne les priorités?
 Statiquement: chaque processus qui est créé par un processus à

priorité ‘X’ se voit assigné la priorité ‘X’

 Dynamiquement: Réagit pour donner au processus interactifs une
priorité accrue
 Met la priorité à 1/f où f est la fraction du dernier quantum qu’un

processus a utilisé ... les commandes courtes font qu’un processus a une
plus haute priorité

Ordonnancement des systèmes interactifs

 Ordonnancement par priorité: combien de temps on
va laisser les processus s’exécuter? Quelques choix:
 À jamais jusqu’à ce que un processus de plus haute

priorité arrive

 Pour un quantum, potentiellement plus de quantums
donnés aux processus à plus hautes priorités

 Diminue la priorité d’un processus chaque tic d’horloge
jusqu’à ce que sa priorité soit plus basse qu’un autre
processus (ie: on avance vers les processus de plus basse
priorité)

Ordonnancement des systèmes interactifs
 Ordonnancement par priorité: hybride avec Round-

Robin
 Avoir Round-Robin dans chaque groupe de priorité et

exécute seulement les processus dans le groupe le plus
haut
 Problème: Les processus avec les priorités les plus basses

peuvent souffrire de famine...

Ordonnancement avec files multiples

Files multiples et à retour
 Un processus peut passer d’une file à l’autre, par

exemple quand il a passé trop de temps dans une file

 À déterminer:

 nombre de files

 algorithmes d’ordonnancement pour chaque file

 algorithmes pour décider quand un processus doit passer
d’une file à l’autre

 algorithme pour déterminer, pour un processus qui devient
prêt, sur quelle file il doit être mis

Files multiples et à retour

PRIO = 0

PRIO = 1

PRIO = 2

Exemple de files multiples à retour
 Trois files:

 Q0: tourniquet, quantum 8 msecs

 Q1: tourniquet, quantum 16 msecs

 Q2: FCFS

 Ordonnancement:

 Un nouveau processus entre dans Q0, il reçoit 8 msecs d ’UCT

 S ’il ne finit pas dans les 8 msecs, il est mis dans Q1, il reçoit 16
msecs additionnels

 S ’il ne finit pas encore, il est interrompu et mis dans Q2

 Si plus tard il commence à demander des quantums plus
petits, il pourrait retourner à Q0 ou Q1

En pratique...
 Les méthodes que nous avons vu sont toutes utilisées

en pratique (sauf le plus court en premier pur qui est
impossible)

 Les SE sophistiqués fournissent au gérant du système
une librairie de méthodes, qu’il peut choisir et
combiner au besoin après avoir observé le
comportement du système

 Pour chaque méthode, plusieurs paramètres sont
disponibles: par exemple la durée du quantum.

Gestion de la mémoire de base

2

La mémoire: concept de hiérarchie de mémoire

Mécanismes cache

Mécanisme

mémoire virtuelle

RAM

(flash)

Gestion de mémoire: objectifs
 Optimisation de l’utilisation de la mémoire

principale = RAM

 Les plus grand nombre possible de processus actifs
doit y être gardé, de façon à optimiser le
fonctionnement du système en
multiprogrammation

 garder le système le plus occupé possible,
surtout l’UCT

 s’adapter aux besoins de mémoire de l’usager

 allocation dynamique au besoin

3

Gestion de la mémoire

La partie du système
d’exploitation qui fait cela s’appel
le gestionnaire de mémoire.

4

Qu’est-ce que les SE font quand ils exécutent des programmes

qui demandent de la mémoire qui excède leurs capacités?

 - Une partie du

programme ou la

totalité est permuté

au disque (swapped)

- On a besoin

de quelque chose

pour gérer le

mouvement des

programmes entre

le(s) disque(s) et la

mémoire

Gestion de la mémoire
 Trouver de la mémoire libre pour un module de

chargement:

 contiguë ou

 non contiguë

 En premier on considère deux systèmes simples:

 Monoprogrammation

 Partitions fixe

 En grande part, utile pour les systèmes par lots (batch)

 Quand les processus sont chargés en mémoire ils
s’exécutent jusqu’à la terminaison

5

Multiprogrammation
 Comment organiser la mémoire de manière à faire cohabiter
efficacement plusieurs processus tout en assurant la protection des
processus ?

 Multiprogrammation sans va-et-vient. Ex : moniteur MS DOS
 Un processus chargé en mémoire y séjournera jusqu‘à ce qu'il se

termine

 Multiprogrammation avec va-et-vient : réutilisation de l’espace
mémoire
 Un processus peut être déplacé temporairement sur le disque

(mémoire de réserve : swap area ou backing store) pour permettre le
chargement et donc l'exécution d'autres processus. Le processus
déplacé sur le disque sera ultérieurement rechargé en mémoire pour
lui permettre de poursuivre son exécution.

6

Gestion de la mémoire contiguë

 Monoprogrammation sans permutation ou
pagination

 L’arrangement le plus simple possible

 Seulement un programme va s’exécuter à la fois

 Le SE copie le programme du disque en mémoire
et l’exécute. Quand c’est fini, le SE est prêt à
accepter une nouvelle commande de l’utilisateur

 Le nouveau programme écrase le dernier
programme en mémoire

 Trois configurations

7

Gestion de la mémoire contiguë

a) Rarement utilisé de nos jours

b) Utilisé dans les baladeurs MP3, les ordinateurs de poche (Palm)

c) Était le modèle initiale pour les PCs, ex: DOS

8

9

Affectation contiguë de mémoire

Nous avons ici 4 partitions pour des programmes -

chacun est lu dans une seule zone de mémoire

SE

programme 1

disponible

programme 2

programme 3

Adresses mémoires
 En général on compile tous les programmes

avec des adresses logiques qui sont relatives
à l’adresse de base: zéro. Les adresses
physiques sont calculées durant l’exécution
du programme
 La conversion des adresses est fait par une pièce

de matériel que l’on appel Unité de gestion de la
mémoire (Memory Management Unit) (MMU)

 Le MMU prend les adresses logiques du
processus et les transforment en adresses
physique dans le RAM

10

Arrière-plan

 Les adresses qui sont
données au MMU sont
connues comme des
adresses virtuelles ou
adresses logiques

 Le MMU produit une
adresse physique

 L’adresse physique est
dans le RAM

11

12

Définition des adresses

 Une adresse logique est une adresse d’un
emplacement dans le programme

 par rapport au programme lui-même seulement

 indépendante de la position du programme en
mémoire physique

 Une adresse physiques est une adresse réelle de
la RAM

Les adresses physiques sont calculées durant
l’exécution du programme

Traduction adresses logiques physiques
 Les registres matériels permettent de délimiter le domaine

des processus;

 Le matériel compare les adresses émises par le processus aux
registres de base et de barrière ;

 Registre de base contient l’adresse de base du processus en
mémoire qui permet de décrire la zone d’adressage d’un
programme, la plus petite adresse légale

 Registre barrière contient une adresse limite qui peut être
comparée à toute adresse d’instruction ou de données
manipulées par un programme. (taille de la plage accessible)

13

14

Traduction adresses logiques physiques

15

Traduction adresses logiques physiques

Eviter la translation

d’adresse au cours du

chargement d’un

processus

16

Liaison (Binding) d’adresses logiques et
physiques
 La liaison des adresses logiques aux adresses physiques

peut être effectuée à des moments différents:

 Compilation: quand l’adresse physique est connue au
moment de la compilation (rare)

 p.ex. parties du SE

 Chargement: quand l’adresse physique où le progr est chargé
est connue, les adresses logiques peuvent être traduites (rare
aujourd’hui)

 Exécution: normalement, les adresses physiques ne sont
connues qu’au moment de l ’exécution

 p.ex. allocation dynamique

17

Chargement et liaison dynamique

 Un processus s’exécutant peut avoir besoin de
différents modules du programme en différents
moments

 Le chargement statique peut donc être inefficace

 Il est mieux de charger les modules sur demande =
dynamique

 dll, dynamically linked libraries

Gestion de la mémoire contiguë

 Multiprogrammation avec partitions fixes

 Pour exploiter les bénéfices de la multiprogrammation
nous avons besoin d’avoir plus d’un programme en
mémoire à la fois

 Solution simple (pour les systèmes par lots): diviser la
mémoire en n partitions et de mettre le prochain
programme qui arrive dans la plus petite partition qui
peut la contenir

18

Partitions fixes
 Première organisation de

l’allocation contiguë

 Mémoire principale
subdivisée en régions
distinctes: partitions

 Les partitions sont soit de
même taille ou de tailles
inégales

 N’importe quel programme
peut être affecté à une
partition qui soit
suffisamment grande

19

Algorithme de placement pour partitions
fixes

 Partitions de tailles inégales:
utilisation de plusieurs queues

 assigner chaque processus à la
partition de la plus petite taille
pouvant le contenir

 Une file par taille de partition

 tente de minimiser la
fragmentation interne

 Problème: certaines files seront
vides s’il n’y a pas de processus de
cette taille :fragmentation externe

20

Algorithme de placement pour partitions fixes

 Partitions de tailles
inégales: utilisation d’une
seule file

 On choisit la plus petite
partition libre pouvant
contenir le prochain
processus

 le niveau de
multiprogrammation
augmente au profit de la
fragmentation interne

21

Partitions fixes
• Simple, mais...

• Inefficacité de l’utilisation de la mémoire: tout

programme, si petit soit-il, doit occuper une

partition entière. Il y a fragmentation interne.

 Les partitions à tailles inégales atténue ces

problèmes mais ils y demeurent...

