[Filiere SMI, Semestre 4]

Département d’Informatique
Faculté des sciences de Rabat

Par
B. AHIOD
(ahiod@fsr.ac.ma)
2014-2015

mailto:ahiod@fsr.ac.ma

* Approfondir les connaissances de la
programmation en langage C:

— pointeurs, fonctions et chaines de caracteres
— enregistrements et fichiers

e Utiliser le langage de programmation C pour
implémenter :

— |es structures de données
— |les algorithmes qui les manipulent

Filiere SMI - Programmation Il (M21-54)
2014-2015

* Notions de base d’algorithmique [Algorithmique | (52),
Algorithmique Il (S3)] :
— Conception d’algorithmes itératifs et récursifs
— Analyse de complexité d’algorithmes
— Structures de données élémentaires

* Programmation en langage C [Programmation I (S3)] :
— Programmation structurée
— Notions de tableaux, de fonctions, ...
— Manipulation des pointeurs et allocation dynamique

Filiere SMI - Programmation Il (M21-54)
2014-2015

Introduction :
— Algorithme vs Programme, Itératif vs Récursif, ...

Rappels :

— Phases de programmation en C, structure et composants d’un programme en C, types de base,
instructions, ...

Pointeurs et allocation dynamique :
— Pointeurs et tableaux, pointeurs et fonctions, allocation de mémoire, ...

Chaines de caracteres :
— Définition, manipulation, tableaux de chaines de caracteres, ...

Types composés (structures, unions, synonymes) :
— Notion de structure, union et type synonyme, structures auto-référentielles
— Applications (piles, files, listes et/ou arbres)

Fichiers :

— Types de fichiers (textes et binaires), acces (séquentiel et direct), manipulation (ouvrir, fermer, lire,
écrire)

Compléments :

— Compilation séparée, directives du préprocesseur, ...
Filiere SMI - Programmation Il (M21-54)
2014-2015

v" Algorithme vs Programme

v' Itératif vs Récursif
v

Algorithmes + structures de données

Programme
[Wirth]

* Un programme informatique est constitué
d’algorithmes et de structures de données
manipulées par des algorithmes

Filiere SMI - Programmation Il (M21-54)
2014-2015

Notion de programme

Synonymes

— Programme, application, logiciel

Objectifs des programmes

— Utiliser 'ordinateur pour traiter des données afin d’obtenir des résultats
— Abstraction par rapport au matériel

Un programme est une suite logique
d'instructions que l'ordinateur doit exécuter

— Chaque pro%ramme suit une Iotgique pour réaliser un traitement qui offre des
services (obtention des résultats souhaités a partir de données)

— Le processeur se charge d’effectuer les opérations arithmétiques et logiques qui
transformeront les données en résultats

Programmes et données sont sauvegardés dans
des fichiers

— Instructions et données doivent résider en mémoire centrale pour étre exécutées

Filiere SMI - Programmation Il (M21-S4)
2014-2015

AMALYSE

Algorithme

k.

TRADUCTION

EXECUTION

Filiere SMI - Programmation Il (M21-54)
2014-2015

Notion d’Algorithme

Origine :
— Le terme algorithme vient du nom du mathématicien Al-
Khawarizmi (820 apres J.C.)

Définition :
— Un algorithme est une suite finie de regles a appliquer dans un
ordre determiné 3 un nombre fini de données pour arriver, en

un nombre fini d'étapes, a un certain résultat, et cela
indépendamment des données

Role fondamental :
— Sans algorithme il n'y aurait pas de programme

Un algorithme est indépendant :
— de l'ordinateur qui I'exécute
— du langage dans lequel il est énoncé et traduit

Spécifier/Exprimer/Implémenter
un algorithme

e Spécification d ‘un algorithme :
— ce que fait I'algorithme
— cahier des charges du probleme a résoudre

* Expression d ‘un algorithme :
— comment il le fait
— texte dans un pseudo langage

* Implémentation d ’un algorithme :
— traduction du texte précédent
— dans un langage de programmation

/* Cet algorithme recherche la place d’un élément val

dans un tableau tab contenant n éléments */

Algorithme recherche sequentielle(tab: entier[]; n, val: entier)
tab, n et val
indice de val dans le tableau tab, sinon -1

entrées
sortie
Début

variables locales : i:

i€ 0;

tant que ((i<n) et (tab[i] <> val)) faire //

i € i+l

ftqg

si (i = n) alors retourner -1

sinon retourner i
Fin

entier

// 1

2
// 3
// 4
// 5
// 6

entier

int recherche sequentielle(int *tab, int n, int val) {

int i;
i=2~0;
while ((i<n) && (tab[i] !'= wval))
i ++;
if (i == n)
return(-1) ;
else return(i);

//
//
//
//
//
//
//

SJo b wWdNDR

Analyse descendante

* Consiste a décomposer un probleme en sous problemes,
eux-mémes, a décomposer en sous problemes, et ainsi de
suite jusqu'a descendre a des actions dites primitives

— Les étapes successives de décomposition donnent lieu a
des sous algorithmes pouvant étre considérés comme des
actions dites intermédiaires

— Ces étapes sont appelées fonctions ou encore procédures

Filiere SMI - Programmation Il (M21-S4)
2014-2015

* Un algorithme est dit récursif lorsqu'il s'appelle lui
méme de facon directe ou indirecte.

* Pour trouver une solution récursive d’un probleme,
on cherche a le décomposer en plusieurs sous
problemes de méme type, mais de taille inférieure.

On procéde de la maniere suivante :

— Rechercher un (ou plusieurs) cas de base et sa (ou leur)
solution (évaluation sans récursivité)

— Décomposer le cas général en cas plus simples eux aussi
décomposables pour aboutir au cas de base.

Filiere SMI - Programmation Il (M21-54)
2014-2015

Itératif vs Récursif
(Exemple)

/* Calcul de la somme des carrés des entiers entre m et n (version itérative) */

Algorithme SommeCarres iter(m: entier; n: entier) : entier
entrées : m et n
sortie : somme des carrés des entiers entre m et n inclus,
si m<=n, et 0 sinon
Début
variables locales : i, som: entier
som € 0 // 1
pour i de m a n faire // 2
som € som + (i*i) // 3
fpour // 4
retourner som // 5
Fin
/* Calcul de la somme des carrés des entiers entre m et n (version récursive) */
Algorithme SommeCarres_rec(m: entier; n: entier) : entier
entrées : m et n
sortie : somme des carrés des entiers entre m et n
pré-condition : m<=n
Début
si (m<>n) alors // 1
retourner ((m*m)+SommeCarres rec (m+1l,n) // 2
sinon - // 3
retourner (m*m) // 4
fsi
Fin

Programmation Procédurale vs
Programmation Orientée-Objet

* Programmation Procédurale :
— Centrée sur les procédures (ou opérations)

— Décomposition des fonctionnalités d'un programme en
procédures qui vont s'exécuter séquentiellement

— Les données a traiter sont passées en arguments aux
procédures

— Des langages procéduraux : C, Pascal, ...

* Programmation Orientée-Objet :
— Centrée sur les données

— Tout tourne autour des "objets" qui sont des petits
ensembles de données représentants leurs propriétés

— Des langages orientés-objets : C++, Java, ...

Phases de Programmation en C
Structure de Programme en C
Types de Base des Variables
Instructions

Pointeurs et Allocation Dynamique

v
v
v
v
v
v

Fichiers en-t&te

graphics. bk

mrath

Bibliothégques

nrécomnildexs

Edition .

Progmm e Source

#include ...
#include ...
#include =graphics. b=

#Hinclude <maorth h>

Compilation

l

Programme objer

Programme exdcutable

Filiere SMI - Programmation Il (M21-54)

2014-2015

/* Exemple de programme en C */
#tinclude <stdio.h>

#include <math.h>
ttdefine NFOIS 5

int main() {
inti;

float x ;
float racx ;

printf ("Bonjour\n") ;
printf ("Je vais vous calculer %d racines carrées\n", NFOIS) ;

for (i=0; i<NFOIS ; i++) {
printf ("Donnez un nombre : ") ;
scanf ("%f", &x) ;
if (x < 0.0)
printf ("Le nombre %f ne posséde pas de racine carrée\n", x) ;
else {
racx = sqrt (x) ;
printf ("Le nombre %f a pour racine carrée : %f\n", x, racx) ;
}
}
printf ("Travail terminé - Au revoir") ;
return O;

}

Filiere SMI - Programmation Il (M21-54)
2014-2015

* En C, les programmes sont composés essentiellement
de fonctions et de variables.

* Définition d'une fonction en C:
<TypeRésultat> <Nomfonction> (<TypeParl>, <TypePar2>, ...)
{

<déclarations locales> ;
<instructions> ;

}

* En C, toute instruction simple est terminée par un
point virgule (;).

Filiere SMI - Programmation Il (M21-54)
2014-2015

Composantes d’'un Programme en C

* La fonction main :
— Une fonction et une seule s'appelle main.

— C'est la fonction principale des programmes en C; elle se
trouve obligatoirement dans tous les programmes.

— L'exécution d'un programme entraine automatiqguement
I'appel de |la fonction main.

e [es variables :

— Contiennent les valeurs utilisées pendant |'exécution du
programme.

— Les noms des variables sont des identificateurs
guelconques.

— Toute variable doit étre déclarée avant les instructions et
son type spécifié des la déclaration.

