
Cours de Programmation II
(Module M21)

[Filière SMI, Semestre 4]
Département d’Informatique
Faculté des sciences de Rabat

Par

B. AHIOD
(ahiod@fsr.ac.ma)

2014-2015

mailto:ahiod@fsr.ac.ma

Objectifs

• Approfondir les connaissances de la
programmation en langage C :
– pointeurs, fonctions et chaînes de caractères

– enregistrements et fichiers

– …

• Utiliser le langage de programmation C pour
implémenter :
– les structures de données

– les algorithmes qui les manipulent

– …
Filière SMI - Programmation II (M21-S4)

2014-2015

Pré-requis

• Notions de base d’algorithmique [Algorithmique I (S2),
Algorithmique II (S3)] :
– Conception d’algorithmes itératifs et récursifs

– Analyse de complexité d’algorithmes

– Structures de données élémentaires

– …

• Programmation en langage C [Programmation I (S3)] :
– Programmation structurée

– Notions de tableaux, de fonctions, …

– Manipulation des pointeurs et allocation dynamique

– …

Filière SMI - Programmation II (M21-S4)

2014-2015

Contenu
Introduction :

– Algorithme vs Programme, Itératif vs Récursif, …

Rappels :
– Phases de programmation en C, structure et composants d’un programme en C, types de base,

instructions, …

Pointeurs et allocation dynamique :
– Pointeurs et tableaux, pointeurs et fonctions, allocation de mémoire , …

Chaînes de caractères :
– Définition, manipulation, tableaux de chaînes de caractères, …

Types composés (structures, unions, synonymes) :
– Notion de structure, union et type synonyme, structures auto-référentielles
– Applications (piles, files, listes et/ou arbres)

Fichiers :
– Types de fichiers (textes et binaires), accès (séquentiel et direct), manipulation (ouvrir, fermer, lire,

écrire)

Compléments :
– Compilation séparée, directives du préprocesseur , …

Filière SMI - Programmation II (M21-S4)
2014-2015

Introduction

 Algorithme vs Programme

 Itératif vs Récursif

 …

Notion de programme

Algorithmes + structures de données
=

Programme
[Wirth]

• Un programme informatique est constitué
d’algorithmes et de structures de données
manipulées par des algorithmes

Filière SMI - Programmation II (M21-S4)
2014-2015

Notion de programme

• Synonymes
– Programme, application, logiciel

• Objectifs des programmes
– Utiliser l’ordinateur pour traiter des données afin d’obtenir des résultats
– Abstraction par rapport au matériel

• Un programme est une suite logique
d'instructions que l'ordinateur doit exécuter
– Chaque programme suit une logique pour réaliser un traitement qui offre des

services (obtention des résultats souhaités à partir de données)
– Le processeur se charge d’effectuer les opérations arithmétiques et logiques qui

transformeront les données en résultats

• Programmes et données sont sauvegardés dans
des fichiers
– Instructions et données doivent résider en mémoire centrale pour être exécutées

Filière SMI - Programmation II (M21-S4)

2014-2015

De l’Analyse à l’Exécution

Filière SMI - Programmation II (M21-S4)
2014-2015

Notion d’Algorithme

• Origine :
– Le terme algorithme vient du nom du mathématicien Al-

Khawarizmi (820 après J.C.)

• Définition :
– Un algorithme est une suite finie de règles à appliquer dans un

ordre déterminé à un nombre fini de données pour arriver, en
un nombre fini d'étapes, à un certain résultat, et cela
indépendamment des données

• Rôle fondamental :

– Sans algorithme il n'y aurait pas de programme

• Un algorithme est indépendant :
– de l'ordinateur qui l'exécute
– du langage dans lequel il est énoncé et traduit

Filière SMI - Programmation II (M21-S4)

2014-2015

Spécifier/Exprimer/Implémenter
un algorithme

• Spécification d ’un algorithme :
– ce que fait l’algorithme
– cahier des charges du problème à résoudre

• Expression d ’un algorithme :

– comment il le fait
– texte dans un pseudo langage

• Implémentation d ’un algorithme :

– traduction du texte précédent
– dans un langage de programmation

Filière SMI - Programmation II (M21-S4)

2014-2015

Exemple : Recherche d’un élément

Algorithme recherche_sequentielle(tab: entier[]; n, val: entier) : entier

 entrées : tab, n et val

 sortie : indice de val dans le tableau tab, sinon -1

Début

 variables locales : i: entier

 i  0; // 1

 tant que ((i<n) et (tab[i] <> val)) faire // 2

 i  i+1 // 3

 ftq // 4

 si (i = n) alors retourner -1 // 5

 sinon retourner i // 6

Fin

int recherche_sequentielle(int *tab, int n, int val) {

 int i; // 1

 i = 0; // 2

 while ((i<n) && (tab[i] != val)) // 3

 i ++; // 4

 if (i == n) // 5

 return(-1); // 6

 else return(i); // 7

}

/* Cet algorithme recherche la place d’un élément val

 dans un tableau tab contenant n éléments */

Spécification d'un algorithme

L'algorithme en
pseudo code

L'algorithme
traduit en C

Filière SMI - Programmation II (M21-S4)
2014-2015

Analyse descendante

• Consiste à décomposer un problème en sous problèmes,

eux-mêmes, à décomposer en sous problèmes, et ainsi de
suite jusqu'à descendre à des actions dites primitives

– Les étapes successives de décomposition donnent lieu à
des sous algorithmes pouvant être considérés comme des
actions dites intermédiaires

– Ces étapes sont appelées fonctions ou encore procédures

Filière SMI - Programmation II (M21-S4)
2014-2015

Notion d’algorithme récursif

• Un algorithme est dit récursif lorsqu'il s'appelle lui
même de façon directe ou indirecte.

• Pour trouver une solution récursive d’un problème,
on cherche à le décomposer en plusieurs sous
problèmes de même type, mais de taille inférieure.

 On procède de la manière suivante :
– Rechercher un (ou plusieurs) cas de base et sa (ou leur)

solution (évaluation sans récursivité)

– Décomposer le cas général en cas plus simples eux aussi
décomposables pour aboutir au cas de base.

 Filière SMI - Programmation II (M21-S4)
2014-2015

Itératif vs Récursif
(Exemple)

Filière SMI - Programmation II (M21-S4)
2014-2015

/* Calcul de la somme des carrés des entiers entre m et n (version itérative) */

Algorithme SommeCarres_iter(m: entier; n: entier) : entier

 entrées : m et n

 sortie : somme des carrés des entiers entre m et n inclus,

 si m<=n, et 0 sinon

Début

 variables locales : i, som: entier

 som  0 // 1

 pour i de m à n faire // 2

 som  som + (i*i) // 3

 fpour // 4

 retourner som // 5

Fin

/* Calcul de la somme des carrés des entiers entre m et n (version récursive) */

Algorithme SommeCarres_rec(m: entier; n: entier) : entier

 entrées : m et n

 sortie : somme des carrés des entiers entre m et n

 pré-condition : m<=n

Début

 si (m<>n) alors // 1

 retourner ((m*m)+SommeCarres_rec(m+1,n) // 2

 sinon // 3

 retourner (m*m) // 4

 fsi

Fin

Programmation Procédurale vs
Programmation Orientée-Objet

• Programmation Procédurale :
– Centrée sur les procédures (ou opérations)
– Décomposition des fonctionnalités d'un programme en

procédures qui vont s'exécuter séquentiellement
– Les données à traiter sont passées en arguments aux

procédures
– Des langages procéduraux : C, Pascal, …

• Programmation Orientée-Objet :
– Centrée sur les données
– Tout tourne autour des "objets" qui sont des petits

ensembles de données représentants leurs propriétés
– Des langages orientés-objets : C++, Java, …

Filière SMI - Programmation II (M21-S4)

2014-2015

Rappels

 Phases de Programmation en C
 Structure de Programme en C
 Types de Base des Variables
 Instructions
 Pointeurs et Allocation Dynamique
 …

Phases de programmation en C

Filière SMI - Programmation II (M21-S4)
2014-2015

Un programme en C

Filière SMI - Programmation II (M21-S4)
2014-2015

/* Exemple de programme en C */
#include <stdio.h>
#include <math.h>
#define NFOIS 5

int main() {
 int i ;
 float x ;
 float racx ;

 printf ("Bonjour\n") ;
 printf ("Je vais vous calculer %d racines carrées\n", NFOIS) ;

 for (i=0 ; i<NFOIS ; i++) {
 printf ("Donnez un nombre : ") ;
 scanf ("%f", &x) ;
 if (x < 0.0)
 printf ("Le nombre %f ne possède pas de racine carrée\n", x) ;
 else {
 racx = sqrt (x) ;
 printf ("Le nombre %f a pour racine carrée : %f\n", x, racx) ;
 }
 }
 printf ("Travail terminé - Au revoir") ;
 return 0;
}

Composantes d’un Programme en C

• En C, les programmes sont composés essentiellement
de fonctions et de variables.

• Définition d'une fonction en C :
<TypeRésultat> <Nomfonction> (<TypePar1>, <TypePar2>, …)
{
 <déclarations locales> ;
 <instructions> ;
}

• En C, toute instruction simple est terminée par un
point virgule (;).

Filière SMI - Programmation II (M21-S4)
2014-2015

Composantes d’un Programme en C

• La fonction main :
– Une fonction et une seule s'appelle main.
– C'est la fonction principale des programmes en C ; elle se

trouve obligatoirement dans tous les programmes.
– L'exécution d'un programme entraîne automatiquement

l'appel de la fonction main.

• Les variables :
– Contiennent les valeurs utilisées pendant l'exécution du

programme.
– Les noms des variables sont des identificateurs

quelconques.
– Toute variable doit être déclarée avant les instructions et

son type spécifié dès la déclaration.

Filière SMI - Programmation II (M21-S4)

2014-2015

Types base des variables en C

• Toutes les variables doivent être explicitement typées

• Types de base des variables :
– Les entiers : int, short int, long int
– Les réels : float, double, long double
– Les caractères : char

Exemples :

short int mon_salaire;
double cheese;
char avoile;

• Remarque :
– La présence d ’une ou plusieurs étoiles devant le nom d’une

variable indique un pointeur.
– Exemple :

double **mat;
 // permet de déclarer une matrice (tableau à deux dimensions)

Filière SMI - Programmation II (M21-S4)
2014-2015

Instructions

• Tests :
If (expression) {bloc} else {bloc};

switch (expression)
{
case const1: instructions; break;
case const2: instructions; break;
..
default: instructions;
}

• Boucles :
while (expression) {instructions;}

for (expr1 ; expr2 ; expr3) { instructions;}

do
{instructions;}
while (expression);

• Quitter une boucle (for, do, while) ou un switch :
break;

• Passer à l’itération suivante, mais ne quitte pas la boucle :
continue:

• …

Filière SMI - Programmation II (M21-S4)
2014-2015

Pointeurs & Allocation dynamique

 Pointeurs & Tableaux

 Pointeurs & Fonctions

 Allocation de mémoire

 …

Pointeurs & Tableaux
• Notion de tableau :

– Un tableau est une variable structurée formée d'un ensemble de variables du même type, appelées les
composantes du tableau.

– Chaque élément est repéré par un indice précisant sa position.
– Le nom du tableau est son identificateur.

• Tableaux à une dimension (vecteurs)
– Déclaration en C :

<TypeSimple> <NomTableau> [<NombreComposantes>] ;

Exemple :
float B[200] ;

– Mémorisation :
• Les éléments d'un tableau sont rangés à des adresses consécutives dans la mémoire.
• le nom du tableau est le représentant de l'adresse du premier élément.
• Si un tableau est formé de N composantes, chacune ayant besoin de M octets en mémoire, alors le tableau occupera (N *

M) octets.
• L'adresse de la composante numéro i de du tableau A se calcule :

A + (i * taille-de-la-composante)

– Accès aux composantes d'un tableau :
• Pour accéder à un élément on utilise un indice selon la syntaxe suivante :

 <Nomtableau> [<indice>]
où <indice> : expression entière positive ou nulle.

Exemple :
Pour un tableau T de N composantes :
– l'accès au premier élément se fait par T[0]
– l'accès au dernier élément se fait par T[N-1]

Filière SMI - Programmation II (M21-S4)
2014-2015

Pointeurs & Tableaux

• Tableaux à deux dimensions (matrices) :
– Déclaration en C :

– <TypeSimple> <NomTableau> [NombreLignes] [NombreColonnes] ;

 Exemple :
 int A[10][20] ; /* matrice de 200 entiers (ayant 10 lignes

 et 20 colonnes */

– Accès aux composantes :
 <NomMatrice> [<Ligne>] [<Colonne>] ;

– Pour une matrice M formée de L lignes et C colonnes :

• La première composante de la matrice est A[0][0]
• La composante de la Lème ligne et Cème colonne est notée : A[L-1][C-1]

Filière SMI - Programmation II (M21-S4)
2014-2015

Pointeurs & Tableaux

• Notion de pointeur :
– Un pointeur est une variable qui peut contenir l'adresse d'une autre variable.
– Si un pointeur P contient l'adresse d'une variable A, on dit que 'P pointe sur A':

• Déclaration d'un pointeur :
<type> *<NomPointeur> ;

Exemple :
int *Pnum ;

On dira que :

– " *Pnum est du type int ", ou bien
– " Pnum est un pointeur sur int ", ou bien
– " Pnum peut contenir l'adresse d'une variable du type int "

Pnum ne pointe sur aucune variable précise : Pnum est un pointeur non initialisé.
Soit la déclaration : int A ;

– L'initialisation du pointeur Pnum avec la variable se fait par :
– Pnum = &A ; /* adresse de la variable A */
– Un pointeur est lié explicitement à un type de données. Ainsi, Pnum ne peut recevoir l'adresse d'une variable

d'un autre type que int.