22

Partitions dynamiques ou variables

• Partitions en nombre et tailles variables

• Chaque processus se voit alloué exactement

la taille de mémoire requise

• Probablement des trous inutilisables se

formeront dans la mémoire: c’est la

fragmentation externe

23

Permutation

 Les systèmes antérieurs étaient plus simples parce que
quand les programmes étaient chargés en mémoire, ils
étaient laissés là jusqu’à leur terminaison

 Quand nous n’avons pas assez de mémoire principale
pour garder touts les processus actifs en mémoire,
nous devons les permuter entre la mémoire principale
et le disque...

 La permutation d’un processus consiste à amener un
processus du disque à la mémoire dans son entièreté.
Le processus est exécuté pour un temps et remis sur le
disque

Partitions dynamiques: Permutation

 (d) Il y a un trou de 64K après avoir chargé 3 processus: pas assez

d’espace pour autre processus

 Si tous les processus se bloquent (p.ex. attente d’un événement), P2 peut être

permuté et P4=128K peut être chargé.
Swapped out

25

Partitions dynamiques: Permutation

 (e-f) P2 est suspendu, P4 est chargé. Un trou de 224-128=96K est créé (fragmentation

externe)

 (g-h) P1 se termine ou il est suspendu, P2 est chargé à sa place: produisant un autre

trou de 320-224=96K...

 Nous avons 3 trous petits et probablement inutiles. 96+96+64=256K de

fragmentation externe

 COMPRESSION pour en faire un seul trou de 256K 26

Permutation ou va-et-vient
 La différence entre ce système et les

partitions fixes est que le nombre, la
location et la grandeur des partitions varient
dynamiquement
 Avantages:

 Une solution bien plus flexible

 Une meilleur utilisation de la mémoire

 Désavantages:
 Plus compliqué à implémenter

 Il peut y avoir des “trous” laissés dans la mémoire, qui
peuvent être compactés pour corriger le problème

27

Permutation – Combien de mémoire

 Combien de mémoire devrait-on assigner à
un processus quand il est permuté dans la
mémoire?

 Si une grandeur de données fixe peut être
déterminé alors cette grandeur exacte est allouée

 Cependant, si un processus a une pile et/ou un
tas (heap), alors nous devons lui allouer de
l’espace pour grandir pour empêcher d’avoir à
déplacer le processus continuellement dans la
mémoire

28

29

La Pile d’un processus

A

B

Appel A Appel B

PILE

Données P

Données B

Données A

P

Permutation – Combien de mémoire

Segment de données

Segment de données et pile

30

Permutation - Gestion
 Avant d’implanter une technique de gestion de la mémoire

centrale par va-et-vient, il est nécessaire de connaître son
état : les zones libres et occupées; de disposer d’une
stratégie d’allocation et enfin de procédures de libération.
Les techniques que nous allons décrire servent de base au
va-et-vient; on les met aussi en œuvre dans le cas de la
multiprogrammation simple où plusieurs processus sont
chargés en mémoire et conservés jusqu’à la fin de leur
exécution.

 Deux méthodes:
 Tableaux de bits et

 listes chaînées
31

Permutation - Gestion
 Gestion de la mémoire avec tableaux de bits:

 Divise la mémoire en unités d’allocation tel que 4 octets ou

plusieurs kilooctets

 Utilise un tableau de bits avec des 1 pour désigner les

unités alloués et des 0 pour désigner les unités libres

 De quelle grandeur sont nos unités d’allocation?

32

Permutation - Gestion

 Gestion de la mémoire avec tableaux de bits:

 La plus petite est l’unité d’allocation, le plus grand sera

le tableau de bits correspondant

 Cependant, même avec des unités de 4 octets (32 bits)

on perd seulement 1/33 de la mémoire

 Les unités qui sont larges nous font perdre la fin de la

dernière unité, ex: pour un unité de 64Ko, si nous avons

un programme qui a 65Ko, alors nous perdons 63

kilooctets!

33

Permutation - Gestion
Gestion de la mémoire avec tableaux de bits:

 Avantages:

 Facile à implémenter

 Le tableau de bits est de grandeur fixe, peu importe

combien de programme sont en mémoire

 Désavantage

 Peut prendre du temps pour chercher dans le tableau pour

trouver une série de 0 consécutifs pour placer un

programme

34

Permutation - Gestion
 Gestion de la mémoire avec des listes chaînées:

 Utilise une liste chaînée pour repérer les blocs libres
et les blocs occupés

 Avantage: moins de recherche à faire

35

36

Algorithmes de Placement
 “Best-fit”: choisir l’emplacement

dont la taille est la plus proche

 “First-fit”: choisir le 1er

emplacement à partir du début

 “Worst-fit”: choisir l’emplacement

dont la taille est la plus loin

 Prochain trou (Next fit) –
amélioration First-fit. Programme
inséré à partir de là dernière insertion

 Donne une petite augmentation de
performance sur First-fit
(simulation Bays)

 Placement rapide (Quick fit) – On
garde les trou tel que 4KB, 8KB, etc
dans une liste séparée pour une
localisation facile des trous

 Bon à l’allocation, mais lent pour la
dé-allocation parce que plusieurs
listes doivent être réconciliés

Worst

Fit

37

Algorithmes de placement: commentaires

 Quel est le meilleur?

 critère principal: diminuer la probabilité de situations où un

processus ne peut pas être servi, même s’il y a assez de

mémoire...

 La simulation montre qu’il ne vaut pas la peine d’utiliser les

algorithmes les plus complexes... donc first fit

 “Best-fit”: cherche le plus petit bloc possible: l’espace restant

est le plus petit possible

 la mémoire se remplit de trous trop petits pour contenir un

programme

 “Worst-fit”: les allocations se feront souvent à la fin de la

mémoire

Permutation - Gestion

 Note finale sur les listes: on pourrait garder des listes
séparées pour les trous et les processus

 Accélère la recherche de trous!

 Permet d’ordonner les trous par grandeur pour un allocation
encore plus rapide!!

 Plus compliqué pour la dé-allocation parce que la mémoire
qui devient un trou doit être placée dans le bon espace sur
l’autre liste (en ordre)...

38

39

Fragmentation: mémoire non utilisée

 Un problème majeur dans l’affectation contiguë:

 Il y a assez d’espace pour exécuter un
programme, mais il est fragmenté de façon
non contiguë

 externe: l’espace inutilisé est entre partitions

 interne: l’espace inutilisé est dans les partitions

40

Compaction
 Une solution pour la fragmentation externe

 Les programmes sont déplacés en mémoire de façon à réduire à

1 seul grand trou plusieurs petits trous disponibles

 Effectuée quand un programme qui demande d’être exécuté ne

trouve pas une partition assez grande, mais sa taille est plus

petite que la fragmentation externe existante

 Désavantages:

 temps de transfert programmes

 besoin de rétablir tous les liens entre adresses de différents

programmes

41

Allocation non contiguë
 Afin de réduire le besoin de compression, le prochain pas est

d`utiliser l’allocation non contiguë

 diviser un programme en morceaux et permettre l`allocation
séparée de chaque morceau

 les morceaux sont beaucoup plus petits que le programme
entier et donc permettent une utilisation plus efficace de la
mémoire

 les petits trous peuvent être utilisés plus facilement

 Il y a deux techniques de base pour faire ceci

 la segmentation utilise des parties de programme qui ont une valeur
logique (des modules)

 la pagination utilise des parties de programme arbitraires
(morcellement du programmes en pages de longueur fixe).

 Combinaison des deux techniques

42

Affectation non contiguë de mémoire

0

2

1

3

0

3

1

2

espace usager mémoire physique

Segmentation

La segmentation est une division de
mémoire en segments, chacun
commençant à une adresse de base dans
la mémoire physique. Chaque processus
peut avoir plusieurs segments

 On doit maintenant spécifier un numéro de
segment et un offset pour accéder à la
mémoire

 Référé en tant que mémoire à deux
dimensions

43

44

Détails
 L’adresse logique consiste d ’une paire:

 <No de segm, décalage>

 où décalage est l ’adresse dans le segment

 le tableau des segments contient: descripteurs de segments

 adresse de base

 longueur du segment

 Infos de protection

 Dans le PBC du processus il y aura un pointeur à l’adresse en
mémoire du tableau des segments

 Il y aura aussi là dedans le nombre de segments dans le processus

 Au moment de la commutation de contexte, ces infos seront
chargées dans les registres appropriés d’UCT

45

Mécanisme pour la segmentation
 Un tableau contient l’adresse de début de tous les segments dans un

processus

 Chaque adresse dans un segment est ajoutée à l ’adresse de début du

segment par la MMU

tableau de segments

0

3

1

2

mémoire physique

Adr de 2

Adr de 1

Adr de 0

Adr de 3

segment courant

46

emacs

VI

72773

Segmentation
 Comment est-ce que les adresses sont traduites?

 Adresses logiques

Segment Offset

limite base

Table de

segments

offset < limite?

TRAP, erreur d’adressage

Non

+
Mémoire

Physique Oui

47

48

Segmentation et protection

 Chaque entrée dans la table des segments peut

contenir des infos de protection:

 longueur du segment

 privilèges de l`usager sur le segment: lecture, écriture,

exécution

 Si au moment du calcul de l’adresse on trouve que l’usager n’a

pas droit d’accèsinterruption

 ces infos peuvent donc varier d’un usager à autre, par rapport

au même segment!

limite base read, write, execute?