* Toutes les variables doivent étre explicitement typées

 Types de base des variables :
— Les entiers : int, short int, long int
— Les réels : float, double, long double
— Les caracteres : char

Exemples :
short int mon_salaire;
double cheese;
char avoile;

« Remarque :

— La présence d 'une ou plusieurs étoiles devant le nom d’'une
variable indique un pointeur.
— Exemple :

double **mat;
I/l permet de déclarer une matrice (tableau a deux dimensions)

Filiere SMI - Programmation Il (M21-54)
2014-2015

Tests :

If (expression) {bloc} else {bloc};

switch (expression)

{

case constl: instructions; break;
case const2: instructions; break;

default: instructions;

}

Boucles :
while (expression) {instructions;}

for (exprl ; expr2 ; expr3) { instructions;}
do

{instructions;}
while (expression);

Quitter une boucle (for, do, while) ou un switch :
break;

Passer a l'itération suivante, mais ne quitte pas la boucle :
continue:

Filiere SMI - Programmation Il (M21-54)
2014-2015

Pointeurs & Tableaux
Pointeurs & Fonctions
Allocation de mémoire

v
v
v
v

* Notion de tableau:

— Un tableau est une variable structurée formée d'un ensemble de variables du méme type, appelées les
composantes du tableau.

— Chaque élément est repéré par un indice précisant sa position.
— Le nom du tableau est son identificateur.

* Tableaux a une dimension (vecteurs)

— Déclaration en C :
<TypeSimple> <NomTableau> [<NombreComposantes>] ;
Exemple :
float B[200] ;

— Mémorisation :
* Les éléments d'un tableau sont rangés a des adresses consécutives dans la mémaoire.
* le nom du tableau est le représentant de I'adresse du premier élément.

e Siun tableau est formé de N composantes, chacune ayant besoin de M octets en mémoire, alors le tableau occupera (N *
M) octets.

* L'adresse de la composante numéro i de du tableau A se calcule :
A + (i * taille-de-la-composante)

— Accés aux composantes d'un tableau :
* Pouraccéder a un élément on utilise un indice selon la syntaxe suivante :
<Nomtableau> [<indice>]
ou <indice> : expression entiere positive ou nulle.
Exemple :

Pour un tableau T de N composantes :
— Il'acces au premier élément se fait par T[0]
— Il'acces au dernier élément se fait par T[N-1]

Filiere SMI - Programmation Il (M21-54)
2014-2015

Pointeurs & Tableaux

 Tableaux a deux dimensions (matrices) :

— Déclarationen C:
— <TypeSimple> <NomTableau> [NombreLignes] [NombreColonnes] ;

Exemple :
int A[10][20] ; /* matrice de 200 entiers (ayant 10 lignes

et 20 colonnes */

— Acces aux composantes :
<NomMatrice> [<Lignhe>] [<Colonne>] ;

— Pour une matrice M formée de L lignes et C colonnes :
* La premiére composante de la matrice est A[0][0]
* La composante de la L™ [igne et C*™¢ colonne est notée : A[L-1][C-1]

* Notion de pointeur :
— Un pointeur est une variable qui peut contenir I'adresse d'une autre variable.
— Siun pointeur P contient I'adresse d'une variable A. on dit aue 'P pointe sur A":

=Tl

P
e Déclaration d'un pointeur :

<type> *<NomPointeur> ;

Exemple :
int *Pnum ;

On dira que:
" *Pnum est du type int ", ou bien
— " Pnum est un pointeur surint ", ou bien
" Pnum peut contenir l'adresse d'une variable du type int "

Pnum ne pointe sur aucune variable précise : Pnum est un pointeur non initialisé.
Soit la déclaration : int A ;

— L'initialisation du pointeur Pnum avec la variable se fait par :

— Pnum=&A;/* adresse de la variable A */

— Un pointeur est lié explicitement a un type de données. Ainsi, Pnum ne peut recevoir I'adresse d'une variable
d'un autre type que int.

Filiere SMI - Programmation Il (M21-54)
2014-2015

* Un tableau est une zone mémoire qui peut étre identifiée par I'adresse du 1°"
élément du tableau

* Adressage des composantes d'un tableau :
— La déclaration : int A[10] ;
définit un tableau de 10 composantes : A[0], A[1], ..., A[9]

— Si p est pointeur d'entiers déclaré par : int *p ;
alors,
I'instruction : p = A ; est équivalente a : p = &A[0] ;
p pointe sur A[0O]
*(p+1) désigne le contenu de A[1]
*(p+2) désigne le contenu de A[2]

*(p+i) désigne le contenu de A[i]

* Dans une expression, une écriture de la forme Expr1[Expr2] est remplacée par :
*((Exprl) + (Expr2))

* |l existe une différence entre un pointeur P et le nom d'un tableau A :
— Un pointeur est une variable , donc les opérations comme P = A ou P++ sont permises.

— Le nom d'un tableau est une constante, donc les opérations comme A =P ou A++ sont
impossibles.

Filiere SMI - Programmation Il (M21-54)
2014-2015

/* Exemple : Lecture et affichage d'une matrice */
#include <stdio.h>

#tdefinen 4

#define p 10

main() {

float A[n][p];

float *pA ;

inti,j;

/* lecture d'une matrice */

pA = &A[0][0] ;

for (i=0;i<n;i++) {
printf("\t ligne n° %d\n", i+1) ;
for (j=0;j<p;j+t)

scanf("%f", pA+i*p+j);

/* ou bien pA = (float *) A ; */

}
for (i=0;i<n;i++) { /* 1% facon : affichage */
for (j=0;j<p;j+t)
printf("%7.2f", *(pA+i* p +j));
printf("\n") ;
}
for (i=0;i<n;i++) { /* 2™ facon : affichage */
pA = &A[i][0] ;
for (j=0;j<p;j++)
printf("%7.2f", pA[j]) ;
printf("\n") ;
}
return0;

}

Filiere SMI - Programmation Il (M21-54)
2014-2015

Pointeurs & Fonctions

* EnC, la structuration d'un programme en sous-
programmes (modules) se fait a I'aide de fonctions

e Notion de fonction:

— Une fonction est définie par un entéte appelé prototype et un corps
contenant les instructions a exécuter :

[<ClasseAllocation>] [<Type>] <NomFonction> ([ListeParameétres])
<CorpsFonction>

— Prototype de fonction :

* Indique le type de données transmises et recues par la fonction :

* Chaque parametre (formel) ou argument doit étre fourni avec son type, qui peut étre
guelconque

— Corps d'une fonction :

* Un bloc d'instructions. a l'intérieur duquel, on peut :
— déclarer des variables externes

déclarer des fonctions

définir des variables locales au bloc

Moais il est interdit de définir des fonctions.

Filiere SMI - Programmation Il (M21-S4)
2014-2015

Pointeurs & Fonctions

* Déclaration d'une fonction :
— |l faut déclarer une fonction avant de l'utiliser.

— La déclaration informe le compilateur du type des parametres et du
résultat de la fonction

— Sila fonction est définie avant son premier appel, alors pas besoin de
la déclarer

— Déclarer une fonction, c’est fournir son prototype

e Utilisation d'une fonction :

— se traduit par un appel a la fonction en indiquant son nom suivi de
parentheses renfermant éventuellement des parameétres effectifs.

— Les parametres formels et effectifs doivent correspondre en nombre et
en type (les noms peuvent différer).

— L'appel d'une fonction peut étre utilisé dans une expression ou
comme une instruction.

Pointeurs & Fonctions

e Passage des parametres d'une fonction

— A l'appel d'une fonction avec parameétres, la valeur ou |'adresse du
parametre effectif est transmise au parametre formel correspondant.
* Sila valeur est transmise, on a un passage par valeur.
» Sil'adresse est transmise, on a un passage par adresse (ou par référence)

— Passage par valeur :

* Sile nom d'une variable (sauf le nom d'un tableau) apparait dans |'appel
d'une fonction, comme parametre effectif, alors la fonction appelée recoit la
valeur de cette variable.

» Cette valeur sera recopiée dans le nom du parametre formel correspondant.

* Apres |l'appel de cette fonction, |la valeur du parametre effectif n'est pas
modifiée

— Passage par adresse :

e Lorsqu'on veut qu'une fonction puisse modifier la valeur d'une variable passée
comme parametre effectif, il faut transmettre I'adresse de cette variable.

* Lafonction appelée range I'adresse transmise dans une variable pointeur et |a
fonction travaille directement sur 'objet transmis.

/* Exemple : Calcul de la moyenne d'un tableau de réels : */

#include <stdio.h>
#define max 50
void main() {

intn;
float tfmax] ;
void lire_tab(float *, int *) ;

/* 22me facon : void lire2_tab(float [], int *) ; */
float moyenne(float [], int) ;

lire_tab(t, &n);

printf("\n \n \t moyenne = %7.2f\n", moyenne(t, n)) ;
}
void lire_tab(float *ptab, int *pn) {

/* 2é™ facon : void lire2_tab(float tabl[], int *pn) */
inti;

printf("Nombre de notes ? : ") ; scanf("%d", pn) ;
for (i=0;i<*pn;i++) {

printf("Note n°%d : ", i+ 1);
scanf("%f", ptab++) ; /* 2¢™¢facon: scanf("%d",&tabli]) ; */

}
}
float moyenne(float X[], int nb) {

floats ;

inti;

for(s=0,i=0;i<nb;i++)

s +=X[i] ;

return (s/nb) ;

}

Filiere SMI - Programmation Il (M21-54)
2014-2015

Allocation de Méemoire

 Déclaration statique de données :

— Chaque variable dans un programme induit une réservation automatique d'un certain nombre
d'octets en mémoire.

— Le nombre d'octets a réserver est connu pendant la compilation : c'est la "déclaration statique
de données".

