Historique

ay

Introduction
ot évolution de

. l‘c AR
LA
MR B

|AC pesait 30 tonnes

ﬁ ///'/—\\

Schéma de la machine de Von Newman

UAL = unité arithmétique et logique

Thité de
commatde

!
1
!

' [Tmte de calcul

' | (UAL)

) |
. ¥

sotties

"~ Frogramme

Meémoire Centrale

Informations

v
l Actions

/ .

Machine de Von Newman

Ces dispositifs permettent la mise en oeuvre des
fonctions de base d'un ordinateur :

-le stockage de données,

-le traitement des données,

-le mouvement des données et
-le controle des périphériques.

Péeripheriques

; e e de communicatio
Schéma matériel général

reseau

Unité
Centrale

(microprocesseur
+ mémoires)

Periphériques
de sortie

- écran

- imprimante

Periphériques
d’entrée

- clavier
- souris

Disques
e > durs
Périphériques _
e Stocki’?‘,?’e | Disquettes,
) ZIp, :

'unité centrale

Le (micro)processeur ou CPU : Central Processing
Unit
e Unité arithmétique et logique (UAL) et Unité de
commande

[l exécute les programmes :

e un programme est une suite d'instructions

Mémoire vive : RAM
RAM (Random Access Memory)

e Permet de stocker des informations lorsqu’elle est

alimentée électriquement
o Lecture / Ecriture

e Mémoire volatile : contient des programmes et des

données en cours d’utilisation

e Capaciteé variable selon les ordinateurs

N

Meémoire vive : RAM

Meémoire morte : ROM

ROM (Read Only Memory)

e En lecture seule
e Memoire permanente

e Contient les programmes de base au démarrage de

l'ordinateur BIOS (Basic Input Output System)

e Permet l'initialisation de l'ordinateur, initialisation
de périphériques, lancement du systeme

d’exploitation...

Les périphériques
Les périphériques de stockage
Les périphériques d’entrée
Les périphériques de sortie

Les périphériques de communication

10

ériphériques d’entré
HHCWWS

NI

Périphériques de sortie Niveau Materiel

11

~~ Périphériques d’entrée =

HHCWM

Systéme d’exploitation

t T T I Niveau Matériel

Périphériques de sortie + CE

9 ot 12

vvvvvvvvv

riphériques

HHCWMS

Systéme d’exploitation

v‘
t T T I Niveau Matériel

Péeriphériques de sortie + SE + Programmes

13

Périphériques d’entrée

Permettent d'envoyer des informations a I'Unité Centrale

14

/

Périphériques de sortie

Permettent d 'envoyer les résultats a I'extérieur de
I'Unité Centrale

b ECI’&HS
» taille (en pouce), résolution...

e Imprimantes

- matricielles, jet d ‘encre, laser

e Enceintes

15

Les périphériques de stockage

CD-ROM
DVD
Disque dur > 320 Go

Différence entre RAM et supports de stockage
USB(Universal Serial Bus)

16

N

Les périphériques de stockage

» Capacité en Go actuellement
* Plusieurs tétes de lectures

17

Les BUS

Permettent le transfert des
données entre les
composants de
l'ordinateur

Bus adresses

1011 1111 0110 1010

Différentes technologies =»
plus ou moins grande
capacité de transfert

Imprimante Unité de stockage Cartes extension

Chad

e

Systeme d’exploitation (SE)

Fournit I'interface usager/machine:
e Masque les détails du matériel aux applications
e Le SE doit donc traiter ces détails
Controdle I'exécution des applications
 Le fait en reprenant périodiquement le controle de 'UCT
e Dit a 'UCT quand exécuter tel programme

Il doit optimiser l'utilisation des ressources pour maximiser
la performance du systéme

19

e

Quelqgues mots sur les systemes d’exploitation

Définition
Un systeme d'exploitation (SE; en anglais: OS =
operating system) est un ensemble de programmes

de gestion du systéme qui permet de gérer les
éléments fondamentaux de 1'ordinateur:

Le matériel - les logiciels - la mémoire - les données -
les réseaux.

Logiciel tres important...

tout programme s’exécute sur un SE

20

Gestion C
Gestion d

d’exploitation

e]a mémoire

es systémes de fichiers

Gestion d

€S Processus

Mécanismes de synchronisation

Gestion C
Gestion C

les périphériques
u reseau

Gestion C

e la sécurité.

21

e

Ressources et leur gestion

Ressources:
e physiques: mémoire, unités E/S, UCT...

e Logiques = virtuelles: fichiers et bases de données
partagés, canaux de communication logiques, virtuels...

e les ressources logiques sont baties par le logiciel sur les
ressources physiques

Allocation de ressources: gestion de ressources, leur
affectation aux usagers qui les demandent, suivant
certains criteres

22

e

/’//.—\m.. ° D Vé
— Traitement par lots multiprogramme

Les opérations E/S sont extrémement lentes
(comparé aux autres instructions)

Méme avec peu d’E/S, un programme passe la
majorité de son temps a attendre

Donc: pauvre utilisation de 'UCT lorsqu’un seul
programme usager se trouve en mémoire

Run

W ait Run W ait

Time >

Uniprogramming

23

Traitement par lots multiprogrammé

e

/V

Si la mémoire peut contenir plusieurs programmes,
I'UCT peut exécuter un autre programme lorsquun
autre attend une E/S

C’est de la multiprogrammation

Program A Run Wait Run Wait

Program B Wait| Run Wait Run Wait

Program C Wait Run Wait Run Wait

Combined R;m RIl;m KREm Wait R;m Rll;n Rém Wait
Time »

Multiiprogramming with three programs

24

~ Plusieurs programmes en memoire

pour la multiprogrammation

a

systéme d'explaitation

travail 1

travail 2

travail 3

travail 4

512K -

/\/

Terminaux

ey
1

ordinateur principal
(mainframe ou serveur)

nxl
. ||||||||||||||||

e

26

/ ‘

Systemes a temps partagé (TSS)

Le traitement par lots multiprogrammeé ne supporte pas
I'interaction avec les usagers
e excellente utilisation des ressources mais frustration des
usagers!
TSS permet a la multiprogrammation de desservir
plusieurs usagers simultanément

Le temps d'UCT est partagé par plusieurs usagers

Les usagers accedent simultanément et interactivement

au systeme a l'aide de terminaux
27

/ |

Systemes a temps partagée (TSS)

Le temps de réponse humain est lent: supposons quun
usager nécessite, en moyenne, 2 sec du processeur par
minute d’utilisation

Environ 30 usagers peuvent donc utiliser le systéme sans
délais notable du temps de réaction de l'ordinateur

Les fonctionnalités du SE dont on a besoin sont les mémes
que pour les systémes multiprogrammeés, plus
e la communication avec usagers
e le concept de mémoire virtuelle pour faciliter la gestion de
meémoire
° trait)ement central des données des usagers (partagées ou
non

28

Retour aux concepts de TSS

Plusieurs PC (clients) peuvent étre desservis par un
ordinateur plus puissant (serveur) pour des services
qui sont trop complexes pour eux (clients/serveurs,
bases de données, etc)

Les grands serveurs utilisent beaucoup des concepts
développés pour les systémes TSS

s & &

N

e

29

e

Types de systemes d’exploitation

Ordinateur central (Mainframe)
e Grande capacité d’E/S a cause du nombre d’'usagers

e Plus populaires avec 'augmentation de la vitesse des
reseaux

e Axé sur traitement de plusieurs jobs a la fois

» Lot (batch) - jobs de routine comme la production d’'un
rapport

« Transaction - faire des réservations

 Partage de temps - Usagers qui accédent une base de données

—

Types de systemes d’exploitation

Serveur
e Permet le partage des ressources matériel et logiciel
e Serveurs d’'impressions, de fichiers, Web
Multiprocesseur
e Normalement une variation d'un SE pour serveur

e Permets a plusieurs processeurs a travailler ensemble

« Plusieurs processeurs sur la méme carte

/ ’

Types de systemes d’exploitation

SE pour ordinateur personnel

e Donne une interface a un simple usager
e Windows, Linux, Macintosh

Systeme d’exploitation temps-réel

e Unique parce que les programmes ont des contraintes temporelles
(deadlines): temps réel dur (avion)

SE embarqués
e Similaire au SE temps-réel

 Assistant numérique personnel (PDAs), Contréleur de tableau de
bord automobile, Gameboy

e Ont des préoccupations que les autres SE n'ont pas: encombrement,
puissance, mémoire.

e

Types de systemes d’exploitation
Les SE Smart Card

e Similaire a embarqués

e Opére sur les cartes de la grosseur d'une carte de crédit
avec un processeur

e Contraintes séveres de mémoire et de puissance de
calcul

Systémes d’exploitation répartis:

 Le SE exécute a travers un ensemble de machines qui
sont reliées par un réseau

I?\.I’l S

?

xploitat

(2]

Processus

Le processus est LE concept central dans les
systemes d’exploitation
Un processus est une abstraction d'un programme
en execution

e Auquel on a donné des ressources
Un certain nombre de processus (2 ou plus)

s’exécutant en méme temps forment un systéme
multitache, multithread, ou multiprogrammeé.

Est-ce que ces programmes s'exécute vraiment en
parallele?

e

Processus

Le model des processus est tout simplement I'idée que
tout logiciel qui est exécutable est organisé en un
nombre de processus séquentiels incluant le SE.

Pseudo-parallélisme est parfois utilisé pour référer a
des processus multiples s'exécutant sur un seul
processeur

Ceci differe du parallélisme sur un systéme a
multiprocesseurs

/
Processus

Four program counters One program counter

\ A Process
E switch
Yy B

A# B Y c¢ DY

Conceptuel \I C

S

Ecoulement du prog

Process

> W O O
I
I

Temps d’execution des processus

/ 7

Creéation de Processus

Les systémes communs ont besoin de créer des
nouveaux processus durant l'opération.

e [nitialisation du systéeme

 Création de processus appelé par un processus
en execution

* Demande d'un utilisateur pour créer un
processus

e [nitialisation d'un job batch

,./ﬁ

/7

Création de processus

Les processus peuvent créer d’'autres processus,
formant une hiérarchie (instruction fork ou

semblables)
root I
|

pagedaemon] swapper '

user 1 ' user 2 ' user 3 l
Arbre de |

processus ' '
en UNIX | l | l

\/
- Etats des processus

nauveal admi intarruptian

terminaisan d'E/S au

d'événamant d'événament

Quand le processus est en exécution running’ il
utilise le CPU pour faire son travail

Quand le processus est prét ‘ready, il voudrait
s'exécuter mais le CPU est alloué a un autre.

,////—\\ S
Etats des processus

admis intarruptian

aftente d'E/S au

tarminasan I'E/S au
d'éwénament

d'événement

&N attante

En état attente ‘blocked), le processus ne peut s'exécuter
parce qu’il attend apres une condition (entrée/sortie,
expiration du chrono, attente dun autre processus
etc...)

Des fois, des commandes sont appelées pour entrer
dans I'état bloqué (block, pause,wait).

Parfois le systéme cause la transition automatiquement
a l'état prét ‘ready’ (ordonnancement)

/ |

Implémentation des Processus

En multiprogrammation, un processus s'exécute
sur 'UCT de facon intermittente

Chaque fois qu'un processus reprend 'UCT
(transition prét — exécution) il doit la reprendre
dans la méme situation ou il I’a laissée (méme
contenu de registres UCT, etc.)

Donc au moment ot un processus sort de l'état
exécution il est nécessaire de sauvegarder ses
informations essentielles, qu’il faudra récupérer
quand il retourne a cet état

/ .

= ""'/

Implémentation des Processus

Comment le SE implémente le model des
processus?

e La table des processus, un tableau ot
structures avec une entrée par proce

e Information typique:

Etat des Processus
Compteur ordinal
Pointeur de pile
Allocation de la mémoire
Etat des fichiers ouverts

Information de gestion/ordonnancement

atat de

intesur
P Process us

numémn de pocessus

compteur pogAamme

reqetes

limites mémaire

liste das fichiars

auverts

Et encore plus! PCB = Process Control Block

Commutation de processus

Aussi appelé

e commutation de contexte

e Changement de contexte

e context switching
Quand I'UCT passe de I'exécution d'un processus o a
I'exécution d’'un proc 1, il faut

e mettre a jour le PCB de 0

e sauvegarder le PCB de 0

e reprendre le PCB de 1, qui avait été sauvegardé avant

e remettre les registres ' UCT, compteur

d ’instructions etc. dans la méme situation qui est
décrite dans le PCB de 1

Commutation de processeur (context switching)

processus Fj systéme d'explaitation processus P,

interruption ou appel systémes

axécutar | /,-/"" l .