 Espace d’adresses logiques

Segmentation
Sous-routine

Racine

carrée

pile

Table de

symboles

Programme

principal

segment 0

segment 1

segment 2

segment 3

segment 4

limite base

0 1000 1400

1 400 6300

2 400 4300

3 1100 3200

4 1000 4700

0

1400

2400

3200

4300

4700

5700

6300

6700

segment 0

segment 3

segment 2

segment 4

segment 1

Mémoire physique
49

Segmentation
Avantages:

 Il peut être possible d’agrandir ou de les
rapetisser

 On peut donner à chaque segment sa propre
information de protection ... Ceci est
beaucoup plus facile que d’essayer de
protéger chaque page en mémoire

 Lier les programmes (linking) est une tâche
triviale

 Le code peut être partagé entre les processus
plus facilement. On charge le segment de
code seulement une fois. Les copies du même
programme accède le même segment

50

51

Partage de segments: le segment 0 est partagé

P.ex: DLL utilisé par plus usagers

52

Évaluation de la segmentation simple

 Avantages: l’unité d’allocation de mémoire (segment) est

 plus petite que le programme entier

 une entité logique connue par le programmeur

 les segments peuvent changer de place en mémoire

 Désavantage: le problème des partitions dynamiques:

 La fragmentation externe n’est pas éliminée:

 trous en mémoire, compression?

Segmentation

Désavantages:

 Tout comme les systèmes de permutation, la

fragmentation peut gaspiller de la mémoire.

 Les segments peuvent être trop larges pour

entrer dans la mémoire physique

Nous connaissons déjà une solution pour

adresser les programmes qui sont plus

grands que la mémoire physique?

53

Mémoire virtuelle
 La permutation de processus (entiers) nous a permit

d’avoir plus d’un programme en mémoire en même
temps, mais nous n’avons pas adressé le problème
d’un programme trop large pour la mémoire

 La solution qui a fait surface s’appel la mémoire
virtuelle. L’idée principale est de garder une partie
du programme en mémoire et une partie sur le disque

 Maintenant un programme de 16MO peut tourner
sur un système qui a seulement 4MO de RAM!

 Et en plus on peut avoir une quantité de processus
qui tournent en même temps et que la mémoire
RAM ne peut contenir

54

55

Mémoire virtuelle:

Tableau de pages

résultat d’un mécanisme qui combine la mémoire
principale et les mémoires secondaires

Pagination
 Les processus croient qu’ils peuvent accéder la

mémoire entière qui leur est donnée, basé sur le
nombre de lignes d’adresses sur le matériel

 Pour être capable de donner des “sections” de mémoire
qui peuvent être déplacées entre le disque et la
mémoire physique nous divisons l’espace d’adresses
virtuelle en morceaux que l’on appel pages

 Le morceau de mémoire physique qui correspond à
une page est un cadre de page (Page Frame) ou tout
simplement cadre

56

Pagination

 Cet ordinateur en
particulier a seulement
32KO de RAM

 Le MMU mappe les
adresses virtuelles
utilisées par le CPU en
adresses physiques qui
sont mises sur le bus

57

Pagination
Manques (un X) veulent dire que la page

n’est pas en mémoire et le MMU Trap au SE
pour que la page soit chargée

 Ceci est un défaut de page

 Quand cela ce produit le SE charge la nouvelle
page dans un cadre de page (possiblement en
expulsant une page qui est en utilisation) et met
à jour le MMU avec la nouvelle information

 La place où cette information est stockée s’appelle
Table de pages

58

Tables de pages

La table de pages stock un nombre

d’entrées, une pour chaque page en

mémoire virtuelle, indiquant si la page

est dans la mémoire physique (notez qu’

une table de pages est requise pour

chaque processus!)

59

60

Pages en RAM ou sur disque
Page A en RAM et

sur disque

Page E seulement

sur disque

61

Exemple de chargement de processus

 Supposons que le processus B se termine ou est suspendu

62

Exemple de chargement de processus

 Nous pouvons maintenant

transférer en mémoire un

processus D, qui demande 5

cadres

 bien qu`il n’y ait pas 5

cadres contigus disponibles

 La fragmentation externe est

limitée au cas que le nombre

de pages disponibles n’est

pas suffisant pour exécuter

un programme en attente

 Seule la dernière page d’un

processus peut souffrir de

fragmentation interne

63

Table de pages

64

Table de pages

 Le SE doit maintenir une table de pages pour chaque

processus

 Chaque entrée d’une table de pages contient le numéro de

cadre où la page correspondante est physiquement

localisée

 Une table de pages est indexée par le numéro de la page

afin d’obtenir le numéro du cadre

 Une liste de cadres disponibles est également maintenue
(free frame list)

65

Adresse logique (pagination)

 L’adresse logique est facilement

traduite en adresse physique car

la taille des pages est une

puissance de 2

 L’adresse logique (n,d) est

traduite en adresse physique

(k,d) en utilisant n comme index

sur la table des pages et en le

remplaçant par l’adresse k

trouvée

 d ne change pas

66

Adresse logique

 Donc les pages sont invisibles au programmeur,

compilateur ou assembleur (seule les adresses

relatives sont employées)

 La traduction d’adresses au moment d’exécution est

facilement réalisable par le matériel:

 l’adresse logique (n,d) est traduite en une adresse

physique (k,d) en indexant la table de pages et en

annexant le même décalage d au numéro du cadre k

 Un programme peut être exécuté sur différents matériels

employant dimensions de pages différentes

67

Traduction d’adresses: pagination

nous ajoutons le décalage à l’adresse de la page.

Mécanisme: matériel

Tables de Pages
 Quelles sont les entrées dans la table de pages?

 Bit de présence (pour que l’on puisse savoir si on va sur le
disque ou non…aussi appelé bit de validité)

 Bit de modification (Dirty bit) (pour que l’on puisse
savoir si la page a été modifiée et doit être réécrite sur le
disque durant la pagination.)

 Bit d’utilisation? (nous aide à décider quelle page nous
allons permuter… nous allons en voir plus sur cela avec les
algorithmes de remplacement de pages)

 Bit est mise à jour par une lecture ou une écriture

 Bits de protection – Peut spécifier qu’est-ce que
l’utilisateur peut faire avec la page ie: lire / écrire / exécuter

68

Tables de Pages
 Où ailleurs pourrait-on stocker l’information de la

table pour le processus courant?

 Dans la mémoire principale

 Plus lent que les registres

 Sur le disque

 Vraiment trop lent pour nos besoins, mais on peut tricher un
peut

 Une combinaison

 Une mixture de registres, mémoire, et disque peut être utilisée
dans un système (pagination à niveaux multiples).

69

70

Exécution d’une défaut de page:
va-et-vient plus en détail

71

Séquence d’événements pour
défaut de page
 Trappe au SE: page demandée pas en RAM

 Sauvegarder le PCB

 Un autre processus peut maintenant avoir l’UCT

 SE trouve la page sur disque

 lit la page du disque dans un cadre de mémoire libre (supposons qu`il y
en un!)

 exécuter les opérations disque nécessaires pour lire la page

 L’unité disque a complété le transfert et interrompt l’UCT

 sauvegarder le PCB du processus s’exécutant

 SE met à jour le contenu du tableau des pages du processus qui a causé
le défaut de page

 Ce processus devient prêt=ready

 la page désirée étant en mémoire, il pourra maintenant continuer

72

Quand la RAM est pleine et que nous avons besoin d`une
page qui ne se trouve pas en RAM

73

La page victime...

Algorithmes de replacement de pages

 On se rappel: la pagination suit un ensemble de
règles:
 Elle permet à un programme d’être chargé en mémoire

une page à la fois

 Il y a une table qui identifie quelle page est chargée dans
quel cadre

 Quand une page est demandée et qu’elle n’est pas en
mémoire physique, un défaut de page se produit
 Le SE doit maintenant charger la page dans la mémoire. Si il n’y

a pas de cadre libre, une page doit être évincée de la mémoire.
Quelle page est choisit pour être évincée?

74

Algorithmes de replacement de pages

 Il existe un ensemble d’algorithmes qui peuvent
être utilisés pour choisir quelle page va être la
meilleure candidate pour l’éviction

 Considérations:
 Les pages qui ont été modifiées doivent être écrites

sur le disque avant l’éviction

 L’utilisation de l’information d’état tel que les bits
d’utilisations (used) et de modifications (dirty) vont
être utiles pour prendre cette décision

 Ces algorithmes sont applicables à d’autres domaines
de recherche: caches, serveurs Web, etc...

75

76

Critères d’évaluation des algorithmes

 Les algorithmes de choix de pages à remplacer doivent
être conçus de façon à minimiser le taux de défaut de
pages à long terme

 Mais il ne peuvent pas impliquer des temps de système
excessifs, p.ex. mise à jour de tableaux en mémoire
pour chaque accès de mémoire

77

Exemple pour évaluation des algorithmes

 Nous allons expliquer et évaluer les algorithmes en utilisant
la chaîne de référence pages suivante :

 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

 Attention: les séquences d’utilisation pages ne sont pas
aléatoires...

 L’évaluation sera faite sur la base de cet exemple,
évidemment pas suffisant pour en tirer des conclusions
générales

Algorithmes de replacement de pages

L’algorithme de remplacement de pages

optimal

 Un algorithme théorique qui représente la

décision absolue, sans aucun doute, le meilleur

choix pour évincer une page

 On évince la page qui serait la dernière à être

utilisée, basé sur les pages en mémoire à l’instant

de la décision

78

Algorithmes de replacement de pages

 L’algorithme de remplacement de pages optimal

 Est-ce que nous pouvons implémenter cet algorithme?

 Absolument pas. Si nous pouvions déterminer quand

chaque page est requise dans le futur basé sur l’état

courant, l’algorithme serait facile à implémenter.