Exemples :
float A, B, C; /* réservation de 12 octets */
short D[10][20] ; /* réservation de 200 octets */
double *G; /* réservation de p octets (p = taille d'un mot machine. Dans notre cas, p = 2) */

e Allocation dynamique de la mémoire :

— La déclaration d'un tableau définit un tableau "statique" (il posséde un nombre figé

d'emplacements). Il y a donc un gaspillage d'espace mémoire en réservant toujours l'espace
maximal prévisible.

— Il serait souhaitable que I'allocation de la mémoire dépend du nombre d'éléments a saisir. Ce
nombre ne sera connu qu'a I'exécution : c'est |' "allocation dynamique«

* Fonctions d'allocation dynamique de la mémoire (malloc, calloc et realloc) :

— Chaque fonction prend une zone d'une taille donnée dans I'espace mémoire libre réservé pour
le programme (appelé tas ou heap) et affecte I'adresse du début de la zone a une variable
pointeur.

— S'il n'y a pas assez de mémoire libre a allouer, la fonction renvoie le pointeur NULL.

— Fonction malloc
<pointeur> = [<type>] malloc(<taille>) ;

<type> est un type pointeur définissant I'objet pointé par <pointeur>.
<taille> est le nombre d'octets alloués pour <pointeur>.
Exemple :
char *pc;
pc = (char *) malloc(4000) ;
soit a pc est affectée I'adresse d'un bloc mémoire de 4000 octets. Soit pc contient la valeur 0 s'il n'y a pas assez de mémoire libre.

— Fonction calloc
<pointeur> = [<type>] calloc(<nb_elts>, <taille_elt>) ;

* S'ily a assez de mémoire libre, la fonction retourne un pointeur sur une zone mémoire de <nb_elts> éléments de
<taille_elt> octets chacun initialisés a 0.

Exemple :
pt = (int *) calloc(100, sizeof(int)) ; /* allocation dynamique d'un tableau de 100 entiers égaux a 0 */

— Fonction realloc

<pointeur> = [<type>] realloc(<pointeur>, <nouvelletaille>);
* Permet de modifier la taille d'une zone précédemment allouée par malloc, calloc ou realloc.
* Si<pointeur> est NULL, alors realloc équivaut a malloc

* Libération de la mémoire (la fonction free) :
— Un bloc de mémoire réservé dynamiquement par malloc, calloc ou realloc, peut étre libéré a I'aide de la
fonction free
free <pointeur> ;
Libere le bloc de mémoire désigné par le pointeur <pointeur>.
Filiere SMI - Programmation Il (M21-54)
2014-2015

Exercice

Ecrire un programme C qui :

— demande a l'utilisateur de saisir tant qu’il le
souhaite des nombres entiers au clavier

— au fur est a mesure de la saisie, remplit, en
utilisant I'allocation dynamique, un tableau
initialement vide

— effectue un tri par insertion des éléments du
tableau, une fois la saisie des nombres est
terminée

— dffiche les élements du tableau.

v
v
v
v
v
v

Définition, déclaration et mémorisation
Chaines constantes

Initialisation

Ordre alphabétique et lexicographique
Manipulation des chaines de caractéeres
Tableaux de chaines de caracteres

Définition

Une chaine de caracteres est :
— une suite de caracteres alphanumériques (du texte)

— représentée sur une suite d'octets se terminant par
un octet supplémentaire lié au symbole '\0'. Celui-
ci indique une fin de chaine.

— considérée comme un tableau de caracteres qui
peut étre manipulé d'une maniere globale (sans le
faire caractere par caractere).

Déclaration & Mémorisation

Déclaration :
char <NomChaine> [<longueur>] ; /* sous forme de tableau */
ou
char *<NomChaine>; /* sous forme de pointeur */

Exemples :
char Nom[20] ; /* Nom est un tableau ne pouvant contenir au
plus que 19 caracteres utiles */
char *Prenom ;

Mémorisation :

— Le nom d'une chaine de caracteres est le représentant de |'adresse du
1¢" caractere de la chaine.

— Pour mémoriser une chaine de N caractéres, on a besoin de N+1 octets.

Sont représentées entre guillemets. La chaine vide est notée "".
Pour une chaine constante, le compilateur associe un pointeur constant.
Dans une chaine, les caractéeres de controle peuvent étre utilisés.

— Exemple:
"Ce \ntexte \nsera réparti sur 3 lignes.«

Le symbole " peut étre représenté a l'intérieur d'une chaine constante par \"

— Exemple:
"Affichage de \"guillemets\" \n"

Plusieurs chaines de caractéres constantes séparées par des espaces, des
tabulations ou interlignes, dans le texte d'un programme, seront réunies en une
seule chaine constante lors de la compilation.

— Exemple:
Ilunll Ildeuxll
"trois"

sera évaluée comme : "un deux trois"

Filiere SMI - Programmation Il (M21-54)
2014-2015

Exemples :
char Chl[] = {IBI' IOI' Inl' Ijl’ IO', Iul' Irl' I\OI};

char ch2[] = "Bonjour" ; /* initialisation particuliére aux chaines de caractéres */
char ch3[8] = "Bonjour" ;

eharch4{7} = "Bonjour" ; /* Erreur pendant I'exécution */

eharch5[6} = "Bonjour" ; /* Erreur pendant la compilation */

char *ch6 = "Bonjour" ; /* pointeur sur char */

Remarques :

1.

char *chl = "une chaine" ;
char *ch2 = "une autre chaine" ;
chl=ch2; /* ch1 et ch2 pointent sur la méme chaine "une autre chaine" */

char ch1[20] = "une chaine" ;
char ch2[20] = "une autre chaine" ;

char ch3[30] ;
chl=ch2; /* Impossible = Erreur */
ch3 ="Bonjour" ; /* Impossible = Erreur */

Filiere SMI - Programmation Il (M21-54)
2014-2015

Ordre alphabétique et
lexicographique

Ordre alphabétique des caracteres :
— dépend du code utilisé pour les caracteres.
— pour le code ASCII, on constate I'ordre suivant: ...,0,1,2,..,9, .., A B,C, .. Z ..,ab,c,..z.

Exemple :
'0' est inférieur a 'z' et noté : '0'<'z" (code ASCII ('0') = 48 et code ASCII('Z') = 90)

Ordre lexicographique des chaines de caracteres :
— basé sur I'ordre alphabétique des caractéres.
— suit I'ordre du dictionnaire et est défini comme suit :

1. La chaine vide "" précéde lexicographiquement toutes les autres chaines

2. La chaine "a,a,...a," (p caracteres) précéde lexicographiquement la chaine "b,b,..b,," (m caracteres) si
I'une des deux conditions suivantes est remplie :
— Iall < Ibll

— 'a;'='b,' et"a,..a," précéde lexicographiquement "b,...b "

Exemples :
"ABC" précéde "BCD" car 'A' < 'B'
"ABC" précéde "B"
"Abc" précéde "abc"
"ab" précede "abcd" car "" précede "cd"
"ab" précéde "ab" car''<'a' (ASCII(' ') = 12 et ASCII('a') = 97))

Manipulation des chaines de caracteres
(Fonctions de stdio.h) (1)

Affichage de chaines de caracteres :
1. Fonction printf

int printf(const char *format [, argument, ...])
A utiliser avec le spécificateur de format %s

Exemple :
char ch[] = "Bonjour tout le monde" ;
printf("%s", ch) ; /* affichage normal */
printf("%7s", ch) ; /* largeur minimale de 7 caracteres */
printf("%.7s", ch) ; /* largeur maximale de 7 caract. */
printf("%25s", ch) ; /* alignement a droite sur 25 caract. */
printf("%-25s", ch) ; /* alignement a gauche sur 25 caract. */

2. Fonction puts
int puts(const char *ch) ;
Exemple :
char *ch = "Bonjour" ;
puts(ch) ; est équivalente a printf("%s\n", ch) ;

Manipulation des chaines de caracteres
(Fonctions de stdio.h) (2)

Lecture de chaines de caracteres :
1. Fonction scanf

int scanf(const char *format [, adresse, ...]) ;
A utiliser avec le spécificateur de format %s

Exemple :
char lieu[25] ;
printf("Entrez le lieu de naissance : ") ; scanf("%s", lieu) ;

2. Fonction gets
char *gets(char *ch) ;
Exemple :
char string[80] ;

printf("Entrez une chaine de caractéres : ") ; gets(string) ;
printf("La chaine lue est : %s\n", string) ;

Remarque :

Contrairement a scanf, la fonction gets permet de saisir des chaines de caracteres
contenant des espaces et des tabulations.

Manipulation des chaines de caracteres
(Fonctions de string.h) (1)

Longueur d'une chaine de caracteres :
1. Fonction strlen

int strlen(const char *s) ;
Retourne le nombre de caractéres présents dans la chaine s (sans compter '\0').

Concaténation de chaines de caractéeres :
1. Fonction strcat

char *strcat(char *s1, const char *s2) ;
Ajoute une copie de la chaine s2 a la fin de la chaine s1. Le caractére final '\O' de s1 est écrasé par le 1°" caractére de s2.
Retourne un pointeur sur s1.

Exemple :
char *ch1 = "Bonjour" ;
char *ch2 =" tout le monde" ;
strcat(chi1, ch2);
printf("%s", chl) ;

2. Fonction strncat

char *strncat(char *s1, const char *s2, int n) ;
Ajoute au maximum les n premiers caractéres de la chaine s2 a la chaine s1.