““ sauver l'aetat dans le FCB,
= inacti
recharger 'état depuis le Pci-""'f' v
= inactif axacuter
interruption ou appel systéms
l _-‘-"‘--.__‘-‘-‘. .
sauver I'état dans le PCE4
\ = inacti
) rechamer 'état depuis le F’EE?\)
axdcutar | "‘\\ Il se peut que beaucoup de temps passe avant le retour
i au processus 0, et que beaucoup d’autres proc soient

exeécutés entre temps

/ |

= - = -
Commutation de processus

Comme [’ordinateur n’a, la plupart du temps, qu’un
processeur, il résout ce probleme grace a un pseudo-

parallélisme
A

P2

P1 S L e

systéme |— = G i

Figure 1 Le multi-tache T

es cycles d’un processus

1w Al = Baowr—e
acd d s e
rmeac v Ficohiser oy ke AT

e Pl e T E = Cyc ke dTES=

=B L O e e T el E
L e laasr e b= A LT
wwrri b Claear=s le Fichiiser

e P lrered e T ESS oy ke d TES=

1l o = Eowre
acl A s e
rmeac v Ficohiser oy ke AT

| FrPreTrAa e I E = =y b= d'ES=

* Cycles (bursts) d’'UCT et E/S: I'exécution d'un processus consiste de
séequences d’exécution sur UCT et d’attentes E/S

/ 7

Notion d’'ordonnancement

L'ordonnancement sur les systéemes d’exploitation initiaux
était facile: exécute le prochain programme sur le ruban
magnétique

Les ordinateurs personnels ont changeé cet environnement
parce ce que nous donnons la priorité au processus qui
interagit avec l'utilisateur

Avec plusieurs processus qui sont en compétition pour les
précieux cycles du CPU, une décision doit étre faite pour
savoir quel processus va s'exécuter

L'ordonnanceur est la partie du systeme d’exploitation qui
fait ce choix, basé sur un algorithme d’'ordonnancement

Lordonnanceur peut faire une trés grande différence dans
la performance qui est percu par l'utilisateur

/ |

Ordonnanceurs (schedulers)

Trois types d' ordonnanceurs :

A court terme: sélectionne quel processus doit exécuter la transition
prét — exécution. Il est exécuté tres souvent (millisecondes)

doit étre trés efficace

* Along terme: sélectionne quels processus peuvent exécuter la
transition nouveau — pret. Il doit étre exécuté beaucoup plus rarement

I controle le niveau de multiprogrammation

e A moyen terme: le manque de ressources peut parfois forcer le SE a
suspendre des processus, il sélectionne donc quels processus sortir
temporairement de la mémoire pour palier au manque de celle-ci

« 1ils ne seront plllS en concurrence avec les autres pour les ressources

« ils seront repris plus tard quand les ressources deviendront
disponibles

« Ces processus sont enlevés de mémoire centrale et mis en mémoire secondaire,
pour étre repris plus tard

¢) « ®.nne) .
e Swap out, swap in , va-et-vient

Ordonnanceur court terme

—_—
"fil&daa procs. préts -@. >
—T
—@—fmdmtanmd'as-n— raquétes dE/S —

tranche de
temps expirés

ke file craation d'un
@ fils 0

lintarruption en attente d'une |
@ interruption

f

f

r

f

/

Ordonnancement des Processus

La multiprogrammation est concue pour
obtenir une utilisation maximale des
ressources, surtout 'UCT

L'ordonnanceur UCT est la partie du SE qui
décide quel processus dans la file ready/prét
obtient 'UCT quand elle devient libre

[’ ordonnanceur doit viser a une utilisation
optimale de 'UCT

e

Buts des algorithmes d’'ordonnancement

[l y a normalement plusieurs processus dans la file
d’attente des processus prét

Quand 'UCT devient disponible, lequel choisir?

L'idée générale est d’effectuer le choix dans l'intérét
de l'efficacité d’utilisation de la machine

Mais cette derniere peut étre jugée selon différents
criteres...

/

Buts des algorithmes d’'ordonnancement

Utilisation UCT: pourcentage d utilisation

Débit = Throughput: nombre de processus qui
completent dans | 'unité de temps

Temps de rotation = turnaround: le temps pris par le
proc de son arrivée a sa terminaison.

Temps d’attente: attente dans la file prét (somme de
tout le temps passé en file prét)

Temps de réponse (pour les systemes interactifs): le
temps entre une demande et la réponse

Criteres d’'ordonnancement

Utilisation UCT:
a maximiser
Débit (Throughput):
a maximiser
Temps de rotation (turnaround):
a minimiser
Temps d’attente:
a minimiser
Temps de réponse

a minimiser

/ |

Files d’attente

Les ressources d'ordinateur sont souvent limitées par
rapport aux processus qui en demandent

Chaque ressource a sa propre file de processus en
attente

En changeant d’état, les processus se déplacent d 'une
file a I'autre

e File prét: les processus en état prét=ready
e Files associés a chaque unité E/S
* etc.

File des
préts

Nous ferons I'nypothese que le premier processus dans une file est celui
qui utilise la ressource: ici, processus 7 s'exécute, processus 3 utilise

procs
prét

units de
bands
magn. a

units de
banda
magn. 1

unite de
disquea O

units de

t=mminal O

disque 0, etc.

S

atten

Ce sont les PCBs qui sont dans les files d’attente

antéte des fiks

o atteme PCB; PCB.
t&to - - =
queus) registres registres
hr=r=1 -ﬁv
qusus —
tete 1 =
quaus — FCE, FCB,, FCEBE,
/]]
Ju=ii= &
quaus ‘h_
FCBE_
&t - T
queus 4+

/
LesPCBs -

Les PCBs ne sont pas déplacés en mémoire pour étre
mis dans les différentes files:
ce sont les pointeurs qui changent.

term. unit 0 ready

r

.- -

disk unit 0

/ 7

Categories d'algorithmes d’ordonnancement

Différent algorithmes sont utilisés sur différents systemes.

Trois catégories majeurs pour algorithmes :
o Systemes de lots
» Séries de programmes qui attendent pour exécution
e Systémes interactifs
» Utilisateurs aux terminaux qui attendent pour leurs réponses

e Systemes en temps reéel

- Exécutent généralement dans un environnement ot les
processus coopérent pour finir une tache

/ .

Ordonnancement des systemes par lots

Premier-arrivé premier-servis(PAPS)
First-Come First-Served(FCFS)

e Lalgorithme le plus simple

* Non-préemptif (sans réquisition)

e Une seule file de processus préts

e Chacun a le CPU et s’exécute jusqua ce qu’il bloque
e Avantages:

 Facile a comprendre et implémenter

 impartial

Premier-arrivé premier-servis(PAPS) —
First-Come First-Served(FCFS)

*Non-préemptif
*Applicable pour les jobs de grandeur connue

Exemple: Processus Temps de cycle
P1 24
P2 3
P3 3

S1 les processus arrivent au temps 0 dans 1’ordre: P1 , P2 , P3 Le diagramme
Gantt est:

P, P, P

0 24 27 30

Temps d’attente pour P1= 0; P2= 24; P3=27
Temps attente moyen: (0 + 24 + 27)/3 =17

/ '

Tenir compte du temps d’arrivée!

Dans le cas ou les processus arrivent a des moments
différents, 1l faut soustraire le temps d’arrivee

e PO arrive a temps 0
e P1 arrive a temps 2
e P3 arrive a temps 5

Temps d’attente pour P1= 0; P2= 24-2=22; P3= 27-5=22
Temps attente moyen: (0 + 22 + 22)/3=14,6 <17

—

Premier-arrivé premier-servis(PAPS) —
First-Come First-Served(FCFS)

S1 les mémes processus arrivent a I’instant 0 mais dans I’ordre
Pob P
Le diagramme de Gantt est:

P, P Py

0 3 6 30

Temps d’attente pour P, =6 P, =0 P;=3
Temps moyen d’attente: (6 +0+3)/3 =23
Beaucoup mieux!

Donc pour cette technique, le temps d’attente moyen peut
varier grandement

/
Ordonnancement des systemes de lots

Avec I'exemple précédent et le suivant on voie, qu'en exécutant
les plus court en premier on obtient un meilleur temps
d’attente ou de réponse moyen d’ot:

L'algorithme du plus petit job en premier - Shortest Job First
e Non-préemptif
e Applicable pour les jobs de grandeur connue, ie: différent types de
réclamations dans une compagnie d’assurance

e Les processus mit dans cet ordre produisent le plus petit temps de
réponse (généralement)

8 4 4 4 4 4 4 8
A B | c | D B | c | D A
Temps de reponse moyen Temps de reponse moyen
= [8+(8+4)+(8+4+4)+(8+4+4+4)]/4 = [4+(4+4)+(4+4+4)+(4+4+4+8)]/4
=14 =11

/ |

Shortest Job First (SJF)

e Notez que le systéme est optimale quand tout les travaux
sont disponibles en méme temps

- Siun long job est en exécution quand un nombre de petits
travaux arrivent, le délais restant du job long est ajouté a tous
les nouveaux travaux

e Est-ce qu’il y a une solution a ce probleme?

e Le temps du premier processus a plus d'impacte sur le
temps de réponse de tous les autres d'ou:

SJF avec préemption (réquisition)= SRTF

/ '

Shortest Remaining Time First (SRTF)

Le plus petit temps restant est le Prochain -Shortest
Remaining Time First (ou Next)

e Similaire a SJF, mais préemptif
e Siun job qui arrive a besoin de moins de temps pour

compléter que le job en court, on commence a exécuter
le nouveau job

e Donne un bon service au nouveaux jobs qui sont courts

Example de SJF

Processus Arrivée Cycle
P 0 7
2 2 4
B 4 1
P 5 4

4

SJF (sans préemption)

Py P P, P,

XS{\?S 12 16

Pyarr. pP.arr. P,arr

Temps d’attente moyen=(0+6+3 +7)/4=4

emple de SRTF=

avec preemption

Processus Arrivée Cycle
P 0 7
2 2 4
B 4 1
g 5 4
SJF (préemptive, avec requisition)
Pl I:)2 P3 I:)2 I:)4 Pl
—— | ettt
o 7 =
P,arr. Pzam. Pjarr

Temps moyen d attente=(9+1+0+2)/4=3

¢ Plattendde2all,P2ded4ab,P4deb5a’7

/ 7

Le plus court d’abord SJF: critique

Difficulté d’estimer la longueur a I'avance

Les processus longs souffriront de famine lorsqu’il y a
un apport constant de processus courts

La preemption est nécessaire pour environnements a
temps partage

Un processus long peut monopoliser 'UCT s’il
est le 1°' a entrer dans le systéme et il ne fait pas
d’E/S

[l y a assignation implicite de priorités:
préférences aux travaux plus courts

/ 7

Ordonnancement des systemes interactifs

Quelqu’un quelque part est assit a un clavier et
entre de I'information
On se rappelle de nos objectifs:

e Temps de réponse rapide

e Proportionnalité (Les choses que les usagers
pensent qui devraient prendre peu de temps; le
devraient)

Tout les algorithmes pour les systémes interactifs
peuvent étre utilisés dans les systemes de lots

e

Tourniquet = Round-Robin (RR)

Chaque processus se voit alloué une tranche de temps appelé
quantum de temps (p.ex. 10-100 millisecondes.) pour s’exécuter
(tranche de temps)

S’il s'exécute pour un quantum entier sans autres interruptions, il
est interrompu par la minuterie et] 'UCT est alloué a un autre
processus

Le processus interrompu redevient prét (lafin dela file)

Méthode préemptive P[o] | P[1]
La file prét est un P[7] P[2]
cercle (dontRR) ____ [pp P[3]
Seul décision d'implémentation : P51 | Pl4]

combien de temps est assigné pour un quantum?

Exemple: Tourniquet
Quantum = 20
Processus Cycle
P, 53
B 17
P, 68
P, 24

PP, PP P PP P | P | P,

O 20 37 57 77 97 117 121 134 154 162

Normalement,
¢ temps de rotation (turnaround) plus élevé que SJF

¢ mais temps attente moyen meilleur - contrélez!

Ordonnancement des systemes-interactifs

Current MNext
process process
B F D A

2

e

Current
process

N

F

Ordonnancement de type tourniquet

e Combien de temps dans un quantum?
« Le changement de processus prend du temps: sauvegarde/charge le

PCB

« Pour un changement de contexte qui prend 1 ms combien de temps

devrait étre un quantum? Considérez l'overhead:

Longueur du Ims | 4ms | 10ms | 20ms | 50ms
guantum
Overhead 50% | 20% | 9.1% | 4.8% | 2%

Un petit quantum augmente les
commutations de contexte (overheaa)

changament
temps du pocessus = 10 franches de g

temps da contexts
12]
10
G 1
f 10
1 g

Ordonnancement des systemes interactifs

Ordonnancement par priorité

e Basé sur les utilisateurs: Si nous partagions un mainframe alors
l'ordre des priorités pourrait étre: chercheurs, étudiants,...

e Basé sur les processus: méme sur un PC avec utilisateur unique il va
y avoir des processus multiples. Qu'est-ce qui est plus prioritaire: le
mouvement de la souris ou envoyer les courriels?

Comment est-ce que 'on assigne les priorités?

e Statiquement: chaque processus qui est créé par un processus a
priorité X’ se voit assigné la priorité X’

e Dynamiquement: Réagit pour donner au processus interactifs une
priorite accrue
» Met la priorité a 1/fou fest la fraction du dernier quantum qu'un

processus a utilisé ... les commandes courtes font qu'un processus a une
plus haute priorité

/

Ordonnancement des systemes interactifs

Ordonnancement par priorité: combien de temps on
va laisser les processus s'exécuter? Quelques choix:

e A jamais jusqu’a ce que un processus de plus haute
priorité arrive

e Pour un quantum, potentiellement plus de quantums
donnés aux processus a plus hautes priorités

e Diminue la priorité d'un processus chaque tic d’horloge
jusqu’a ce que sa priorité soit plus basse qu'un autre
processus (ie: on avance vers les processus de plus basse
priorité)

/ |

Ordonnancement des systemes interactifs

Ordonnancement par priorité: hybride avec Round-
Robin

e Avoir Round-Robin dans chaque groupe de priorité et
exécute seulement les processus dans le groupe le plus

haut
» Probleme: Les processus avec les priorités les plus basses
peuvent souffrire de famine...