 Cependant, si un programme est utilisé pour un

ensemble particulier d’E/S, il est possible de tracer

quelles pages sont requises et dans quel ordre

 Cet enregistrement peut être utilisé pour des tests de

performance pour comparer nos algorithmes réalisables à

ceux l’algorithme optimal

79

Algorithmes de replacement de pages

 Premier arrivé, premier sortie PAPS (FIFO)
 Facile à implémenter. Garde une liste de toutes les

page en mémoire en ordre quelles sont arrivées

 Sur un défaut de page, la page la plus vielle est
enlevée et une nouvelle page est ajoutée à la fin de
la liste

 Avantage: Très facile à implémenter

 Désavantage: Aucune façon de déterminer si la page
qui est enlevée est en très utilisée ou pas. L’âge peut
être une indication mais n’est pas nécessairement la
meilleure indication de l’utilisation d’une page

80

Algorithmes de replacement de pages
 Algorithme de deuxième chance

 Cet algorithme est une modification du PAPS pour le

rendre possiblement plus raisonnable

 Avant d’évincer la page la plus vielle, on vérifie la bit

d’utilisation

 Si la page est en utilisation, même si elle est vielle, elle se voit

donner une deuxième chance et son entrée est déplacée vers la

fin de la liste, ce qui a pour effet de la rendre comme une

nouvelle page. Son bit d’utilisation est remis à zéro à ce moment

 La recherche continue de cette façon jusqu’à ce qu’une

veille page qui n’a pas été utilisé est trouvé

81

Algorithmes de replacement de pages

 Algorithme de remplacement de pages de l’horloge

 L’algorithme de la deuxième chance peut être lent parce
qu’il déplace constamment les pages dans la liste chaînée
pour garder les pages dans le bon ordre.

 Une meilleur approche est de garder les entrées de pages
dans une liste circulaire (on peut penser à une sorte
d’horloge). Une main pointe à la page la plus vielle.

 Cette main n’est rien de plus qu’un pointeur à une entrée
dans la liste de pages en mémoire

82

Algorithmes de replacement de pages
 L’algorithme de l’horloge

 Quand un défaut de page est détecté, la page qui est
pointée par la ‘main’ est inspectée. Si elle n’a pas été
utilisée, elle est évincée et la main avance à la prochaine
position

 Si la page est en utilisation, le bit d’utilisation est remis à
zéro et la main est avancé à la prochaine position pour
faire une autre vérification

 Ceci continue jusqu’à ce qu’une page soit trouvée pour
être évincée

83

Algorithmes de replacement de pages

 The Clock Page Replacement Algorithm

84

Algorithmes de replacement de pages

 L’algorithme de remplacement de la page la moins
récemment utilisée (MRU) (LRU)

 Une bonne approximation de l’algorithme optimal est
qu’une page qui a grandement utilisée les dernières
instructions va probablement être grandement utilisée
dans les quelques prochaines instructions (et le
contraire est vrai)

 Donc, quand un défaut de page ce produit, on évince la
page qui n’a pas été utilisé pour le plus long temps

 Comment est-ce que cela diffère de PAPS?

85

86

Comparaison OPT-LRU
 Exemple: Un processus de 5 pages s’ìl n’y a que 3 pages

physiques disponibles.

 Dans cet exemple, OPT occasionne 3+3 défauts, LRU

3+4.

87

Comparaison de FIFO avec LRU

 Contrairement à FIFO, LRU reconnaît que les pages 2

and 5 sont utilisées fréquemment

 La performance de FIFO est moins bonne:

dans ce cas, LRU = 3+4, FIFO = 3+6

88

Algorithme de l’horloge

La page 727 est chargée dans le cadre 4.

La prochaine victime est 5, puis 8.

89

Comparaison: Horloge, FIFO et LRU

 Astérisque indique que le bit utilisé est 1

 L’horloge protège du remplacement les pages

fréquemment utilisées en mettant à 1 le bit “utilisé” à

chaque référence

 LRU = 3+4, FIFO = 3+6, Horloge = 3+5

L’histoire jusqu’à maintenant...

 La solution de la mémoire virtuelle jusqu’à maintenant

est la pagination

 La pagination est un modèle de gestion de la mémoire

qui est “plat” ce qui veut dire que les programmeurs

voient les adresses qui commencent à 0 jusqu’à une

adresse maximum

 Pour certaines applications, il pourrait être utile de

permettre différents espaces de mémoire à l’intérieur

d’un seul processus...

 Par exemple, dans un programme il pourrait y avoir des

espaces de mémoire distincts pour le texte du programme, la

pile et le tas

90

Segmentation avec pagination!
 Pour obtenir le meilleur des deux mondes, les

segments peuvent être paginés

 Élimine le problème de la fragmentation

 Permet à des segments larges à être partiellement en
mémoire

 Requis:

 Chaque processus a besoin d’une table de segment

 Cette table même peut être segmentée et paginée!

 Chaque entrée dans la table de segment pointe à la
table de pages pour ce segment

 Tout comme avant, ceci peut être une table de pages
multiniveaux

91

1

1. Systèmes d’entrée/sortie

2. Systèmes de fichiers

3. Structure de mémoire de masse (disques)

2

1. Systèmes d’entrée/sortie
Concepts importants :

 Matériel E/S

 Communication entre UCT et contrôleurs périphériques

 DMA

 Pilotes et contrôleurs de périphériques

 Sous-système du noyau pour E/S

 Tamponnage, cache, spoule

Catégories de périphériques d’E/S

 Les périphériques d’E/S viennent en deux types généraux:

 Périphériques par blocs

 Périphériques par caractères

 Les périphériques par blocs stockent les données en blocs

de taille fixe, chacun possédant sa propre adresse

 Les disques sont la représentation la plus courante des

périphériques de blocs

 Parce que chaque bloc est adressable, chaque bloc peut être

indépendamment lu/écrit des autres blocs

3

Catégories de périphériques d’E/S
 Les périphériques par caractères acceptent et fournissent

des flots de caractères sans aucune structure
 Non adressable

 Aucune opération de recherche (seek)

 Exemples: souris, imprimante, interfaces de réseau,
modems,…

 Certains périphériques chevauchent les frontières:
 les bandes magnétiques pour sauvegarder entreposent des

blocs de données de disques, mais l’accès est séquentiel

 Certains périphériques ne font pas dans les modèles:
 Écran: n’ont pas de blocs ou de flots, mais ont de la mémoire

mappée

4

Contrôleurs de périphériques
 On se rappel: Les périphériques d’E/S ont

typiquement une composante mécanique et une
composante électronique
 La partie électronique est le contrôleur

Bus

Monitor

5

Contrôleurs de périphériques
 Sur un PC, le contrôleur de périphérique est

habituellement sur un circuit imprimé

 Il peut être intégré sur la carte mère

 Le job du contrôleur est de convertir un flot de série de
bits en octets ou en blocs d’octets et de faire les
conversions et corrections

 En fin de compte tous les périphériques traitent des bits.
C’est le contrôleur qui groupe ou dégroupe ces bits

6

Le logiciel d’E/S ont des couches

 Pilotes de périphériques
 Chaque périphérique d’E/S attaché à l’ordinateur

requiert du code spécifique pour faire l’interface
entre le matériel et le SE. Ce code s’appel pilote de
périphérique
 Ceci est parce que au niveau du matériel, les

périphériques sont radicalement différents les uns des
autres

 Parfois un pilote va prendre soins d’une classe de
périphériques qui sont proche ex.: un nombre de souris

 Les pilotes de périphériques sont normalement
produit par le manufacturier du périphérique pour
les SEs populaires

7

Le logiciel d’E/S ont des couches

Que font les pilotes de périphériques?

 Ils acceptent les commandes abstraites de
lecture/écriture de la couche supérieure

 Fonctions assorties:

 Initialise le périphérique

 Gère la puissance – Arrête un disque de tourner,
ferme un écran, ferme une caméra, etc.

8

Le logiciel d’E/S ont des couches

 Qu’est-ce qu’un pilote fait sur une lecture/écriture?

 Vérifie les paramètres d’entrée & retourne les erreurs

 Converti les commandes abstraites (lit du secteur) en
commandes physiques (tête, traque, secteur, et
cylindre)

 Met les demandes dans une queue si le périphérique est
occupé

 Amène le périphérique en état de fonctionnement si
requis

 Contrôle le périphérique en envoyant des commandes
par les registres de contrôle

9

Le logiciel d’E/S ont des couches

 Qu’est-ce que un pilote fait sur une lecture/écriture?

 Quand une demande est envoyée, une des deux
solutions possibles peut arriver:

 Le pilote doit attendre pour la demande se termine,
donc le pilote bloque. Il va se réveiller plus tard,

 Le résultat est instantané (ex.: écriture dans l’espace
de mémoire de l’écran) donc le travail continue
jusqu’à ce que l’E/S soit terminé

10

Structure de mémoire de masse
(disques magnétiques)

 Plats rigides couverts de matériaux d ’enregistrement
magnétique

 surface du disque divisée en pistes (tracks) qui sont
divisées en secteurs

 le contrôleur disque détermine l`interaction logique
entre l ’unité et l ’ordinateur

11

Nomenclature

12

cylindre: l’ensemble de pistes qui se trouvent

dans la même position du bras de

lecture/écriture

13

Vue schématique d’un disque dur

rotation Vue de dessus

Plateau Tête de

lecture/écriture

Surface

s

Cylindre

Secteu

r

Vue en coupe

Piste

Blo

c

14

 Cylindres – Secteurs - Clusters

Cylindre: un tour de disque

Secteur: Un subdivision d’un cylindre (512 Kilooctect)

Cluster: Un groupement de secteurs

Low Level Format = Division d’un disque en secteurs

Adresse Les Données CRC

Cylindre tête

Secteur

Structure, programme ou

données

Correction

d’erreur

Low level

format

Application ou système A l’écriture

15

Support physique de codage de
l’information

 Disque dur

(A) Piste

(B) Secteur

géométrique

(C) secteur d'une piste

 (D) cluster

http://upload.wikimedia.org/wikipedia/commons/d/d7/Disk-structure.svg

Revue des disques magnétiques

 Les disques sont organisés en cylindres, pistes et
secteurs

16

Revue des disques magnétiques

 Toutes les pistes pour une position
donnée du bras forment un
cylindre.