Filière SMI - Programmation II (M21-S4)
2014-2015

Pointeurs & Tableaux

• Un tableau est une zone mémoire qui peut être identifiée par l'adresse du 1er
élément du tableau

• Adressage des composantes d'un tableau :
– La déclaration : int A[10] ;
 définit un tableau de 10 composantes : A[0], A[1], …, A[9]
– Si p est pointeur d'entiers déclaré par : int *p ;

alors,
l'instruction : p = A ; est équivalente à : p = &A[0] ;
p pointe sur A[0]
*(p+1) désigne le contenu de A[1]
*(p+2) désigne le contenu de A[2]
...
*(p+i) désigne le contenu de A[i]

• Dans une expression, une écriture de la forme Expr1[Expr2] est remplacée par :

*((Expr1) + (Expr2))

• Il existe une différence entre un pointeur P et le nom d'un tableau A :
– Un pointeur est une variable , donc les opérations comme P = A ou P++ sont permises.
– Le nom d'un tableau est une constante, donc les opérations comme A = P ou A++ sont

impossibles.

Filière SMI - Programmation II (M21-S4)

2014-2015

Pointeurs & Tableaux

Filière SMI - Programmation II (M21-S4)
2014-2015

/* Exemple : Lecture et affichage d'une matrice */
#include <stdio.h>
#define n 4
#define p 10
main() {
 float A[n][p] ;
 float *pA ;
 int i, j ;
 /* lecture d'une matrice */
 pA = &A[0][0] ; /* ou bien pA = (float *) A ; */
 for (i = 0 ; i<n ; i++) {
 printf("\t ligne n° %d\n", i+1) ;
 for (j = 0 ; j<p ; j++)
 scanf("%f", pA + i * p + j) ;
 }
 for (i = 0 ; i<n ; i++) { /* 1ère façon : affichage */
 for (j = 0 ; j<p ; j++)
 printf("%7.2f", *(pA + i * p + j)) ;
 printf("\n") ;
 }
 for (i = 0 ; i<n ; i++) { /* 2ème façon : affichage */
 pA = &A[i][0] ;
 for (j = 0 ; j<p ; j++)
 printf("%7.2f", pA[j]) ;
 printf("\n") ;
 }
 return 0 ;
}

Pointeurs & Fonctions

• En C, la structuration d'un programme en sous-
programmes (modules) se fait à l'aide de fonctions

• Notion de fonction :
– Une fonction est définie par un entête appelé prototype et un corps

contenant les instructions à exécuter :
 [<ClasseAllocation>] [<Type>] <NomFonction> ([ListeParamètres])

 <CorpsFonction>

– Prototype de fonction :
• Indique le type de données transmises et reçues par la fonction :
• Chaque paramètre (formel) ou argument doit être fourni avec son type, qui peut être

quelconque

– Corps d'une fonction :
• Un bloc d'instructions. à l'intérieur duquel, on peut :

– déclarer des variables externes
– déclarer des fonctions
– définir des variables locales au bloc
– Mais il est interdit de définir des fonctions.

Filière SMI - Programmation II (M21-S4)
2014-2015

Pointeurs & Fonctions

• Déclaration d'une fonction :
– Il faut déclarer une fonction avant de l'utiliser.
– La déclaration informe le compilateur du type des paramètres et du

résultat de la fonction
– Si la fonction est définie avant son premier appel, alors pas besoin de

la déclarer
– Déclarer une fonction, c’est fournir son prototype

• Utilisation d'une fonction :
– se traduit par un appel à la fonction en indiquant son nom suivi de

parenthèses renfermant éventuellement des paramètres effectifs.
– Les paramètres formels et effectifs doivent correspondre en nombre et

en type (les noms peuvent différer).
– L'appel d'une fonction peut être utilisé dans une expression ou

comme une instruction.

 Filière SMI - Programmation II (M21-S4)
2014-2015

Pointeurs & Fonctions

• Passage des paramètres d'une fonction
– A l'appel d'une fonction avec paramètres, la valeur ou l'adresse du

paramètre effectif est transmise au paramètre formel correspondant.
• Si la valeur est transmise, on a un passage par valeur.
• Si l'adresse est transmise, on a un passage par adresse (ou par référence)

– Passage par valeur :
• Si le nom d'une variable (sauf le nom d'un tableau) apparaît dans l'appel

d'une fonction, comme paramètre effectif, alors la fonction appelée reçoit la
valeur de cette variable.

• Cette valeur sera recopiée dans le nom du paramètre formel correspondant.
• Après l'appel de cette fonction, la valeur du paramètre effectif n'est pas

modifiée

– Passage par adresse :
• Lorsqu'on veut qu'une fonction puisse modifier la valeur d'une variable passée

comme paramètre effectif, il faut transmettre l'adresse de cette variable.
• La fonction appelée range l'adresse transmise dans une variable pointeur et la

fonction travaille directement sur l'objet transmis.

Filière SMI - Programmation II (M21-S4)

2014-2015

Pointeurs & Fonctions
/* Exemple : Calcul de la moyenne d'un tableau de réels : */

#include <stdio.h>

#define max 50

void main() {

 int n ;

 float t[max] ;

 void lire_tab(float *, int *) ;

 /* 2ème façon : void lire2_tab(float [], int *) ; */

 float moyenne(float [], int) ;

 lire_tab(t, &n) ;

 printf("\n \n \t moyenne = %7.2f\n", moyenne(t, n)) ;

}

void lire_tab(float *ptab, int *pn) {

 /* 2ème façon : void lire2_tab(float tab[], int *pn) */

int i ;

 printf("Nombre de notes ? : ") ; scanf("%d", pn) ;

 for (i = 0 ; i<*pn ; i++) {

 printf("Note n° %d : ", i + 1) ;

 scanf("%f", ptab++) ; /* 2èmefaçon: scanf("%d",&tab[i]) ; */

 }

}

float moyenne(float X[], int nb) {

 float s ;

 int i ;

 for (s = 0, i = 0 ; i<nb ; i++)

 s += X[i] ;

 return (s/nb) ;

}

Filière SMI - Programmation II (M21-S4)
2014-2015

Allocation de Mémoire

• Déclaration statique de données :
– Chaque variable dans un programme induit une réservation automatique d'un certain nombre

d'octets en mémoire.
– Le nombre d'octets à réserver est connu pendant la compilation : c'est la "déclaration statique

de données".
Exemples :

float A, B, C ; /* réservation de 12 octets */
short D[10][20] ; /* réservation de 200 octets */
double *G ; /* réservation de p octets (p = taille d'un mot machine. Dans notre cas, p = 2) */

• Allocation dynamique de la mémoire :
– La déclaration d'un tableau définit un tableau "statique" (il possède un nombre figé

d'emplacements). Il y a donc un gaspillage d'espace mémoire en réservant toujours l'espace
maximal prévisible.

– Il serait souhaitable que l'allocation de la mémoire dépend du nombre d'éléments à saisir. Ce
nombre ne sera connu qu'à l'exécution : c'est l' "allocation dynamique«

• Fonctions d'allocation dynamique de la mémoire (malloc, calloc et realloc) :
– Chaque fonction prend une zone d'une taille donnée dans l'espace mémoire libre réservé pour

le programme (appelé tas ou heap) et affecte l'adresse du début de la zone à une variable
pointeur.

– S'il n'y a pas assez de mémoire libre à allouer, la fonction renvoie le pointeur NULL.

 Filière SMI - Programmation II (M21-S4)
2014-2015

Allocation de Mémoire
– Fonction malloc
 <pointeur> = [<type>] malloc(<taille>) ;

<type> est un type pointeur définissant l'objet pointé par <pointeur>.
<taille> est le nombre d'octets alloués pour <pointeur>.
Exemple :

char *pc ;
pc = (char *) malloc(4000) ;
soit à pc est affectée l'adresse d'un bloc mémoire de 4000 octets. Soit pc contient la valeur 0 s'il n'y a pas assez de mémoire libre.

– Fonction calloc
 <pointeur> = [<type>] calloc(<nb_elts>, <taille_elt>) ;

• S'il y a assez de mémoire libre, la fonction retourne un pointeur sur une zone mémoire de <nb_elts> éléments de
<taille_elt> octets chacun initialisés à 0.

Exemple :
pt = (int *) calloc(100, sizeof(int)) ; /* allocation dynamique d'un tableau de 100 entiers égaux à 0 */

– Fonction realloc
 <pointeur> = [<type>] realloc(<pointeur>, <nouvelletaille>);

• Permet de modifier la taille d'une zone précédemment allouée par malloc, calloc ou realloc.
• Si <pointeur> est NULL, alors realloc équivaut à malloc

• Libération de la mémoire (la fonction free) :
– Un bloc de mémoire réservé dynamiquement par malloc, calloc ou realloc, peut être libéré à l'aide de la

fonction free
 free <pointeur> ;

Libère le bloc de mémoire désigné par le pointeur <pointeur>.

Filière SMI - Programmation II (M21-S4)

2014-2015

Exercice

Filière SMI - Programmation II (M21-S4)
2014-2015

Ecrire un programme C qui :
– demande à l’utilisateur de saisir tant qu’il le

souhaite des nombres entiers au clavier

– au fur est à mesure de la saisie, remplit, en
utilisant l’allocation dynamique, un tableau
initialement vide

– effectue un tri par insertion des éléments du
tableau, une fois la saisie des nombres est
terminée

– affiche les éléments du tableau.

Chaînes de caractères

 Définition, déclaration et mémorisation

 Chaînes constantes

 Initialisation

 Ordre alphabétique et lexicographique

 Manipulation des chaînes de caractères

 Tableaux de chaînes de caractères

Définition

Une chaîne de caractères est :

– une suite de caractères alphanumériques (du texte)

– représentée sur une suite d'octets se terminant par
un octet supplémentaire lié au symbole '\0'. Celui-
ci indique une fin de chaîne.

– considérée comme un tableau de caractères qui
peut être manipulé d'une manière globale (sans le
faire caractère par caractère).

Filière SMI - Programmation II (M21-S4)
2014-2015

Déclaration & Mémorisation

Déclaration :
 char <NomChaine> [<longueur>] ; /* sous forme de tableau */
ou
 char *<NomChaine>; /* sous forme de pointeur */

Exemples :
char Nom[20] ; /* Nom est un tableau ne pouvant contenir au
 plus que 19 caractères utiles */
char *Prenom ;

Mémorisation :

– Le nom d'une chaîne de caractères est le représentant de l'adresse du
1er caractère de la chaîne.

– Pour mémoriser une chaîne de N caractères, on a besoin de N+1 octets.

Filière SMI - Programmation II (M21-S4)

2014-2015

Chaînes constantes ou littérales

• Sont représentées entre guillemets. La chaîne vide est notée "".
• Pour une chaîne constante, le compilateur associe un pointeur constant.
• Dans une chaîne, les caractères de contrôle peuvent être utilisés.

– Exemple :

"Ce \ntexte \nsera réparti sur 3 lignes.«

• Le symbole " peut être représenté à l'intérieur d'une chaîne constante par \"
– Exemple :

"Affichage de \"guillemets\" \n"

• Plusieurs chaînes de caractères constantes séparées par des espaces, des
tabulations ou interlignes, dans le texte d'un programme, seront réunies en une
seule chaîne constante lors de la compilation.

– Exemple :
"un" "deux"
 "trois"
sera évaluée comme : "un deux trois"

Filière SMI - Programmation II (M21-S4)
2014-2015

Initialisation à la définition

Exemples :
char ch1[] = {'B', 'o', 'n', 'j', 'o', 'u', 'r', '\0'} ;
char ch2[] = "Bonjour" ; /* initialisation particulière aux chaînes de caractères */
char ch3[8] = "Bonjour" ;
char ch4[7] = "Bonjour" ; /* Erreur pendant l'exécution */
char ch5[6] = "Bonjour" ; /* Erreur pendant la compilation */
char *ch6 = "Bonjour" ; /* pointeur sur char */

Remarques :
1. char *ch1 = "une chaîne" ;

char *ch2 = "une autre chaîne" ;
ch1 = ch2 ; /* ch1 et ch2 pointent sur la même chaîne "une autre chaîne" */

2. char ch1[20] = "une chaîne" ;
char ch2[20] = "une autre chaîne" ;
char ch3[30] ;
ch1 = ch2 ; /* Impossible  Erreur */
ch3 = "Bonjour" ; /* Impossible  Erreur */

Filière SMI - Programmation II (M21-S4)
2014-2015

Ordre alphabétique et
lexicographique

Ordre alphabétique des caractères :
– dépend du code utilisé pour les caractères.
– pour le code ASCII, on constate l'ordre suivant : …, 0, 1, 2, …, 9, …, A, B, C, …, Z, …, a, b, c, …, z, …

Exemple :

'0' est inférieur à 'z' et noté : '0' < 'z‘ (code ASCII ('0') = 48 et code ASCII('z') = 90)

Ordre lexicographique des chaînes de caractères :
– basé sur l'ordre alphabétique des caractères.
– suit l'ordre du dictionnaire et est défini comme suit :

1. La chaîne vide "" précède lexicographiquement toutes les autres chaînes
2. La chaîne "a1a2…ap" (p caractères) précède lexicographiquement la chaîne "b1b2…bm" (m caractères) si

l'une des deux conditions suivantes est remplie :
– 'a1' < 'b1'
– 'a1' = 'b1' et "a2…ap" précède lexicographiquement "b2…bm"

Exemples :

"ABC" précède "BCD" car 'A' < 'B'
"ABC" précède "B"
"Abc" précède "abc"
"ab" précède "abcd" car "" précède "cd"
" ab" précède "ab" car ' ' < 'a' (ASCII(' ') = 12 et ASCII('a') = 97))

 Filière SMI - Programmation II (M21-S4)
2014-2015

Manipulation des chaînes de caractères
(Fonctions de stdio.h) (1)

Affichage de chaînes de caractères :
1. Fonction printf

int printf(const char *format [, argument, …])
A utiliser avec le spécificateur de format %s

Exemple :
char ch[] = "Bonjour tout le monde" ;
printf("%s", ch) ; /* affichage normal */
printf("%7s", ch) ; /* largeur minimale de 7 caractères */
printf("%.7s", ch) ; /* largeur maximale de 7 caract. */
printf("%25s", ch) ; /* alignement à droite sur 25 caract. */
printf("%-25s", ch) ; /* alignement à gauche sur 25 caract. */

2. Fonction puts
int puts(const char *ch) ;

Exemple :
char *ch = "Bonjour" ;
puts(ch) ; est équivalente à printf("%s\n", ch) ;

Filière SMI - Programmation II (M21-S4)
2014-2015

Manipulation des chaînes de caractères
(Fonctions de stdio.h) (2)

Lecture de chaînes de caractères :
1. Fonction scanf

int scanf(const char *format [, adresse, …]) ;
A utiliser avec le spécificateur de format %s

Exemple :
char lieu[25] ;
printf("Entrez le lieu de naissance : ") ; scanf("%s", lieu) ;

2. Fonction gets
char *gets(char *ch) ;

Exemple :
char string[80] ;
printf("Entrez une chaîne de caractères : ") ; gets(string) ;
printf("La chaîne lue est : %s\n", string) ;

Remarque :
Contrairement à scanf, la fonction gets permet de saisir des chaînes de caractères
contenant des espaces et des tabulations.