Queue Runable processes
headers . A

Priority 4 (Highest priority)

Priority 3

Priority 2

Priority 1 (Lowest priority)

Ordonnancement avec files multiples

plus haute priorité

' pRCcessUs SYs teme

g processus batchs
|

processus des étudiants

plus basss priarite

Files multiples et a retour

Un processus peut passer d'une file a I'autre, par
exemple quand il a passé trop de temps dans une file

A déterminer:
e nombre de files
e algorithmes d'ordonnancement pour chaque file

e algorithmes pour décider quand un processus doit passer
d’'une file a I'autre

e algorithme pour déterminer, pour un processus qui devient
prét, sur quelle file il doit étre mis

/\/

Files multiples et a retour

PRIO=0

PRIO =1

PRIO =2

Fl | | -
tranche detemps = 8 i—‘

L
-
— tranche de temps =16 E—‘

m Z i -

e

Exemple de files multiples a retour

Trois files:
e (Q0: tourniquet, quantum 8 msecs
e Q1: tourniquet, quantum 16 msecs
e Q2: FCFS
Ordonnancement:
e Un nouveau processus entre dans Qo, il recoit 8 msecs d 'UCT

e S'il ne finit pas dans les 8 msecs, il est mis dans Q4, il recoit 16
msecs additionnels

e S’il ne finit pas encore, il est interrompu et mis dans Q2

e Si plus tard il commence a demander des quantums plus
petits, il pourrait retourner a Qo ou Q1

// |

En pratique...

Les méthodes que nous avons vu sont toutes utilisées
en pratique (sauf le plus court en premier pur qui est
impossible)

Les SE sophistiqués fournissent au gérant du systéme
une librairie de méthodes, qu’il peut choisir et
combiner au besoin apreés avoir observé le
comportement du systeme

Pour chaque méthode, plusieurs parametres sont
disponibles: par exemple la durée du quantum.

Meécanismes cache

Mécanisme :

mémoire virtuelle s —

/ 7

Gestion de mémoire: objectifs

Optimisation de l'utilisation de la mémoire
principale = RAM

Les plus grand nombre possible de processus actifs
doit y étre gardé, de facon a optimiser le
fonctionnement du systéme en
multiprogrammation

e garder le systeme le plus occupé possible,
surtout 'UCT

 s'adapter aux besoins de mémoire de l'usager

» allocation dynamique au besoin

e

-A estion de la memoire

Qu’est-ce que les SE font quand ils executent des programmes

qui demandent de la mémoire qui excede leurs capamtes’)

- Une partie du
programme ou la
totalite est permute
au disque (swapped)
- On a besoin

de quelque chose
pour gerer le
mouvement des
programmes entre
le(s) disque(s) et la
memoire

operating B el
system
| = process P,
(1)swap out
—— s —
. P process P,
sSwap ir

I
user B e

v e backing store

main memory

La partie du systeme
d’'exploitation qui fait cela s'appel
le gestionnaire de mémoire.

/ 7

Gestion de la mémoire

Trouver de la mémoire libre pour un module de
chargement:

contigue ou
non contigue

En premier on considére deux systemes simples:
e Monoprogrammation
e Partitions fixe

En grande part, utile pour les systémes par lots (batch)

Quand les processus sont chargés en mémoire ils
sexécutent jusqu’a la terminaison

/ |

/

Multiprogrammation

Comment organiser la mémoire de maniere a faire cohabiter
efficacement plusieurs processus tout en assurant la protection des
processus ?

Multiprogrammation sans va-et-vient. Ex : moniteur MS DOS
e Un processus chargé en mémoire y séjournera jusqu‘a ce qu'il se
termine

Multiprogrammation avec va-et-vient : réutilisation de l'espace
memoire
e Un processus peut étre déplacé temporairement sur le disque
(mémoire de réserve : swap area ou backing store) pour permettre le
chargement et donc I'exécution d'autres processus. Le processus
déplacé sur le disque sera ultérieurement rechargé en mémoire pour
lui permettre de poursuivre son exécution.

/
Gestion de la memoire contlgue

Monoprogrammation sans permutation ou
pagination

e ['arrangement le plus simple possible

e Seulement un programme va s’exécuter a la fois

 Le SE copie le programme du disque en mémoire
et 'exécute. Quand c’est fini, le SE est prét a
accepter une nouvelle commande de I'utilisateur

e Le nouveau programme écrase le dernier
programme en memoire

e Trois configurations

/ .

° V4 ° ° ()
Gestion de la memoire contigué
DXFFF -
Operating Device
system in drivers in ROM
ROM
User
program Usiar
program
User
program
Operating Operating
system in system in
RAM RAM
0 0 0
(a) (b) (c)

a) Rarement utilisé de nos jours
b) Utilisé dans les baladeurs MP3, les ordinateurs de poche (Palm)
c) Etait le modéle initiale pour les PCs, ex: DOS

ation contigue * Ire

Nous avons ici 4 partitions pour des programmes -
chacun est lu dans une seule zone de mémoire

e

Adresses memoires

En général on compile tous les programmes
avec des adresses [ogiques qui sont relatives
a I'adresse de base: zéro. Les adresses
physiques sont calculées durant 'exécution
du programme

e La conversion des adresses est fait par une piece
de matériel que 'on appel Unité de gestion de la
mémoire (Memory Management Unit) (MMU)

e Le MMU prend les adresses logiques du
processus et les transforment en adresses
physique dans le RAM

10

Arriere-plan

Les adresses qui sont
The CPU sends virtual

dOnnées au MMU sont CPU addresses to the MMU
package
connues comme des /
g CPU
adresses virtuelles ou A" Memory Disk
v L management Memory controller
adresses logiques < unit
Le MMU produit une e l }
adresse physique % Bus
’ i The MMU sends physical
L Ladresse thSqu.e est addresses to the memory

dans le RAM

11

—

Définition des adresses

e Une adresse [ogique est une adresse dun
emplacement dans le programme

o par rapport au programme lui-méme seulement
« indépendante de la position du programme en
mémoire physique

e Une adresse physiques est une adresse réelle de
la RAM

Les adresses physiques sont calculées durant
I'exécution du programme

12

/ﬂ
Traduction adresses logiques =2 physiques

Les registres matériels permettent de délimiter le domaine
des processus;

Le matériel compare les adresses émises par le processus aux
registres de base et de barriere ;

Registre de base contient I'adresse de base du processus en
mémoire qui permet de décrire la zone d’adressage d'un
programme, la plus petite adresse légale

Registre barriere contient une adresse limite qui peut étre
comparée a toute adresse d’instruction ou de données

manipulées par un programme. (taille de la plage accessible)
13

P

Traduction adresses logiques =2 physiques

14

e

Traduction adresses logiques = physiques

Eviter la translation
d’adresse au cours du

s relocation
chargement d’un register
Processus
14000
logical physical

address address
CPU + > memory
346 14346

MMU

15

/ 7

Liaison (Binding) d’adresses logiques et
ohysiques

La liaison des adresses logiques aux adresses physiques
peut étre effectuée a des moments différents:
e Compilation: quand I'adresse physique est connue au
moment de la compilation (rare)
 p.ex. parties du SE

e Chargement: quand l'adresse physique ou le progr est chargé
est connue, les adresses logiques peuvent étre traduites (rare

aujourd’hui)
e Exécution: normalement, les adresses physiques ne sont
connues qu'au moment de | ‘exécution

« p.ex. allocation dynamique

16

/
Chargement et liaison dynamique

Un processus s'exécutant peut avoir besoin de
différents modules du programme en différents
moments

Le chargement statique peut donc étre inefficace

[l est mieux de charger les modules sur demande =
dynamique
e dll, dynamically linked libraries

17

/ |

Gestion de la mémoire contigué

Multiprogrammation avec partitions fixes

e Pour exploiter les bénéfices de la multiprogrammation
nous avons besoin d’avoir plus d'un programme en
mémoire a la fois

e Solution simple (pour les systémes par lots): diviser la
mémoire en n partitions et de mettre le prochain
programme qui arrive dans la plus petite partition qui
peut la contenir

18

Partitions fixes

Premiére organisation de
l'allocation contigué
Mémoire principale
subdivisée en régions
distinctes: partitions

Les partitions sont soit de
méme taille ou de tailles
inégales

N’'importe quel programme
peut étre affecté a une
partition qui soit
suffisamment grande

Operating System
8 M

Equal-size partitions

Operating System
8 M

2M

4 M

6 M

Unequal-size partitions

19

/ '

“Algorithme de placement pour partitions

fixes
Operating
Vi . Gy System
Partitions de tailles inégales: T
utilisation de plusieurs queues T —»
¢ assigner chaque processus a la ITITTTT—»
partition de la plu§ petite taille T
pouvant le contenir
¢ Une file par taille de partition . New -
rocesses

¢ tente de minimiser la
fragmentation interne

¢ Probleme: certaines files seront
vides s’il n’y a pas de processus de
cette taille :fragmentation externe

EENENENN B

e »

~——Algorithme de placement pour partitions fixes

Partitions de tailles Operating
WA oy .) System
inégales: utilisation d'une

seule file

¢ On choisit la plus petite
partition libre pouvant New
contenir le prochain Processes L]
processus

¢ le niveau de
multiprogrammation
augmente au profit de la
fragmentation interne

21

Partitions fixes

Simple, mais...

Inefficacité de ’utilisation de la mémoire: tout

programme, si petit soit-il, doit occuper une
partition entiere. 1l 'y a fragmentation interne.

Les partitions a tailles inegales atténue ces
problemes mais ils y demeurent...

22

/ |

Partitions dynamiques ou variables

Partitions en nombre et tailles variables

Chaque processus se voit alloue exactement
la taille de mémoire requise

Probablement des trous Inutilisables se
formeront dans la mémoire: ¢c’est la
fragmentation externe

23

///

ermutation

Les systémes antérieurs étaient plus simples parce que
quand les programmes étaient chargés en mémoire, ils
étaient laissés la jusqu’a leur terminaison

Quand nous n'avons pas assez de mémoire principale
pour garder touts les processus actifs en mémoire,
nous devons les permuter entre la mémoire principale
et le disque...

La permutation d'un processus consiste a amener un
processus du disque a la mémoire dans son entiereté.
Le processus est exécuté pour un temps et remis sur le
disque

/
_Partitions dynamiques: Permutm

Operating . Operating Operating Operating
System 128K System System System
Process | 320K Process 1 320K Process 1 320K
ROAK Process 2 224K Process 2 224K
S5T6K
157K Process 3 285K
(5514
(a) (b) (c) (d)

(d) 1y a un trou de 64K apres avoir chargé 3 processus: pas assez
d’espace pour autre processus

Si tous les processus se bloquent (p.ex. attente d’un événement), P2 peut étre

permuté et P4=128K peut étre charge.

Swapped out
25

“Partitions-dynamiques: Permutaflo/n

Operating Operating Operating Operating
System System System System
Process 2 224K
Process 1 320K Process 1 320K 20K
ik
Process 4 | 28K Process 4 | 28K Process 4 | 28K
224K
DEK 96K Uk
Process 3 2K Process 3 2REK Process 3 2REK Process 3 2HRK
(5514 4K K (5514

(e) (f) (2) (h)
(e-f) P2 est suspendu, P4 est chargé. Un trou de 224-128=96K est créeé (fragmentation
externe)

(g-h) P1 se termine ou il est suspendu, P2 est chargé a sa place: produisant un autre
trou de 320-224=96K...

Nous avons 3 trous petits et probablement inutiles. 96+96+64=256K de
fragmentation externe

COMPRESSION pour en faire un seul trou de 256K =

/

Permutation ou va-et-vient

La différence entre ce systeme et les
partitions fixes est que le nombre, la
location et la grandeur des partitions varient
dynamiquement

e Avantages:

« Une solution bien plus flexible
o Une meilleur utilisation de la mémoire

e Desavantages:
o Plus compliqué a implémenter

» Il peut y avoir des “trous” laissés dans la mémoire, qui
peuvent étre compactés pour corriger le probléme

27

/

Permutation — Combien de mémoire

Combien de mémoire devrait-on assigner a
un processus quand il est permuté dans la
memoire?
e Si une grandeur de données fixe peut étre
déterminé alors cette grandeur exacte est allouée

e Cependant, si un processus a une pile et/ou un
tas (heap), alors nous devons lui allouer de
I'espace pour grandir pour empécher d’avoir a
déplacer le processus continuellement dans la
memoire

28

~ La Pile d’un processus

Données B

Données A

Données P

PILE

29

rmutation — Combien

emoilre

______ b

B

777,
______ -

A

Operating
system

+ Room for growth

» Actually in use

» Hoom for growth

+ Actually in use

B-Stack

} Room for growth

B-Frogram

V%%

A-Stack

} Room for growth

A-Frogram

Operating
system

Segment de données

Segment de données et pile

30

/ |

Permutation - Gestion

Avant d'implanter une technique de gestion de la mémoire
centrale par va-et-vient, il est nécessaire de connaitre son
état : les zones libres et occupées; de disposer dune
stratégie d’allocation et enfin de procédures de libération.
Les techniques que nous allons décrire servent de base au
va-et-vient; on les met aussi en ceuvre dans le cas de la
multiprogrammation simple ou plusieurs processus sont

chargés en mémoire et conservés jusqua la fin de leur
execution.

Deux méthodes:

e Tableaux de bits et

e listes chainées
31

Permutation - Gestion

Gestion de la mémoire avec tableaux de bits:

e Divise la mémoire en unites d’allocation tel que 4 octets ou
plusieurs kilooctets

e Utilise un tableau de bits avec des 1 pour designer les
unites alloués et des O pour désigner les unités libres

/

e De quelle grandeur sont nos unités d’allocation?

e

W,

C
1 1

%
7

IIIII

E
1

N/

[

11111000
11111111
11001111
11111000

T i

16

32

Permutation - Gestion

Gestion de la mémoire avec tableaux de bits:

e La plus petite est ’'unité d’allocation, le plus grand sera
le tableau de bits correspondant

e Cependant, méme avec des unites de 4 octets (32 bits)
on perd seulement 1/33 de la mémaoire

e Les unités qui sont larges nous font perdre la fin de la
derniere unité, ex: pour un unité de 64Ko, si nous avons
un programme qui a 65Ko, alors nous perdons 63
kilooctets!