 Donc le nombre de cylindre est
égale au nombre de piste par côté
de plateau

 La location sur un disque est
spécifié par (cylindre, tête, secteur)
mais en erreur par: (cylindre, piste,
secteur)

17

Sous-système E/S du noyau
 Fonctionnalités:

 Mise en tampon

 Mise en cache

 Mise en attente et réservation de périphérique

 Gestion des erreurs

18

19

Structure typique de bus PC

PCI: Peripheral Component Interconnect

20

Communication entre UCT et contrôleurs
périphériques

 Deux techniques de base:

 UCT et contrôleurs communiquent directement par des registres

 UCT et contrôleurs communiquent par des zones de mémoire centrale

 Combinaisons de ces deux techniques

RAM

UCT Contr.

Périfer.

21

Accès direct en mémoire (DMA)
 Dans les systèmes sans DMA, l’UCT est impliquée dans

le transfert de chaque octet

 DMA est utile pour exclure l’implication de l’UCT
surtout pour des E/S volumineuses

 Demande un contrôleur spécial a accès direct à la
mémoire centrale

Accès directe à la mémoire (DMA)
DMA est utilisé pour libérer le CPU d’avoir

à déplacer des octets du périphérique vers
la mémoire

 Cela demande une autre pièce de matériel
appelé un contrôleur DMA

 Le SE/CPU charge les registres du contrôleur
DMA avec l’information nécessaire pour
l’instruire de quel périphérique prendre/passer
les données, où les mettre en mémoire et
combien d’octets doivent être écrit/lu

22

23

24

DMA: six étapes

25

 1- CPU demande au pilote du périphérique (disque)
(software) de transférer les données du disque au buffer
à l’adresse x

 2 - Le pilote du disque demande au contrôleur du disque
(hardware) de transférer c octets du disque vers le buffer
à l’adresse x

 3 - Le contrôleur du disque initie le transfert DMA

 4 - Le contrôleur du disque envoie chaque octet au
contrôleur du DMA

 5 - Le contrôleur DMA transfert les octets au buffer x en
augmentant l’adresse x et décrémentant le compteur c

 6 - Lorsque c=0 DMA envoie une interruption pour
signaler la fin du transfert

DMA: six étapes

Tampons de disques

Les disques ont besoin de tampons pour

deux raisons principales:

 Tamponner les données qui arrive plus vite que

l’on peut les transférer au système

d’exploitation et vice-versa

 Lecture avancé de données qui n’ont pas encore

étés demandées, mais qu’il le peuvent sous peu

(données qui suivent la demande précédente)

26

27

27

Mise en tampon

 Principes.

 Simultanéité des opérations
d’entrées et de sorties avec les
opérations de calcul.

 Le contrôleur de périphérique
inclue plusieurs registres de
données.

 Pendant que l’UCT accède à un
registre, le contôleur peut accéder
à un autre registre.

Process Processus

Contrôleur

Données

Périphérique

Process Processus

Contrôleur

B

Périphérique

A

Process Processus

Contrôleur

B

Périphérique

A

Sans tampon Lecture du tampon A i -1 Lecture du tampon B

Contrôleur

disque

Tampon

Adresse mémoire

Nombre d’octets

Registres

DMA

BUS

Mémoire

Disque

U.C.

taille = nb octets

28

Mise en tampon
 Double tamponnage:

 P.ex. en sortie: un processus écrit le prochain
enregistrement sur un tampon en mémoire tant que
l’enregistrement précédent est en train d’être écrit

 Permet superposition traitement E/S

29

Mise en cache

 Quelques éléments couramment utilisés d’une
mémoire secondaire sont gardés en mémoire
centrale

 Donc quand un processus exécute une E/S, celle-ci
pourrait ne pas être une E/S réelle:

 Elle pourrait être un transfert en mémoire, une simple
mise à jour d’un pointeur, etc.

Logiciels d’E/S indépendants des périphériques

 Traitement des erreurs
 Il y a deux classes d’erreurs dans cette couche:

 Erreurs de programmation – le processus de l’utilisateur
demande l’impossible tel que d’écrire à une souris, lire
d’une imprimante, ou accéder à un fichier qui n’a pas été
ouvert

 Erreurs d’E/S – une tentative a été faite pour écrire au
disque mais l’opération a échoué au niveau physique. Si le
pilote ne peut pas traiter le problème (par exemple en
essayant d’écrire encore), il est passé à la couche supérieure

 Cette couche est responsable pour collationner les
erreurs qui peuvent se produire et de les rapporter
à l’utilisateur d’une façon consistante quand cela est
requis

30

31

Gestion des erreurs

 Exemples d’erreurs à être traités par le SE:

 Erreurs de lecture/écriture, protection, périph non-
disponible

 Les erreurs retournent un code ‘raison’

 Traitement différent dans les différents cas…

32

Gestion de requêtes E/S
 P. ex. lecture d’un fichier de disque

 Déterminer où se trouve le fichier

 Traduire le nom du fichier en nom de périphérique et
location dans périphérique

 Lire physiquement le fichier dans le tampon

 Rendre les données disponibles au processus

 Retourner au processus

2- Systèmes de fichiers
 Systèmes fichiers

 Méthodes d’accès

 Méthodes d’allocation

 Gestion de l’espace libre

33

Que c’est qu’un fichier
 Collection nommée d’informations apparentées,

enregistrée sur un stockage secondaire

 Nature permanente

 Les données qui se trouvent sur un stockage
secondaires doivent être dans un fichier

 Différents types:

 Données (binaire, numérique, caractères….)

 Programmes

34

 Constituent les propriétés du fichiers et sont stockés dans un fichier spécial
appelé répertoire (directory). Exemples d’attributs:

 Nom:

 pour permet aux personnes d’accéder au fichier

 Identificateur:

 Un nombre permettant au SE d’identifier le fichier

 Type:

 Ex: binaire, ou texte; lorsque le SE supporte cela

 Position:

 Indique le disque et l’adresse du fichier sur disque

 Taille:

 En bytes ou en blocs

 Protection:

 Détermine qui peut écrire, lire, exécuter…

 Date:

 pour la dernière modification, ou dernière utilisation

 Autres…

35

Attributs d’un fichier

Un “File Control Block” typique

36

Opérations sur les fichiers: de base

 Création

 Écriture

 Pointeur d’écriture qui donne la position d’écriture

 Lecture

 Pointeur de lecture

 Positionnement dans un fichier (temps de recherche)

 Suppression d’un fichier

 Libération d’espace

 Troncature: remise de la taille à zéro tout en conservant les
attributs

37

Autres opérations
 Ajout d’infos

 Rénommage

 Copie
 peut être faite par rénommage: deux noms pour un seul fichier

 Ouverture d’un fichier: le fichier devient associé à un
processus qui en garde les attributs, position, etc.

 Fermeture

 Ouverture et fermeture peuvent être explicites (ops open,
close)

 ou implicites

38

Méthodes d’allocation

39

 La mémoire secondaire est subdivisée en blocs et chaque
opération d’E /S s’effectue en unités de blocs

 Les blocs ruban sont de longueur variable, mais les blocs
disque sont de longueur fixe

 Sur disque, un bloc est constitué d’un multiple de secteurs
contiguës (ex: 1, 2, ou 4)

 la taille d’un secteur est habituellement 512 bytes

 Il faut donc insérer les enregistrements dans les blocs et les
extraire par la suite

 Simple lorsque chaque octet est un enregistrement par lui-
même

 Plus complexe lorsque les enregistrements possèdent une
structure (ex: « main-frame IBM »)

 Les fichiers sont alloués en unité de blocs. Le dernier bloc est
donc rarement rempli de données

 Fragmentation interne

40

Structure physique des fichiers

Trois méthodes d’allocation de fichiers

Allocation contiguë

Allocation enchaînée

Allocation indexée

41

Allocation contiguë sur disque
répertoire

42

Allocation contiguë
 Chaque fichier occupe un ensemble de blocs contigu

sur disque

 Simple: nous n’avons besoin que d’adresses de début et
longueur

 Supporte tant l’accès séquentiel, que l’accès direct

 Moins pratique pour les autres méthodes

43

Allocation contiguë

 Application des problèmes et méthodes vus dans le
chapitre de l’alloc de mémoire contiguë

 Les fichiers ne peuvent pas grandir

 Impossible d’ajouter au milieu

 Exécution périodique d’une compression (compaction)
pour récupérer l’espace libre

44

Allocation enchaînée
 Le répertoire contient l ’adresse du premier et dernier

bloc, possibl. le nombre de blocs

 Utilisé par MS-DOS et OS2.

 Chaque bloc contient un pointeur à l’adresse du
prochain bloc:

 pointeur bloc =

45

Allocation enchaînée

répertoire

46

Tableau d’allocation de fichiers (FAT)

47

Avantages - désavantages

 Pas de fragmentation externe - allocation de mémoire
simple, pas besoin de compression

 L ’accès à l ’intérieur d ’un fichier ne peut être que
séquentiel
 Pas façon de trouver directement le 4ème

enregistrement...

 L ’intégrité des pointeurs est essentielle

 Les pointeurs gaspillent un peu d ’espace

48

Allocation indexée:
semblable à la pagination
 Tous les pointeurs sont regroupés dans un tableau

(index block)

index table

49

Allocation indexée

-1: pointeur nul

50

Allocation indexée

 À la création d ’un fichier, tous les pointeurs dans le
tableau sont nil (-1)

 Chaque fois qu’un nouveau bloc doit être alloué, on
trouve de l ’espace disponible et on ajoute un pointeur
avec son adresse

51

Allocation indexée

 Pas de fragmentation externe, mais les index prennent
de l’espace

 Permet accès direct (aléatoire)

 Taille de fichiers limitée par la taille de l’index block

 Mais nous pouvons avoir plusieurs niveaux d’index: Unix

 Index block peut utiliser beaucoup de mém.