Exemple :
char ch1[20] = "Bonjour" ;
char *ch2 =" tout le monde" ;
strncat(chl, ch2, 5);

Manipulation des chaines de caracteres
(Fonctions de string.h) (2)

Comparaison de chaines de caracteres :
1. Fonction strcmp
int strcmp(const char *s1, const char *s2) ;

Compare lexicographiquement les chaines s1 et s2, et retourne une valeur :

=0 si sl et s2 sont identiques
<0 si sl précéede s2
>0 si sl suits2
Exemple :
if (Istrcmp(chl, ch2)) printf("identiques\n");
else

if (stremp(ch1, ch2)>0) printf("%s précéde %s\n", ch2, chl);
else printf("%s suit %s\n", ch2, chl);

2. Fonction strncmp
int strncmp(const char *s1, const char *s2, intn) ;

Ici, la comparaison est effectuée sur les n premiers caracteres.

3. Fonction stricmp
int stricmp(const char *s1, const char *s2) ;
Travaille comme strcmp sans faire la distinction entre majuscules et minuscules.
4. Fonction strnicmp
int strnicmp(const char *s1, const char *s2, intn) ;

Travaille comme strcnmp sans distinguer les majuscules des minuscules.

Manipulation des chaines de caracteres
(Fonctions de string.h) (3)

Copie de chaine de caracteres :
1. Fonction strcpy
char *strcpy(char *s1, const char *s2) ;

Copie la chalne s2 dans s1 y compris le caractére '\0'.
Retourne un pointeur sur sl

2. Fonction strncpy
char *strncpy(char *s1, const char *s2, int n) ;

Copie au plus les n premiers caractéres de la chaine s2 dans sl et retourne un pointeur sur s1.
La chalne s1 peut ne pas comporter le caractéere terminal si la longueur de s2 vaut n ou plus.

Exemple :
char ch1[8] ;
char *ch2 = "bonjour" ;
strncpy(ch2, chl, 3);
ch2[3] ="\0';
printf("%s\n", ch2) ;

Manipulation des chaines de caracteres
(Fonctions de string.h) (4)

Recherche d’un caractere dans une chaine de caracteres :
1. Fonction strchr
char *strchr(const char *s, char c) ;

Recherche la 1° occurrence du caractére ¢ dans la chaine s.

Retourne un pointeur sur cette 1° occurrence si c'est un caractére de s, sinon le pointeur
NULL est retourné.

2. Fonction strrchr
char *strrchr(const char *s, char c) ;

Identique a strchr sauf qu'elle recherche la derniere occurrence du caractéere c dans la chaine
S.

Exemple :
char *ch = "Bonjour" ;
strchr(ch, '0') ;
puts(strchr(ch, '0'));
strrchr(ch, 'o') ;
puts(strrchr(ch, '0')) ;

Manipulation des chaines de caracteres
(Fonctions de string.h) (5)

Recherche d'une sous-chaine de caracteres dans une chaine de
caracteres :

1. Fonction strstr

char *strstr(const char *s1, const char *s2) ;
Recherche la 1™ occurrence de la chaine s2 dans la chaine s1.

Retourne un pointeur sur cette 1 occurrence si la chaine s2 est une sous-chaine
de la chaine s1, sinon le pointeur NULL est retourné.

Exemple :
#include <string.h>

char *s1 = "Bonjour tout le monde" ;
char *s2 = "tout" ;

char *pch ;

pch = strstr(s1, s2) ;

printf("La sous-chaine est : %s\n", pch) ;

Manipulation des chaines de caracteres
(Fonctions de string.h) (6)

Recherche d'une sous-chaine de caracteres dans une chaine de
caracteres :

2. Fonction strpbrk
char *strpbrk(const char *s1, const char *s2) ;

Recherche dans la chaine s1 la 1°" occurrence d'un caractére quelconque de la
chaine s2

Exemple :
char *ch1 = "abcdefghij" ;
char *ch2 ="123f" ;
char *pch ;
pch = strpbrk(chl, ch2) ;
if (pch)
printf("strpbrk trouve le premier caractere %c\n", *pch) ;
else
printf("strpbrk ne trouve pas de caractéres\n") ;

Manipulation des chaines de caracteres
(Fonctions de string.h) (7)

Recherche d'une sous-chaine de caracteres dans une chaine de

caracteres :

3. Fonction strtok
char *strtok(char *s1, const char *scp) ;

Recherche dans la chaine s des éléments (des chaines da caracteéres) séparés par des séparateurs définis dans la chaine de
caractéres constante scp.

Le 1¢ appel a strtok renvoie un pointeur sur le 1°" caractére du 1°" élément de la chaine s et écrit le caractére "\0' dans la
chaine s immédiatement aprés I'élément renvoyé.

D'autres appels a strtok, avec NULL comme 1°" argument, traitent de la méme maniére, et jusqu'a épuisement, les autres
éléments de la chalne s.

Remarque :

strtok permet d'éclater la chaine s en différentes sous-chaines obtenues en considérant comme séparateurs les différents
caracteres de la chaine scp.

Exemples :
char ch[16] = "abc,d";
char *p;
p = strtok(ch, ",") ; /* 1°" appel a strtok */
if (p)
printf("%s\n", p) ; /* il s'affichera la chaine "abc" */
p = strtok(NULL, ",") ; /* 2¢™e appel a strtok avec comme 1¢"
argument NULL */

if (p)
printf("%s\n", p) ; /* il s'affichera la chaine "d" */

* Ecrire une fonction qui affiche les mots d'une phrase :

— Une phrase est une chaine de caractere constituée d’un ensemble de
mots

— Les mots de la phrase sont séparés par un seul espace.

Filiere SMI - Programmation Il (M21-54)
2014-2015

Conversion nombres/chaines de caractéres
(Fonctions de stdlib.h) (1)

Conversion d'une chaine de caracteres en une valeur
numeérique :
Fonctions atoi, atol, atof
int atoi(const char *s) ;
long atol(const char *s) ;
double atof(const char *s) ;

atoi (respectivement atol, atof) retourne la valeur numérique

représentée par la chaine s comme un int (respectivement long int,
double).

Remarques :
Les espaces au début de la chaine de caracteres s sont ignorés.
La conversion s'arréte au 18" caractere non valide (c.-a-d. non convertible).
Si aucun caractere n'est valide, les fonctions retournent zéro.

Conversion nombres/chaines de caractéres
(Fonctions de stdlib.h) (2)

Conversion d'une valeur numérique en une chaine de
caracteres (non ANSI) :

Fonctions itoa, Itoa, ultoa
char *itoa(int n, char *s, int b) ;
char *Itoa(long n, char *s, int b) ;
char *ultoa(unsigned long n, char *s, int b) ;

Convertissent l'entier n, représenté en base de numération b, dans
la chaine s

Remarques :

Si n est un entier négatif et b = 10, itoa et Itoa (pas ultoa) utilisent le 1°"
caractere de la chaine s pour le signe moins.

Si succes, les fonctions itoa, lItoa et ultoa renvoient un pointeur sur la
chaine résultante. Dans le cas contraire, elles retournent NULL.

Classification de caracteres
(Fonctions de ctype.h)

Fonctions de classification :

— retournent zéro si la condition respective n'est pas remplie.

— c est une valeur du type int qui peut étre représentée comme
un caractere

Fonction : Retourne une valeur différente de zéro :
isupper(c) si c est une lettre majuscule ('A', 'B, ..., 'Z')
iSlOWEl‘(C) si ¢ est une lettre minuscule ('a', 'b', ..., 'z')
isdigit(c) si c est un chiffre décimal ('0', '1', ..., '9').
isalpha(c) si islower(c) ou isupper(c).
isalnum(c) si isalpha(c) ou isdigit(c).
iSXdigit(C) si ¢ est un chiffre hexadécimal ('0', ..., '9' ou 'A, 'B', ..., 'F'ou 'a', 'b', ..., 'f').

isspace(c) si c est un signe d'espacement ("', "\t', "\n', '\r', '\f').

Conversion de caracteres
(Fonctions de ctype.h)

Fonctions de conversion :

— Retournent une valeur du type int qui peut étre
représentée comme caractere. La valeur originale
de c est inchangée.

Fonction : Retourne :

tolower(c) la lettre minuscule si c est une
majuscule.

toupper(c) la lettre majuscule si c est une
minuscule.

Tableaux de chaines de caracteres (1)

- Utiles pour mémoriser une suite de mots ou de phrases.

Exemples :

1. charlJour[7][9] = {"Lundi", "Mardi", "Mercredi", "Jeudi", "Vendredi",
"Samedi", "Dimanche"};

Déclaration d'un tableau de 7 chaines de caracteres, chacune contenant au maximum 9
caracteres (dont 8 significatifs).

2. Jour[4] ="Friday" ; /* affectation non valide ! */
En effet Jour[4] représente |'adresse du 1¢" élément de la 4°™e chaine de caractéres
Pour faire ce type d'affectation, utiliser la fonction strcpy :
strcpy(Jour[4], "Friday") ;

3. /* Affichage de la 1°¢ lettre des jours de la semaine */
for (i=0;i<7; i++)
printf("%c\t", Jour[i][0]) ;

- Utiliser des tableaux de pointeurs pour mémoriser de fagon économique des chaines de
caracteres de différentes longueurs

Exemples :
char *Day[] = {"Lundi", "Mardi", "Mercredi", "Jeudi",
"Vendredi", "Samedi", "Dimanche"} ;

Déclaration d'un tableau de 7 pointeurs sur char. Chacun des pointeurs est initialisé avec I'adresse de |'une des 7
chaines de caracteres constantes.