 Filière SMI - Programmation II (M21-S4)
2014-2015

Manipulation des chaînes de caractères
(Fonctions de string.h) (1)

Longueur d'une chaîne de caractères :
1. Fonction strlen

int strlen(const char *s) ;
Retourne le nombre de caractères présents dans la chaîne s (sans compter '\0').

Concaténation de chaînes de caractères :
1. Fonction strcat

char *strcat(char *s1, const char *s2) ;
Ajoute une copie de la chaîne s2 à la fin de la chaîne s1. Le caractère final '\0' de s1 est écrasé par le 1er caractère de s2.
Retourne un pointeur sur s1.

Exemple :
char *ch1 = "Bonjour" ;
char *ch2 = " tout le monde" ;
strcat(ch1, ch2) ;
printf("%s", ch1) ;

2. Fonction strncat

char *strncat(char *s1, const char *s2, int n) ;
Ajoute au maximum les n premiers caractères de la chaîne s2 à la chaîne s1.

Exemple :
char ch1[20] = "Bonjour" ;
char *ch2 = " tout le monde" ;
strncat(ch1, ch2, 5) ;

Filière SMI - Programmation II (M21-S4)

2014-2015

Manipulation des chaînes de caractères
(Fonctions de string.h) (2)

Comparaison de chaînes de caractères :
1. Fonction strcmp

int strcmp(const char *s1, const char *s2) ;
Compare lexicographiquement les chaînes s1 et s2, et retourne une valeur :

= 0 si s1 et s2 sont identiques
< 0 si s1 précède s2
> 0 si s1 suit s2

Exemple :
if (!strcmp(ch1, ch2)) printf("identiques\n") ;
else
 if (strcmp(ch1, ch2)>0) printf("%s précède %s\n", ch2, ch1) ;
 else printf("%s suit %s\n", ch2, ch1) ;

2. Fonction strncmp

int strncmp(const char *s1, const char *s2, int n) ;
Ici, la comparaison est effectuée sur les n premiers caractères.

3. Fonction stricmp

int stricmp(const char *s1, const char *s2) ;
Travaille comme strcmp sans faire la distinction entre majuscules et minuscules.

4. Fonction strnicmp

int strnicmp(const char *s1, const char *s2, int n) ;
Travaille comme strcnmp sans distinguer les majuscules des minuscules.

Filière SMI - Programmation II (M21-S4)

2014-2015

Manipulation des chaînes de caractères
(Fonctions de string.h) (3)

Copie de chaîne de caractères :
1. Fonction strcpy

char *strcpy(char *s1, const char *s2) ;
Copie la chaîne s2 dans s1 y compris le caractère '\0'.
Retourne un pointeur sur s1

2. Fonction strncpy
char *strncpy(char *s1, const char *s2, int n) ;

Copie au plus les n premiers caractères de la chaîne s2 dans s1 et retourne un pointeur sur s1.
La chaîne s1 peut ne pas comporter le caractère terminal si la longueur de s2 vaut n ou plus.

Exemple :
char ch1[8] ;
char *ch2 = "bonjour" ;
strncpy(ch2, ch1, 3) ;
ch2[3] = '\0' ;
printf("%s\n", ch2) ;

Filière SMI - Programmation II (M21-S4)
2014-2015

Manipulation des chaînes de caractères
(Fonctions de string.h) (4)

Recherche d’un caractère dans une chaîne de caractères :
1. Fonction strchr

char *strchr(const char *s, char c) ;
Recherche la 1ère occurrence du caractère c dans la chaîne s.
Retourne un pointeur sur cette 1ère occurrence si c'est un caractère de s, sinon le pointeur
NULL est retourné.

2. Fonction strrchr

char *strrchr(const char *s, char c) ;
Identique à strchr sauf qu'elle recherche la dernière occurrence du caractère c dans la chaîne
s.

Exemple :

char *ch = "Bonjour" ;
strchr(ch, 'o') ;
puts(strchr(ch, 'o')) ;
strrchr(ch, 'o') ;
puts(strrchr(ch, 'o')) ;

Filière SMI - Programmation II (M21-S4)

2014-2015

Manipulation des chaînes de caractères
(Fonctions de string.h) (5)

Recherche d'une sous-chaîne de caractères dans une chaîne de
caractères :

1. Fonction strstr
char *strstr(const char *s1, const char *s2) ;

Recherche la 1ère occurrence de la chaîne s2 dans la chaîne s1.
Retourne un pointeur sur cette 1ère occurrence si la chaîne s2 est une sous-chaîne
de la chaîne s1, sinon le pointeur NULL est retourné.

Exemple :

#include <string.h>
…
 char *s1 = "Bonjour tout le monde" ;
 char *s2 = "tout" ;
 char *pch ;
 pch = strstr(s1, s2) ;
 printf("La sous-chaîne est : %s\n", pch) ;

Filière SMI - Programmation II (M21-S4)

2014-2015

Manipulation des chaînes de caractères
(Fonctions de string.h) (6)

Recherche d'une sous-chaîne de caractères dans une chaîne de
caractères :

2. Fonction strpbrk
char *strpbrk(const char *s1, const char *s2) ;

Recherche dans la chaîne s1 la 1ère occurrence d'un caractère quelconque de la
chaîne s2

Exemple :
 char *ch1 = "abcdefghij" ;
 char *ch2 = "123f" ;
 char *pch ;
 pch = strpbrk(ch1, ch2) ;
 if (pch)
 printf("strpbrk trouve le premier caractère %c\n", *pch) ;
 else
 printf("strpbrk ne trouve pas de caractères\n") ;

Filière SMI - Programmation II (M21-S4)

2014-2015

Manipulation des chaînes de caractères
(Fonctions de string.h) (7)

Recherche d'une sous-chaîne de caractères dans une chaîne de
caractères :

3. Fonction strtok
char *strtok(char *s1, const char *scp) ;

Recherche dans la chaîne s des éléments (des chaînes da caractères) séparés par des séparateurs définis dans la chaîne de
caractères constante scp.
Le 1er appel à strtok renvoie un pointeur sur le 1er caractère du 1er élément de la chaîne s et écrit le caractère '\0' dans la
chaîne s immédiatement après l'élément renvoyé.
D'autres appels à strtok, avec NULL comme 1er argument, traitent de la même manière, et jusqu'à épuisement, les autres
éléments de la chaîne s.

Remarque :
strtok permet d'éclater la chaîne s en différentes sous-chaînes obtenues en considérant comme séparateurs les différents
caractères de la chaîne scp.

Exemples :
 char ch[16] = "abc,d" ;
 char *p ;
 p = strtok(ch, ",") ; /* 1er appel à strtok */
 if (p)
 printf("%s\n", p) ; /* il s'affichera la chaîne "abc" */
 p = strtok(NULL, ",") ; /* 2ème appel à strtok avec comme 1er
 argument NULL */
 if (p)
 printf("%s\n", p) ; /* il s'affichera la chaîne "d" */

Filière SMI - Programmation II (M21-S4)

2014-2015

Manipulation des chaînes de caractères
(Exercice)

• Ecrire une fonction qui affiche les mots d'une phrase :
– Une phrase est une chaîne de caractère constituée d’un ensemble de

mots

– Les mots de la phrase sont séparés par un seul espace.

Filière SMI - Programmation II (M21-S4)
2014-2015

Conversion nombres/chaînes de caractères
(Fonctions de stdlib.h) (1)

Conversion d'une chaîne de caractères en une valeur
numérique :

Fonctions atoi, atol, atof
int atoi(const char *s) ;

long atol(const char *s) ;
double atof(const char *s) ;

atoi (respectivement atol, atof) retourne la valeur numérique
représentée par la chaîne s comme un int (respectivement long int,
double).

Remarques :

Les espaces au début de la chaîne de caractères s sont ignorés.
La conversion s'arrête au 1er caractère non valide (c.-à-d. non convertible).
Si aucun caractère n'est valide, les fonctions retournent zéro.

Filière SMI - Programmation II (M21-S4)

2014-2015

Conversion nombres/chaînes de caractères
(Fonctions de stdlib.h) (2)

Conversion d'une valeur numérique en une chaîne de
caractères (non ANSI) :

Fonctions itoa, ltoa, ultoa
char *itoa(int n, char *s, int b) ;

char *ltoa(long n, char *s, int b) ;
char *ultoa(unsigned long n, char *s, int b) ;

Convertissent l'entier n, représenté en base de numération b, dans
la chaîne s

Remarques :

Si n est un entier négatif et b = 10, itoa et ltoa (pas ultoa) utilisent le 1er
caractère de la chaîne s pour le signe moins.
Si succès, les fonctions itoa, ltoa et ultoa renvoient un pointeur sur la
chaîne résultante. Dans le cas contraire, elles retournent NULL.

Filière SMI - Programmation II (M21-S4)

2014-2015

Classification de caractères
(Fonctions de ctype.h)

Fonctions de classification :
– retournent zéro si la condition respective n'est pas remplie.

– c est une valeur du type int qui peut être représentée comme
un caractère

Filière SMI - Programmation II (M21-S4)
2014-2015

Fonction : Retourne une valeur différente de zéro :

isupper(c) si c est une lettre majuscule ('A', 'B', …, 'Z')

islower(c) si c est une lettre minuscule ('a', 'b', …, 'z')

isdigit(c) si c est un chiffre décimal ('0', '1', …, '9').

isalpha(c) si islower(c) ou isupper(c).

isalnum(c) si isalpha(c) ou isdigit(c).

isxdigit(c) si c est un chiffre hexadécimal ('0', …, '9' ou 'A, 'B', …, 'F' ou 'a', 'b', …, 'f').

isspace(c) si c est un signe d'espacement (' ', '\t', '\n', '\r', '\f').

Conversion de caractères
(Fonctions de ctype.h)

Fonctions de conversion :

– Retournent une valeur du type int qui peut être
représentée comme caractère. La valeur originale
de c est inchangée.

Filière SMI - Programmation II (M21-S4)
2014-2015

Fonction : Retourne :

tolower(c) la lettre minuscule si c est une
majuscule.

toupper(c) la lettre majuscule si c est une
minuscule.

Tableaux de chaînes de caractères (1)

- Utiles pour mémoriser une suite de mots ou de phrases.

Exemples :
1. char Jour[7][9] = {"Lundi", "Mardi", "Mercredi", "Jeudi", "Vendredi",

"Samedi", "Dimanche"} ;

Déclaration d'un tableau de 7 chaînes de caractères, chacune contenant au maximum 9
caractères (dont 8 significatifs).

2. Jour[4] = "Friday" ; /* affectation non valide ! */

En effet Jour[4] représente l'adresse du 1er élément de la 4ème chaîne de caractères
Pour faire ce type d'affectation, utiliser la fonction strcpy :

strcpy(Jour[4], "Friday") ;

3. /* Affichage de la 1ère lettre des jours de la semaine */

 for (i = 0 ; i<7 ; i++)
 printf("%c\t", Jour[i][0]) ;

Filière SMI - Programmation II (M21-S4)
2014-2015

Tableaux de chaînes de caractères (2)

- Utiliser des tableaux de pointeurs pour mémoriser de façon économique des chaînes de
caractères de différentes longueurs

Exemples :
char *Day[] = {"Lundi", "Mardi", "Mercredi", "Jeudi",

 "Vendredi", "Samedi", "Dimanche"} ;

Déclaration d'un tableau de 7 pointeurs sur char. Chacun des pointeurs est initialisé avec l'adresse de l'une des 7
chaînes de caractères constantes.

1. Day[4] = "Friday" ; /* Ici, affectation valable */

2. /* Affichage de la 1ère lettre des jours de la semaine */
 for (i = 0 ; i<7 ; i++)

 printf("%c\t", *Day[i]) ;

Filière SMI - Programmation II (M21-S4)

2014-2015

Day[0]

Day[1]

Day[2]

Day[3]

Day[4]

Day[5]

Day[6]

• L u n d i \0

• M a r d i \0

• M e r c r e d i \0

• J e u d I \0

• V e n d r e d i \0

• S a m e d i \0

• D i m a n c h e \0

Structures de Données Linéaires
en C

 Notion de Type Abstrait de Données

 Notion de Structure de Données

 Implémentation d’un TAD en C

 Exemples de Structures de Données Linéaires en C

Notion de Type Abstrait de Données

• Un type abstrait de données (TAD) :

– est un ensemble de valeurs muni d’opérations
sur ces valeurs

– sans faire référence à une implémentation
particulière

• Un TAD est caractérisé par :
– sa signature : définit la syntaxe du type et des

opérations
– sa sémantique : définit les propriétés des

opérations

Filière SMI - Programmation II (M21-S4)

2014-2015
59

Notion de Structure de Données

• On dit aussi :
– structure de données concrète

• Correspond à :

– l’implémentation d’un TAD

• Composée :
– d’un algorithme pour chaque opération
– des données spécifiques à la structure pour sa gestion

• Remarque :

– Un même TAD peut donner lieu à plusieurs structures de
données, avec des performances différentes

Filière SMI - Programmation II (M21-S4)

2014-2015
60

Implémentation d’un TAD

• Pour implémenter un TAD :
– Déclarer la structure de données retenue pour représenter le TAD :

L’interface
– Définir les opérations primitives dans un langage particulier : La

réalisation

• Exigences :
– Conforme à la spécification du TAD ;
– Efficace en terme de complexité d’algorithme.