52

UNIX BSD: indexé à niveaux

12 blocs disque de 4K chaque

1024 blocs de 4K

chaque

1024x

1024

blocs

de 4K

Bloc de 4K contient 1024 pointeurs

Cette structure est en mémoire, tous les

autres sont sur disque

53

UNIX BSD
 Les premiers blocs d’un fichier sont accessibles directement

 Si le fichier contient des blocs additionnels, les premiers sont accessibles à
travers un niveau d’indices

 Les suivants sont accessibles à travers 2 niveaux d’indices, etc.

 Donc le plus loin du début un enregistrement se trouve, le plus indirect est
son accès

 Permet accès rapide à petits fichiers, et au début de tous les fich.

 Permet l’accès à des grands fichier avec un petit répertoire en mémoire

54

Gestion de l’espace libre

55

Solution 1: vecteur de bits (n blocs)

(solution Macintosh, Windows 2000)

…

0 1 2 n-1

bit[i] =





0  block[i] libre

1  block[i] occupé

 Exemple d’un vecteur de bits où les blocs 3, 4,

5, 9, 10, 15, 16 sont occupés:

 00011100011000011…

 L’adresse du premier bloc libre peut être

trouvée par un simple calcul

56

Gestion d’espace libre

Gestion d’espace libre

 Solution 2: Liste liée de mémoire libre (MS-DOS,
Windows 9x)

Tous les blocs de

mémoire libre sont

liés ensemble par

des pointeurs

57

Comparaison

 Bitmap:
 si la bitmap de toute la mémoire secondaire est gardée en

mémoire principale, la méthode est rapide mais demande de
l’espace de mémoire principale

 si les bitmaps sont gardées en mémoire secondaire, temps de
lecture de mémoire secondaire...
 Elles pourraient être paginées, p.ex.

 Liste liée
 Pour trouver plusieurs blocs de mémoire libre, plus. accès de

disque pourraient être demandés

 Pour augmenter l’efficacité, nous pouvons garder en mémoire
centrale l ’adresse du 1er bloc libre

58

Ordonnancement disques
 Problème: utilisation optimale du matériel

 Réduction du temps total de lecture disque

 étant donné une file de requêtes de lecture disque, dans
quel ordre les exécuter?

59

Paramètres à prendre en considération

 Temps de positionnement (seek time):

 le temps pris par l`unité disque pour
se positionner sur le cylindre désiré

 Temps de latence de rotation

 le temps pris par l ’unité de disque qui

est sur le bon cylindre pour se positionner
sur le secteur désirée

 Temps de lecture

 temps nécessaire pour lire la piste

 Le temps de positionnement est
normalement le plus important, donc il
est celui que nous chercherons à
minimiser

60

File d’attente disque
 Dans un système multiprogrammé avec mémoire virtuelle, il y aura

normalement une file d’attente pour l ’unité disque

 Dans quel ordre choisir les requêtes d ’opérations disques de façon à
minimiser les temps de recherche totaux

 Nous étudierons différents méthodes par rapport à une file d ’attente
arbitraire:

98, 183, 37, 122, 14, 124, 65, 67
 Chaque chiffre est un numéro séquentiel de cylindre

 Il faut aussi prendre en considération le cylindre de départ: 53
 Dans quel ordre exécuter les requêtes de lecture de façon à minimiser

les temps totaux de positionnement cylindre

 Hypothèse simpliste: un déplacement d`1 cylindre coûte 1 unité de
temps

61

Premier entré, premier sorti: FIFO

Mouvement total: 640 cylindres = (98-53) + (183-98)+...

En moyenne: 640/8 = 80

axe de

rotation
45

85

146

85

108

110

59

2

62

SSTF: Shortest Seek Time First

Plus Court Temps de Recherche (positionnement)
d’abord (PCTR ou PCTP)

 À chaque moment, choisir la requête avec le temps de
recherche le plus court à partir du cylindre courant

 Clairement meilleur que le précédent

 Mais pas nécessairement optimal! (v. manuel)

 Peut causer famine

63

SSTF: Plus court servi

Mouvement total: 183 cylindres (680 pour le précédent)

En moyenne: 183/8 = 22.8 (80 pour le précédent)

64

SCAN: l’algorithme du bus

 La tête balaye le disque dans une direction, puis dans
la direction opposée, etc., en desservant les requêtes
quand il passe sur le cylindre désiré

 Pas de famine

65

SCAN: le bus

Mouvement total: 236 cylindres
En moyenne: 236/8= 29.5 comme pour SSTF)

direction

66

Problèmes du SCAN
 Peu de travail à faire après le renversement de

direction

 Les requêtes seront plus denses à l’autre extrémité

 Arrive inutilement jusqu’à 0

67

Look: l’algorithme de l’ascenseur

 La tête balaye le disque dans une direction, puis dans
la direction opposée, etc., en desservant les requêtes
quand il passe sur le cylindre désiré mais ne va pas
jusqu'au bout du disque, elle rebrousse chemin
lorsqu’il n’y a plus de piste à servir dans ce sens.

68

C-SCAN et C-LOOK

C-SCAN

 Retour rapide au début (cylindre 0) du disque au lieu
de renverser la direction

 Hypothèse: le mécanisme de retour est beaucoup plus
rapide que le temps de visiter les cylindres

C-LOOK

 La même idée, mais au lieu de retourner au cylindre 0,
retourner au premier cylindre qui a une requête

69

C-LOOK

153 sans considérer le retour (19.1 en moyenne) (26 pour SCAN)

MAIS 322 avec retour (40.25 en moyenne)

Normalement le retour sera rapide donc le coût réel sera entre les deux

retour: 169 (??)

direction 

70

C-LOOK avec direction initiale opposée

direction

Résultats très semblables:
157 sans considérer le retour, 326 avec le retour

Retour 169

71

Comparaison
 Si la file souvent ne contient que très peu d’éléments,

l’algorithme du ‘premier servi ’ devrait être préféré
(simplicité)

 Sinon, SSTF ou SCAN ou C-SCAN?

 En pratique, il faut prendre en considération:

 Les temps réels de déplacement et retour au début

 L`organisation des fichiers et des répertoires

 Les répertoires sont sur disque aussi…

 La longueur moyenne de la file

 Le débit d ’arrivée des requêtes

72

Chapitre 5

1

Synchronisation de Processus

2

1. Conditions de Concurrence

2. Sections Critiques

3. Exclusion Mutuelle

4. Sommeil & Activation

5. Sémaphores

6. Mutex

7. Moniteurs

Problèmes avec concurrence =
parallélisme
 Les processus concurrents doivent parfois partager

données (fichiers ou mémoire commune) et ressources
 On parle donc de tâches coopératives

 Si l’accès n’est pas contrôlé, le résultat de l’exécution
du programme pourra dépendre de l’ordre
d’entrelacement de l’exécution des instructions (non-
déterminisme).

 Un programme pourra donner des résultats différents
et parfois indésirables

3

Un exemple

 Deux processus exécutent cette
même procédure et partagent
la même base de données

 Ils peuvent être interrompus
n’importe où

 Le résultat de l’exécution
concurrente de P1 et P2
dépend de l’ordre de leur
entrelacement

4

M. X demande une

réservation

d’avion

Base de données

dit que fauteuil

A est disponible

Fauteuil A est

assigné à X et

marqué occupé

Vue globale d’une exécution
possible

5

M. Guy demande une

réservation d’avion

Base de données dit

que fauteuil 30A est

disponible

Fauteuil 30A est

assigné à Guy et

marqué occupé

M. Leblanc demande une

réservation d’avion

Base de données dit

que fauteuil 30A est

disponible

Fauteuil 30A est

assigné à Leblanc et

marqué occupé

Interruption

ou retard

P1 P2

Deux opérations en parallèle sur une var a partagée
 (b est privé à chaque processus)

6

b=a

b++

a=b

b=a

b++

a=b

P1 P2

Supposons que a soit 0 au début

P1 travaille sur le vieux a donc le résultat final sera a=1.

Serait a=2 si les deux tâches sont exécutées l’une après l’autre
Si a était sauvegardé quand P1 est interrompu, il ne pourrait pas être partagé avec P2 (il y aurait deux

a tandis que nous en voulons une seule)

interruption

Section Critique

 Partie d’un programme dont l’exécution ne doit pas
entrelacer avec autres programmes

 Une fois qu’un tâche y entre, il faut lui permettre de
terminer cette section sans permettre à autres tâches de
jouer sur les mêmes données

7

Le problème de la section critique

 Lorsqu’un processus manipule une donnée (ou ressource) partagée,
nous disons qu’il se trouve dans une section critique (SC) (associée à
cette donnée)

 Le problème de la section critique est de trouver un algorithme
d`exclusion mutuelle de processus dans l`exécution de leur SCs afin
que le résultat de leurs actions ne dépendent pas de l’ordre
d’entrelacement de leur exécution (avec un ou plusieurs
processeurs)

 L’exécution des sections critiques doit être mutuellement exclusive:
à tout instant, un seul processus peut exécuter une SC pour une var
donnée (même lorsqu’il y a plusieurs processeurs)

 Ceci peut être obtenu en plaçant des instructions spéciales dans les
sections d`entrée et sortie

 Pour simplifier, dorénavant nous faisons l’hypothèse qu’il n’y a q’une
seule SC dans un programme.

8

Structure du programme
 Chaque processus doit donc demander une permission avant d’entrer

dans une section critique (SC)

 La section de code qui effectue cette requête est la section d’entrée

 La section critique est normalement suivie d’une section de sortie

 Le code qui reste est la section restante (SR): non-critique

9

repeat

 section d’entrée

 section critique

 section de sortie

 section restante

forever

Application

10

M. X demande une

réservation d’avion

Section d’entrée

Base de données dit que

fauteuil A est disponible

Fauteuil A est assigné à X et

marqué occupé

Section de sortie

Section

critique

Critères nécessaires pour solutions valides

 Exclusion Mutuelle
 À tout instant, au plus un processus peut être dans

une section critique (SC) pour une variable donnée

 Non interférence:
 Si un processus s’arrête dans sa section restante, ceci

ne devrait pas affecter les autres processus

 Mais on fait l’hypothèse qu’un processus qui entre
dans une section critique, en sortira.