33

/ 7

Permutation - Gestion

Gestion de la memoire avec tableaux de bits:
e Avantages:
« Facile a implémenter

- Le tableau de bits est de grandeur fixe, peu importe
combien de programme sont en mémoire

e Désavantage

« Peut prendre du temps pour chercher dans le tableau pour
trouver une série de 0 consecutifs pour placer un
programme

34

/‘
Permutation - Gestion

Gestion de la mémoire avec des listes chainées:

e Utilise une liste chainée pour repérer les blocs libres
et les blocs occupés

e Avantage: moins de recherche a faire

£t

A Va8, .S . V4, .°, E VA .

I
A4

C

Hl18| 2| &P |20|6| —4=| P |26| 3 | H 28| 3 | X
Hole Starts Length Process

at 18 2

35

/ |

Algorithmes de Placement

¢ “Best-fit”: choisir I’emplacement " "
dont la taille est la plus proche 12K g 12K

& “First-fit”: choisir le ler 2K N
emplacement & partir du début Beb

¢ “Worst-fit”: choisir I’emplacement rn >
dont la taille est la plus loin lock (1410

¢ Prochain trou (Next fit) — 8K -
amelioration First-fit. Programme o« o«

Inséré a partir de la derniere insertion
¢ Donne une petite augmentation de [] Atiocated block

performance sur First-fit K (] it .
(simulation Bays)
Placement rapide (Quick fit) — On R

garde les trou tel que 4KB, 8KB, etc ok

dans une liste séparée pour une 0K

localisation facile des trous (a) Before (b) After

¢ B,On a l’al!ocation, mais lent.p our la Example Memory Configuration Before

dé-allocation parce que plusieurs and After Allocation of 16 Kbyte Block

listes doivent étre réconciliés
36

/

Algorithmes de placement: commentaires

Quel est le meilleur?

¢ critere principal: diminuer la probabilité de situations ou un
processus ne peut pas €tre servi, méme s’1l y a assez de
mémoire...

La simulation montre qu’il ne vaut pas la peine d’utiliser les
algorithmes les plus complexes... donc first fit

“Best-fit”: cherche le plus petit bloc possible: I’espace restant
est le plus petit possible

+ la memoire se remplit de trous trop petits pour contenir un
programme

“Worst-fit”: les allocations se feront souvent a la fin de la
mémoire

37

/ 7

4ermutation - Gestion

Note finale sur les listes: on pourrait garder des listes
sépareées pour les trous et les processus

e Accélére la recherche de trous!

e Permet d'ordonner les trous par grandeur pour un allocation
encore plus rapide!!

e Plus compliqué pour la dé-allocation parce que la mémoire
qui devient un trou doit étre placée dans le bon espace sur
'autre liste (en ordre)...

38

e

Fragmentation: mémoire non utilisee

Un probleme majeur dans l'affectation contigué:

e [y a assez d’espace pour exécuter un
programme, mais il est fragmenté de facon
non contigue

- externe: l'espace inutilisé est entre partitions

» interne: I'espace inutilisé est dans les partitions

39

Compaction

Une solution pour la fragmentation externe

Les programmes sont déplacés en mémoire de fagon a réduire a
1 seul grand trou plusieurs petits trous disponibles
Effectué¢e quand un programme qui demande d’€tre exécuté ne

trouve pas une partition assez grande, mais sa taille est plus
petite que la fragmentation externe existante

Désavantages:

e temps de transfert programmes
e besoin de rétablir tous les liens entre adresses de différents
programmes

40

/ |

Allocation non contigué

Afin de reduire le besoin de compression, le prochain pas est
d utiliser ’allocation non contigué

e diviser un programme en morceaux et permettre | allocation
separee de chaque morceau

e les morceaux sont beaucoup plus petits que le programme
entier et donc permettent une utilisation plus efficace de la
meémoire
« les petits trous peuvent étre utilisés plus facilement

1l y a deux techniques de base pour faire cecli

 la segmentation utilise des parties de programme qui ont une valeur
logique (des modules)

e la pagination utilise des parties de programme arbitraires
(morcellement du programmes en pages de longueur fixe).

e Combinaison des deux techniques

41

~Affectation non contigué de mémoire

0
3
0
1
2 1
3
2

espace usager memoire physique

42

//\ ///

~ Segmentation

La segmentation est une division de
mémoire en segments, chacun
commencant a une adresse de base dans
la mémoire physique. Chaque processus
peut avoir plusieurs segments
e On doit maintenant spécifier un numeéro de
segment et un offset pour accéder a la
memoire
* Référé en tant que mémoire a deux
dimensions

43

Détails

['adresse logique consiste d 'une paire:
<No de segm, décalage>
ou décalage est | 'adresse dans le segment
le tableau des segments contient: descripteurs de segments
e adresse de base
e longueur du segment

 Infos de protection

Dans le PBC du processus il y aura un pointeur a 'adresse en
mémoire du tableau des segments

Il y aura aussi la dedans le nombre de segments dans le processus

Au moment de la commutation de contexte, ces infos seront
chargées dans les registres appropriés d UCT

44

/
//mm

Un tableau contient I’adresse de début de tous les segments dans un

processus
Chaque adresse dans un segment est ajoutée a |l 'adresse de début du
segment par la MMU -
oo
R
3
.*-":
& . : 1
segment courant)
> g 2

tableau de segments
memoire physique
45

segment O
\

T~

data 1 limit base

}
0| 25286 | 43062 4

segment 1 1 4425 | 68348 editor
segment table
process P.
logical memory i 68348 P
process P, -
003
data 2
98553
segment O
limit base

data 2

0| 25286 | 72773
1 8850 | 90003

segment 1

segment table
process F,

logical memory
process P,

physical memory

46

Segmentation —

Comment est-ce que les adresses sont traduites?

A T
limite | base
Adresses logiques
S Off Table de
egment set segments

Memoire
Physique

offset < limite?

TRAP, erreur d’adressage

47

Segmentation et protection

* Chaque entrée dans la table des segments peut

contenir des infos de protection:

e longueur du segment

o privileges de 1'usager sur le segment: lecture, écriture,
execution

» Siau moment du calcul de I'adresse on trouve que I'usager n'a

pas droit d’accés—>interruption

- ces infos peuvent donc varier d'un usager a autre, par rapport

au méme segment!

_?
48

" Segmentation

/ Sous-routine \ 1400
segment O 2400
pile 3200
Programme it base |
principal 0| 12000 | 1400 .
segmentl) 00 6300 segment
2| 400 | 4300
Racine| S€gment 2 3| 1100 | 3200 4300
carrée 4| 1000 | 4700 4700 | 220mENt 2
Table de segment 4
symboles
6300
segment 3 segment 1

6700

Espace d’adresses logiques _ ;
Mémoire physique

49

Segmentation
Avantages:
e [] peut étre possible d’agrandir ou de les
rapetisser

e On peut donner a chaque segment sa propre

information de protection ... Ceci est
beaucoup plus facile que d’ essayer de
protéger chaque page en mémoire

e Lier les programmes (linking) est une tache
triviale

 Le code peut étre partagé entre les processus
plus facilement. On charge le segment de
code seulement une fois. Les copies du méme
programme accéde le méme segment

50

ﬂ‘ N

~Partage de segments: le segment O est partagé

editor
segment O
data 1 limit base
0| 25286 | 43062+)
segment 1 4425 | 68348 editor
segment table
. process P,
logical memory o
process P,
editor e o
segment O
limit base

data 2

25286 | 43062 physical memory

8850 | 90003

segment 1

segment table
process F,

logical memory
process P,

P.ex: DLL utilisé par plus usagers

51

/
e Ty 5 5
-Evaluation de la segmentation simple

Avantages: l'unité d’allocation de mémoire (segment) est
¢ plus petite que le programme entier
¢ une entité logique connue par le programmeur
¢ les segments peuvent changer de place en mémoire
Désavantage: le probleme des partitions dynamiques:

¢ La fragmentation externe n'est pas eliminée:

trous en mémoire, compression?

52

Segmentation

Deésavantages:

e Tout comme les systémes de permutation, la
fragmentation peut gaspiller de la mémoire.

* Les segments peuvent étre trop larges pour
entrer dans la mémoire physique

Nous connaissons déja une solution pour
adresser les programmes qui sont plus
grands que la mémoire physique?

53

Memoire virtuelle —

La permutation de processus (entiers) nous a permit
d’avoir plus d’un programme en mémoire en meme
temps, mais nous n’avons pas adresse le probleme
d’un programme trop large pour la mémoire

La solution qui a fait surface s’appel la memoire
virtuelle. L’idée principale est de garder une partie
du programme en mémoire et une partie sur le disque

e Maintenant un programme de 16MO peut tourner
sur un systeme qui a seulement 4AMO de RAM!

e Et en plus on peut avoir une guantite de processus
qui tournent en méme temps et que la memoire
RAM ne peut contenir

54

/ 7

Meémoire virtuelle:

resultat d’un mécanisme qui combine la mémoire
principale et les mémoires secondaires

page 0

page 1

page 2

N

page n

virtual

memory

memory
map

physical
memory

55

e

Pagination

Les processus croient qu'ils peuvent accéder la
mémoire entiére qui leur est donnée, basé sur le
nombre de lignes d’adresses sur le matériel

Pour étre capable de donner des “sections” de mémoire
qui peuvent étre déplacées entre le disque et la
mémoire physique nous divisons I'espace d’adresses
virtuelle en morceaux que I'on appel pages

e Le morceau de mémoire physique qui correspond a
une page est un cadre de page (Page Frame) ou tout
simplement cadre

56

//-—:/./—\\ :

Pagination

Cet ordinateur en

particulier a seulement
32KO de RAM

Le MMU mappe les
adresses virtuelles
utilisées par le CPU en
adresses physiques qui
sont mises sur le bus

{' diata

CPU

virlwal

Jress ¥

physical

address

MMLU

Virtual
address
space

B0K-64K
56K-B0K
52K-56K
48K-52K
44K-48K
40K-44K
36K-40K
32K-36K
28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K
OK-4K

N|=||O|lR|W|X|X]|X|O]|X|N]|X]|X]|X]|x

} Virtual page

Physical
memory
address

28K-32K
24 K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K

}\DI{—4H

Page frame
57

e

Pagination

Manques (un X) veulent dire que la page
n'est pas en mémoire et le MMU Trap au SE
pour que la page soit chargée

e Ceci est un défaut de page

e Quand cela ce produit le SE charge la nouvelle
page dans un cadre de page (possiblement en
expulsant une page qui est en utilisation) et met
a jour le MMU avec la nouvelle information

 La place ou cette information est stockée s’appelle
Table de pages

58

Tables de pages

La table de pages stoc

k un nombre

d’entrées, une pour chaque page en

memoire virtuelle, Iinc

iquant si la page

est dans la memoire p
une table de pages est
chaque processus!)

nysique (notez qu’
requise pour

59

Page!
Page A en RAM et
sur disque

Page E seulement
sur disque

0

0
1
AN ~ o 2
S<. |~ ~valid-invalid ;
2 = < frame it~ < ~
Soe ¥ =7
c ~ -~ - =4 ~AN
0| 47 =
D 1 i 5
— - __ 2l 6| C
L 4 i !
51 9 |v 8
G ,
6 I 9 =
H 7 i
10
logical page table
memory 11
12
13
14
15

ol

physical memory

60

////—_,

/V

Exemple de chargement de processus

Frame
number

=1 2N o e D

—
[T e B T .

13
14

Main memory

=1 2o B e D

=]

L=

[
=

(=
(=

(=
[S¥]

13

14

(a) Fifteen Available Pages

Main memory

AN

A.l

A2

AJ

ib) Load Process A

=1 2o s h =D

o
[T s BN .

13
14

Main memory

A0

A.l

A2

Al

B.0O

B.1

B.2

(b) Load Process B

=102 U s w e D

o
[T e B .

13
14

/ |

Main memory

A0
A.l
A2
Al
B.0
B.1
B.2
C.0
C.1
=l
C.3

(d) Load Process C

Supposons que le processus B se termine ou est suspendu

61

/

Exemple de chargement de processus

Nous pouvons main_tenant Main memory Main memory
transferer en mémoire un 0 A0 0 A0
processus D, qui demande 5 1 Al 1 Al
cadres Z A2 2 A2
: - : 3 A3 3 A3
¢ bien qu’iln'y ait pas 5 4 4 D.0
cadres contigus disponibles 5 3 D.1
; 6 6 D.2
I_.a fragmentatlon externe est 7 CO0 7 C.0
limitée au cas que le nombre 8 C.1 8 C.1
de pages disponibles n’est 13 C2 13 C.2
g % g, C.3
pas suffisant pour exécuter i " =
un programme en attente 12 12 D.4

Seule la derniére page d’un i: L:

processus peut souffrir de
frag mentation interne (e) Swap out B (f) Load Process D

62

ﬂ"
Table de pages

page 0

page 1

page 2

page 3

logical
memory

N = O

N|lo|ls|=

page table

frame
number

0

page 0

page 2

page 1

page 3

physical
memory

63

/

Table de pages

0, 0 0 — 0 0, 4 13
1 1 1| — 1 B 1| 5 14
2 2 2 2 Free f
3 .S Process B 3 10 3] 11 I'Efii;;ame
Process A page table Process C 4 12
page table page table Process D
page table

Le SE doit maintenir une table de pages pour chaque
processus

Chaque entrée d’une table de pages contient le numéro de
cadre ou la page correspondante est physiguement
localisée

Une table de pages est indexée par le numero de la page
afin d’obtenir le numéro du cadre

Une liste de cadres disponibles est également maintenue

(free frame list) 64

/ |
e —

Logical address =

Adresse |ogique (pag | natiOn) Page# = 1, Offset = 478

(000001/0111011110]|
[
L’adresse logique est facilement
traduite en adresse physique car Ec-{
la taille des pages est une &
puissance de 2
L’adresse logique (n,d) est F <
traduite en adresse physique - N
(k,d) en utilisant n comme index 25
sur la table des pages et en le
remplacant par I’adresse k)
trouvéee
¢ d ne change pas Eﬁ 4 g
-
\ - &

(page size = 1K) =

// |

/

Adresse logique

Donc les pages sont invisibles au programmeur,
compilateur ou assembleur (seule les adresses

relatives sont employées)
La traduction d’adresses au moment d’exécution est
facilement réalisable par le matériel:

¢ I'adresse logique (n,d) est traduite en une adresse

physigue (k,d) en indexant |la table de pages et en
annexant le méme décalage d au numeéro du cadre k

Un programme peut étre exécuté sur différents matériels
employant dimensions de pages differentes

66

Meéecanisme: matériel

logical physical
address address

physical
cru e[T T e

g

| f

page table

Traduction d’adresses: pagination

nous ajoutons le décalage a I’adresse de la page.