• Pour implémenter, on utilise :
– Les types élémentaires (entiers, caractères, ...)
– Les pointeurs ;
– Les tableaux et les enregistrements ;
– Les types prédéfinis.

• Plusieurs implémentations possibles pour un même TAD

 Filière SMI - Programmation II (M21-S4)
2014-2015

61

Implémentation d’un TAD en C

• Utiliser la programmation modulaire :
– Programme découpé en plusieurs fichiers, même de petites tailles (réutilisabilité,

lisibilité, etc.)
– Chaque composante logique (un module) regroupe les fonctions et types autour

d'un même thème.

• Pour chaque module truc, créer deux fichiers :
– fichier truc.h : l'interface (la partie publique) ; contient la spécification de la

structure ;
– fichier truc.c : la définition (la partie privée) ; contient la réalisation des opérations

fournies par la structure. Il contient au début l'inclusion du fichier truc.h

• Tout module ou programme principal qui a besoin d'utiliser les fonctions
du module truc, devra juste inclure le truc.h

• Un module C implémente un TAD :
– L'encapsulation : détails d'implémentation cachés ; l'interface est la partie visible à

un utilisateur
– La réutilisation : placer les deux fichiers du module dans le répertoire où l'on

développe l'application.

Filière SMI - Programmation II (M21-S4)
2014-2015

62

Structures de données linéaires

• Structure linéaire :

– C’est un arrangement linéaire d'éléments liés par
la relation successeur

• Exemples :

– Tableaux (la relation successeur est implicite)

– Piles

– Files

– listes

Filière SMI - Programmation II (M21-S4)
2014-2015

63

Notion de Pile (Stack)

• Une pile est :
– une structure linéaire permettant de stocker et de restaurer des

données selon un ordre LIFO (Last In, First Out ou « dernier entré,
premier sorti »)

• Dans une pile :
– Les insertions (empilements) et les suppressions (dépilements) sont

restreintes à une extrémité appelée sommet de la pile.

• Applications :
– Vérification du bon équilibrage d’une expression avec parenthèses
– Evaluation des expressions arithmétiques postfixées
– Gestion par le compilateur des appels de fonctions
– …

Filière SMI - Programmation II (M21-S4)
2014-2015

64

Type Abstrait Pile

Type Pile

Utilise Elément, Booléen

Opérations

pile_vide :  Pile

est_vide : Pile  Booléen

empiler : Pile x Elément  Pile

dépiler : Pile  Pile

sommet : Pile  Elément

Préconditions

dépiler(p) est-défini-ssi est_vide(p) = faux

sommet(p) est-défini-ssi est_vide(p) = faux

Axiomes

Soit, e : Element, p : Pile

est_vide(pile_vide) = vrai

est_vide(empiler(p,e)) = faux

dépiler(empiler(p,e)) = p

sommet(empiler(p,e)) = e

Filière SMI - Programmation II (M21-S4)
2014-2015

65

Représentations d'une Pile

• Représentation contiguë (par tableau) :
– Les éléments de la pile sont rangés dans un tableau

– Un entier représente la position du sommet de la pile

• Représentation chaînée (par pointeurs) :
– Les éléments de la pile sont chaînés entre eux

– Un pointeur sur le premier élément désigne la pile et
représente le sommet de cette pile

– Une pile vide est représentée par le pointeur NULL

Filière SMI - Programmation II (M21-S4)

2014-2015
66

Pile Contiguë en C

Filière SMI - Programmation II (M21-S4)
2014-2015

6

5

4

10 3

20 2

5 1

50 0

3
sommet

elements

Pile
/* Pile contiguë en C */

// taille maximale pile

#define MAX_PILE 7

// type des éléments

typedef int Element;

// type Pile

typedef struct {

 Element elements[MAX_PILE];

 int sommet;

} Pile;

Tableau de taille
maximale 7

Pile Chaînée en C

Filière SMI - Programmation II (M21-S4)
2014-2015

Pile

10 20

50

/* Pile chaînée en C */

// type des éléments

typedef int element;

// type Cellule

typedef struct cellule {

 element valeur;

 struct cellule *suivant;

 } Cellule;

// type Pile

typedef Cellule *Pile;

Sommet de la pile
pointée par p

Cellule contenant la
valeur 5

Pointeur sur cellule
suivante

Pointeur
NULL

p

Spécification d'une Pile Contiguë

/* fichier "Tpile.h" */
#ifndef _PILE_TABLEAU

#define _PILE_TABLEAU

#include "Booleen.h"

// Définition du type Pile (implémentée par un tableau)

#define MAX_PILE 7 /* taille maximale d'une pile */

typedef int Element; /* les éléments sont des int */

typedef struct {

 Element elements[MAX_PILE]; /* les éléments de la pile */

 int sommet; /* position du sommet */

} Pile;

// Déclaration des fonctions gérant la pile

Pile pile_vide ();

Pile empiler (Pile p, Element e);

Pile depiler (Pile p);

Element sommet (Pile p);

Booleen est_vide (Pile p);

#endif

Filière SMI - Programmation II (M21-S4)
2014-2015

69

Réalisation d'une Pile Contiguë

/* fichier "Tpile.c" */

#include "Tpile.h"

// Définition des fonctions gérant la pile

// initialiser une nouvelle pile

Pile pile_vide() {

 Pile p;

 p.sommet = -1;

 return p;

}

// tester si la pile est vide

Booleen est_vide(Pile p) {

 if (p.sommet == -1) return vrai;

 return faux;

}

// Valeur du sommet de pile

Element sommet(Pile p) {

/* pré-condition : pile non vide ! */

 if (est_vide(p)) {

 printf("Erreur: pile vide !\n");

 exit(-1);

 }

 return (p.elements)[p.sommet];

}

// ajout d'un élément

Pile empiler(Pile p, Element e) {

 if (p.sommet >= MAX_PILE-1) {

 printf("Erreur : pile pleine !\n");

 exit(-1);

 }

 (p.sommet)++;

 (p.elements)[p.sommet] = e;

 return p;

}

// enlever un élément

Pile depiler(Pile p) {

/* pré-condition : pile non vide !*/

 if (est_vide(p)) {

 printf("Erreur: pile vide !\n");

 exit(-1);

 }

 p.sommet--;

 return p;

}

Filière SMI - Programmation II (M21-S4)
2014-2015

70

Utilisation d'une Pile Contiguë

/* fichier "UTpile.c" */
#include <stdio.h>

#include "Tpile.h"

int main () {

 Pile p = pile_vide();

 p = empiler(p,50);

 p = empiler(p,5);

 p = empiler(p,20);

 p = empiler(p,10);

 printf("%d au sommet après empilement de 50, 5, 20 et"

 " 10\n", sommet(p));

 p = depiler(p);

 p = depiler(p);

 printf("%d au sommet après dépilement de 10 et 20\n",

 sommet(p));

 return 0;

}

Master IADO – Algorithmique avancée &
Programmation 2014-2015

71

Notion de File (Queue)

• Une file est :
– une structure linéaire permettant de stocker et de restaurer des données

selon un ordre FIFO (First In, First Out ou « premier entré, premier sorti »)

• Dans une file :

– Les insertions (enfilements) se font à une extrémité appelée queue de la file
et les suppressions (défilements) se font à l'autre extrémité appelée tête de la
file

• Applications :
– Gestion travaux d’impression d’une imprimante

– Ordonnanceur (dans les systèmes d’exploitation)

– …

Filière SMI - Programmation II (M21-S4)
2014-2015

72

Type Abstrait File

Type File

Utilise Elément, Booléen

Opérations

file_vide :  File

est_vide : File  Booléen

enfiler : File x Elément  File

défiler : File  File

tête : File  Elément

Préconditions

défiler(f) est-défini-ssi est_vide(f) = faux
tête(f) est-défini-ssi est_vide(f) = faux

Axiomes

Soit, e : Element, f : File

est_vide(pile_vide) = vrai

est_vide(enfiler(f,e)) = faux

si est_vide(f) = vrai alors tête(enfiler(f,e)) = e

si est_vide(f) = faux alors tête(enfiler(f,e)) = tête(f)

si est_vide(f) = vrai alors défiler(enfiler(f,e)) = file_vide

si est_vide(f) = faux

 alors défiler(enfiler(f,e)) = enfiler(défiler(f),e)

Filière SMI - Programmation II (M21-S4)
2014-2015

73

Représentations d’une File

• Représentation contiguë (par tableau) :
– Les éléments de la file sont rangés dans un tableau
– Deux entiers représentent respectivement les positions de

la tête et de la queue de la file

• Représentation chaînée (par pointeurs) :
– Les éléments de la file sont chaînés entre eux
– Un pointeur sur le premier élément désigne la file et

représente la tête de cette file
– Un pointeur sur le dernier élément représente la queue de

file
– Une file vide est représentée par le pointeur NULL

Filière SMI - Programmation II (M21-S4)

2014-2015
74

Notion de Liste

• Généralisation des piles et des files
– Structure linéaire dans laquelle les éléments peuvent être traités les uns à la suite des

autres
– Ajout ou retrait d'éléments n’importe où dans la liste
– Accès à n'importe quel élément

• Une liste est :

– une suite finie, éventuellement vide, d'éléments de même type repérés par leur rang
dans la liste

• Dans une liste :

– Chaque élément de la liste est rangé à une certaine place
– Les éléments d'une liste sont donc ordonnés en fonction de leur place

• Remarques :

– Il existe une fonction notée succ qui, appliquée à toute place sauf la dernière, fournit la
place suivante

– Le nombre total d'éléments, et par conséquent de places, est appelé longueur de la liste

• Applications :
– Codage des polynômes, des matrices creuses, des grands nombres, …

Filière SMI - Programmation II (M21-S4)
2014-2015

75

Type Abstrait Liste

Type Liste

Utilise Elément, Booléen, Place

Opérations
liste_vide :  Liste

longueur : Liste  Entier

insérer : Liste x Entier x Elément  Liste

supprimer : Liste x Entier  Liste

kème : Liste x Entier  Elément

accès : Liste x Entier  Place

contenu : Liste x Place  Elément

succ : Liste x Place  Place

Préconditions
insérer(l,k,e) est-défini-ssi 1 ≤ k ≤ longueur(l)+1
supprimer(l,k) est-défini-ssi 1 ≤ k ≤ longueur(l)
kème(l,k) est-défini-ssi 1 ≤ k ≤ longueur(l)
accès(l,k) est-défini-ssi 1 ≤ k ≤ longueur(l)
succ(l,p) est-défini-ssi p ≠ accès(l,longueur(l))

Filière SMI - Programmation II (M21-S4)
2014-2015

76

Représentation contigüe d’une Liste

• Les éléments sont rangés les uns à côté des autres dans un
tableau
– La ième case du tableau contient le ième élément de la liste

– Le rang est donc égal à la place ; ce sont des entiers

• La liste est représentée par une structure en langage C :
– Un tableau représente les éléments

– Un entier représente le nombre d'éléments dans la liste

– La longueur maximale, MAX_LISTE, de la liste doit être connue

Filière SMI - Programmation II (M21-S4)
2014-2015

77

Liste Contiguë en C

Filière SMI - Programmation II (M21-S4)
2014-2015

/* Liste contiguë en C */

// taille maximale liste

#define MAX_LISTE 10

// type des éléments

typedef int Element;

// type Place

typedef int Place;

// type Liste

typedef struct {

 Element tab[MAX_LISTE];

 int taille;

} Liste;

0 1 2 3 4 5 6 7 8 9

10 6 30 40 50 tab

taille 5

Liste

Tableau de taille
maximale = 10

Nombre d'éléments
dans la liste

La place du rang 3
contient la valeur 40

Représentation chaînée d’une Liste

• Les éléments ne sont pas rangés les uns à côté des autres
– La place d'un élément est l'adresse d'une structure qui contient

l'élément ainsi que la place de l'élément suivant

– Utilisation de pointeurs pour chaîner entre eux les éléments
successifs

• La liste est représentée par un pointeur sur une structure en
langage C
– Une structure contient un élément de la liste et un pointeur sur

l'élément suivant

– La liste est déterminée par un pointeur sur son premier élément

– La liste vide est représentée par la constante prédéfinie NULL

Filière SMI - Programmation II (M21-S4)
2014-2015

79

Liste Chaînée en C

Filière SMI - Programmation II (M21-S4)
2014-2015

L

Liste

10 6

50

/* Liste chaînée en C */

// type des éléments

typedef int element;

// type Place

typedef struct cellule* Place;

// type Cellule

typedef struct cellule {

 element valeur;

 struct cellule *suivant;

 } Cellule;

// type Liste

typedef Cellule *Liste;

Premier élément de la
liste pointée par L

Cellule contenant
la valeur 30

Pointeur sur
cellule suivante

Pointeur
NULL

Dernier élément de
la liste

Spécification d'une Liste Chaînée
/* fichier "CListe.h" */

#ifndef _LISTE_CHAINEE
#define _LISTE_CHAINEE

// Définition du type liste (implémentée par pointeurs)
typedef int element; /* les éléments sont des int */

typedef struct cellule *Place; /* la place = adresse cellule */

typedef struct cellule {
 element valeur; // un éléments de la liste
 struct cellule *suivant; // adresse cellule suivante
} Cellule;

typedef Cellule *Liste;

// Déclaration des fonctions gérant la liste
Liste liste_vide (void);
int longueur (Liste l);
Liste inserer (Liste l, int i, element e);
Liste supprimer (Liste l, int i);
element keme (Liste l, int k);