Day[0] ——> L u n d i \0

> i
Day[1] M a r d i \O

—» M e r c r e d i \O
Day[2] — » J e u d 1 \o
Day[3] ———» Vv e n d r e d i \0
Day[4] —» S a m e d i \0

— D i m a n c h e \0
Day(5]
Day(6]

1. Day[4] = "Friday" ; /* Ici, affectation valable */

2. /* Affichage de la 1% |ettre des jours de la semaine */
for (i=0;i<7;i++)
printf("%c\t", *Dayl[i]) ;

Filiere SMI - Programmation Il (M21-54)
2014-2015

Notion de Type Abstrait de Données
Notion de Structure de Données
Implémentation d’un TAD en C

v
v
v
v

Exemples de Structures de Données Linéaires en C

Notion de Type Abstrait de Données

* Un type abstrait de données (TAD) :

— est un ensemble de valeurs muni d’'opérations
sur ces valeurs

— sans faire référence a une implémentation
particuliere

 Un TAD est caractérisé par :

— sa signature : definit la syntaxe du type et des
opérations

— sa sémantique : definit les proprietes des
opérations

Notion de Structure de Données

On dit aussi :
— structure de données concrete

Correspond a :
— I'implémentation d’un TAD

Composée :
— d’un algorithme pour chaque opération
— des données spécifiques a la structure pour sa gestion

Remarque :

— Un méme TAD peut donner lieu a plusieurs structures de
données, avec des performances différentes

Implémentation d’un TAD

Pour implémenter un TAD :

— Deéclarer la structure de données retenue pour représenter le TAD :
L’interface

— Deéfinir les opérations primitives dans un langage particulier : La
réalisation

Exigences :
— Conforme a la spécification du TAD ;
— Efficace en terme de complexité d’algorithme.

Pour implémenter, on utilise :
— Les types élémentaires (entiers, caracteres, ...)
— Les pointeurs ;
— Les tableaux et les enregistrements ;
— Les types prédéfinis.

Plusieurs implémentations possibles pour un méme TAD

Implémentation d’un TAD en C

Utiliser la programmation modulaire :

— Programme découpé en plusieurs fichiers, méme de petites tailles (réutilisabilité,
lisibilité, etc.)

— Chaque compgsante logique (un module) regroupe les fonctions et types autour
d'un méme theme.

Pour chaque module truc, créer deux fichiers :

— fichier truc.h : l'interface (la partie publique) ; contient la spécification de la
structure ;

— fichier truc.c : la définition (la E)_artie privée) ; contient la réalisation des opérations
fournies par la structure. Il contient au début I'inclusion du fichier truc.h

Tout module ou programme principal qui a besoin d'utiliser les fonctions
du module truc, devra juste inclure le truc.h

Un module C implémente un TAD :
— L'encapsulation : détails d'implémentation cachés ; l'interface est la partie visible a
un utilisateur

— La réutilisation : placer les deux fichiers du module dans le répertoire ou l'on
développe l'application.

Filiere SMI - Programmation Il (M21-S4)

2014-2015 o2

Structures de données linéaires

e Structure linéaire:

— C’est un arrangement linéaire d'éléments liés par
la relation successeur

e Exemples:
— Tableaux (/a relation successeur est implicite)
— Piles
— Files
— listes

Notion de Pile (Stack)

* Unepileest:

— une structure linéaire permettant de stocker et de restaurer des
données selon un ordre LIFO (Last In, First Out ou « dernier entré,
premier sorti »)

 Dans une pile :

— Les insertions (empilements) et les suppressions (dépilements) sont
restreintes a une extrémité appelée sommet de la pile.

* Applications:
— Veérification du bon équilibrage d’une expression avec parentheses
— Evaluation des expressions arithmétiques postfixées
— Gestion par le compilateur des appels de fonctions

Type Pile
Utilise Elément, Booléen

Opérations
pile vide : = Pile
est vide : Pile = Booléen
empiler : Pile x Elément > Pile
dépiler : Pile - Pile
sommet : Pile =2 Elément
Préconditions

dépiler (p) est-défini-ssi est vide (p)
sommet (p) est-défini-ssi est vide(p) =

Axiomes
Soit, e : Element, p : Pile
est vide(pile vide) = vrai
est vide (empiler(p,e)) = faux
dépiler (empiler(p,e)) = p

sommet (empiler (p,e)) = e

Filiere SMI - Programmation Il (M21-54)
2014-2015

Représentations d'une Pile

* Représentation contigué (par tableau) :

— Les éléments de la pile sont rangés dans un tableau
— Un entier représente la position du sommet de la pile

* Représentation chainée (par pointeurs) :

— Les éléments de la pile sont chainés entre eux

— Un pointeur sur le premier élément désigne la pile et
représente le sommet de cette pile

— Une pile vide est représentée par le pointeur NULL

Filiere SMI - Programmation Il (M21-S4)
2014-2015

66

elements

/* Pile contigué en C */

// taille maximale pile
#define MAX PILE 7

// type des éléments
typedef int Element;

// type Pile

typedef struct {

Element elements[MAX PILE];
int sommet;

} Pile;

Filiere SMI - Programmation Il (M21-54)
2014-2015

/* Pile chainée en C */

// type des éléments
typedef int element;

// type Cellule
typedef struct cellule {
element valeur;

struct cellule *suivant;
} Cellule;

// type Pile
typedef Cellule *Pile;

Filiere SMI - Programmation Il (M21-54)
2014-2015

Spécification d'une Pile Contigué

/* fichier "Tpile.h" */
#ifndef PILE TABLEAU
#define PILE TABLEAU

#include "Booleen.h"

// Définition du type Pile (implémentée par un tableau)
#define MAX PILE 7 /* taille maximale d'une pile */
typedef int Element; /* les éléments sont des int */

typedef struct {

Element elements[MAX PILE]; /* les éléments de la pile */
int sommet; /* position du sommet */

} Pile;

// Déclaration des fonctions gérant la pile
Pile pile vide ()

Pile empiler (Pile p, Element e);

Pile depiler (Pile p);

Element sommet (Pile p);

Booleen est vide (Pile p);

#endif

Réalisation d'une Pile Contigué

/* fichier "Tpile.c" */
#include "Tpile.h"
// Définition des fonctions gérant la pile

// initialiser une nouvelle pile
Pile pile vide() {

Pile p;

p.sommet = -1;

return p;

}

// tester si la pile est vide
Booleen est _vide (Pile p) {

if (p.sommet == -1) return vrai;
return faux;

}

// Valeur du sommet de pile

Element sommet(Pile p) {

/* pré-condition : pile non vide ! */
if (est_vide(p)) {
printf ("Erreur: pile wvide '\n");
exit(-1);
}

return (p.elements) [p.sommet];

}

// ajout d'un élément
Pile empiler (Pile p, Element e) {
if (p.sommet >= MAX PILE-1) ({
printf ("Erreur : pile pleine !\n");
exit(-1);
}
(p.sommet) ++;
(p.elements) [p.sommet] = e;
return p;

}

// enlever un élément
Pile depiler(Pile p) {
/* pré-condition : pile non vide !*/
if (est_vide(p)) {
printf ("Erreur: pile vide !'\n");
exit(-1);
}
pP.sommet--;
return p;

}

Utilisation d'une Pile Contigué

/* fichier "UTpile.c" */
#include <stdio.h>
#include "Tpile.h"

int main () {
Pile p = pile vide();

empiler (p, 50) ;

empiler (p,5)

empiler (p,20) ;

empiler (p,10) ;

printf ("$d au sommet apres empilement de 50, 5, 20 et"
" 10\n", sommet(p))

p = depiler(p);

p = depiler(p);

printf ("%$d au sommet apreés dépilement de 10 et 20\n",
sommet (p)) ;

return 0O;

'sc'o ‘o 'O
nnnn

e Une file est:

— une structure linéaire permettant de stocker et de restaurer des données
selon un ordre FIFO (First In, First Out ou « premier entré, premier sorti »)

e Dans une file:

— Les insertions (enfilements) se font a une extrémité appelée queue de la file
et les suppressions (défilements) se font a I'autre extrémité appelée téte de la
file

* Applications:
— Gestion travaux d’impression d’'une imprimante
— Ordonnanceur (dans les systemes d’exploitation)

Filiere SMI - Programmation Il (M21-54)

2014-2015 /2

Type File
Utilise Elément, Booléen
Opérations
file vide : = File
est vide : File = Booléen
enfiler : File x Elément =2 File
défiler : File =2 File
téte : File -2 Elément
Préconditions
défiler (f) est-défini-ssi est vide(f) = faux
téte(f) est-défini-ssi est vide (f) = faux
Axiomes
Soit, e : Element, f : File
est vide(pile vide) = vrai
est vide (enfiler(f,e)) = faux
si est vide(f) = vrai alors téte(enfiler(f,e)) = e
si est vide(f) = faux alors téte(enfiler(f,e)) = téte(f)
si est vide(f) = vrai alors défiler (enfiler(f,e)) = file vide
si est vide(f) = faux
alors défiler (enfiler(f,e)) = enfiler(défiler(f),e)

Filiere SMI - Programmation Il (M21-54)

2014-2015 3

Représentations d’une File

Représentation contigué (par tableau) :

— Les élements de la file sont rangés dans un tableau

— Deux entiers représentent respectivement les positions de
la téte et de la queue de la file

Représentation chainée (par pointeurs) :

— Les élements de la file sont chainés entre eux

— Un pointeur sur le premier élément désigne la file et
représente la téte de cette file

— Un pointeur sur le dernier élément représente la queue de
file
— Une file vide est représentée par le pointeur NULL

Généralisation des piles et des files

— Strtucture linéaire dans laquelle les éléments peuvent étre traités les uns a la suite des
autres

— Ajout ou retrait d'éléments n’importe ou dans la liste
— Accés a n'importe quel élément

Une liste est :

— gne sluitle Iinie, éventuellement vide, d'éléments de méme type repérés par leur rang
ans la liste

Dans une liste :
— Chaque élément de la liste est rangé a une certaine place
— Les éléments d'une liste sont donc ordonnés en fonction de leur place

Remarques :

— |l existe une fonction notée succ qui, appliquée a toute place sauf la derniere, fournit la
place suivante

— Le nombre total d'éléments, et par conséquent de places, est appelé longueur de la liste

Applications :
— Codage des polynémes, des matrices creuses, des grands nombres, ...

