Types Structures, Unions, Enuméres et
Synonymes

1 Types structures (struct)

e Une structure est un nouveau type de données composé de plusieurs champs
(ou membres) qui sert a représenter un objet réel.

e Chaque champ est de type quelconque pouvant étre, lui aussi, une structure.
e Le nom d'une structure n'est pas un nom de variable (c'est un nom de type).

Exemple :
Une date peut étre représentée par les renseignements : jour, mois et année.

1.1 Définition d'une structure :

e En utilisant un nom pour la structure :
struct <nom structure>

{
<typel> <nom champl> ;
<type2> <nom_ champ2> ;

<typeN> <nom champN> ;
b

Par l'intermédiaire du nom de la structure, on peut déclarer plusieurs variables de
ce type de structure n'importe ou et chaque fois que c'est nécessaire.

Exemples :
1. struct date

{
int jour ;
int mois ;
int annee ;
b
2. struct adresse
{
char nom[25], prenom[25] ;
int n rue ; /* numéro de rue */
char rue[30] ;
char ville[20] ;
o
3. struct date date de naissance ;
struct adresse adrl, adr2 ;
struct complexe
{
double re ;

double im ;
} zl, z2 ; /* z1 et z2 deux variables de type complexe */

B. Ahiod - fsr -71-



Types structures, unions, énumérés et synonymes

e Sans utilisation de nom (structure anonyme) :
struct

{
<typel> <nom champl> ;
<type2> <nom champ2> ;

<typeN> <nom champN> ;
} <liste de variables> ;

Les variables de ce type structure doivent étre déclarées immédiatement.
Exemple :

struct
{

int heure ;
int minute ;
int seconde ;
}otl, t2 ;

1.2 Portée d'une structure :
Dépend de I'emplacement de sa déclaration :

- Si elle se situe au sein d'une fonction (y compris la fonction main), alors
elle n'est accessible que dans cette fonction.

- Si elle se situe en dehors d'une fonction, alors elle est accessible de toute
la partie du fichier source qui suit I'emplacement de la déclaration.

1.3 Tableau de structures :

<type structure> <NomTableau> [<dimension>] ;

Exemple :

struct client

{
int compte ;
char nom[20], prenom[20] ;
float solde ;
} banque[1000] ; /* un tableau de 1000 clients au plus */

1.4 Imbrication de structures :
Exemple :

struct stage
{

char nom[40] ;
struct date debut, fin ;
} s, ts[10] ;

1.5 Pointeur sur une structure :

Exemple :
struct date *pd ;

B. Ahiod - fsr -72-



Types structures, unions, énumérés et synonymes

1.6 Utilisation de structures :
Les structures peuvent étre manipulées champ par champ ou dans leur ensemble.

Opérations sur les champs :

e Acces aun champ d'une structure :
<variable structure>.<champ structure>

Exemple:
struct date d ;
d.jour = 2 ; /* accés au champ jour de la date d */

scanf ("%d", &d.jour) ;
printf ("%d", d.jour) ;

e Acces aun champ d'un pointeur de structure :
<pointeur structure>-><champ structure>

Exemple :
struct date *pd, d ;

pd = &d ;
pd->jour = 5 ; /* acceés au champ jour */

Remarque :
Il'y a équivalence entre (*pd) .jour et pd->jour

Opérations sur les variables structures :
e Initialisation a la déclaration :

Exemple :
struct date d = {4, 10, 1999} ;

e Affectation :

Les variables structures doivent étre de méme type (a condition que des champs
de la structure ne soient pas déclarés comme constantes)

Exemple :
struct date dl1, d2 = {4, 10, 1999} ;
di = d2 ;
e Opérateur d'adresse & :
Exemple :
struct date d, *pd ;
pd = &d ;

e Opérateur sizeof :
Exemple :

printf ("taille structure date : %d\n", sizeof (struct date)) ;

1.7 Structure auto-référentielle (ou récursive):
e Un ou plusieurs champs de la structure est un pointeur sur elle-méme.

e Permet de représenter des suites (finies) de taille quelconque avec ajouts et
suppressions efficaces d'éléments.

e Ces structures auto-référentielles requierent généralement l'allocation dynamique
pour allouer et libérer explicitement de la mémoire.

B. Ahiod - fsr -73-



Types structures, unions, énumérés et synonymes

Exemple : Liste chainée de réels
struct cellule

{
double elt ;
struct cellule *suiv ;

b

Chaque cellule a deux champs, elt et suiv. elt est un réel, alors que suiv est un

pointeur sur une structure cellule. La valeur de suiv est soit l'adresse en

mémoire d'une cellule soit le pointeur NULL.

struct cellule *liste = NULL ; /* initialement, liste vide */
/* Ajout du réel 2.5 a la liste */

liste = (struct cellule *) malloc (sizeof (struct cellule)) ;

if (liste != NULL)

{
liste->elt = 2.5 ;
liste->suiv = NULL ;

}

Fonctions et structures :
e Retour d'une variable structure par une fonction :

Exemple :

struct date newdate ()