Place acces (Liste l, int i);
element contenu (Liste l, Place i);
Place succ (Liste l, Place i);

#endif

type Liste : un
pointeur de Cellule

Filière SMI - Programmation II (M21-S4)
2014-2015

81

Réalisation d'une Liste Chaînée (1)
Liste liste_vide(void) {

 return NULL;

}

int longueur(Liste l) {

 int taille=0;

 Liste p=l;

 while (p) {

 taille++;

 p=p->suivant;

 }

 return taille;

}

Liste inserer(Liste l, int i, element e) {

// précondition :0 ≤ i < longueur(l)+1

 if (i<0 || i>longueur(l)) {

 printf("Erreur : rang non valide !\n");

 exit(-1);

 }

 Liste pc = (Liste)malloc(sizeof(Cellule));

 pc->valeur=e;

 pc->suivant=NULL;

 if (i==0){

 pc->suivant=l;

 l=pc;

 }

 else {

 int j;

 Liste p=l;

 for (j=0; j<i-1; j++)

 p=p->suivant;

 pc->suivant=p->suivant;

 p->suivant=p;

 }

 return l;

}

Place acces(Liste l, int k) {

// pas de sens que si 0 ≤ k ≤ longueur(l)-1

 int i;

 Place p;

 if (k<0 || k>=longueur(l)) {

 printf("Erreur: rang invalide !\n");

 exit(-1);

 }

 if (k == 0)

 return l;

 else {

 p=l;

 for(i=0; i<k; k++)

 p=p->suivant;

 return p;

 }

}

Filière SMI - Programmation II (M21-S4)
2014-2015

82

Réalisation d'une Liste Chaînée (2)
element contenu(Liste l, Place p) {

// pas de sens si longueur(l)=0 (liste vide)

 if (longueur(l) == 0) {

 printf("Erreur: liste vide !\n");

 exit(-1);

 }

 return p->valeur;

}

Place succ(Liste l, Place p) {

// pas de sens si p dernière place de liste

 if (p->suivant == NULL) {

 printf("Erreur: suivant dernière
place!\n");

 exit(-1);

 }

 return p->suivant;

}

element keme(Liste l, int k) {

// pas de sens que si 0 <= k <= longueur(l)-1

 if (k<0 || k>longueur(l)-1) {

 printf("Erreur : rang non valide !\n");

 exit(-1);

 }

 return contenu(l, acces(l,k));

}

Liste supprimer(Liste l, int i) {

// précondition : 0 ≤ i < longueur(l)

 int j;

 Liste p;

 if (i<0 || i>longueur(l)+1) {

 printf("Erreur: rang non valide!\n");

 exit(-1);

 }

 if (i == 0) {

 p=l;

 l=l->suivant;

 }

 else {

 Place q;

 q=acces(l,i-1);

 p=succ(l,q);

 q->suivant=p->suivant;

 }

 free(p);

 return l;

}

Filière SMI - Programmation II (M21-S4)
2014-2015

83

Variantes de Listes Chaînées

• Liste avec tête fictive
– Eviter d'avoir un traitement particulier pour le cas de la tête de liste (opérations d'insertion et de

suppression)

• Liste chaînée circulaire
– Le suivant du dernier élément de la liste est le pointeur de tête

• Liste doublement chaînée
– Faciliter le parcours de la liste dans les deux sens (utilisation de deux pointeurs…)

• Liste doublement chaînée circulaire

• Liste triée
– L’ordre des enregistrements dans la liste respecte l’ordre sur les clés

Filière SMI - Programmation II (M21-S4)
2014-2015

84

Fichiers

 Définition et propriétés
 Fichiers de texte et fichiers binaires
 Fichiers standards
 Déclaration, ouverture et fermeture d’un fichier
 Traitement du contenu d’un fichier
 Déplacement dans le fichier (accès direct)
 …

Définition et Propriétés

Définition :
– Un fichier est une suite de données homogènes

conservées en permanence sur un support externe
(disque dur, clef USB, …).

– Ces données regroupent, le plus souvent, plusieurs
composantes (champs) d'une structure.

Exemples :
• Un fichier d'étudiants.
• Un fichier d'entiers.

Propriété :
– En C, les fichiers sont considérés comme une suite

d'octets (1 octet = caractère)

Filière SMI - Programmation II (M21-S4)

2014-2015

Manipulation d’un Fichier

Principe de manipulation d'un fichier :

1. ouverture du fichier

2. lecture, écriture, et déplacement dans le fichier

3. fermeture du fichier

Filière SMI - Programmation II (M21-S4)
2014-2015

Manipulation d’un Fichier

Deux types de fonctions permettent de manipuler
un fichier :

– fonctions de bas niveau : dépendent du système
d'exploitation et font un accès direct sur le support
physique de stockage du fichier.

– fonctions de haut niveau : l'accès au fichier se fait par
l'intermédiaire d'une zone mémoire de stockage (la
mémoire tampon). Ces fonctions sont construites à
partir des fonctions de bas niveau.

Remarque :
– Dans ce cours, seules les fonctions de haut niveau

seront étudiées et utilisées.

Filière SMI - Programmation II (M21-S4)

2014-2015

Manipulation d’un Fichier

Deux techniques pour manipuler un fichier :

– l'accès séquentiel : pour atteindre l'information
souhaitée, il faut passer par la première puis la
deuxième et ainsi de suite.

– l'accès direct : consiste à se déplacer directement
sur l'information souhaitée sans avoir à parcourir
celles qui la précèdent.

Filière SMI - Programmation II (M21-S4)
2014-2015

Mémoire Tampon

– Les accès à un fichier (en vue d'une lecture ou
écriture d'informations) se font par l'intermédiaire
d'une mémoire tampon (buffer).

– Il s'agit d'une zone de la mémoire centrale qui
stocke une quantité, assez importante, de
données du fichier.

– Son rôle est d'accélérer les entrées/sorties à un
fichier.

Filière SMI - Programmation II (M21-S4)
2014-2015

Types de Fichiers

– Deux types de fichiers :
• Fichiers de texte

• Fichiers binaires

– Un fichier de texte est une suite de lignes ; chaque
ligne est une suite de caractères terminée par le
caractère spécial '\n'.

– Un fichier binaire est une suite d'octets pouvant
représenter toutes sortes de données. (le système
n'attribue aucune signification aux octets
échangés)

Filière SMI - Programmation II (M21-S4)

2014-2015

Fichiers Standards

– Des fichiers spéciaux sont prédéfinis et ouverts
automatiquement lorsqu'un programme
commence à s'exécuter :

• stdin : entrée standard (par défaut, lié au clavier)

• stdout : sortie standard (par défaut, lié à l'écran)

• stderr : sortie d'erreur standard (par défaut, lié aussi à
l'écran)

– Ces fichiers peuvent être redirigés au niveau de
l'interprète de commandes par l'utilisation de
symboles > et < à l'appel du programme.

 Filière SMI - Programmation II (M21-S4)
2014-2015

Fichiers Standards

Exemples :
1. Soit le fichier de texte "c:\essai.txt"

Considérons les appels suivants du programme exécutable Prog :

Prog > c:\essai.tx

 Prog écrira dans c:\essai.txt au lieu de l'écran

Prog < c:\essai.txt

 Prog fera ses lectures dans c:\essai.tx)

2. Soient Prog1 et Prog2 deux programmes exécutables.
Soit l'appel suivant :

Prog1 | Prog2

 Prog1 a sa sortie standard redirigée dans l'entrée standard de Prog2

Filière SMI - Programmation II (M21-S4)

2014-2015

Fichiers Standards

Aux fichiers standards :

sont associées des fonctions prédéfinies permettant
de réaliser les opérations suivantes :

– lecture et écriture caractère par caractère

– lecture et écriture ligne par ligne

– lecture et écriture formatées

Filière SMI - Programmation II (M21-S4)
2014-2015

Fichiers Standards

Echanges caractère par caractère :
Fonction getchar

int getchar() ;
Permet de lire un caractère sur stdin.
Retourne la valeur du caractère lu ou EOF (si fin du fichier ou erreur)

Exemple :
while ((c = getchar() != EOF) && (c != ' ')) ;
/* lit jusqu'au premier caractère non espace ou EOF */

Fonction putchar
int putchar(int c) ;

Permet d'écrire le caractère c sur stdout.
Retourne la valeur du caractère écrit c ou EOF en cas d'erreur

Filière SMI - Programmation II (M21-S4)

2014-2015

Fichiers Standards

Echanges ligne par ligne :
Une ligne est considérée comme une suite de caractères terminée
par le caractère fin de ligne '\n' ou par la détection de la fin du
fichier.
Fonction gets

char *gets(char *s) ;
Lit une ligne sur stdin et la place dans la chaîne s. Le caractère fin de ligne
'\n' est remplacé dans s par le caractère fin de chaîne '\0'.
Retourne NULL à la rencontre de la fin de fichier ou en cas d'erreur

Fonction puts
int puts(char *s) ;

Permet d'écrire la chaîne de caractères s, suivie d'un saut de ligne sur
stdout.
Retourne le dernier caractère écrit ou EOF en cas d'erreur.

Filière SMI - Programmation II (M21-S4)

2014-2015

Fichiers Standards

Echanges avec formats :

Fonction scanf

int scanf(char *, …) ;

Effectue une lecture formatée sur stdin.

Fonction printf

int printf(char *, …) ;

Effectue une écriture formatée sur stdout.

Filière SMI - Programmation II (M21-S4)
2014-2015

Déclaration d'un Fichier

FILE *<PointeurFichier> ;

– Le type FILE est défini dans <stdio.h> en tant que structure.
– A l'ouverture d'un fichier, la structure FILE contient un certain

nombre d'informations sur ce fichier telles que :
• adresse de la mémoire tampon,
• position actuelle dans le tampon,
• nombre de caractères déjà écrits dans le tampon, …,
• type d'ouverture du fichier : écriture, lecture, …,
• …

– Pour pouvoir travailler avec un fichier dans un programme,
ranger l'adresse de la structure FILE dans le pointeur de fichier
et tout accès ultérieur au fichier se fait par l'intermédiaire de ce
pointeur.

Filière SMI - Programmation II (M21-S4)

2014-2015

Ouverture d'un Fichier

– Association d'un objet extérieur (le fichier) au programme en
cours d'exécution.

– Réalisée par la fonction fopen selon la syntaxe :
FILE *fopen(char *<NomFichier>, char *<TypeOuverture>) ;

Exemple :
pf = fopen("essai.dat", "rb") ;

– fopen tente d'ouvrir le fichier désigné par <NomFichier> pour le
type d'ouverture spécifié <TypeOuverture>.

– Si succès, crée une structure de type FILE, y stocke les
informations relatives à ce fichier et retourne l'adresse de cette
structure.

– Sinon, NULL est retourné.
– Le type d'ouverture indique la nature des opérations que le

programme devra exécuter après l'ouverture du fichier.
 Filière SMI - Programmation II (M21-S4)

2014-2015

Types d’Ouverture d’un Fichier

Les différents types d'ouverture d'un fichier :
– "r" : ouverture en lecture seule. Si fichier inexistant, la fonction retourne

NULL.
– "w" : création pour écriture. Si fichier préexistant, il est vidé (son contenu est

perdu)
– "a" : ouverture pour ajout ; ouverture en écriture en fin de fichier ou création

pour écriture si fichier inexistant.
– "r+" : ouverture de fichier préexistant pour mise à jour (lecture/écriture).
– "w+" : création pour mise à jour (lecture/écriture). Si fichier préexistant, le

contenu est perdu.
– "a+" : ouverture pour ajout ; ouverture pour mise à jour en fin de fichier ou

création si fichier inexistant.

Remarques :
– Pour indiquer qu'un fichier doit être ouvert ou créé en mode texte, ajouter t à

la chaîne ("rt", "wt", "at", "rt+" ou "r+t", "wt+" ou "w+t", "at+" ou "a+t").
– Pour le mode binaire, ajouter b ("rb", "wb", …).

Filière SMI - Programmation II (M21-S4)

2014-2015

Fermeture d’un Fichier

– Termine la manipulation d'un fichier ouvert en faisant appel à la fonction
fclose selon la syntaxe :

int fclose(FILE *<PointeurFichier>) ;
Exemple :

fclose(pf) ; /* pf est un pointeur de fichier */

– fclose est la fonction inverse de fopen ; elle détruit le lien entre le pointeur de
fichier et le nom du fichier.

– Retourne :
• 0 dans le cas normal.
• EOF en cas d'erreur.

Remarques :
– Quand un fichier ne sert plus, il est conseillé de le fermer.
– Dés qu'un fichier est fermé, la mémoire tampon est libérée.
– Après fclose(pf), le pointeur pf est invalide. Des erreurs graves pourraient donc

survenir si ce pointeur est utilisé par la suite.

Filière SMI - Programmation II (M21-S4)

2014-2015

Ouverture et Fermeture d'un fichier
(Exemple)

#include <stdio.h>
#include<string.h>
void main()
{
 char nomfich[20] ; /* nom physique du fichier à traiter */
 FILE *pf ; /* pf est un pointeur de fichier */
 printf("Nom de sauvegarde du fichier : ") ;
 gets(nomfich) ;
 pf = fopen(nomfich, "r") ; /* Ouvre en lecture le fichier */
 if (pf == NULL)
 printf("Impossible d'ouvrir le fichier\n") ;
 else
 … /* traitement du fichier */
 fclose(pf) ; /* fermer le fichier référencé par pf */
}

Filière SMI - Programmation II (M21-S4)
2014-2015

Traitement du Contenu d'un Fichier

– Une fois le fichier ouvert, C permet plusieurs types de
traitement du fichier :

• par caractères

• par lignes

• par enregistrements

• par données formatées

– Dans tous les cas, les fonctions de traitement du
fichier (sauf les opérations de déplacement (voir plus
loin)) ont un comportement séquentiel. L'appel de ces
fonctions provoque le déplacement du pointeur
courant relatif au fichier ouvert.