Filiere SMI - Programmation Il (M21-54)

2014-2015 s

Type Abstrait Liste

Type Liste
Utilise Elément, Booléen, Place
Opérations
liste vide : = Liste
longueur : Liste =2 Entier
insérer : Liste x Entier x Elément =2 Liste
supprimer : Liste x Entier =2 Liste
keme : Liste x Entier =2 Elément
acces : Liste x Entier =2 Place
contenu : Liste x Place =2 Elément
succ : Liste x Place =2 Place
Préconditions

insérer(l,k,e) est-défini-ssi 1 < k < longueur (1)+1
supprimer (1, k) est-défini-ssi 1 < k < longueur (1)
keme (1,k) est-défini-ssi 1 < k < longueur (1)
acces(l,k) est-défini-ssi 1 < k < longueur (1)

succ (l,p) est-défini-ssi p # acces(l,longueur (1))

Représentation contiglie d’une Liste

* Les éléments sont rangés les uns a coté des autres dans un
tableau
— La ieme case du tableau contient le ieme élément de la liste
— Le rang est donc égal a la place ; ce sont des entiers

e Laliste est représentée par une structure en langage C :
— Un tableau représente les éléments
— Un entier représente le nombre d'éléments dans la liste
— La longueur maximale, MAX LISTE, de la liste doit étre connue

/* Liste contigué en C */
// taille maximale liste
#define MAX LISTE 10

// type des éléments
typedef int Element;

// type Place
typedef int Place;

// type Liste

typedef struct {
Element tab[MAX LISTE];
int taille;

} Liste;

Filiere SMI - Programmation Il (M21-54)
2014-2015

Représentation chainée d’une Liste

* Les éléments ne sont pas rangés les uns a coté des autres

— La place d'un élément est lI'adresse d'une structure qui contient
I'éléement ainsi que la place de I'élément suivant

— Utilisation de pointeurs pour chainer entre eux les éléments
successifs

e La liste est représentée par un pointeur sur une structure en
langage C
— Une structure contient un élément de la liste et un pointeur sur
I'élément suivant
— La liste est déterminée par un pointeur sur son premier élément
— La liste vide est représentée par la constante prédéfinie NULL

/* Liste chainée en C */

// type des éléments
typedef int element;

// type Place
typedef struct cellule* Place;

// type Cellule

typedef struct cellule {
element valeur;
struct cellule *suivant;
} Cellule;

// type Liste
typedef Cellule *Liste;

Filiere SMI - Programmation Il (M21-54)
2014-2015

/* fichier "CListe.h" */
#ifndef LISTE CHAINEE
##define _LISTE_CHAINEE

// Définition du type liste (implémentée par pointeurs)
typedef int element; /* les éléments sont des int */

typedef struct cellule *Place; /* la place = adresse cellule */

typedef struct cellule {

element valeur; // un éléments de la liste
struct cellule *suivant; // adresse cellule suilvante
} Cellule;

typedef Cellule *Liste;

// Déclaration des fonctions gérant la
Liste liste_vide (void);

int longueur (Liste 1);

Liste inserer (Liste 1, int i, element e);
Liste supprimer (Liste 1, int i);

element keme (Liste 1, int k);

Place acces (Liste 1, int i);
element contenu (Liste 1, Place 1i);
Place succ (Liste 1, Place 1i);

#fendif

Filiere SMI - Programmation Il (M21-54)
2014-2015

81

Réalisation d'une Liste Chainée (1)

}

int longueur (Liste 1) {
int taille=0;
Liste p=1;
while (p) {
taille++;
pP=p->suivant;
}

return taille;

}

Liste inserer(Liste 1, int i, element e) {
// précondition :0 £ i < longueur(l)+1
if (i<0 || i>longueur(l)) {
printf ("Erreur : rang non valide !'\n");
exit(-1);
}

Liste pc = (Liste)malloc(sizeof (Cellule))
pc->valeur=e;
pc—->suivant=NULL;
if (i==0) {
pc->suivant=1;
1=pc;
}

Liste liste vide(void) { else {
return NULL; int j;
Liste p=1;

for (j=0; j<i-1; j++)
pP=p—->suivant;
pc->suivant=p->suivant;
P->suivant=p;
}

return 1;

}

Place acces(Liste 1, int k) {
// pas de sens que si 0 £ k < longueur(l)-1
int 1i;
Place p;
if (k<0 || k>=longueur(l)) {
printf ("Erreur: rang invalide !'\n");

exit(-1);
}
if (k == 0)

return 1;
else {

p=1;

for (i=0; i<k; k++)
p=p->suivant;
return p;
}
}

Réalisation d'une Liste Chainée (2)

element contenu(Liste 1, Place p) {
// pas de sens si longueur(l)=0 (liste vide)

if (longueur(l) == 0) {
printf ("Erreur: liste vide !'\n");
exit(-1);

}

return p->valeur;

}

Place succ(Liste 1, Place p) {
// pas de sens si p derniere place de liste
if (p->suivant == NULL) ({
printf ("Erreur: suivant derniere
place!\n");
exit(-1);
}

return p->suivant;

}

element keme (Liste 1, int k) {
// pas de sens que si 0 <= k <= longueur(l)-1
if (k<0 || k>longueur(1l)-1) {
printf ("Erreur rang non valide !'\n");
exit(-1);
}

return contenu(l, acces(l,k));

}

Liste supprimer (Liste 1, int i) {
// précondition 0 £ i < longueur (1)

int j;

Liste p;

if (i<0 || i>longueur(l)+1) {
printf ("Erreur: rang non valide!\n");
exit(-1);

}

if (1 == 0) {
p=1;
l1=1->suivant;

}

else {
Place q;
g=acces (1l,i-1);
p=succ(l,q);
g->suivant=p->suivant;

}

free(p) ;

return 1;

}

Liste avec téte fictive
— Eviter d'avoir un traitement particulier pour le cas de la téte de liste (opérations d'insertion et de

suppression)

L

E\ téte Ffictive
0 el Aelet @]}~ o [mk]

Liste chainée circulaire
— Le suivant du dernier élément de la liste est le pointeur de téte

L

IT*!\ valeur suivant
| 11‘31 | .—’—.|e2|.—’—>|e3|.—’—> ..H

Liste doublement chainée
— Faciliter le parcours de la liste dans les deux sens (utilisation de deux pointeurs...)

L

téte

queune . valeur suivant

Zlet | o P23 o= e[en]/]

Liste doublement chainée circulaire

Liste triée
— Lordre des enregistrements dans la liste respecte l'ordre sur les clés

Filiere SMI - Programmation Il (M21-54)

2014-2015 &

Définition et propriétés

Fichiers de texte et fichiers binaires

Fichiers standards

Déclaration, ouverture et fermeture d’un fichier
Traitement du contenu d’un fichier
Déplacement dans le fichier (acces direct)

v
v
v
v
v
v
v

Définition et Propriétés

Définition :
— Un fichier est une suite de données homogenes

conservées en permanence sur un support externe
(disque dur, clef USB, ...).

— Ces données regroupent, le plus souvent, plusieurs
composantes (champs) d'une structure.

Exemples :

 Un fichier d'étudiants.
e Un fichier d'entiers.

Propriété :
— En C, les fichiers sont considérés comme une suite
d'octets (1 octet = caractere)

Principe de manipulation d'un fichier :
1. ouverture du fichier

2. lecture, écriture, et déplacement dans le fichier
3. fermeture du fichier

Filiere SMI - Programmation Il (M21-54)
2014-2015

Manipulation d’un Fichier

Deux types de fonctions permettent de manipuler
un fichier :

— fonctions de bas niveau : dépendent du systeme
d'exploitation et font un acces direct sur le support
physique de stockage du fichier.

— fonctions de haut niveau : |'acces au fichier se fait par
I'intermédiaire d'une zone mémoire de stockage (la
mémoire tampon). Ces fonctions sont construites a
partir des fonctions de bas niveau.

Remarque :

— Dans ce cours, seules les fonctions de haut niveau
seront étudiées et utilisées.

Manipulation d’un Fichier

Deux techniques pour manipuler un fichier :

— l'acces sequentiel : pour atteindre l'information
souhaitée, il faut passer par la premiere puis la
deuxieme et ainsi de suite.

— l'acces direct : consiste a se déplacer directement
sur l'information souhaitée sans avoir a parcourir
celles qui la précedent.

Mémoire Tampon

— Les acces a un fichier (en vue d'une lecture ou
ecriture d'informations) se font par l'intermédiaire
d'une meémoire tampon (buffer).

— Il s'agit d'une zone de la mémoire centrale qui
stocke une quantité, assez importante, de
données du fichier.

— Son role est d'accélérer les entrées/sorties a un
fichier.

Types de Fichiers

— Deux types de fichiers :
* Fichiers de texte
* Fichiers binaires

— Un fichier de texte est une suite de lignes ; chaque
ligne est une suite de caracteres terminée par le
caractere spécial '\n'.