67

Tables de Pages

Quelles sont les entrées dans la table de pages?

 Bit de présence (pour que I'on puisse savoir si on va sur le
disque ou non...aussi appelé bit de validité)

e Bit de modification (Dirty bit) (pour que l'on puisse
savoir si la page a été modifiée et doit étre réécrite sur le
disque durant la pagination.)

e Bit d’utilisation? (nous aide a décider quelle page nous
allons permuter... nous allons en voir plus sur cela avec les
algorithmes de remplacement de pages)

- Bit est mise a jour par une lecture ou une écriture

e Bits de protection - Peut spécifier quest-ce que

l'utilisateur peut faire avec la page ie: lire / écrire / exécuter

68

/ 7

Tables de Pages

Ou ailleurs pourrait-on stocker I'information de la
table pour le processus courant?
e Dans la mémoire principale
 Plus lent que les registres

e Sur le disque

» Vraiment trop lent pour nos besoins, mais on peut tricher un
peut

e Une combinaison

« Une mixture de registres, mémoire, et disque peut étre utilisée
dans un systéme (pagination a niveaux multiples).

69

—

Exécution d’une défaut de page:

va-et-vient plus en détail

page is on
backing store

— AN

operating
system :
reference trap

®
n K

load M et

restart page table
instruction

free frame |4

&) O

reset page bring in
table missing page

physical 70
memory

/
I,_,//’//—$) //
Séquence d’événements pour

défaut de page

Trappe au SE: page demandée pas en RAM
Sauvegarder le PCB

Un autre processus peut maintenant avoir 'UCT
SE trouve la page sur disque

lit la page du disque dans un cadre de mémoire libre (supposons qu'il y
en un!)

e exécuter les opérations disque nécessaires pour lire la page
L'unité disque a complété le transfert et interrompt 'UCT
e sauvegarder le PCB du processus s'’exécutant

SE met a jour le contenu du tableau des pages du processus qui a causé
le défaut de page

Ce processus devient prét=ready
la page désirée étant en mémoire, il pourra maintenant continuer

71

Quand la RAM est pleine et que nous avons besoin d une
page qui ne se trouve pas en RAM

PC

0 H

1| load M
>

2 J

3 M
logical memory

for user 1

0 A

1 B

2 D

3 E

logical memory
for user 2

valid—invalid

frame
\

bit

J

v

\"

3
4
5

v

page table
for user 1

valid—invalid

frame
\

bit

/

6

\"

2

\"

7

\

page table
for user 2

monitor

physical
memory

72

> -
- La page victime...

frame\ / valid—invalid bit

swap out
o |i to invalid @ page
f v
@ f | victim
reset page
table for
page table
new page

swap
desired
page in

physical
memory

73

/ |

Algorithmes de replacement de pages

On se rappel: la pagination suit un ensemble de
regles:
e Elle permet a un programme d’étre chargé en mémoire
une page a la fois
e [l ya une table qui identifie quelle page est chargée dans
quel cadre

e Quand une page est demandée et qu'elle n'est pas en
mémoire physique, un défaut de page se produit

 Le SE doit maintenant charger la page dans la mémoire. Si il n'y
a pas de cadre libre, une page doit étre évincée de la mémoire.
Quelle page est choisit pour étre évincée?

74

/
Algorithmes de replacement de pages

[l existe un ensemble d’algorithmes qui peuvent
étre utilisés pour choisir quelle page va étre la
meilleure candidate pour lI'éviction

Considérations:
 Les pages qui ont été modifiées doivent étre écrites
sur le disque avant l'éviction

e Lutilisation de I'information d’état tel que les bits
d’utilisations (used) et de modifications (dirty) vont
étre utiles pour prendre cette décision

e Ces algorithmes sont applicables a d’'autres domaines
de recherche: caches, serveurs Web, etc...

75

\/
,, ﬂ 3

Criteres d’évaluation des algorithmes

Les algorithmes de choix de pages a remplacer doivent
étre concus de facon a minimiser le taux de défaut de
pages a long terme

Mais il ne peuvent pas impliquer des temps de systéme
excessifs, p.ex. mise a jour de tableaux en mémoire
pour chaque accés de mémoire

76

/ |

Exemple pour évaluation des algorithmes

Nous allons expliquer et evaluer les algorithmes en utilisant
la chaine de référence pages suivante :

25021 35 2 1 580 5 7

Attention: les séquences d’utilisation pages ne sont pas
aleatoires...

[’évaluation sera faite sur la base de cet exemple,
evidemment pas suffisant pour en tirer des conclusions
générales

77

/ 7

Algorithmes de replacement de pages

['algorithme de remplacement de pages
optimal
e Un algorithme théorique qui représente la

décision absolue, sans aucun doute, le meilleur
choix pour évincer une page

e On évince la page qui serait la derniére a étre
utilisée, basé sur les pages en mémoire a l'instant
de la décision

78

Algorithmes de replacement de pages

L'algorithme de remplacement de pages optimal

e Est-ce que nous pouvons implémenter cet algorithme?

« Absolument pas. Si nous pouvions déterminer quand
chaque page est requise dans le futur basé sur l'état
courant, l'algorithme serait facile a implémenter.

e Cependant, si un programme est utilisé pour un
ensemble particulier d’E/S, il est possible de tracer
quelles pages sont requises et dans quel ordre

 Cet enregistrement peut étre utilisé pour des tests de
performance pour comparer nos algorithmes réalisables a
ceux l'algorithme optimal

79

/
Algorithmes de replacement de-pages

Premier arrivé, premier sortie PAPS (FIFO)

e Facile a implémenter. Garde une liste de toutes les
page en mémoire en ordre quelles sont arrivées

e Sur un défaut de page, la page la plus vielle est
enlevée et une nouvelle page est ajoutée a la fin de
la liste

e Avantage: Tres facile a implémenter

e Désavantage: Aucune facon de déterminer si la page
qui est enlevée est en tres utilisée ou pas. L'age peut
étre une indication mais n'est pas nécessairement la
meilleure indication de l'utilisation d'une page

80

e

Algorithmes de replacement de pages

Algorithme de deuxiéme chance

e Cet algorithme est une modification du PAPS pour le
rendre possiblement plus raisonnable

e Avant d’évincer la page la plus vielle, on vérifie la bit
d’utilisation
« Si la page est en utilisation, méme si elle est vielle, elle se voit
donner une deuxiéme chance et son entrée est déplacée vers la
fin de la liste, ce qui a pour effet de la rendre comme une
nouvelle page. Son bit d’utilisation est remis a zéro a ce moment
e Larecherche continue de cette facon jusqua ce quune
veille page qui n'a pas été utilisé est trouvé

81

e

Algorithmes de replacement de pages

Algorithme de remplacement de pages de 'horloge

e L’algorithme de la deuxiéme chance peut étre lent parce
qu’il déplace constamment les pages dans la liste chainée
pour garder les pages dans le bon ordre.

e Une meilleur approche est de garder les entrées de pages
dans une liste circulaire (on peut penser a une sorte
d’horloge). Une main pointe a la page la plus vielle.

e Cette main n'est rien de plus qu'un pointeur a une entrée
dans la liste de pages en mémoire

82

e

Algorithmes de replacement de pages

L'algorithme de I'horloge

e Quand un défaut de page est détecté, la page qui est
pointée par la ‘main’ est inspectée. Si elle n'a pas été
utilisée, elle est évincée et la main avance a la prochaine
position

e Si la page est en utilisation, le bit d'utilisation est remis a
zéro et la main est avancé a la prochaine position pour
faire une autre vérification

e Ceci continue jusqu’a ce qu'une page soit trouvée pour
étre evincee

83

Algorithmes de replacement de pages

When a page fault occurs,
the page the hand is
J D pointing to is inspected.

The action taken depends
on the R bit:
R = 0: Evict the page
R = 1:Clear R and advance hand

84

/ 7

Algorithmes de replacement de pages

['algorithme de remplacement de la page la moins
récemment utilisée (MRU) (LRU)

e Une bonne approximation de lI'algorithme optimal est
quune page qui a grandement utilisée les dernieres
instructions va probablement étre grandement utilisée
dans les quelques prochaines instructions (et le
contraire est vrai)

e Donc, quand un défaut de page ce produit, on évince la
page qui n'a pas été utilisé pour le plus long temps

« Comment est-ce que cela différe de PAPS?

85

e

Comparaison OPT-LRU

Exemple: Un processus de 5 pages s’il n’y a que 3 pages
physiques disponibles.
Dans cet exemple, OPT occasionne 3+3 defauts, LRU

3+4.

Page address
dreem 2 3 2 1 5 2 4 5 3 2 5 2

e R BE N B B R EE) R O
OPT g B3| 5 g 3 5 3 Eg bz [
E E B e e P B B

F F F
E B B T T T R B B
LRU 3| (30 (3] [5] [5] 5] [5] [5]|[5] [5] [5
E BE B B R B B B B

F F F F

/ |

Comparaison de FIFO avec LRU
Page address

stream 2 3 2 1 5 2 4 5 3 2 5 2
2 B B B B N B B B 3] [3
LRU 3 3 3 5 5 5 5 5 5 5 5
1 1 1 4 4] [4 2] [2 2

F F F F
2 2] [2] [2 5 5 5 5 3] [3 3] [3
FIFO 3 3 3 3 2 2 2 2 2 5 5
1 1 1 3 4] [4 4 4 2
F F F F F F

Contrairement a FIFO, LRU reconnait que les pages 2
and 5 sont utilisées fréequemment

La performance de FIFO est moins bonne:
dans ce cas, LRU = 3+4, FIFO = 3+6 -

Algorithme de I’horloge

next frame
pointer

(a) State of buffer just prior to a page replacement (b) State of buffer just after the next page replacement

La page 727 est chargée dans le cadre 4.
La prochaine victime est 5, puis 8.

88

/f
Comparaison:-Horloge, FIFOet LRU //

Page address
stream 2 3 2 1 5 2 4 5 3 2 5 2
o 2 7]] D 2]] 3 7] 3 3
LRU 3 3 3 5 5 5 5 5 5 5 5
1 1 1 4 4 4]) 2
F F F F

v P J] 5 5 5 3 3 7] 3 3
FIFO 3 3 3 3 2 2)]) 5 5
1 1 1 4 4 4 4 4 2
F F F F F F
2% 2 2% || 2% 5% 5% | o 5% | p[5% 3% 3% [p[3% | [3F
CLOCK —» 3% R 3| » 3 2% 2% 28 w2l 3y o 2%
- b) 1% 1 | 1 4 4% 4 4 5% 5%

F F F F F

Asterisque indigue que le bit utilisé est 1

L’horloge protege du remplacement les pages
frequemment utilisées en mettant a 1 le bit “utilisé” a
chaque référence

LRU = 3+4, FIFO = 3+6, Horloge = 3+5

89

- = = . .
histoire jusqu’a maintenant...

La solution de la mémoire virtuelle jusqu’a maintenant
est la pagination

 La pagination est un modele de gestion de la mémoire
qui est “plat” ce qui veut dire que les programmeurs
volent les adresses qui commencent a 0 jusqu’a une
adresse maximum

e Pour certaines applications, il pourrait étre utile de
permettre différents espaces de mémoire a 1’intérieur
d’un seul processus...

« Par exemple, dans un programme il pourrait y avoir des
espaces de mémoire distincts pour le texte du programme, la
pile et le tas

90

/
Segmentation avec pagination!

Pour obtenir le meilleur des deux mondes, les
segments peuvent étre pagines
e Elimine le probléme de la fragmentation
e Permet a des segments larges a étre partiellement en
meémoire
Requuis:
e Chaque processus a besoin d'une table de segment
 Cette table méme peut étre segmentée et paginée!

e Chaque entrée dans la table de segment pointe a la
table de pages pour ce segment

» Tout comme avant, ceci peut étre une table de pages
multiniveaux

91

Chapitre 4

Systemes d’entrée/sortie
Systemes de fichiers
Structure de memoire de masse (disques)

1. Systémes d’entrée/sortie

Concepts importants :
Matériel E/S
Communication entre UCT et controleurs périphériques
DMA
Pilotes et controleurs de périphériques

Sous-systeme du noyau pour E/S
e Tamponnage, cache, spoule

/ |

Catégories de périphériques d’E/S

Les périphériques d’E/S viennent en deux types généraux:
e Périphériques par blocs
e Périphériques par caractéres
Les périphériques par blocs stockent les données en blocs
de taille fixe, chacun possédant sa propre adresse

e Les disques sont la représentation la plus courante des
périphériques de blocs

e Parce que chaque bloc est adressable, chaque bloc peut étre
indépendamment lu/écrit des autres blocs

Catégories de périphériques d’E/S

Les périphériques par caracteres acceptent et fournissent
des flots de caractéres sans aucune structure

e Non adressable
e Aucune opération de recherche (seek)

e Exemples: souris, imprimante, interfaces de réseau,
modems,...