 Filière SMI - Programmation II (M21-S4)
2014-2015

Traitement Caractère par Caractère

Fonction fgetc
int fgetc(FILE *<PointeurFichier>) ;

– Lit un caractère dans le fichier référencé par le pointeur
<PointeurFichier>

– Retourne :
• Le caractère lu sous forme d'un int
• EOF à la rencontre de la fin du fichier ou en cas d'erreur.

Fonction getc
int getc(FILE *<PointeurFichier>) ;

– Identique à fgetc() sauf que cette fonction est réalisée par une
macro définie dans <stdio.h>.

– Pour une macro, les instructions sont générées en ligne (et
répétées à chaque appel) ce qui évite un appel de fonction
(coûteux).

 Filière SMI - Programmation II (M21-S4)
2014-2015

Traitement Caractère par Caractère

Fonction fputc
int fputc(int <Caractere>, FILE *<PointeurFichier>) ;

– Ecrit dans le fichier référencé par le pointeur
<PointeurFichier> le caractère placé dans la variable
<Caractere>.

– Retourne :
• La valeur sous forme d'int du caractère écrit dans le fichier.
• EOF en cas d'erreur.

Fonction putc
int putc(int <Caractere>, FILE *<PointeurFichier>) ;

Identique à fputc() sauf que cette fonction est réalisée par
une macro

Filière SMI - Programmation II (M21-S4)

2014-2015

Traitement Caractère par Caractère
(Exemple 1)

Création d’un fichier texte :

Filière SMI - Programmation II (M21-S4)
2014-2015

main() {
 FILE *pf ;
 char *nomf ; /* nom physique du fichier */
 int c ; /* le caractère à traiter */

 printf("Nom de sauvegarde : ") ; gets(nomf) ;
 if ((pf = fopen(nomf,"w")) != NULL) {
 printf("Entrez votre texte et terminez par CTRL-Z \n") ;
 while ((c = getchar() != EOF))
 fputc(c,pf) ;
 fclose(pf) ;
 }
 else printf("Problème d'ouverture") ;
 return 0 ;
}

Traitement Caractère par Caractère
(Exemple 2)

Filière SMI - Programmation II (M21-S4)
2014-2015

Lecture d’un fichier texte :
main() {
 FILE *pf ;
 char *nomf ;
 int c ; /* caractère à traiter */
 printf("Nom du fichier à lire : ") ; gets(nomf) ;
 if ((pf = fopen(nomf,"r")) != NULL) {
 while ((c = fgetc() != EOF))
 putchar(c) ;
 if (!feof(pf)) /* feof est une fonction qui détecte la fin d'un fichier (voir plus loin */
 printf("Erreur de lecture") ;
 fclose(pf) ;
 }
 else printf("Problème d'ouverture") ;
 return 0 ;
}

Traitement Caractère par Caractère

Remarques :

– c = getchar() équivalente à c = getc(stdin) ou c =
fgetc(stdin)

– putchar(c) équivalente à putc(c, stdout) ou
fputc(c, stdout)

Filière SMI - Programmation II (M21-S4)
2014-2015

Traitement par Lignes
(Lecture de Chaînes)

Fonction fgets
char *fgets(char *<Chaine>,int<Nbre>,FILE *<PointeurFichier>);

– Lit une ligne de caractères dans le fichier référencé par
<PointeurFichier>. Cette ligne est stockée dans <Chaine>.
<Nbre> est le nombre maximum de caractères à lire.

– Retourne :
• Un pointeur vers le début de la chaîne.
• NULL en cas d'erreur ou à la rencontre de la fin de fichier.

– La lecture s'arrête lorsque un des événements se produit :
• Lecture de saut de ligne '\n' ('\n' est recopié dans <Chaine>)
• Lecture d'au plus (<Nbre> - 1) caractères (fgets termine <Chaine> par

'\0')
• Rencontre de la fin de fichier

Filière SMI - Programmation II (M21-S4)

2014-2015

Traitement par Lignes
(Ecriture de Chaînes)

Fonction fputs
int fputs(char *<Chaine>, FILE *<PointeurFichier>) ;

– Ecrit la chaîne <Chaine> dans le fichier référencé par
<PointeurFichier>.

– Retourne :
• Une valeur positive (code ASCII du dernier caractère écrit) si

l'écriture s'est correctement déroulée.
• EOF en cas d'erreur.

– La chaîne <Chaine> doit être terminée par '\0'. Ce
caractère n'est pas transféré dans le fichier. Il faut
mettre explicitement la fin de ligne dans la chaîne
pour qu'elle soit présente dans le fichier.

Filière SMI - Programmation II (M21-S4)

2014-2015

Traitement par Lignes
(Exemple)

Filière SMI - Programmation II (M21-S4)
2014-2015

Lecture ligne à ligne d’un fichier après ouverture :
void main() {
 char nomfich[20] ; /* fichier à traiter */
 FILE *pf ;
 char BigBuf[256] ; /* pour stocker une ligne de caractères */
 printf("Nom de sauvegarde du fichier : ") ;
 gets(nomfich) ;
 pf = fopen(nomfich, "r") ;
 if (pf == NULL) {
 printf("Impossible d'ouvrir le fichier %s \n", nomfich) ;
 return 1 ;
 }
 while (fgets(BigBuf, sizeof BigBuf, pf) != NULL)
 fputs(BigBuf, stdout) ; /* écrire la ligne lue à partir du
 fichier référencé par pf sur la sortie standard */
 fclose(pf) ; /* fermer le fichier référencé par pf */
}

Traitement par Enregistrements

– Permet de lire et écrire des objets,

• le plus souvent représentés par des structures
(appelées enregistrements) dans un fichier.

– Pour ce type de traitement,

• le fichier doit être ouvert en mode binaire.

• Les données échangées ne sont pas traitées comme des
caractères. Elles sont traitées sous forme de blocs
d'octets.

 Filière SMI - Programmation II (M21-S4)
2014-2015

Traitement par Enregistrements

Fonction fread (lecture d'un bloc d'octets d'un fichier)
 unsigned int fread(void *<pb>, unsigned <taille>,
 unsigned <nb>, FILE *<pf>) ;

– Lit un certain nombre de données (des enregistrements) de taille
identique depuis un fichier référencé par <pf> vers un bloc
mémoire.

• Le bloc mémoire d'adresse <pb> reçoit les enregistrements lus.
• <taille> : taille d'un enregistrement en nombre octets.
• <nb> : nombre d'enregistrements à échanger (lire).
• <pf> : fait référence à un fichier ouvert en mode binaire.
• Le nombre d'octets lus est (<nb> * <taille>)

– Retourne :
• Le nombre d'enregistrements lus (et non le nombre d'octets).
• Si EOF ou erreur, une valeur inférieure à <nb> (ou même 0).

Filière SMI - Programmation II (M21-S4)
2014-2015

Traitement par Enregistrements

Fonction fwrite (écriture d'un bloc d'octets dans un fichier)
 unsigned int fwrite(void *<pb>, unsigned <taille>,
 unsigned <nb>, FILE *<pf>) ;

– L'espace mémoire d'adresse <pb> fournit les données à
écrire dans les enregistrements.

– Ecrit <nb> éléments (enregistrements) ayant chacun une
taille de <taille> octets à la fin d'un fichier référencé par
<pf>.
Le nombre d'octets écrits est (<nb> * <taille>)

– Retourne :
• Le nombre d'enregistrement écrits (et non le nombre d'octets).
• Si erreur, une valeur inférieure à <nb> (ou même 0).

Filière SMI - Programmation II (M21-S4)

2014-2015

Traitement par Enregistrements
(Exemple)

Lecture d'enregistrements dans un fichier :

– Cet exemple :

• est une lecture du contenu d'un fichier appelé FichParcAuto

• avec stockage du contenu de ce fichier dans un tableau en
mémoire ParcAuto.

– Les cases du tableau sont des structures contenant :

• un entier,

• une chaîne de 20 caractères et

• 3 chaînes de 10 caractères.

 Filière SMI - Programmation II (M21-S4)
2014-2015

Traitement par Enregistrements
(Exemple)

Filière SMI - Programmation II (M21-S4)
2014-2015

struct automobile {
 int age ;
 char couleur[20], numero[10], type[10], marque[10] ;
} ParcAuto[20] ;
main() {
 FILE *pf ; /* pointeur de fichier */
 int i ;
 unsigned fait ;
 pf = fopen("FicParcAuto","rb+") ; /* Remarquer le type d'ouverture du fichier */
 if (pf == NULL) {
 printf("Can't open FicParcAuto\n") ; return 1 ;
 }
 for (i=0 ; i<20 ; i++) {
 fait = fread(&ParcAuto[i], sizeof(struct automobile),1,pf) ;
 if (fait != 1) {
 printf("Erreur lecture fichier ParcAuto\n") ; return 2 ;
 }
 }
 fclose(pf) ;
}

Traitement par Enregistrements
(Exemple)

Remarque :

Il est possible de demander la lecture de 20
enregistrements en une seule opération, en remplaçant
la boucle for par :

fait = fread(ParcAuto, sizeof(struct automobile), 20, pf) ;

ou bien par :

 fait = fread(ParcAuto, sizeof ParcAuto, 1, pf) ;

Filière SMI - Programmation II (M21-S4)

2014-2015

Lecture et Ecriture Formatées
dans les Fichiers

– Sont utilisées les deux fonctions fprintf et fscanf

– permettent de réaliser le même travail que printf
et scanf sur des fichiers ouverts en mode texte :

Filière SMI - Programmation II (M21-S4)
2014-2015

Ecriture Formatée dans les Fichiers

Fonction fprintf (écriture formatée sur un fichier ouvert en mode
texte)

int fprintf(FILE *<PointeurFichier>, char *<Format>,
<Arguments>);

– Ecrit les données formatées dans un fichier.
– Fonctionne ainsi :

• Accepte une série d'arguments (les valeurs des données à écrire).
• Applique à chaque argument un spécificateur de format dans

<Format>.
• Envoie les données formatées dans un fichier.

– Retourne :
• Le nombre de caractères écrits
• Une valeur négative en cas d'erreur.

Filière SMI - Programmation II (M21-S4)

2014-2015

Ecriture Formatée dans les Fichiers

Remarques :

– Le nombre d'arguments doit satisfaire le nombre
de formateurs :

• S'il y a trop d'arguments (pas assez de formateurs),
ceux en trop sont ignorés.

– En pratique,

• les arguments représentent les rubriques qui forment
un enregistrement et dont les valeurs respectives sont
écrites dans le fichier.

Filière SMI - Programmation II (M21-S4)

2014-2015

Ecriture Formatée dans les Fichiers
(Exemple)

Filière SMI - Programmation II (M21-S4)
2014-2015

#include <stdio.h>
int main(void) {
 FILE *pf ;
 int i = 100 ;
 char c = 'C' ;
 float f = 1.234 ;
 pf = fopen("Essai.txt", "w+") ; /* ouverture mise à jour */
 fprintf(pf, "%d %c %f", i, c, f) ;
 fclose(pf) ; /* fermer le fichier */
 return 0 ;
}

Lecture Formatée dans les Fichiers

Fonction fscanf (lecture formatée dans un fichier ouvert en mode
texte)

int fscanf(FILE *<PointeurFichier>, char *<Format>, <Adresses>);

– Lit des données formatées dans un fichier :
• <PointeurFichier> fait référence au fichier.

• <Format> : format de lecture des données.

• <Adresses> : adresses des variables à affecter à partir des données.

• Un formateur et une adresse doivent être fournis pour chaque variable.

– Retourne :
• Le nombre d'éléments lus (0 si aucun élément n'a été traité totalement)

• EOF si fin de fichier.

Filière SMI - Programmation II (M21-S4)

2014-2015

Lecture Formatée dans les Fichiers
(Exemple)

Filière SMI - Programmation II (M21-S4)
2014-2015

#include <stdlib.h>
#include <stdio.h>
int main(void) {
 int i ;
 printf("Introduisez un entier : ") ;
 /* lire un entier à partir de l'entrée standard */
 if (fscanf(stdin, "%d", &i))
 printf("L'entier lu est : %i\n", i) ;
 else {
 fprintf(stderr, "Erreur en lisant un entier sur stdin\n") ;
 exit(1) ;
 }
 return 0 ;
}

Lecture et Ecriture Formatées
dans les Fichiers

Remarques :

– fprintf(stdout, "Bonjour\n")

 équivalente à printf("Bonjour\n")

Dans les fichiers texte, il faut ajouter le symbole de fin de ligne
'\n' pour séparer les données.

– fscanf(stdin, "%d", &N)

 équivalente à scanf("%d", &N)

A l'aide de fscanf, il est impossible de lire toute une phrase
dans laquelle les mots sont séparés par des espaces.

 Filière SMI - Programmation II (M21-S4)
2014-2015

Détection de la Fin de Fichier

Function feof

int feof(FILE *<PointeurFichier>) ;

– Consulte un "indicateur de fin de fichier" sur
lequel agissent les différentes fonctions de
manipulation de fichier.

– Retourne :

• Une valeur égale à 0 si la fin de fichier (EOF) n'a pas été
détectée.

• Une valeur différente de 0 sinon.

Filière SMI - Programmation II (M21-S4)

2014-2015

Déplacement dans le Fichier
(Accès Direct)

– Les fonctions précédentes modifient de manière automatique
le pointeur courant dans le fichier correspondant (adresse de
l'octet dans le fichier à partir duquel se fera la prochaine
opération de lecture ou écriture).

– Après chaque opération de lecture ou d'écriture, ce pointeur
de position (défini dans FILE) est incrémenté du nombre de
blocs transférés pour indiquer la prochaine opération de
lecture ou écriture : C'est l'accès séquentiel.

– Les fonctions suivantes permettent de connaître la valeur de la
position courante dans le fichier et de la modifier. Cela
permettra de réaliser des lectures ou des écritures en
n'importe quel endroit du fichier : C'est l'accès direct.