11

Critères nécessaires pour solutions valides

 Progrès:
 absence d`interblocage (Chap 6)

 si un processus demande d`entrer dans une section
critique à un moment où aucun autre processus en fait
requête, il devrait être en mesure d’y entrer

 Absence de famine: aucun processus éternellement
empêché d’atteindre sa SC

 Difficile à obtenir, nous verrons…

12

Conditions de Concurrence
 Conditions de concurrence (race conditions): situation où 2 processus ou

plus effectuent des lectures et des écritures conflictuelles.

 Exemple du Spouler d’impression

 Un processus qui veut imprimer un fichier, entre son nom dans
un répertoire de spoule

 Le processus démon d’impression regarde périodiquement
s’il y a des fichiers à imprimer. Il a 2 variables:
 in: pointe vers la prochaine entrée libre.

 out: pointe vers le prochain fichier à imprimer

 in = 7, out = 4

 A et B deux processus qui veulent imprimer un fichier

 A >> lire in, next_free_slot = 7

 Interruption: la CPU bascule vers le processus B

 B >> lire in, next_free_slot = 7, entrée7 = fichierB, in = 8

 A >> entrée7 = fichierA, in = 8

 Problème: le fichierB ne sera pas imprimé

13

… Conditions de Concurrence

 Comment éviter les conditions de concurrence?

 Solution: Interdire que plusieurs processus lisent et écrivent des

données partagées simultanément.

 Exclusion Mutuelle: permet d’assurer que si un processus utilise une

variable ou fichier partagés, les autres processus seront exclus de la

même activité

14

Les Sections Critiques

15

A

B

t1 t2 t3 t4

A entre dans sa

section critique

B tente d’entrer dans sa

section critique

A quitte sa

section critique

B entre dans sa

section critique

B quitte sa

section critique

les Sections Critiques, méthode d’exclusion mutuelle

L’Exclusion Mutuelle avec Attente Active
(busy waiting)

 Désactivation des interruptions
 Après son entrée dans une SC, un processus désactive les

interruptions, puis les réactive
 Il empêche ainsi l’horloge d’envoyer des interruptions et le

processeur de basculer
 Il est imprudent de permettre à des processus user de désactiver

les interruptions
 Variables de verrou (lock)

 Avant d’entrer en SC, tester la valeur de verrou, si verrou = 0,
verrou  1, entrer en SC

 Défaillance: 2 processus peuvent entrer simultanément dans
leurs sections critiques comme le spouler d’impression

 Alternance Stricte
 la variable turn porte le numéro du processus dont c’est le tour

d’entrer en SC. Chaque processus inspecte la valeur de la
variable, avant d’entrer en SC.

 Inconvénient: consomme bcp de temps CPU

16

… Exclusion Mutuelle avec Attente
Active
(busy waiting)

 … Alternance Stricte

while (TRUE) { while (TRUE) {
 while (turn != 0); while (turn != 1);
 critical_region(); critical_region();
 turn = 1; turn = 0;
 non_critical_region(); non_critical_region();

} }

 Les attentes actives sont performantes dans le cas où elles sont
brèves. En effet, il y’ a risque d’attente

 P0 quitte la CS, turn = 1

 P1 termine sa CS, turn = 0

 Les 2 processus sont en section non critique

 P0 exécute sa boucle, quitte la SC et turn = 1

 Les 2 processus sont en section non critique

 P0 quoiqu’il a terminé, il ne peut pas entrer en SC, il est bloqué
17

… Sommeil & Activation
 Problème de blocage:

 Le consommateur note que le tampon est vide

 Interruption: arrêt du consommateur sans qu’il parte en sommeil

 Le producteur insère un jeton, incrémente le décompte, appelle

wakeup pour réveiller le consommateur

 Le signal wakeup est perdu, car le consommateur n’est pas en sommeil

 Le consommateur reprend, pour lui le tampon est vide, il dort

 Le producteur remplit le tampon et dort

 Solution: ajouter un bit d’attente d’éveil.

 Quand un wakeup est envoyé à un processus le bit est à 1;

 le consommateur teste le bit, s’il est à 1, il le remet à 0 et reste en éveil

 Cette solution est + difficile à généraliser en cas de + sieurs processus.

18

Une leçon à retenir…
 À fin que des processus avec des variables partagées

puissent réussir, il est nécessaire que tous les processus
impliqués utilisent le même algorithme de
coordination

 Un protocole commun

19

Critique des solutions par logiciel
 Difficiles à programmer! Et à comprendre!

 Les solutions que nous verrons dorénavant sont toutes basées
sur l’existence d’instructions spécialisées, qui facilitent le
travail.

 Les processus qui requièrent l’entrée dans leur SC sont
occupés à attendre (busy waiting); consommant ainsi du
temps de processeur

 Pour de longues sections critiques, il serait préférable de
bloquer les processus qui doivent attendre...

20

Solutions matérielles: désactivation
des interruptions

 Sur un uniprocesseur:
exclusion mutuelle est
préservée mais l’efficacité
se détériore: lorsque dans
SC il est impossible
d’entrelacer l’exécution
avec d’autres processus
dans une SR

 Perte d’interruptions
 Sur un multiprocesseur:

exclusion mutuelle n’est
pas préservée

 Une solution qui n’est
généralement pas
acceptable

21

Process Pi:

repeat

 inhiber interrupt

 section critique

 rétablir interrupt

 section restante

forever

Solutions basées sur des instructions
fournies par le SE (appels du système)

 Les solutions vues jusqu’à présent sont difficiles à
programmer et conduisent à du mauvais code.

 On voudrait aussi qu`il soit plus facile d’éviter des
erreurs communes, comme interblocages, famine, etc.
 Besoin d’instruction à plus haut niveau

 Les méthodes que nous verrons dorénavant utilisent
des instructions puissantes, qui sont implantées par
des appels au SE (system calls)

22

Sémaphores
 Un sémaphore S est un entier qui, sauf pour l'Initialisation, est

accessible seulement par ces 2 opérations atomiques et
mutuellement exclusives:

 wait(S)

 signal(S)

 Il est partagé entre tous les procs qui s`intéressent à la même
section critique

 Les sémaphores seront présentés en deux étapes:

 sémaphores qui sont occupés à attendre (busy waiting)

 sémaphores qui utilisent des files d ’attente

 On fait distinction aussi entre sémaphores compteurs et

sémaphores binaires, mais ce derniers sont moins puissants.

23

Sémaphores occupés à attendre
(busy waiting)

 La façon la plus simple d’implanter
les sémaphores.

 Utiles pour des situations où l’attente
est brève, ou il y a beaucoup d’UCTs

 S est un entier initialisé à une valeur
positive, de façon que un premier
processus puisse entrer dans la SC

 Quand S>0, jusqu’à n processus
peuvent entrer

 Quand S<=0, il faut attendre S+1
signals (d’autres processus) pour
entrer

24

wait(S):

while S<=0 {};

 S--;

signal(S):

 S++;

Attend si no. de processus qui

peuvent entrer = 0 ou négatif

Augmente de 1 le no des processus

qui peuvent entrer

25

Atomicité

Wait: La séquence test-

décrément est atomique,

mais pas la boucle!

Signal est atomique.

Rappel: les sections atomiques ne

peuvent pas être exécutées

simultanément par différent processus

(ceci peut être obtenu un utilisant un des

mécanismes précédents)

S <= 0

atomique S - -

F

V

SC

Atomicité et interruptibilité

26

S <= 0

atomique S - -

F

V

S++

La boucle n’est pas atomique pour permettre à un autre processus

d’interrompre l’attente sortant de la SC

interruptible autre Pro.

SC

SC

Utilisation des sémaphores pour
sections critiques

 Pour n processus

 Initialiser S à 1

 Alors 1 seul processus peut
être dans sa SC

 Pour permettre à k
processus d’exécuter SC,
initialiser S à k

27

processus Ti:

repeat

 wait(S);

 SC

 signal(S);

 SR

forever

28

processus T1:

repeat

 wait(S);

 SC

 signal(S);

 SR

forever

processus T2:

repeat

 wait(S);

 SC

 signal(S);

 SR

forever

Semaphores: vue globale

Initialise S à >=1

Peut être facilement généralisé à plus. processus

Utilisation des sémaphores pour
synchronisation de processus
 On a 2 processus : T1 et T2

 Énoncé S1 dans T1 doit être
exécuté avant énoncé S2
dans T2

 Définissons un sémaphore
S

 Initialiser S à 0

 Synchronisation correcte
lorsque T1 contient:

 S1;

 signal(S);

 et que T2 contient:

 wait(S);

 S2;

29

Interblocage et famine avec les sémaphores

 Famine: un processus peut n’arriver jamais à
exécuter car il ne teste jamais le sémaphore au bon
moment

 Interblocage: Supposons S et Q initialisés à 1

30

 T0 T1

 wait(S)

 wait(Q)

 wait(Q) wait(S)

Sémaphores: observations

 Quand S >= 0:

 Le nombre de processus qui peuvent exécuter wait(S)
sans devenir bloqués = S
 S processus peuvent entrer dans la SC

 noter puissance par rapport à mécanismes déjà vus

 dans les solutions où S peut être >1il faudra avoir un 2ème sém. pour les faire
entrer un à la fois (excl. mutuelle)

 Quand S devient > 1, le processus qui entre le premier dans
la SC est le premier à tester S (choix aléatoire)

 ceci ne sera plus vrai dans la solution suivante

 Quand S < 0: le nombre de processus qui attendent sur S
est = |S|

31

wait(S):

while S<=0 {};

 S--;

Comment éviter l’attente occupée et le
choix aléatoire dans les sémaphores
 Quand un processus doit attendre qu’un sémaphore

devienne plus grand que 0, il est mis dans une file d’attente
de processus qui attendent sur le même sémaphore.