— Un fichier binaire est une suite d'octets pouvant
représenter toutes sortes de données. (/e systeme
n'attribue aucune signification aux octets
echangés)

Fichiers Standards

— Des fichiers spéciaux sont prédéfinis et ouverts
automatiqguement lorsqu'un programme
commence a s'exécuter :

 stdin : entrée standard (par défaut, lié au clavier)

 stdout : sortie standard (par défaut, lié a I'écran)

e stderr : sortie d'erreur standard (par défaut, lié aussi a
'écran)

— Ces fichiers peuvent étre redirigés au niveau de
l'interprete de commandes par |'utilisation de
symboles > et < a I'appel du programme.

Fichiers Standards

Exemples :

1. Soit le fichier de texte "c:\essai.txt"
Considérons les appels suivants du programme exécutable Prog :
Prog > c:\essai.tx
Prog écrira dans c:\essai.txt au lieu de I'écran
Prog < c:\essai.txt
Prog fera ses lectures dans c:\essai.tx)

2. Soient Progl et Prog2 deux programmes exécutables.
Soit I'appel suivant :
Prog1 | Prog2
Prog1 a sa sortie standard redirigée dans |I'entrée standard de Prog2

Fichiers Standards

Aux fichiers standards :

sont associées des fonctions prédéfinies permettant
de réaliser les opérations suivantes :

— lecture et écriture caractere par caractere
— lecture et écriture ligne par ligne
— lecture et écriture formatées

Fichiers Standards

Echanges caractere par caractere :
Fonction getchar

int getchar() ;
Permet de lire un caractere sur stdin.
Retourne la valeur du caractere lu ou EOF (si fin du fichier ou erreur)

Exemple :
while ((c = getchar() != EOF) && (c !="")) ;
/* lit jusqu'au premier caractére non espace ou EOF */

Fonction putchar

int putchar(int c) ;
Permet d'écrire le caractére c sur stdout.
Retourne la valeur du caractére écrit c ou EOF en cas d'erreur

Fichiers Standards

Echanges ligne par ligne :

Une ligne est considérée comme une suite de caracteres terminée
par le caractere fin de ligne "\n' ou par la détection de la fin du
fichier.

Fonction gets
char *gets(char *s) ;

Lit une ligne sur stdin et la place dans la chaine s. Le caractere fin de ligne
"\n' est remplacé dans s par le caractere fin de chaine '\0'.

Retourne NULL a la rencontre de la fin de fichier ou en cas d'erreur

Fonction puts
int puts(char *s) ;

Permet d'écrire la chaine de caracteres s, suivie d'un saut de ligne sur
stdout.

Retourne le dernier caractere écrit ou EOF en cas d'erreur.

Echanges avec formats :
Fonction scanf

int scanf(char *, ...) ;

Effectue une lecture formatée sur stdin.

Fonction printf
int printf(char *, ...) ;
Effectue une écriture formatée sur stdout.

Filiere SMI - Programmation Il (M21-54)
2014-2015

Déclaration d'un Fichier

FILE *<PointeurFichier> ;

— Le type FILE est défini dans <stdio.h> en tant que structure.

— A l'ouverture d'un fichier, la structure FILE contient un certain
nombre d'informations sur ce fichier telles que :

e adresse de la mémoire tampon,

e position actuelle dans le tampon,

* nombre de caracteres déja écrits dans le tampon, ...,
* type d'ouverture du fichier : écriture, lecture, ...,

— Pour pouvoir travailler avec un fichier dans un programme,
ranger |'adresse de la structure FILE dans le pointeur de fichier
et tout acces ultérieur au fichier se fait par l'intermédiaire de ce
pointeur.

Ouverture d'un Fichier

— Association d'un objet extérieur (/e fichier) au programme en
cours d'exécution.

— Réalisée par la fonction fopen selon la syntaxe :
FILE *fopen(char *<NomFichier>, char *<TypeOuverture>) ;

Exemple :
pf = fopen("essai.dat", "rb") ;

— fopen tente d'ouvrir le fichier désigné par <NomFichier> pour le
type d'ouverture spécifié <TypeOuverture>.

— Si succes, crée une structure de type FILE, y stocke les
informations relatives a ce fichier et retourne I'adresse de cette
structure.

— Sinon, NULL est retourné.

— Le type d'ouverture indique la nature des opérations que le
programme devra exécuter apres I'ouverture du fichier.

Types d’Ouverture d’un Fichier

Les différents types d'ouverture d'un fichier :

r'" : ouverture en lecture seule. Si fichier inexistant, la fonction retourne
NULL.

— "w" : création pour écriture. Si fichier préexistant, il est vidé (son contenu est
perdu)

— "a" : ouverture pour ajout ; ouverture en écriture en fin de fichier ou création
pour écriture si fichier inexistant.

— "r+" : ouverture de fichier préexistant pour mise a jour (lecture/écriture).

— "w+" : création pour mise a jour (lecture/écriture). Si fichier préexistant, le
contenu est perdu.

— "a+" : ouverture pour ajout ; ouverture pour mise a jour en fin de fichier ou
création si fichier inexistant.

Remarques :
— Pour indiquer gu'un fichier doit étre ouvert ou créé en mode texte, ajouter t a

la chaine ("rt", "wt", "at", "rt+" ou "r+t", "wt+" ou "w+t", "at+" ou "a+t").
— Pour le mode binaire, ajouter b ("rb", "wb", ...).

Fermeture d’un Fichier

— Termine la manipulation d'un fichier ouvert en faisant appel a la fonction
fclose selon la syntaxe :

int fclose(FILE *<PointeurFichier>) ;

Exemple :
fclose(pf) ; /* pf est un pointeur de fichier */

— fclose est la fonction inverse de fopen ; elle détruit le lien entre le pointeur de
fichier et le nom du fichier.

— Retourne :
e (0 dansle cas normal.
e EOF en cas d'erreur.

Remarques:
— Quand un fichier ne sert plus, il est conseillé de le fermer.
— Dés qu'un fichier est fermé, la mémoire tampon est libérée.

— Apres fclose(pf), le pointeur pf est invalide. Des erreurs graves pourraient donc
survenir si ce pointeur est utilisé par la suite.

Ouverture et Fermeture d'un fichier
(Exemple)

#include <stdio.h>

#finclude<string.h>

void main()

{

char nomfich[20] ; /* nom physique du fichier a traiter */
FILE *pf; /* pf est un pointeur de fichier */

printf("Nom de sauvegarde du fichier : ") ;

gets(nomfich) ;

pf = fopen(nomfich, "r") ; /* Ouvre en lecture le fichier */

if (pf == NULL)
printf("Impossible d'ouvrir le fichier\n") ;
else

... [* traitement du fichier */
fclose(pf) ; /* fermer le fichier référencé par pf */

}

Traitement du Contenu d'un Fichier

— Une fois le fichier ouvert, C permet plusieurs types de
traitement du fichier :
* par caracteres
* par lignes
* par enregistrements
* par données formatées

— Dans tous les cas, les fonctions de traitement du
fichier (sauf les opérations de déplacement (voir plus
loin)) ont un comportement séquentiel. L'appel de ces
fonctions provoque le déplacement du pointeur
courant relatif au fichier ouvert.

Traitement Caractere par Caractere

Fonction fgetc
int fgetc(FILE *<PointeurFichier>) ;

— Lit un caractere dans le fichier référencé par le pointeur
<PointeurFichier>

— Retourne :
* Le caractére lu sous forme d'un int
* EOF a la rencontre de la fin du fichier ou en cas d'erreur.

Fonction getc
int getc(FILE *<PointeurFichier>) ;
— ldentique a fgetc() sauf que cette fonction est réalisée par une
macro définie dans <stdio.h>.

— Pour une macro, les instructions sont générées en ligne (et
répétées a chaque appel) ce qui évite un appel de fonction
(codteux).

Traitement Caractere par Caractere

Fonction fputc
int fputc(int <Caractere>, FILE *<PointeurFichier>) ;

— Ecrit dans le fichier référencé par le pointeur
<PointeurFichier> le caractere placé dans la variable
<Caractere>.

— Retourne :

* Lavaleur sous forme d'int du caractere écrit dans le fichier.
* EOF en cas d'erreur.

Fonction putc
int putc(int <Caractere>, FILE *<PointeurFichier>) ;

ldentique a fputc() sauf que cette fonction est réalisée par
une macro

Traitement Caractere par Caractere
(Exemple 1)

Création d’un fichier texte :

main() {

FILE *pf ;

char *nomf ; /* nom physique du fichier */
int c; /* le caractére a traiter */

printf("Nom de sauvegarde : ") ; gets(nomf) ;
if ((pf = fopen(nomf,"w")) != NULL) {
printf("Entrez votre texte et terminez par CTRL-Z \n") ;
while ((c = getchar() != EOF))
fputc(c,pf) ;
fclose(pf) ;
}
else printf("Probléeme d'ouverture") ;
return 0 ;

}

Traitement Caractere par Caractere
(Exemple 2)

Lecture d’un fichier texte :

main() {
FILE *pf;
char *nomf;
int c; /* caractére a traiter */
printf("Nom du fichier a lire : ") ; gets(nomf) ;
if ((pf = fopen(nomf,"r")) I= NULL) {
while ((c = fgetc() != EOF))
putchar(c) ;
if (!feof(pf)) /* feof est une fonction qui détecte la fin d'un fichier (voir plus loin */
printf("Erreur de lecture") ;
fclose(pf) ;
}
else printf("Probléme d'ouverture") ;
return O ;

}

Traitement Caractere par Caractere

Remarques :

— ¢ = getchar() équivalente a c = getc(stdin) ou c =
fgetc(stdin)

— putchar(c) équivalente a putc(c, stdout) ou
fputc(c, stdout)

Traitement par Lignhes
(Lecture de Chaines)

Fonction fgets
char *fgets(char *<Chaine>,int<Nbre>,FILE *<PointeurFichier>);

— Lit une ligne de caracteres dans le fichier référencé par
<PointeurFichier>. Cette ligne est stockée dans <Chaine>.