Certains périphériques chevauchent les frontiéres:

 les bandes magnétiques pour sauvegarder entreposent des
blocs de données de disques, mais l'accés est séquentiel

Certains périphériques ne font pas dans les modéles:

e Ecran: n'ont pas de blocs ou de flots, mais ont de la mémoire
mappee

Contrdleurs de périphériques

On se rappel: Les périphériques d’E/S ont
typiquement une composante mecanique et une
composante électronique

e La partie électronique est le controleur

Hard

Floppy ; :
Keyboard disk trive disk drive

5 /*W\—\ (|
9 S SRR = noooo

Video Keyboard FlopRy Hara

disk disk
controller controller

controller controller

/ |

Controleurs de périphériques

Sur un PC, le controleur de périphérique est
habituellement sur un circuit imprimé

e Il peut étre intégré sur la carte mere

Le job du contréleur est de convertir un flot de série de
bits en octets ou en blocs d’octets et de faire les
conversions et corrections

e En fin de compte tous les périphériques traitent des bits.
C’est le controleur qui groupe ou dégroupe ces bits

/>
Le logiciel d’E/S ont des couches

Pilotes de périphériques
e Chaque périphérique d’E/S attaché a l'ordinateur
requiert du code spécifique pour faire I'interface
entre le matériel et le SE. Ce code s’appel pilote de
périphérique
» Ceci est parce que au niveau du matériel, les

périphériques sont radicalement différents les uns des
autres

« Parfois un pilote va prendre soins d'une classe de
périphériques qui sont proche ex.: un nombre de souris
e Les pilotes de périphériques sont normalement
produit par le manufacturier du périphérique pour
les SEs populaires

//

Le logiciel d’E/S ont des couches

Que font les pilotes de périphériques?

e [Is acceptent les commandes abstraites de
lecture/écriture de la couche supérieure

e Fonctions assorties:
« Initialise le périphérique

 Gere la puissance - Arréte un disque de tourner,
ferme un écran, ferme une caméra, etc.

/

Le logiciel d’E/S ont des couches

Qu'est-ce qu'un pilote fait sur une lecture/écriture?
o Vérifie les parameétres d'entrée & retourne les erreurs

e Converti les commandes abstraites (lit du secteur) en
commandes physiques (téte, traque, secteur, et
cylindre)

e Met les demandes dans une queue si le périphérique est
occupe

e Amene le périphérique en état de fonctionnement si
requis

e Controle le périphérique en envoyant des commandes
par les registres de contréle

e

Le logiciel d’E/S ont des couches

Qu'est-ce que un pilote fait sur une lecture/écriture?

e Quand une demande est envoyée, une des deux
solutions possibles peut arriver:

« Le pilote doit attendre pour la demande se termine,
donc le pilote bloque. Ilva se réveiller plus tard,

« Le résultat est instantané (ex.: écriture dans l'espace
de mémoire de 'écran) donc le travail continue
jusqua ce que I'E/S soit terminé

10

Structure de mémoire de masse
(disques magnétiques)

Plats rigides couverts de matériaux d ‘enregistrement
magnetique
e surface du disque divisée en pistes (tracks) qui sont
divisées en secteurs

e le controleur disque détermine 1'interaction logique
entre | 'unité et 1 ‘ordinateur

11

Nomenclature

cylindre: ’ensemble de pistes qui se trouvent
dans la méme position du bras de
lecture/éecriture

actuator

) read-write
— spindle head

track t

T TS
T I

sector s

cylinder c

— o s LI

platter

rotation

Vue schématique d’un disque dur

Vue de dessus ——arotation
Piste

Secteu
r

|
\A Blo

c

Plateau Téte de
/ lecture/écriture
CoO——————————

/

Surface |
S

|

T

Vue en coupe Cylindre _

Cvlindres — Secteurs - Clusters

Cylindre: un tour de disque

Cluster: Un groupement de secteurs

Secteur: Un subdivision d’un cylindre (512 Kilooctect)

Low Level Format = Division d’'un disque en secteurs

Adresse Les Données CRC
Cylindre téte Structure, programme ou Correction
Secteur données d’erreur
Low level Application ou systéme A I'écriture
format

2000 Heow Stwuff Works

14

L
o)
o
o
50
ldr
n_brm
: 5,
icd
w MSmC(
S)/
. <o
o

~
(@)
~—

~—

http://upload.wikimedia.org/wikipedia/commons/d/d7/Disk-structure.svg

evue des disques magnetiques

== Read/write head (1 per surface)

Surface 7 = | T

S
Surface 6 =
Surface 5

TS
Surface 4 =
Surface 3 A ——

D Direction of arm motion

Surface 2
Surface 1 X
Surface 0
* Les disques sont organisés en cylindres, pistes et
secteurs

J

16

Y /
Revue des disques magnetiques

|

Toutes les pistes pour une position

Py donnée du bras forment un
@> cylindre.

e Donc le nombre de cylindre est

— .
Cw >> égale au nombre de piste par coté

de plateau

— e La location sur un disque est
@ spécifié par (cylindre, téte, secteur)

mais en erreur par: (cylindre, piste,

@ secteur)

17

Sous-systeme E/S du noyau

Fonctionnalités:
e Mise en tampon
e Mise en cache
* Mise en attente et réservation de périphérique
e Gestion des erreurs

18

Structure typique de bus PC

TR

monitor processor
cache
raphics controller bridge/memory memor SCSI controller
g controller M
(] PCI bus
IDE disk controller expansion bus interface keyboard

@ @) expansion bus
@ @ parallel serial
port port

PCI: Peripheral Component Interconnect

e

Communicationentre UCT et controleurs—
périphériques

Deux techniques de base:
e UCT et contrdleurs communiquent directement par des registres
e UCT et contréleurs communiquent par des zones de mémoire centrale

e Combinaisons de ces deux techniques

contr.

UCT

Périfer.

20

/ 7

Acces direct en mémoire (DMA)

Dans les systemes sans DMA, 'UCT est impliquée dans
le transfert de chaque octet

DMA est utile pour exclure I'implication de 'UCT
surtout pour des E/S volumineuses

Demande un contréleur spécial a acces direct a la
mémoire centrale

21

Acces directe a la mémoire (DMA)

DMA est utilisé pour libérer le CPU d’avoir
a déplacer des octets du périphérique vers
la mémoire

e Cela demande une autre piece de matériel
appelé un contréleur DMA

e Le SE/CPU charge les registres du contréleur
DMA avec l'information nécessaire pour
lI'instruire de quel périphérique prendre/passer
les données, ou les mettre en mémoire et
combien d’octets doivent étre écrit/lu

22

@ & Drive

1. CPU
programs DMA Disk Main
CPU the DMA controller controller memory

controller g Buffer

Address

Count
Control 4. Ack 4
4

|]
Interrupt whenJ L 2. DMA requests J
Y

done transfer to memor L3 Data transferred .

r-—-h"-

- BLIs

23

EEEEE—— i
DMA: six étapes

1. device driver is told to
transfer disk data to
buffer at address X CPU
5. DMA controller transfers 2. device driver tells disk
bytes to buffer X, controller to transfer C |
increasing memory bytes from disk to buffer cache
address and decreasing at address X
CuntiC=0
6. when C = 0, DMA DMA/bus/interrupt — X
interrupts CPU to signal controller 3_ FEERCEEATS memory | buffer
transfer completion
] PCl bus

3. disk controller initiates
DMA transfer

4. disk controller sends
each byte to DMA
controller

IDE disk controller

@) @
0% (@

e

DMA: six étapes

1- CPU demande au pilote du périphérique (disque)
(software) de transférer les données du disque au buffer
a I'adresse x

2 - Le pilote du disque demande au controleur du disque
(hardware) de transférer c octets du disque vers le buffer
a I'adresse x

3 - Le contréleur du disque initie le transfert DMA

4 - Le contréleur du disque envoie chaque octet au
contréleur du DMA

5 - Le controleur DMA transfert les octets au buffer x en
augmentant I'adresse x et décrémentant le compteur c

6 - Lorsque c=0 DMA envoie une interruption pour
signaler la fin du transfert

25

e

M e S

Tampons de disques

Les disques ont besoin de tampons pour
deux raisons principales:

e Tamponner les données qui arrive plus vite que
I'on peut les transférer au systéme
d’exploitation et vice-versa

e Lecture avancé de données qui n'ont pas encore
étés demandées, mais qu’il le peuvent sous peu
(données qui suivent la demande précédente)

26

Mise en tampon

Principes. @ @
e Simultanéité des opérations
Controleur Controleur

’ - , ‘ Confroleur
d’entrées et de sorties avec les oomees [] T o]
opérations de calcul.
e Le contréleur de périphérique
g ¥ i Périphérique Périphérique Périphérique
inclue plusieurs registres de _I
données Sans tampon Lecture du tampon A Lecture du tampon B
e Pendant que 'UCT accéde a un taille = ”\b octets C?jr;;;@ljg“r Disque Registres
. A r DMA
registre, le cont6leur peut accéder D—@ J
a un autre registre. ue. == [Tampon
Mémoire \Et\{ Adresse mémoire
BU\S—l Nombre d’octets

27
27

Mise en tampon

Double tamponnage:

e P.ex. en sortie: un processus écrit le prochain
enregistrement sur un tampon en meémoire tant que
I'enregistrement précédent est en train d’étre écrit

e Permet superposition traitement E/S

28

e

Mise en cache

Quelques éléments couramment utilisés d'une
mémoire secondaire sont gardés en mémoire
centrale

Donc quand un processus exécute une E/S, celle-ci
pourrait ne pas étre une E/S réelle:

e Elle pourrait étre un transfert en mémoire, une simple
mise a jour d'un pointeur, etc.

29

Logiciels d’E/S indépendants des périphériques

Traitement des erreurs

e [l ya deux classes d’erreurs dans cette couche:

« Erreurs de programmation - le processus de I'utilisateur
demande I'impossible tel que d’écrire a une souris, lire
d'une imprimante, ou accéder a un fichier qui n’a pas été
ouvert

» Erreurs d’E/S - une tentative a été faite pour écrire au
disque mais l'opération a échoué au niveau physique. Si le
pilote ne peut pas traiter le probléme (par exemple en
essayant d’écrire encore), il est passé a la couche supérieure

 Cette couche est responsable pour collationner les
erreurs qui peuvent se produire et de les rapporter

a l'utilisateur d'une facon consistante quand cela est

requis

30

Gestion des erreurs

Exemples d’erreurs a étre traités par le SE:

e Erreurs de lecture/écriture, protection, périph non-
disponible

Les erreurs retournent un code ‘raison’

Traitement différent dans les différents cas...

31

Gestion de requétes E/S

P. ex. lecture d’'un fichier de disque
e Déterminer ou se trouve le fichier

e Traduire le nom du fichier en nom de périphérique et
location dans périphérique

e Lire physiquement le fichier dans le tampon
e Rendre les données disponibles au processus

e Retourner au processus

32

2- Systeme

s de fichiers

Systémes fichiers

Méthodes d’acceés

Méthodes @

"allocation

Gestion de |

‘espace libre

33

Que c’est qu’un fichier
Collection nommée d’'informations apparentées,

enregistrée sur un stockage secondaire
e Nature permanente

Les données qui se trouvent sur un stockage
secondaires doivent étre dans un fichier

Différents types:
e Données (binaire, numérique, caractéres....)

e Programmes

34

/

Attributs d’un fichie

Constituent les propriétés du fichiers et sont stockés dans un fichier spécial
appele répertoire (directory). Exemples d’attributs:

¢ Nom:

pour permet aux personnes d’accéder au fichier
¢ Identificateur:

Un nombre permettant au SE d’identifier le fichier
¢ Type:

EX: binaire, ou texte; lorsque le SE supporte cela
¢ Position:

Indique le disque et ’adresse du fichier sur disque
¢ Taille:

En bytes ou en blocs
¢ Protection:

Détermine qui peut écrire, lire, exécuter...
¢ Date:

pour la derniere modification, ou derniere utilisation

& Autres... -

N

Un “File Control Block” typique

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

36

Opérations sur les fichiers: de base

Creation
Ecriture
e Pointeur d’écriture qui donne la position d’écriture
Lecture
e Pointeur de lecture
Positionnement dans un fichier (temps de recherche)
Suppression d'un fichier
e Libération d’espace
Troncature: remise de la taille a zéro tout en conservant les
attributs

37

Autres opérations

Ajout d’infos
Rénommage
Copie
e peut étre faite par rénommage: deux noms pour un seul fichier

Ouverture d'un fichier: le fichier devient associé a un
processus qui en garde les attributs, position, etc.

Fermeture

Ouverture et fermeture peuvent étre explicites (ops open,
close)

ou implicites

38

P

Méthodes d’allocation

39

/>
Structure physique des fichiers e

La mémoire secondaire est subdivisée en blocs et chaque
opération d’E /S s’effectue en unités de blocs

¢ Les blocs ruban sont de longueur variable, mais les blocs
disque sont de longueur fixe

¢ Sur disque, un bloc est constitué d’'un multiple de secteurs
contigués (ex: 1, 2, ou 4)
la taille d’'un secteur est habituellement 512 bytes

Il faut donc insérer les enregistrements dans les blocs et les
extraire par la suite

¢ Simple lorsque chaque octet est un enregistrement par lui-
méme

¢ Plus complexe lorsque les enregistrements possedent une
structure (ex: « main-frame IBM »)

Les fichiers sont alloués en unité de blocs. Le dernier bloc est
donc rarement rempli de données

¢ Fragmentation interne

40

\/

Trois méthodes d’allocation de fichiers

e Allocation contigué
e Allocation enchainée

e Allocation indexée

41

\/
ﬂ ‘

~ Allocation contigué sur disque

répertoire
count fllet ste;rt Ien29th
oL 1 *[7 2] 3] froun 14 3
f mail 19 6
4L s[1 e[] 7[] list 28 4
f 6 2
8[] o[]10[] 11[]
tr
12[]13[]14[]15[]
16[_]17[_]18[] 19[]
mail
20[J21[]22[]23[]
24[]25[]26[]27[]
list
28[]29[]30[]31[]

w 42

/

Allocation contigué
Chaque fichier occupe un ensemble de blocs contigu
sur disque

Simple: nous n‘avons besoin que d’adresses de début et
longueur

Supporte tant I'acces séquentiel, que 'acces direct
Moins pratique pour les autres méthodes

43

Allocation contigué

Application des problémes et méthodes vus dans le
chapitre de I'alloc de mémoire contigué

Les fichiers ne peuvent pas grandir
Impossible d’ajouter au milieu

Exécution périodique d'une compression (compaction)
pour récupérer l'espace libre

44

/ |

Allocation enchainée
Le répertoire contient | ‘adresse du premier et dernier
bloc, possibl. le nombre de blocs
Utilisé par MS-DOS et OSa2.