Filière SMI - Programmation II (M21-S4)

2014-2015

Déplacement dans le Fichier (Accès Direct)
(Fonctions associées à la position dans un fichier)

Fonction fseek
 int fseek(FILE *<PointeurFichier>, long <Offset>, int <Base>) ;

– Change la position courante dans le fichier référencé par <PointeurFichier>
(permet de placer le pointeur de position sur un octet quelconque du fichier).

– <Offset> : déplacement à l'intérieur du fichier en nombre d'octets.
• Si <Offset> est positif, le déplacement se fait vers la fin du fichier.
• Si <Offset> est négatif, le déplacement se fait vers le début du fichier.

– <Base> : point de départ du déplacement. <Base> peut prendre les valeurs
suivantes définies dans <stdio.h> :

• 0 (ou SEEK_SET) : déplacement relatif au début du fichier.
• 1 (ou SEEK_CUR) : déplacement relatif à la position courante.
• 2 (ou SEEK_END) : déplacement relatif à la fin du fichier.

– Retourne :
• 0 en cas de succès.
• Une valeur différente de 0 si le déplacement ne peut être réalisé

Filière SMI - Programmation II (M21-S4)
2014-2015

Déplacement dans le Fichier (Accès Direct)

(Fonctions associées à la position dans un fichier)

Remarques :
– Le 1er octet du fichier (octet de rang 1) est à la

position 0.

– L'instruction :

fseek(pf, 1L * sizeof(enrg)*(n-1), SEEK_SET) ;
fait placer le pointeur de position sur le nème
enregistrement enrg du fichier référencé par pf.

– Utiliser fseek avec précaution pour un fichier
texte.

Filière SMI - Programmation II (M21-S4)

2014-2015

Déplacement dans le Fichier (Accès Direct)
(Fonctions associées à la position dans un fichier)

Utilité de fseek : modification d'un enregistrement
du fichier connaissant sa position dans le fichier.

Exemple : Modifier le nème enregistrement
fseek(pf, 1L * sizeof(enrg)*(n-1), 0) ;

fread(&enrg, sizeof(enrg),1 ,pf) ;

/* Instructions pour Modifier l'enregistrement enrg */

…

fseek(pf,1L * sizeof(enrg)*(n-1), 0) ;

fwrite(&enrg, sizeof(enrg),1 ,pf) ;

Filière SMI - Programmation II (M21-S4)

2014-2015

Déplacement dans le Fichier (Accès Direct)
(Fonctions associées à la position dans un fichier)

Fonction ftell

long ftell(FILE *<PointeurFichier>) ;

– Détermine la valeur de la position courante dans
le fichier référencé par <PointeurFichier>.

– Retourne :
• Sur les fichiers binaires : nombre d'octets entre la

position courante et le début du fichier.

• Sur les fichiers texte : une valeur permettant à fseek de
repositionner le pointeur courant à l'endroit actuel.

• -1L en cas d'erreur.

Filière SMI - Programmation II (M21-S4)

2014-2015

Déplacement dans le Fichier (Accès Direct)
(Fonctions associées à la position dans un fichier)

Remarque :

Pour connaître la taille (le nombre d'octets) d'un
fichier, il suffit de faire :

long taille, nbre_enrg ;

…

fseek(pf, 0L, SEEK_END) ;

taille = ftell(pf) ;

nbre_enrg = taille / (sizeof(enrg)) ;

Filière SMI - Programmation II (M21-S4)

2014-2015

Déplacement dans le Fichier (Accès Direct)
(Fonctions associées à la position dans un fichier)

Fonction rewind

void rewind(FILE *<PointeurFichier>) ;

Permet de se placer en début de fichier.

rewind(pf) ;

 est équivalente à fseek(pf, 0L, SEEK_SET) ;

Filière SMI - Programmation II (M21-S4)
2014-2015

Déplacement dans le Fichier (Accès Direct)
(Exemple)

Modification de l'âge des voitures dans le
fichier FicParcAuto :

Le programme correspondant procède de la
manière suivante :

• Lit un enregistrement du fichier dans une zone
mémoire

• Modifie la zone en mémoire

• Replace le pointeur courant sur le début de
l'enregistrement pour pouvoir réécrire cet
enregistrement

• Ecrit la zone mémoire dans le fichier.

Filière SMI - Programmation II (M21-S4)

2014-2015

Déplacement dans le Fichier (Accès Direct)
(Exemple)

Filière SMI - Programmation II (M21-S4)
2014-2015

#include <stdio.h>
struct automobile {
 int age ;
 char couleur[20], numero[10], type[10], marque[10] ;
} UneAuto ;
main() {
 FILE *pf ;
 int i ;
 unsigned fait ;
 pf = fopen("FicParcAuto","r+b") ;
 if (pf == NULL) {
 printf("Can't open FicParcAuto\n") ; return 1 ;
 }
 for (i = 0 ; i<20 ; i++) {
 /* lecture d'un enregistrement du fichier dans la zone
mémoire (variable) UneAuto du type struct automobile */
 fait = fread(&UneAuto, sizeof UneAuto, 1, pf) ;
 if (fait != 1) {
 printf("Erreur lecture fichier ParcAuto\n") ; return 2 ;
 }
 UneAuto.age++ ; /* modifier la valeur du champ age dans la
structure en mémoire */

/* Modifier la position courante du fichier pour
positionner le pointeur courant à l'adresse de début de
l'enregistrement qui est en mémoire */

 fait = fseek(pf, -1L * sizeof UneAuto, SEEK_CUR) ;
 if (fait != 0) {
 printf("Erreur déplacement fichier ParcAuto\n") ;
 return 3 ;
 }

 /* Ecrire dans le fichier le contenu de la zone mémoire
 UneAuto. Cette écriture provoque la modification de
 l'enregistrement sur disque */
 fait = fwrite(&UneAuto, sizeof UneAuto, 1, pf) ;
 if (fait != 1) {
 printf("Erreur écriture fichier ParcAuto fait=%d\n",
fait); return 4 ;
 }
 }
 fclose(pf) ;
}

Gestion des erreurs

– Les erreurs des fonctions d'entrées/sorties peuvent être
récupérées par le programme. Pour donner plus d'informations
sur les causes d'erreur, les fonctions d'entrées/sorties utilisent
une variable globale de type entier appelée errno.

– Par exemple, si un fichier n'a pas pu être ouvert avec succès,
(résultat NULL), un code d'erreur est placé dans la variable
errno. Ce code désigne plus exactement la nature de l'erreur.
Les codes d'erreurs sont définis dans <errno.h>.

– L'appel de la fonction strerror(errno) retourne un pointeur sur
la chaîne de caractères qui décrit l'erreur dans errno.

– L'appel de la fonction perror(s) affiche la chaîne s suivie du signe
deux-points (:), puis le message d'erreur qui est défini pour
l'erreur dans errno, et enfin un caractère de saut de ligne.

Filière SMI - Programmation II (M21-S4)
2014-2015

Gestion des erreurs
(Exemples)

Filière SMI - Programmation II (M21-S4)
2014-2015

#include <stdio.h>
main() {
 FILE *pf ;
 pf = fopen("Test.dat", "r") ;
 if (!pf)
 perror("Impossible d'ouvrir le fichier
en lecture") ;
 return 0 ;
}

#include <stdio.h>
#include <errno.h>
main() {
 char *buffer ;
 buffer = strerror(errno) ;
 printf("Error : %s\n", buffer) ;
 return 0 ;
}

Vider le Tampon associé à un Fichier

Fonction fflush

int fflush(FILE *<PointeurFichier>) ;

– Force l'écriture (physique) sur disque des données en
attente dans le tampon (buffer) associé au fichier
référencé par le pointeur <PointeurFichier>.

– Retourne :

• 0 dans le cas normal.

• EOF en cas d'erreur (si l'écriture physique s'est mal passée)

Filière SMI - Programmation II (M21-S4)
2014-2015

Vider le Tampon associé à un Fichier
(Exemple)

Filière SMI - Programmation II (M21-S4)
2014-2015

 int a, int b, float c ;
 char d ;
 fflush(stdin) ; /* pour vider le buffer d'entrée standard */
 d = getchar() ;
 printf("%d %d %f %c\n",a,b,c,d) ;
 fflush(stdout) ; /* pour vider le buffer de sortie standard et
 donc forcer l'affichage du contenu de ce buffer */

Suppression Physique d'un Fichier

Fonction fflush

int remove (const char *<NomFichier>)

– Supprime le fichier <NomFichier> sur disque.

– S'assurer que le fichier à supprimer a été fermé.

– Retourne :

• 0 en cas de succès

• -1 si erreur

Filière SMI - Programmation II (M21-S4)
2014-2015

Suppression Physique d'un Fichier
(Exemple)

Filière SMI - Programmation II (M21-S4)
2014-2015

 fich char[80] ;
printf("Fichier à supprimer ? : ") ; gets(fich) ;
if (remove(fich) == 0)
 printf("Fichier \"%s\" supprimé\n", fich) ;
else
 perror("remove") ;

Compléments

 Arguments de la fonction main

 Fonctions sprintf et sscanf

 Préprocesseur

 Compilation séparée

 …

Arguments de la Fonction main

La fonction main() peut recevoir un certain nombre d'arguments :
– Ceux-ci doivent être transmis dans la ligne de commande (la ligne destinée à appeler le

programme exécutable).
– La ligne de commande est considérée comme un tableau de chaînes de caractères
– deux identificateurs prédéfinis sont destinés à récupérer ces arguments : argc et argv

La définition de la fonction main() est alors :
main(int argc, char *argv[])
{
 /* code de la fonction main */
}

ou d'une manière équivalente :

main(int argc, char **argv)
{
 /* code de la fonction main */
}

Filière SMI - Programmation II (M21-S4)
2014-2015

Arguments de la Fonction main

Signification :
– argc : nombre d'arguments transmis dans la ligne de

commande. Le nom du programme exécutable lui-
même est pris en compte dans cette valeur (le nombre
d'arguments est-il toujours au moins égal à 1)

– argv : pointeur sur les différentes chaînes de caractères
passées dans la ligne de commande. Le premier
argument, argv[0], contient le nom du programme.

Les arguments transmis dans la ligne de commande
sont séparés par un espace

 Filière SMI - Programmation II (M21-S4)
2014-2015

Arguments de la Fonction main
(Exemple)

Soit la ligne de commandes suivante :
 C:\>COPIE DE FICHA VERS FICHB

COPIE désigne le nom du programme exécutable
DE, FICHA, VERS et FICHB désignent les arguments de la commande

Supposons que le code source du programme COPIE est le suivant :

#include <stdio.h>
main(int argc, char *argv[])
{
 int i ;
 for (i = 1 ; i<argc ; i++) /* affichage des arguments */
 printf(%s \n", argv[i]) ;
}

Filière SMI - Programmation II (M21-S4)

2014-2015

Arguments de la Fonction main
(Exemple)

argv[0] contient l'adresse du 1er caractère du nom
du programme ("COPIE")

argv[1] celle du 1er argument ("DE")

argv[2] celle du 2ème argument ("FICHA")

argv[argc-1] celle du dernier argument ("FICHB")

argv[argc] contient NULL

Filière SMI - Programmation II (M21-S4)
2014-2015

Fonctions sprintf et sscanf

– Plusieurs fonctions font des conversions de format
telles que :

• scanf et printf.

• fprintf et fscanf travaillant sur des fichiers ouverts en
mode texte.

– Deux nouvelles fonctions appelées :

• sprintf et sscanf

s'utilisent pour faire de la conversion de données (ou
formatage de données) en mémoire.

Filière SMI - Programmation II (M21-S4)
2014-2015

Fonction sprintf

Prototype :
int sprintf(char *string, const char *format, …) ;

– Permet de faire une conversion de données vers une zone

mémoire (string) par transformation en chaîne de caractères.
– Possède trois arguments :

• Zone dans laquelle les caractères sont stockés ;
• Format d'écriture des données ;
• Valeurs de données.

 sprintf convertit les arguments (les valeurs de données) suivant
 le format de contrôle et met le résultat dans la chaîne string.
– Retourne :

• nombre de caractères stockés.
• valeur négative en cas d'erreur.

 Filière SMI - Programmation II (M21-S4)
2014-2015

Fonction sprintf

Exemple :
#include <stdio.h>
char s1[81], s2[81] ;
char *ch ;
int i, code ;
i = 15 ;
code = sprintf(s1, "%d", i) ;
code = sprintf(s2, "i vaut %d et sa moitié %f", i, i/2.0) ;
code = sprintf(ch, "%d", i) ;
/* Erreur ! on passe à sprintf un pointeur ch non initialisé */
/* Solution ! initialiser ch soit par un tableau de caractères
suffisamment grand, soit par appel à une fonction d'allocation
dynamique comme calloc */

Filière SMI - Programmation II (M21-S4)

2014-2015

Fonction sscanf

Prototype :
 int sscanf(char *string, const char *format, …) ;

– Permet de faire une lecture formatée de données d'une zone

mémoire.

– Possède trois arguments :
• Zone dans laquelle les caractères sont acquis ;
• Format de lecture des données ;
• Adresse des variables à affecter à partir des données.

 sscanf extrait d'une chaîne de caractères (string) des valeurs qui sont
 stockées dans des variables suivant le format de contrôle.

– Retourne :

• nombre de variables saisies.
• EOF en cas d'erreur empêchant toute lecture.

 Filière SMI - Programmation II (M21-S4)
2014-2015

Fonction sscanf

Exemple :

#include<stdio.h>

char *s ,

int code ;

double a, b, c ;

s = "12.5 12.3 11.6" ;

code = sscanf(s, "%f %f %f", &a, &b, &c) ;

 /* sscanf va lire la chaîne s pour

 affecter les 3 valeurs a, b, c */

Filière SMI - Programmation II (M21-S4)

2014-2015

Fonctions sprintf et sscanf

Remarques :

– scanf est une source permanente de problèmes !

 Pour remédier à ceci, on fait recours à
 l'utilisation de gets et/ou de sscanf.