 Les files peuvent être PAPS (FIFO), avec priorités, etc. Le
SE contrôle l`ordre dans lequel les processus entrent dans
leur SC.

 wait et signal sont des appels au SE comme les appels à des
opérations d’E/S.

 Il y a une file d’attente pour chaque sémaphore comme il y a
une file d’attente pour chaque unité d’E/S.

32

Sémaphores sans attente occupée

 Un sémaphore S devient une structure de données:

 Une valeur

 Une liste d’attente L
 Un processus devant attendre un sémaphore S, est bloqué et ajouté la

file d’attente S.L du sémaphore (v. état bloqué = attente chap 4).

 signal(S) enlève (selon une politique juste, ex: PAPS/FIFO) un
processus de S.L et le place sur la liste des processus prêts/ready.

33

34

Implementation
(les boîtes réprésentent des séquences non-interruptibles)

 wait(S): S.value --;

 if S.value < 0 { // SC occupée

 add this processus to S.L;

 block // processus mis en état attente (wait)

 }

 signal(S): S.value ++;

 if S.value  0 { // des processus attendent

 remove a process P from S.L;

 wakeup(P) // processus choisi devient prêt

 }

S.value doit être initialisé à une valeur non-

négative (dépendant de l’application, v. exemples)

35

Figure montrant la

relation entre le contenu

de la file et la valeur de S

Quand S < 0: le nombre
de processus qui
attendent sur S est = |S|

Wait et signal contiennent elles mêmes des SC!

 Les opérations wait et signal doivent être exécutées
atomiquement (un seul thr. à la fois)

 Dans un système avec 1 seule UCT, ceci peut être
obtenu en inhibant les interruptions quand un
processus exécute ces opérations

 L’attente occupée dans ce cas ne sera pas trop onéreuse
car wait et signal sont brefs

36

Problèmes classiques de
synchronisation

 Tampon borné (producteur-consommateur)

 Écrivains - Lecteurs

 Les philosophes mangeant

37

38

Le pb du producteur - consommateur

 Un problème classique dans l ’étude des

processus communicants

un processus producteur produit des données

(p.ex.des enregistrements d ’un fichier) pour un

processus consommateur

39

Tampons de communication

Prod

Cons

1 donn

Prod

Cons

1 donn 1 donn 1 donn

Si le tampon est de longueur 1, le producteur et consommateur

doivent forcement aller à la même vitesse

Des tampons de longueur plus grandes permettent une certaine

indépendance. P.ex. à droite le consommateur a été plus lent

40

Le tampon borné (bounded buffer)
une structure de données fondamentale dans les SE

b[0] b[1]

b[7] b[2]

b[6] b[3]

b[4] b[5]

ou

out: 1ère

pos. pleine

in: 1ère

pos. libre b[0] b[1] b[7] b[2] b[6] b[3] b[4] b[5]

in: 1ère

pos. libre

out: 1ère

pos.

pleine
bleu: plein, blanc: libre

Le tampon borné se trouve dans la mémoire partagée entre

consommateur et usager

41

Pb de sync entre processus pour le tampon
borné

 Étant donné que le prod et le

consommateur sont des processus

indépendants, des problèmes pourraient

se produire en permettant accès simultané

au tampon

 Les sémaphores peuvent résoudre ce

problème

42

Sémaphores: rappel.

 Soit S un sémaphore sur une SC

 il est associé à une file d ’attente

 S positif: S processus peuvent entrer dans SC

 S zéro: aucun processus ne peut entrer, aucun processus en

attente

 S négatif: |S| processus dans file d ’attente

 Wait(S): S - -

 si après S >= 0, processus peut entrer dans SC

 si S < 0, processus est mis dans file d ’attente

 Signal(S): S++

 si après S<= 0, il y avait des processus en attente, et un

processus est réveillé

 Indivisibilité = atomicité de ces ops

43

Solution avec sémaphores

 Un sémaphore S pour exclusion mutuelle

sur l’accès au tampon

Les sémaphores suivants ne font pas l’EM

 Un sémaphore N pour synchroniser

producteur et consommateur sur le

nombre d’éléments consommables dans le

tampon

 Un sémaphore E pour synchroniser

producteur et consommateur sur le

nombre d’espaces libres

44

Solution de P/C: tampon circulaire fini de dimension k

Initialization: S.count=1; //excl. mut.

 N.count=0; //esp. pleins

 E.count=k; //esp. vides

Producer:

repeat

 produce v;

 wait(E);

 wait(S);

 append(v);

 signal(S);

 signal(N);

forever

Consumer:

repeat

 wait(N);

 wait(S);

 w=take();

 signal(S);

 signal(E);

 consume(w);

forever

Sections critiques

append(v):

 b[in]=v;

 In ++ mod k;

take():

 w=b[out];

 Out ++ mod k;

 return w;

45

Points importants à étudier

 dégâts possibles en interchangeant les

instructions sur les sémaphores

ou en changeant leur initialisation

 Généralisation au cas de plus. prods et

cons

Problème des lecteurs - rédacteurs
 Plusieurs processus peuvent accéder à une base de

données
 Pour y lire ou pour y écrire

 Les rédacteurs doivent être synchronisés entre eux et
par rapport aux lecteurs
 il faut empêcher à un processus de lire pendant l’écriture

 il faut empêcher à deux rédacteurs d ’écrire
simultanément

 Les lecteurs peuvent y accéder simultanément

46

Une solution (n’exclut pas la famine)

 Variable readcount: nombre de processus lisant la base de données

 Sémaphore mutex: protège la SC où readcount est mis à jour

 Sémaphore wrt: exclusion mutuelle entre rédacteurs et lecteurs

 Les rédacteurs doivent attendre sur wrt

 les uns pour les autres

 et aussi la fin de toutes les lectures

 Les lecteurs doivent

 attendre sur wrt quand il y a des rédacteurs qui écrivent

 bloquer les rédacteurs sur wrt quand il y a des lecteurs qui
lisent

 redémarrer les rédacteurs quand personne ne lit

47

Les données et les rédacteurs

48

Données: deux sémaphores et une variable

 mutex, wrt: semaphore (init. 1);

 readcount : integer (init. 0);

Rédacteur

 wait(wrt);

 . . .

 // écriture

 . . .

 signal(wrt);

Les lecteurs

49

 wait(mutex);

 readcount ++ ;

 if readcount == 1 then wait(wrt);

 signal(mutex);

 //SC: lecture

 wait(mutex);

 readcount -- ;

 if readcount == 0 then signal(wrt);

 signal(mutex):

Le premier lecteur d ’un groupe pourrait
devoir attendre sur wrt, il doit aussi
bloquer les rédacteurs. Quand il sera
entré, les suivants pourront entrer
librement

Le dernier lecteur sortant doit permettre
l`accès aux rédacteurs

Observations

 Le 1er lecteur qui entre dans la SC bloque les
rédacteurs (wait (wrt)), le dernier les remet en marche
(signal (wrt))

 Si 1 rédacteur est dans la SC, 1 lecteur attend sur wrt,
les autres sur mutex

 un signal(wrt) peut faire exécuter un lecteur ou un
rédacteur

 50

51

Le problème des philosophes mangeant

 5 philosophes qui

mangent et pensent

 Pour manger il faut 2

fourchettes, droite et

gauche

 On en a seulement 5!

 Un problème classique

de synchronisation

 Illustre la difficulté

d’allouer ressources aux

processus tout en évitant

interblocage et famine

52

Le problème des philosophes mangeant

 Un processus par

philosophe

 Un sémaphore par

fourchette:

 fork: array[0..4] of

semaphores

 Initialisation: fork[i] =1

for i:=0..4

 Première tentative:

 interblocage si chacun

débute en prenant sa

fourchette gauche!

 Wait(fork[i])

processus Pi:

repeat

 think;

 wait(fork[i]);

 wait(fork[i+1 mod 5]);

 eat;

 signal(fork[i+1 mod 5]);

 signal(fork[i]);

forever

53

Le problème des philosophes mangeant

 Une solution: admettre

seulement 4 philosophes

à la fois qui peuvent

tenter de manger

 Il y aura touj. au moins 1

philosophe qui pourra

manger

 même si tous prennent

1 fourchette

 Ajout d’un sémaphore T

qui limite à 4 le nombre

de philosophes “assis à

la table”

 initial. de T à 4

 N’empêche pas famine!

processus Pi:

repeat

 think;

 wait(T);

 wait(fork[i]);

 wait(fork[i+1 mod 5]);

 eat;

 signal(fork[i+1 mod 5]);

 signal(fork[i]);

 signal(T);

forever

54

Avantage des sémaphores
(par rapport aux solutions précédentes)

 Une seule variable partagée par section

critique

 deux seules opérations: wait, signal

 contrôle plus localisé (que avec les précéds)

 extension facile au cas de plus. processus

 possibilité de faire entrer plus. processus à

la fois dans une section critique

 gestion de files d`attente par le SE: famine

évitée si le SE est équitable (p.ex. files

FIFO)

55

Problème avec sémaphores: difficulté de programmation

 wait et signal sont dispersés parmi

plusieurs processus, mais ils doivent se

correspondre

 V. programme du tampon borné

 Utilisation doit être correcte dans tous les

processus

 Un seul “mauvais” processus peut faire

échouer toute une collection de processus
(p.ex. oublie de faire signal)

 Considérez le cas d`un processus qui a

des waits et signals dans des boucles et

des tests...