Chaque bloc contient un pointeur a I'adresse du
prochain bloc:

bloc = pointeur

45

=
Allocation enchainé

directory repertoire

file
jeep

start
9

end
25

16[1]17[]18[] 19[]
20[J21[J22[]23[]

24[] 250 26[] 27[]
28[] 29[]30[]31[]

N~

46

Tableau d’allocation de fichiers (FAT)

directory entry

| test | ... | 217 |—

name start block

— 217 618

339 | end-of-file [«

618 339 |g— |

no. of disk blocks -1

FAT

/ |

Avantages - désavantages

Pas de fragmentation externe - allocation de mémoire
simple, pas besoin de compression

L ’acces a l 'intérieur d 'un fichier ne peut étre que
séquentiel

e Pas facon de trouver directement le 4éme
enregistrement...

L 'intégrité des pointeurs est essentielle
Les pointeurs gaspillent un peu d ‘espace

48

/4
Allocation indexée:

semblable a la pagination

Tous les pointeurs sont regroupés dans un tableau

(index block)

ﬁm

—[]
—>D

iIndex table

49

Allocation indexée

24[] 25[J26[]27[]
28[] 29[]30[]31[]

directory

file index block

jeep 19

N~

-1: pointeur nul

50

/ |

Allocation indexée

A la création d 'un fichier, tous les pointeurs dans le
tableau sont nil (-1)

Chaque fois qu'un nouveau bloc doit étre alloué, on

trouve de | ‘'espace disponible et on ajoute un pointeur
avec son adresse

o1

/

Allocation indexée

Pas de fragmentation externe, mais les index prennent
de I'espace

Permet acces direct (aléatoire)
Taille de fichiers limitée par la taille de I'index block

e Mais nous pouvons avoir plusieurs niveaux d’'index: Unix

Index block peut utiliser beaucoup de mém.

52

UNIX BSD: indexé a niveaux

.—Cette structure est en mémoire, tous les

mode

autres sont sur

owners (2)

timestamps (3)

—| data

size block

count

—p| data

—» data

direct blocks

—»| data

single indirect —

double indirect

E-» data
4—» data

disque

\

/

/

,/_:

+—>

triple indirect

NP

> 12 blocs disque de 4K chaque

1024 blocs de 4K
chaque
\
» data
» data 1024x
> 1024
>|_data blocs
» data w de 4K

N\

Bloc de 4K contient 1024 pointeurs

53

// |

UNIX BSD

Les premiers blocs d'un fichier sont accessibles directement

Si le fichier contient des blocs additionnels, les premiers sont accessibles a
travers un niveau d'indices

Les suivants sont accessibles a travers 2 niveaux d’indices, etc.

Donc le plus loin du début un enregistrement se trouve, le plus indirect est
son acces

Permet acces rapide a petits fichiers, et au début de tous les fich.
Permet 'accés a des grands fichier avec un petit répertoire en mémoire

mode
owners (2)
timestamps (3)
size block [data |
count
direct blocks :
single indirect ——>|j __
double indirect _ =|_: =é
triple indirect L > _—
[data |

| data

54

P

Gestion de 'espace libre

55

Gestion d’espace libre

Solution 1: vecteur de bits (n blocs)

(solution Macintosh, Windows 2000)
QY2 n-1

o 0 = block([i] libre
bit[i] =
1 = block]i] occupé

Exemple d’'un vecteur de bits ou les blocs 3, 4,
5,9, 10, 15, 16 sont occupés:
¢ 00011100011000011....

L'adresse du premier bloc libre peut étre
trouvée par un simple calcul

56

/ 7

Gestion d’espace libre

Solution 2: Liste liée de mémoire libre (MS-DOS,

Windows 9x) e ——
_/
free-space list head —
o[1 1] 2_@
Tous les blocs de f

: ; 4 5 e[1 71

mémoire libre sont I%;’tln
8 ol 1ol T11[]
liés ensemble par o T S 141 15[
des pointeurs v 17 P 19

20[] 21 %zﬂj
24[] 25 26'_@_—#.-

28| 129 |30 |31 |

N~

57

Comparaison

Bitmap:
e si la bitmap de toute la mémoire secondaire est gardée en

mémoire principale, la méthode est rapide mais demande de
I'espace de mémoire principale

e si les bitmaps sont gardées en mémoire secondaire, temps de
lecture de mémoire secondaire...

- Elles pourraient étre paginées, p.ex.

Liste liée

e Pour trouver plusieurs blocs de mémoire libre, plus. acces de
disque pourraient étre demandés

e Pour augmenter l'efficacité, nous pouvons garder en mémoire
centrale | 'adresse du 1er bloc libre

58

Ordonnancement disques

Probleme: utilisation optimale du matériel

Réduction du temps total de lecture disque

e étant donné une file de requétes de lecture disque, dans
quel ordre les exécuter?

59

Parametres a prendre en considération

Temps de positionnement (seek time):
* le temps pris par 1’ unité disque pour
se positionner sur le cylindre désiré
Temps de latence de rotation
* le temps pris par | 'unité de disque qui
est sur le bon cylindre pour se positionner
sur le secteur désirée

Temps de lecture
e temps nécessaire pour lire la piste

Le temps de positionnement est
normalement le plus important, donc il
est celui que nous chercherons a
minimiser

r ik v e

felmiEFeaall

60

/ 7

File d’attente disque

Dans un systéme multiprogrammeé avec mémoire virtuelle, il y aura
normalement une file d’attente pour | "unité disque

Dans quel ordre choisir les requétes d ‘opérations disques de facon a
minimiser les temps de recherche totaux

Nous étudierons différents méthodes par rapport a une file d "attente
arbitraire:

98, 183, 341122, 14, 124, 65, 67
Chaque chiffre est un numéro séquentiel de cylindre

I1 faut aussi prendre en considération le Cylindre de départ: 53

Dans quel ordre exécuter les requétes de lecture de facon a minimiser
les temps totaux de positionnement cylindre

Hypotheése simpliste: un déplacement d'1 cylindre cofite 1 unité de
temps

61

/ﬂ
Premier entré, premier sorti: FIFO—

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 bH36567 98 122124 183 199
- | L1 | 1 - axe c_le
45 rotation
\8*.
146
85
108

110
9
2

Mouvement total: 640 cylindres = (98-53) + (183-98)+...
En moyenne: 640/8 = 80

62

SSTF: Shortest Seek Time First

Plus
d’al

Court Temps de Recherche (positionnement)
bord (PCTR ou PCTP)

A chaque moment, choisir la requéte avec le temps de

rec]
Cla

herche le plus court a partir du cylindre courant
irement meilleur que le précédent

Mais pas nécessairement optimal! (v. manuel)

Peut causer famine

63

—

SSTF: Plus court servi

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183 199
I
I

Mouvement total: 183 cylindres (680 pour le précédent)
En moyenne: 183/8 = 22.8 (80 pour le précédent)

64

SCAN: l'algorithme du bus

La téte balaye le disque dans une direction, puis dans
la direction opposée, etc., en desservant les requétes
quand il passe sur le cylindre désiré

e Pas de famine

65

/ “
SEAN: le bus g

queue = 98, 183, 3?, 122, 14, 124, 65, 67
head starts at 53 direction <—

O 14— 37 536567 98 122124 183 199

Mouvement total: 236 cylindres
En moyenne: 236/8= 29.5 comme pour SSTF)

66

Problemes du SCAN

Peu de travail a faire apres le renversement de
direction

Les requétes seront plus denses a 'autre extrémité

Arrive inutilement jusqu'a o

67

Look: I'algorithme de I'ascenseur

La téte balaye le disque dans une direction, puis dans
la direction opposée, etc., en desservant les requétes
quand il passe sur le cylindre désiré mais ne va pas
jusqu'au bout du disque, elle rebrousse chemin
lorsqu’il n'y a plus de piste a servir dans ce sens.

68

C-SCAN et C-LOOK

C-SCAN

Retour rapide au début (cylindre 0) du disque au lieu
de renverser la direction

Hypothése: le mécanisme de retour est beaucoup plus
rapide que le temps de visiter les cylindres

C-LOOK

La méme idée, mais au lieu de retourner au cylindre o,
retourner au premier cylindre qui a une requéte

69

o) A — i

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53 direction 2

0 14 37 536567 98 122124 183 199
I
I

—>

\ retour: 169 (??)

153 sans considérer le retour (19.1 en moyenne) (26 pour SCAN)
MAIS 322 avec retour (40.25 en moyenne)

Normalement le retour sera rapide donc le colt réel sera entre les deux
70

/ .

C-LOOK avec direction initiale opposée

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53 direction «—

0O 14 37 536567 98 122124 183 199
I
I

- I

Retour 169

//f

,

Résultats tres semblables:
157 sans considérer le retour, 326 avec le retour

71

e

Comparaison

Si la file souvent ne contient que tres peu d'éléments,
l'algorithme du ‘premier servi * devrait étre préfére
(simplicité)
Sinon, SSTF ou SCAN ou C-SCAN?
En pratique, il faut prendre en considération:

e Les temps réels de déplacement et retour au début

e L’ organisation des fichiers et des répertoires

 Les répertoires sont sur disque aussi...
e La longueur moyenne de la file
e Le débit d ‘arrivée des requétes

72

Synchronisation de
Processus

Chapitre 5

Synchronisation de Processus

Conditions de Concurrence
Sections Critiques
Exclusion Mutuelle
Sommeil & Activation
Sémaphores

Mutex

Moniteurs

Problemes avec concurrence =
JEICHEINUE

Les processus concurrents doivent parfois partager
données (fichiers ou mémoire commune) et ressources

On parle donc de taches coopératives

Si I'acces n'est pas controlé, le résultat de I'exécution
du programme pourra

de I'exécution des instructions (non-
déterminisme).

Un programme pourra donner des résultats différents
et parfois indésirables

Un exemple

Deux processus exécutent cette M. X demande une
méme procédure et partagent réservation

la méme base de données d’ avion

[Is peuvent étre interrompus

n'importe ou Base de données
Le résultat de I'exécution dit que fauteuil
concurrente de P1 et P2 A est disponible
dépend de l'ordre de leur

entrelacement Fauteuil A est

assigné a X et
marqué occupé

Vue globale d’'une exécution

possibte

M. Leblanc demande une

réservation d’avion

Base de données dit
que fauteuil 30A est
disponible

Fauteuil 30A est
assigné a Leblanc et
marqué occupé

P2

M. Guy demande une
réservation d’avion

Base de données dit
que fauteuil 30A est
disponible

Fauteuil 30A est
assigné a Guy et
marqué occupé

Deux opérations en parallele sur une var a partagée
(b est prié a chaque processus) P2

b=a
b=a

b++
a=Db

b++
a=b

Supposons que a soit 0 au debut
P1 travaille sur le vieux a donc le résultat final sera a=1.

Serait a=2 si les deux taches sont exécutées I'une apres l'autre
Si a était sauvegardé quand P1 est interrompu, il ne pourrait pas étre partage avec P2 (il y aurait deux
a tandis que nous en voulons une seule)

Section Critique

Partie d'un programme dont I'exécution ne doit pas
avec autres programmes

Une fois qu'un tache y entre, il faut lui permettre de
terminer cette section sans permettre a autres taches de
jouer sur les mémes données

Le probleme de la section critique —¥: -

Lorsqu’un processus manipule une donnée (ou ressource) partagée,
nous disons qu'’il se trouve dans une section critique (SC) (associée a
cette donnée)

Le probléme de la section critique est de trouver un algorithme

d' exclusion mutuelle de processus dans 1" exécution de leur SCs afin
que le résultat de leurs actions ne dépendent pas de l'ordre
d’entrelacement de leur exécution (avec un ou plusieurs

processeurs)
L'exécution des sections critiques doit étre mutuellement exclusive:
a tout instant, processus peut executer une SC pour une var

donnée (méme lorsqu’il y a plusieurs processeurs)

Ceci peut étre obtenu en plagant des instructions spéciales dans les
sections d' entrée et sortie

Pour simplifier, dorénavant nous faisons I'hypothése qu'’il n'y a q'une
seule SC dans un programme.

Structure du programme

Chaque processus doit donc demander une permission avant d’entrer
dans une section critique (SC)

La section de code qui effectue cette requéte est la section d’entrée
La section critique est normalement suivie d'une section de sortie

Le code qui reste est la section restante (SR): non-critique

repeat
section d’entrée
section critique
section de sortie
section restante
forever

A p p I Ilg: aI igglpande une

réservation d’ avion
Section d’ entrée

Base de données dit que
fauteuil A est disponible

Fauteuil A est assigné a X et
marqué occupé

Section de sortie

10

Criteres nécessaires pour solutions valides

Exclusion Mutuelle

A tout instant, au plus un processus peut étre dans
une section critique (SC) pour une variable donnée

Non interférence:

Si un processus s’arréte dans sa , ceci
ne devrait pas affecter les autres processus

Mais on fait I'hypothése quun processus qui entre
dans une section critique, en sortira.

11

Criteres nécessaires pour solutions valides

absence d"interblocage (Chap 6)

si un processus demande d'entrer dans une section
critique a un moment ol aucun autre processus en fait
requéte, il devrait étre en mesure d’y entrer

Absence de : aucun processus éternellement
empéché d’'atteindre sa SC

Difticile a obtenir, nous verrons...