{
struct date d ;

printf ("Jour (1, 2, .., 31) : ") ; scanf("%d", &d.jour) ;
printf ("Mois (1, 2, .., 12) : ") ; scanf("%d", &d.mois) ;
printf ("Année (1900, .., 1999) : ") ; scanf("%d", &d.annee) ;

return d ;

}

e Passage par valeur en argument d'une variable structure a une fonction :

Exemple :

int chekdate (struct date) ;
e Passage par adresse en argument d'une variable structure a une fonction :

Exemple :
void lire date(struct date *pd)

{

printf ("Jour (1, 2, .., 31) : ") ; scanf("%d", &(*pd).jour) ;
printf ("Mois (1, 2, .., 12) : ") ; scanf("%d", &(*pd).mois) ;
printf ("Année (1900, .., 1999) : ") ; scanf("%d", &pd->annee) ;

}

B. Ahiod - fsr -74-



Types structures, unions, énumérés et synonymes

1.8 Champs de bits :

Un mot machine (par exemple, mot de 16 bits) peut étre utilisé pour stocker plusieurs
données, chaque donnée occupe un certain nombre de bits.

Syntaxe de définition :
struct <nom structure>

{
unsigned int <nom champl> : <nombre de bits> ;
unsigned int <nom champ2> : <nombre de bits> ;

unsigned int <nom champN> : <nombre de bits> ;

}os

Exemple :

struct langue

{
unsigned int anglais : 1 ;
unsigned int allemand : 1 ;
unsigned int espagnol : 1 ;
unsigned int japonais : 1 ;
unsigned int russe : 1 ;

b
struct employel ;

{

int anglais ;
int allemand ;
int espagnol ;
int japonais ;
int russe ;

} ListeEmpll([1000] ;

struct employe2 ;

{

struct langue L ;

} ListeEmpl2[1000] ;

Soit x le nombre d'octets occupés par les autres champs (désignés par ...) de
la structure employel ou de la structure employe2. Calculer I'espace mémoire
occupé par ListeEmpll et ListeEmpl2. Que remarquez-vous ?

B. Ahiod - fsr -75-



Types structures, unions, énumérés et synonymes

2 Types unions (union)

e Les unions permettent l'utilisation d'un méme espace mémoire par des données
de types différents a des moments différents :

- Une union ne contient qu'une donnée a la fois.

- Le systeme alloue un emplacement mémoire tel qu'il pourra contenir le
champ de plus grande taille appartenant a I'union.

e Syntaxe de définition :

union <nom union>

{

<typel> <nom champl> ;
<type2> <nom champ2> ;

<typeN> <nom champN> ;
b

Exemple :

union zone

{
int entier ;
long entlong ;
float flottant ;
double flotlong ;
} z1l, z2;

3 Types énumeérés (enum)

Permettent d'exprimer des valeurs constantes de type entier en associant ces
valeurs a des noms.

3.1 Syntaxe de définition :

enum <nom énumération>

{
<identificateurl> ;
<identificateur2> ;

<identificateurN> ;

o
- Les identificateurs sont considérés comme des constantes entiéres.

- Le compilateur associe au 1*" identificateur la constante 0, au 2°™ la constante 1,
... et au N°™ la constante N+1.

Exemples :

1. enum couleurs
{rouge, vert, bleu} rvb ;

2. enum jour
{Lundi, Mardi, Mercredi, Jeudi, Vendredi, Samedi, Dimanche};
enum jour jl, 32, J

B. Ahiod - fsr -76-



Types structures, unions, énumérés et synonymes

3.2 Opérations sur les variables de type énumeéreé :
e Affectation :
Exemple :

jJ1 = Lundi ;

j2 = 31 ;

e Comparaison:
Exemple :

if (j == Lundi) printf("Le jour est un Lundi\n") ;

e Incrémentation, décrémentation :
Exemple :

j2 = Dimanche ; j2-- ;

for (j = Lundi ; j<Samedi ; J++)

4 Types synonymes (typedef)
e typedef permet de définir des types nouveaux synonymes a des types existants.

e typedef ne réserve pas d'espace mémoire. Le nom est un type ; il est donc
inaccessible comme une variable.

e Syntaxe de définition :

typedef <type> <nom de remplacementl>,
<nom de remplacement2>,

<nom de remplacementN> ;

Exemples :
1. Type synonyme d'un type simple :

typedef int entier, boolean ;
typedef float reel ;
entier el = 23, te[50] = {1, 2, 3, 4, 5, 6, 7} ;
int 1 ;
i =el + te[20] ;
te[20] = 1 - 60 ;

2. Type synonyme d'un type tableau :

typedef int tab[10] ;

tab tt; /* tt est un tableau de 10 entiers */
typedef float matrice[10][20] ;

matrice a ;

3. Type synonyme a une structure :

typedef struct
{
int jour ;
int mois ;
int annee date ;
} date ;
date d, *ptd ;

4. Type synonyme d'un pointeur :

typedef char *chaine ;
chaine ch ;

B. Ahiod - fsr -77-