– sprintf et sscanf sont très utilisées pour convertir
des numériques en chaîne de caractères et
inversement.

Filière SMI - Programmation II (M21-S4)
2014-2015

Fonctions sprintf et sscanf
(Exemple pratique)

#include <stdio.h>
#include <stdlib.h> /* contient le prototype de la fonction random. random(n), avec n entier, permet de
 générer un nombre aléatoire a tel que 0 <= a < n */
char *noms[4] = {"Nom1", "Nom2", "Nom3", "Nom4"} ;
#define NBRE 4

void main(void) {
 int i ;
 char temp[4][80] ;
 char nom[20] ;
 int age ;
 long salaire ;
/* créer les données nom, âge et salaire */
 for (i = 0 ; i < NBRE ; ++i)
 sprintf(temp[i], "%s %d %ld", noms[i], random(10) + 20, random(5000) + 27500L) ;
 /* afficher une barre de titres */
 printf("%4s | %-20s | %5s | %15s\n", "#", "Nom", "Age", "Salaire") ;
 printf(" --\n");
 /* lire et afficher les données nom, âge et salaire */
 for (i = 0 ; i < NBRE ; ++i) {
 sscanf(temp[i],"%s %d %ld", &nom, &age, &salaire) ;
 printf("%4d | %-20s | %5d | %15ld\n", i + 1, nom, age, salaire) ;
 }
}

 Filière SMI - Programmation II (M21-S4)
2014-2015

Préprocesseur

– Effectue un prétraitement, lors de la compilation d'un
programme C, :

• en supprimant dans un premier temps tous les commentaires,

• puis en traitant des "directives de compilation".

• Enfin, envoie le programme C modifié au compilateur.

– Les directives de compilation, dans un programme C,
commencent toutes par un caractère # et sont de trois
types :

• directive d'inclusion de fichiers ;

• directives de compilation conditionnelle ;

• directives de substitution symbolique. Ce type permet :
– la définition de constantes ;

– la définition de macros (substitution avec arguments)

 Filière SMI - Programmation II (M21-S4)
2014-2015

Directive d’Inclusion de Fichier

#include
Exemples :

 #include <fichier.h>
réalise l'inclusion du fichier fichier.h contenu dans un répertoire
spécial (connu par le préprocesseur)

 #include "fichier.h"
réalise l'inclusion du fichier fichier.h contenu dans le répertoire de
travail ou, à défaut, dans le répertoire spécial. Il est également
possible d'indiquer un chemin précis pour la recherche du fichier, soit
par exemple, #include "c:\dev-cpp\include\fichier.h«

L'extension .h d'un fichier est l'abréviation de "header" (entête).

Filière SMI - Programmation II (M21-S4)

2014-2015

Directives de Compilation Conditionnelle

– Rôle :
Incorporer ou exclure de la compilation des portions de texte de
programme selon que l'évaluation de la condition donne 0 ou 1.

– Plusieurs directives :

Filière SMI - Programmation II (M21-S4)
2014-2015

Directive Rôle

#ifdef

#if defined

#ifndef

#if

#else

#elif

#endif

#undef

inclusion si symbole défini

même chose

inclusion si symbole non défini

inclusion si condition vérifiée

sinon

else if, c.-à-d. sinon si

fin de si

met fin à l'existence d'un symbole

Directives de Compilation Conditionnelle
(Exemple 1)

#define SYS1 1 /* définir symbole SYS1 et l'initialiser à 1 */
main() {
 #if defined (SYS1)
 … /* décl. Ou instr. C */ /* Ces lignes seront incluses dans la compilation */
 #endif
 #if defined (SYS1)
 … /* décl. Ou instr. C */ /* idem que précédemment */
 #else
 … /* décl. Ou instr. C */ /* Ces lignes auraient été incluses dans la compilation si SYS1 n'avait pas été défini */
 #endif
 #if !defined (SYS1)
 … /* décl. Ou instr. C */ /* idem que précédemment */
 #endif
 #if SYS1 == 1
 … /* décl. Ou instr. C */ /* Ces lignes seront incluses dans la compilation puisque SYS1 vaut 1*/
 #endif
 #if defined (SYS1) && defined (SYS2)
 … /* décl. Ou instr. C */ /* Ces lignes seraient été incluses dans la compilation si SYS1 et SYS2 seraient définis */
 #endif
 #if (sizeof(int) == 2)
 … /* décl. Ou instr. C */ /* lignes incluses si int est codé sur 16 bits */
 #endif
 …
}

Filière SMI - Programmation II (M21-S4)
2014-2015

Directives de Compilation Conditionnelle
(Exemple 2)

#define SYS1 1
#define SYS2..3
main() {
 #ifdef SYS1
 int i, j ;
 #else
 float i, j ;
 #endif
 j = i*2 ;
 #ifdef SYS1
 i = 5 ;
 #else
 i = 5.5 ;
 #endif
 #undef SYS2
 #if defined (SYS2)
 j = 6 ;
 #endif
}

Filière SMI - Programmation II (M21-S4)
2014-2015

Après traitement des directives par
le préprocesseur, le texte résultat
de ce programme est ainsi :

main() {

 int i, j ;

 j = i*2 ;

 i = 5 ;

}

Directives de Compilation Conditionnelle

Remarques :
– Les comparaisons effectuées par le préprocesseur

ne peuvent porter que sur des constantes entières
(et pas sur des variables du programme dont
l'évaluation n'est possible qu'à l'exécution...)

– Les opérateurs interprétables par le préprocesseur
sont : !, ~ (complément à 1), -, +, *, /, | (ou binaire
inclusif), %, ^ (ou binaire exclusif), & (et binaire),
<<, , <, , <=, =, !=, &&, ||, ==, et l'opérateur
ternaire conditionnel ?:

 Filière SMI - Programmation II (M21-S4)
2014-2015

Directives de Compilation Conditionnelle
(Exemple 3)

#define _DEBUG_
...
#ifdef _DEBUG_
printf("Ligne 1234 : x = %d -- y = %d -- z = %d\n",x,y,z) ;
#endif
...
#ifdef _DEBUG_
printf("Ligne 2345 : x = %d -- y = %d -- z = %d\n",x,y,z) ;
#endif

Filière SMI - Programmation II (M21-S4)
2014-2015

– Les directives de compilation conditionnelles sont particulièrement
utiles pour la "mise au point" d'un programme C :

• Dans l’exemple ci-dessus :
– La "trace" (l'affichage de la valeur des variables dans les principales étapes

d'un programme) n'est effective que si le symbole _DEBUG_ est défini.

– La suppression de la définition de ce symbole dans le programme produira la
disparition de cet affichage après la prochaine compilation.

Directives de substitution symbolique
(Définition de constantes)

#define <symbole> <équivalent>
#undef

– Le préprocesseur remplace dans un programme C (en
dehors des lignes commençant par un caractère #) toutes
les occurrences du symbole <symbole> par son équivalent
<équivalent> , en réitérant le processus si besoin est, sauf
si cela engendre une infinité de remplacements.

– Le domaine de visibilité de la substitution d'un symbole
s'étend entre la directive #define de ce symbole et la
directive #define suivante de ce même symbole ou la
directive #undef de ce même symbole ou, à défaut,
jusqu'à la fin du programme.

Filière SMI - Programmation II (M21-S4)
2014-2015

Directives de substitution symbolique
(Définition de constantes)

– Le symbole <symbole> est formé de lettres, de
chiffres et du caractère _ et doit impérativement
commencer par une lettre.

– L'équivalent <équivalent> doit être tapé sur une
seule ligne. Si l'écriture de l'équivalent nécessite
plusieurs lignes, il faut faire précéder la frappe de
chaque caractère retour-chariot par un caractère \

Filière SMI - Programmation II (M21-S4)
2014-2015

Directives de substitution symbolique
(Définition de constantes)

Exemples :

#define PI 3.14159

#define FAUX 0

#define VRAI 1

...

#undef PI

Filière SMI - Programmation II (M21-S4)
2014-2015

Définition de macros (ou macro-instructions)

– Il existe une forme paramétrée pour la substitution
symbolique :

#define <symbole(param1, param2,...)> <équivalent>
– Les paramètres qui suivent une occurrence de <symbole>,

dans le programme, sont identifiés par le préprocesseur à
param1, param2, …etc.

– L'équivalent <équivalent> est envoyé au compilateur par le
préprocesseur, avec la même substitution des paramètres.
On appelle cela une "macro-instruction" (ou "macro").

– La parenthèse ouvrante avant la liste des paramètres doit
suivre immédiatement le symbole (il ne doit pas y avoir
d'espace).

Filière SMI - Programmation II (M21-S4)

2014-2015

Définition de macros (ou macro-instructions)
(Exemple 1)

#define ABS(n) ((n0) ? n : -n)

La séquence suivante :
L1 : main() {
L2 : int m,n = -8 ;
L3 : m = ABS(n) ;
L4 : printf("%d",m) ;
L5 : }

deviendra, après le passage du préprocesseur :

main() {
 int m, n = -8 ;
 m = ((n0) ? n : -n) ;
 printf("%d",m) ;
}

A l'exécution, la valeur 8 s'affichera à l'écran.
 Filière SMI - Programmation II (M21-S4)

2014-2015

Définition de macros (ou macro-instructions)

Remarque :

– L'emploi des macro-instructions doit faire l'objet
d'une attention particulière. Pour éviter de
nombreux problèmes (dus aux priorités des
opérateurs) :

• il est conseillé de parenthèser les paramètres de la
macro-instruction

• Il faut, de plus, éviter de rendre le programme
incompréhensible par l'abus de #define.

Filière SMI - Programmation II (M21-S4)

2014-2015

Définition de macros (ou macro-instructions)
(Exemple 2)

#define SOMME(X,Y) X+Y
main() {
 int i, j, k ;
 float a, b, c ;
 …
 k = SOMME(i,j) ;
 c = SOMME(a,b) ;
 k = SOMME(5*i,b-a) ;
}

Filière SMI - Programmation II (M21-S4)
2014-2015

Il est à noter que pour ce programme,

 #define SOMME(X,Y) ((X)+(Y))

aurait été meilleur car à l'abri de toute erreur en cas d'utilisation à l'intérieur
d'une expression arithmétique ou en cas d'utilisation avec des arguments qui
sont eux-mêmes des expressions.

main() {
 int i, j, k ;
 float a, b, c ;
 …
 k = i+j ;
 c = a+b ;
 k = 5*i+b-a ;
}

devient :

Utilité d’une macro-instruction

– permet d'optimiser le code compilé, en limitant le
nombre d'appels à une fonction dans le
programme exécutable.

– permet d'effectuer des actions sur des variables
dont le type n'est pas connu a priori :

• (dans l'exemple 1 donné ci-dessus, la macro ABS peut
calculer la valeur absolue d'un entier ou d'un réel).

Filière SMI - Programmation II (M21-S4)
2014-2015

Macro-instruction sans paramètre

– Il est possible de définir une macro-instruction
sans paramètre, comme dans l'exemple suivant,
effectivement présent dans le fichier stdio.h :

#define getchar() getc(stdin)

Filière SMI - Programmation II (M21-S4)
2014-2015

Opérateurs et symboles prédéfinis

Opérateur #
– Dans une macro, il permet de substituer un paramètre

par sa valeur convertie en chaîne de caractères.

Exemple :
#define chaine1(c) #c
#define chaine2(c) "c"
printf("%s\n",chaine1(Module 4)) ;
printf("%s\n",chaine2(Licence)) ;

produit l'affichage à l'écran de :

Module 4
c

 Filière SMI - Programmation II (M21-S4)
2014-2015

Opérateurs et symboles prédéfinis

Opérateur ##

– Cet opérateur effectue la concaténation de deux
symboles.

Exemple :

#define f(a,b) a##b
f(Module,4) ; /* est remplacé par Module4 */

Filière SMI - Programmation II (M21-S4)
2014-2015

Compilation séparée

– Permet de fragmenter un grand programme en des parties
qui peuvent être compilées indépendamment les unes des
autres.

– En C, un programme source peut être décomposé en un
ensemble de fichiers de texte (aussi appelés source) :

• Ces fichiers pourront être compilés séparément et finalement reliés
par l'éditeur de liens pour en faire un programme exécutable.

– Il sera ainsi possible :
• d'apporter des modifications à un fichier sans devoir recompiler

l'ensemble

• de créer des librairies de fonctions (sous forme de fichiers
d'extension .lib) sans avoir à mettre le texte de ces fonctions à la
disposition des utilisateurs.

Filière SMI - Programmation II (M21-S4)

2014-2015

Compilation séparée

Filière SMI - Programmation II (M21-S4)
2014-2015

Compilation séparée

– Chaque fichier source contient les éléments suivants dans
un ordre quelconque :

• déclarations de variables et de fonctions externes,
• définitions de types synonymes ou de modèles de structures,
• définitions de variables globales (des demandes de réservation

mémoire destinées à l'éditeur de liens),
• définitions de fonctions,
• directives de précompilation et des commentaires (les deux sont

traités par le préprocesseur).

– Le compilateur ne voit que les quatre premiers types
d'objets.

– Les fichiers inclus par le préprocesseur ne doivent contenir
que des déclarations externes ou des définitions de types
et de modèles de structures.

Filière SMI - Programmation II (M21-S4)

2014-2015

Compilation séparée
(Exemple)

module 1 (pr1.c)
void func(void) ; /* fonction prototype */
int nb ; /* provoque allocation de mémoire (2 octets) */
main()
{
 nb = 2 ;
 func() ; /* défini dans un module compilé séparément */
}

module 2 (pr2.c)
extern int nb ; /* pas d'allocation de mémoire */
void func(void)
{
 printf("nb : % \n", nb) ;
}

Les deux modules sont compilés séparément. La compilation de pr1.c crée
pr1.obj et celle de pr2.c crée pr2.obj. L'éditeur de liens génère le module
exécutable.

Filière SMI - Programmation II (M21-S4)
2014-2015