12

Conditions de Concurrence

Conditions de concurrence (race conditions): situation ol 2 processus ou
plus effectuent des lectures et des écritures conflictuelles.

Exemple du Spouler d'impression

Un processus qui veut imprimer un fichier, entre son nom dans
un répertoire de spoule

Le processus démon d’'impression regarde périodiquement
s’'il y a des fichiers a imprimer. Il a 2 variables:

in: pointe vers la prochaine entrée libre.

out: pointe vers le prochain fichier a imprimer
In=17,out =4
A et B deux processus qui veulent imprimer un fichier
A >> lire in, next_free_slot =7 dreciory
Interruption: la CPU bascule vers le processus B .
B >> lire in, next_free_slot = 7, entréey = fichierB, in
A >> entrée7 = fichierA, in = 8
Probléme: le fichierB ne sera pas imprimé

... Conditions de Concurrence

Comment éviter les conditions de concurrence?

Solution: Interdire que plusieurs processus lisent et écrivent des
données partagées simultanément.

Exclusion Mutuelle: permet d’assurer que si un processus utilise une
variable ou fichier partagés, les autres processus seront exclus de la

méme activité

14

Les Sections Critiques

les Sections Critiques, methode d’exclusion mutuelle

A entre dans sa A quitte sa
section critique section critique
A \

B quitte sa
section critique

t1 t2 t3 t4

B tente d’entrer dans sa B entre dans sa
section critique section critique

L'Exclusion Mutuelle avec Attente Active
(busy waiting)
Désactivation des interruptions

Apres son entrée dans une SC, un processus désactive les
interruptions, puis les réactive

[l empéche ainsi I'horloge d’envoyer des interruptions et le
processeur de basculer

Il est imprudent de permettre a des processus user de désactiver
les interruptions

Variables de verrou (lock)

Avant d’entrer en SC, tester la valeur de verrou, si verrou = o,
verrou € 1, entrer en SC

Défaillance: 2 processus peuvent entrer simultanément dans
leurs sections critiques comme le spouler d'impression

Alternance Stricte

la variable turn porte le numéro du processus dont c’est le tour
d’entrer en SC. Chaque processus inspecte la valeur de la
variable, avant d’entrer en SC.

Inconvénient: consomme bcp de temps CPU

16

... Exclusion Mutuelle avec Attente
Active

(busy Wa’?.’.n gl)ternance Stricte
while (TRUE) { while (TRUE) {
while (turn != 0); while (turn !=1);
critical_region(); critical_region();
turn =1, turn = o;
non_critical_region(); non_critical_region();
} }

Les attentes actives sont performantes dans le cas ou elles sont
breves. En effet, il y’ a risque d’attente

Po quitte la CS, turn =1

P1 termine sa CS, turn = o

Les 2 processus sont en section non critique
Po exécute sa boucle, quitte la SC et turn =1
Les 2 processus sont en section non critique

Po quoiqu’il a terminé, il ne peut pas entrer en SC, il est bloqué
17

... Sommeil & Activation

Probléme de blocage:
Le consommateur note que le tampon est vide
Interruption: arrét du consommateur sans qu’il parte en sommeil

Le producteur insére un jeton, incrémente le décompte, appelle
wakeup pour réveiller le consommateur

Le signal wakeup est perdu, car le consommateur n’est pas en sommeil
Le consommateur reprend, pour lui le tampon est vide, il dort
Le producteur remplit le tampon et dort
Solution: ajouter un bit d attente déveil.
Quand un wakeup est envoyé a un processus le bit est a 1;
le consommateur teste le bit, s’il est a 1, il le remet a o et reste en éveil

Cette solution est + difficile a généraliser en cas de + sieurs processus.

18

Une lecon a retenir...

A fin que des processus avec des variables partagées
puissent réussir, il est nécessaire que tous les processus

impliqués utilisent le méme algorithme de
coordination

Un protocole commun

19

Critique des solutions par logiciel

Difficiles a programmer! Et a comprendre!

Les solutions que nous verrons dorénavant sont toutes basées
sur I'existence d’instructions spécialisées, qui facilitent le
travail.

Les processus qui requierent I'entrée dans leur SC sont
occupés a attendre (busy waiting); consommant ainsi du
temps de processeur

Pour de longues sections critiques, il serait préférable de
les processus qui doivent attendre...

A

Solutions mateérielles: desactivation
des interruptions

Sur un uniprocesseur:
exclusion mutuelle est Process Pi:
préservée mais l'efficacité

L. repeat
se détériore: lorsque dans _) _
SC il est impossible inhiber interrupt
d’entrelacer I'exécution section critique

avec d’autres processus
dans une SR

Perte d'interruptions

Sur un multiprocesseur: forever
exclusion mutuelle n'est
pas preservee

Une solution qui n'est
généralement pas
acceptable

rétablir interrupt
section restante

21

Solutions basées sur des instructions
fournies par le SE (appels du systeme)

Les solutions vues jusqu’a présent sont difficiles a
programmer et conduisent a du mauvais code.

On voudrait aussi qu'il soit plus facile d’éviter des
erreurs communes, comme interblocages, famine, etc.

Besoin d’instruction a plus haut niveau

Les méthodes que nous verrons dorénavant utilisent
des instructions puissantes, qui sont implantées par
des appels au SE (system calls)

22

Sémaphores

Un sémaphore S est un entier qui, sauf pour I'Initialisation, est
accessible seulement par ces 2 opérations atomiques et
mutuellement exclusives:

wait(S)
signal(S)
Il est partagé entre tous les procs qui s’ intéressent a la méme
section critique
Les sémaphores seront présentés en deux étapes:
sémaphores qui sont occupés a attendre (busy waiting)
sémaphores qui utilisent des files d "attente

On fait distinction aussi entre sémaphores compteurs et
sémaphores binaires, mais ce derniers sont moins puissants.

23

Sémaphores occupés a attendre

(busy waiting) wait(S) :
while S<=0 {};
La facon la plus simple d'implanter g——.
les sémaphores. '

Utiles pour des situations ou I'attente

est breve, ou il y a beaucoup d'UCTs Attend si no. de processus qui
S est un entier initialisé a une valeur peuvent entrer = 0 ou négatif
positive, de facon que un premier

processus puisse entrer dans la SC

Quand S>o0, jusqu’a n processus

peuvent entrer signal (S) :
Quand S<=o, il faut attendre S+1 S++;

signals (d’autres processus) pour

entrer

Augmente de 1 le no des processus
qui peuvent entrer

24

par différent processus

obtenu un utilisant un des
ecedents)

Atomicité et interruptibilité

l

| SJ‘r+ ‘ autre Pro.

1

Interruptible

atomique— S--

26

Utilisation des semaphores pour

sections critiques

Pour n processus
Initialiser S a1

Alors 1 seul processus peut
étre dans sa SC

Pour permettre a k
processus d'exécuter SC,
initialiser S a k

processus Ti:
repeat
wait (S) ;
SC
signal (S) ;
SR
forever

27

Initialise S a >=1

processus T1: processus T2:
repeat repeat
wait (S) ; wait (S) ;
SC >< SC
signal (S) 5 signal (S) ;
SR SR
forever forever

Semaphores: vue globale

Peut étre facilement généralise a plus. processus

28

Utilisation des sémaphores pour
synchronisation de processus

On a 2 processus : T1 et T2 Synchronisation correcte
Enoncé S1 dans T1 doit étre lorsque T1 contient:
exécuté avant énonceé S2 S1;

dans T2 signal(S);

Définissons un sémaphore

S et que T2 contient:
Initialiser Sa o wait(S);

S2;

29

Interblocage et famine avec les semaphores

Famine: un processus peut n'arriver jamais a
exécuter car il ne teste jamais le sémaphore au bon

moment
Interblocage: Supposons S et Q initialisés a1

WENES))
walit(Q)

wait(Q) wait(S)

30

Sémaphores: observations

Quand S >= o:

wait (S) :
while S<=0 {};
S——;

Le nombre de processus qui peuvent exécuter wait(S)

sans devenir bloqués = S
S processus peuvent entrer dans la SC

noter puissance par rapport a mécanismes déja vus

dans les solutions ou S peut étre >1il faudra avoir un 2eme sém. pour les faire

entrer un a la fois (excl. mutuelle)

Quand S devient > 1, le processus qui entre le premier dans
la SC est le premier a tester S (choix aléatoire)

ceci ne sera plus vrai dans la solution suivante
Quand S < o: le nombre de processus qui attendent sur S

est = |S|

Sl

Comment éviter I'attente occupée et le
choix aléatoire dans les sémaphores

Quand un processus doit attendre qu'un sémaphore
devienne plus grand que o, il est mis dans une file d’attente
de processus qui attendent sur le méme sémaphore.

Les files peuvent étre PAPS (FIFO), avec priorités, etc. Le
SE controle 1" ordre dans lequel les processus entrent dans
leur SC.

wait et signal sont des appels au SE

Il y a une file d’attente pour chaque sémaphore comme il y a
une file d’'attente pour chaque unité d’E/S.

32

Séemaphores sans attente occupeée

Un sémaphore S devient une structure de données:
Une valeur

Une liste d’attente L

Un processus devant attendre un sémaphore S, est bloqué et la
file dattente =~ du sémaphore (v. état bloqué = attente chap 4).

i
intefruption sortie terming
. ::

tarminaison d'E/S au
‘&énement

signal(S) (selor ane politique juste, ex: PAPS/FIFO) un
processusde et le place sur la liste des processus préts/ready.

33

al(S): S.value ++;
if S.value <0 {

remove a process P fro
wakeup(P)

}

Figure montrant la
relation entre le contenu

de la file et la valeur de S

Suspendhecd Eist Semaphore

Eraes

Suspended Fise Semaphore
Rewdy 1is

Ready List

Suspendedd Fist Semaphore Rowdy List

Figure 5.8 Example of Semaphore Mechanism

35

Wait et signal contiennent elles mémes des SC!
Les opérations wait et signal doivent étre exécutées
atomiquement (un seul thr. a la fois)

Dans un systéme avec 1 seule UCT, ceci peut étre
obtenu en inhibant les interruptions quand un
processus execute ces operations

[attente occupée dans ce cas ne sera pas trop onéreuse
car wait et signal sont brefs

36

Problemes classiques de
synchronisation

Tampon borné (producteur—consommateur)
Ecrivains - Lecteurs

Les philosophes mangeant

T

DCEeSSuUsS consommateur

Tampons de communication

® @

‘1 do"nn ‘ 1 donn ‘1 donn ‘1 donn

o S

39

Le tampon borné (bounded buffer

une structure de données fondamentale dans les S

b[2]

b[3] ' |

/ b[5] | b[4]

bleu: plein, blanc: libre

40

~ siapres S >= 0, processus peut entrer dans SC
Si S <0, processus est mis dans file d "attente

si apres S<= 0, il y avait des processus en attente, et
processus est reveillé

divisibilité = atomicité de ces ops

olution avec sémapho

) exclusion mutuelle

phores suivants r
aphore pour synchrc

n semaphore pour synchroniser
roducteur et consommateur sur le

43

Solution de P/C: tampon circulaire fini-de dimension k

Initialization:
E.count=k; //esp. vides
Producer: Consumer:
repeat repeat

produce v;
wait (E) ; ///

i —

/)&\\signal(E);
consume (w) ;

forever forever

44

Probleme des lecteurs - redacteurs

Plusieurs processus peuvent accéder a une base de
données

Poury lire ou poury écrire
Les rédacteurs doivent étre synchronisés entre eux et
par rapport aux lecteurs

il faut empécher a un processus de lire pendant I'écriture

il faut empécher a deux rédacteurs d ‘écrire
simultanément

Les lecteurs peuvent y accéder simultanément

46

Une SOIUt'On (n’exclut pas la famine)

Variable
Sémaphore

la base de données

Sémaphore
Les rédacteurs doivent attendre sur
les uns pour les autres
et aussi la fin de toutes les lectures
Les lecteurs doivent
attendre sur quand il y a des rédacteurs qui écrivent

bloquer les rédacteurs sur ~ quand il y a des lecteurs qui
lisent

redémarrer les rédacteurs quand personne ne lit

47

Les données et les redacteurs

mutex, wrt: semaphore (init. 1);
readcount : integer (init. O0);

wait (wrt) ;
// écriture

signal (wrt) ;

48

Les lecteurs

wait (mutex) ;
readcount ++
if readcount

signal (mutex) ;

wait (mutex) ;
readcount --

i1f readcount
signal (mutex) :

[
4

o
4

1l then wait (wrt) ;

0 then signal (wrt);

49

Observations

Le 1er lecteur qui entre dans la SC bloque les
rédacteurs (wait (wrt)), le dernier les remet en marche
(signal (wrt))

Si1rédacteur est dans la SC, 1 lecteur attend sur wrt,
les autres sur mutex

un signal(wrt) peut faire exécuter un lecteur ou un
rédacteur

50

Le probleme des philosophes mangeant

ol

Le probleme des philosophes mangean

processus Pi:

repeat
. think;
wait(fork|[i]) ;
) wait (fork[i+l mod 5]);

eat;
signal (fork[i+1l mod 5]);
signal (fork[1i]) ;

* forever

52

Le probleme des philosophes mangean

processus Pi: w
repeat
think;

wait (fork[i]) ;
wait (fork[i+l mod 5]);
4 eat;
signal (fork[i+1l mod 5]);
signal (fork[i]) ;

forever

53

ossibilité de faire entrer plus. proce
fols dans une section critigue

gestion de files d attente par le SE: fa

D ~
9 3 0)’ 2 ;s
‘\\Q\\. . ‘. : \\. 7

=
=3

~Probleme avec sémaphores: difficulté de programmation

- Un seul “mauvais” processus peut fai

échouer toute une collection de proce
(p.ex. oublie de faire signal)

Considérez le cas d un processus qui
des waits et signhals dans des boucles
‘des tests...