<Nbre> est le nombre maximum de caracteres a lire.

— Retourne :
* Un pointeur vers le début de la chaine.
e NULL en cas d'erreur ou a la rencontre de la fin de fichier.

— La lecture s'arréte lorsque un des événements se produit :

* Lecture de saut de ligne '\n' (‘\n' est recopié dans <Chaine>)

e Lecture d'au plus (<Nbre> - 1) caracteres (fgets termine <Chaine> par
I\OI)
* Rencontre de la fin de fichier

Traitement par Lignes
(Ecriture de Chaines)

Fonction fputs
int fputs(char *<Chaine>, FILE *<PointeurFichier>) ;

— Ecrit la chaine <Chaine> dans le fichier référencé par
<PointeurFichier>.

— Retourne ;:

e Une valeur positive (code ASCII du dernier caractere écrit) si
I'écriture s'est correctement déroulée.

e EOF en cas d'erreur.

— La chaine <Chaine> doit étre terminée par '\0'. Ce
caractere n'est pas transféré dans le fichier. Il faut
mettre explicitement la fin de ligne dans la chaine
pour gu'elle soit présente dans le fichier.

Traitement par Lignes
(Exemple)

Lecture ligne a ligne d’un fichier apres ouverture :

void main() {
char nomfich[20] ; /* fichier a traiter */
FILE *pf ;
char BigBuf[256] ; /* pour stocker une ligne de caractéeres */
printf("Nom de sauvegarde du fichier : ") ;
gets(nomfich) ;
pf = fopen(nomfich, "r") ;
if (pf == NULL) {
printf("Impossible d'ouvrir le fichier %s \n", nomfich) ;
return1 ;
}
while (fgets(BigBuf, sizeof BigBuf, pf) = NULL)
fputs(BigBuf, stdout) ; /* écrire la ligne lue a partir du
fichier référencé par pf sur la sortie standard */
fclose(pf) ; /* fermer le fichier référencé par pf */

}

Traitement par Enregistrements

— Permet de lire et écrire des objets,

* |le plus souvent représentés par des structures
(appelées enregistrements) dans un fichier.

— Pour ce type de traitement,
 Je fichier doit étre ouvert en mode binaire.

* Les données échangées ne sont pas traitées comme des
caracteres. Elles sont traitées sous forme de blocs
d'octets.

Traitement par Enregistrements

Fonction fread (lecture d'un bloc d'octets d'un fichier)
unsigned int fread(void *<pb>, unsigned <taille>,
unsigned <nb>, FILE *<pf>) ;

— Lit un certain nombre de données (des enregistrements) de taille
identique depuis un fichier référencé par <pf> vers un bloc
meémaoire.

* Le bloc mémoire d'adresse <pb> recoit les enregistrements lus.
* <taille> : taille d'un enregistrement en nombre octets.
* <nb>: nombre d'enregistrements a échanger (lire).
« <pf>: fait référence a un fichier ouvert en mode binaire.
* Le nombre d'octets lus est (<nb> * <taille>)
— Retourne :

* Le nombre d'enregistrements lus (et non le nombre d'octets).
* Si EOF ou erreur, une valeur inférieure a <nb> (ou méme 0).

Traitement par Enregistrements

Fonction fwrite (écriture d'un bloc d'octets dans un fichier)
unsigned int fwrite(void *<pb>, unsigned <taille>,
unsigned <nb>, FILE *<pf>) ;

— L'espace mémoire d'adresse <pb> fournit les données a
écrire dans les enregistrements.

— Ecrit <nb> éléments (enregistrements) ayant chacun une
taille de <taille> octets a la fin d'un fichier référencé par
<pf>.

Le nombre d'octets écrits est (<nb> * <taille>)

— Retourne :
* Le nombre d'enregistrement écrits (et non le nombre d'octets).
 Si erreur, une valeur inférieure a <nb> (ou méme 0).

Traitement par Enregistrements
(Exemple)

Lecture d'enregistrements dans un fichier :

— Cet exemple :
* est une lecture du contenu d'un fichier appelé FichParcAuto

 avec stockage du contenu de ce fichier dans un tableau en
meémoire ParcAuto.

— Les cases du tableau sont des structures contenant :
* un entier,
* une chaine de 20 caracteres et
* 3 chaines de 10 caracteres.

Traitement par Enregistrements
(Exemple)

struct automobile {
int age ;
char couleur[20], numero[10], type[10], marque[10] ;
} ParcAuto[20] ;
main() {
FILE *pf ; /* pointeur de fichier */
inti;
unsigned fait ;
pf = fopen("FicParcAuto","rb+") ; /* Remarquer le type d'ouverture du fichier */
if (pf == NULL) {
printf("Can't open FicParcAuto\n"); return1;
}
for (i=0; i<20 ; i++) {
fait = fread(&ParcAutol[i], sizeof(struct automobile),1,pf) ;

if (fait 1= 1) {
printf("Erreur lecture fichier ParcAuto\n"); return2;
}

}
fclose(pf) ;

}

Traitement par Enregistrements
(Exemple)

Remarque :

I| est possible de demander |a lecture de 20
enregistrements en une seule opération, en remplacant
la boucle for par:

fait = fread(ParcAuto, sizeof(struct automobile), 20, pf) ;

ou bien par :

fait = fread(ParcAuto, sizeof ParcAuto, 1, pf) ;

Lecture et Ecriture Formateées
dans les Fichiers

— Sont utilisées les deux fonctions fprintf et fscanf

— permettent de réaliser le méme travail que printf
et scanf sur des fichiers ouverts en mode texte

Ecriture Formatée dans les Fichiers

Fonction fprintf (écriture formatée sur un fichier ouvert en mode
texte)

int fprintf(FILE *<PointeurFichier>, char *<Format>,
<Arguments>);

— Ecrit les données formatées dans un fichier.

— Fonctionne ainsi :
* Accepte une série d'arguments (/es valeurs des données a écrire).

* Applique a chaque argument un spécificateur de format dans
<Format>.

* Envoie les données formatées dans un fichier.

— Retourne :
* Le nombre de caracteres écrits
* Une valeur négative en cas d'erreur.

Ecriture Formatée dans les Fichiers

Remarques :

— Le nombre d'arguments doit satisfaire le nombre
de formateurs :

« S'il y a trop d'arguments (pas assez de formateurs),
ceux en trop sont ignoreés.

— En pratique,

* les arguments représentent les rubriques qui forment
un enregistrement et dont les valeurs respectives sont
écrites dans le fichier.

Ecriture Formatée dans les Fichiers
(Exemple)

#include <stdio.h>

int main(void) {

FILE *pf ;

inti=100;

charc="'C';

floatf=1.234;

pf = fopen("Essai.txt", "w+") ; /* ouverture mise a jour */
fprintf(pf, "%d %c %f", i, c, f) ;

fclose(pf) ; /* fermer le fichier */

return O ;

}

Lecture Formatée dans les Fichiers

Fonction fscanf (lecture formatée dans un fichier ouvert en mode
texte)

int fscanf(FILE *<PointeurFichier>, char *<Format>, <Adresses>);

— Lit des données formatées dans un fichier :
* <PointeurFichier> fait référence au fichier.
e <Format> : format de lecture des données.
* <Adresses> : adresses des variables a affecter a partir des données.
* Un formateur et une adresse doivent étre fournis pour chaque variable.

— Retourne :

* Le nombre d'éléments lus (0 si aucun élément n'a été traité totalement)
* EOF si fin de fichier.

Lecture Formateée dans les Fichiers
(Exemple)

#include <stdlib.h>
#include <stdio.h>
int main(void) {
inti;
printf("Introduisez un entier : ") ;
/* lire un entier a partir de I'entrée standard */
if (fscanf(stdin, "%d", &i))
printf("L'entier lu est : %i\n", i) ;
else {
fprintf(stderr, "Erreur en lisant un entier sur stdin\n") ;
exit(1) ;
}

return O ;

}

Lecture et Ecriture Formateées
dans les Fichiers

Remarques :
— fprintf(stdout, "Bonjour\n")
équivalente a printf("Bonjour\n")

Dans les fichiers texte, il faut ajouter le symbole de fin de ligne
"\n' pour séparer les données.

— fscanf(stdin, "%d", &N)

équivalente a scanf("%d", &N)

A l'aide de fscanf, il est impossible de lire toute une phrase
dans laquelle les mots sont séparés par des espaces.

Détection de la Fin de Fichier

Function feof
int feof(FILE *<PointeurFichier>) ;

— Consulte un "indicateur de fin de fichier" sur
lequel agissent les différentes fonctions de
manipulation de fichier.

— Retourne :

* Une valeur égale a 0 si la fin de fichier (EOF) n'a pas été
détectée.

e Une valeur différente de 0 sinon.

Déplacement dans le Fichier
(Acces Direct)

— Les fonctions précédentes modifient de maniere automatique
le pointeur courant dans le fichier correspondant (adresse de
'octet dans le fichier a partir duquel se fera la prochaine
opération de lecture ou écriture).

— Apres chaque opération de lecture ou d'écriture, ce pointeur
de position (défini dans FILE) est incrémenté du nombre de
blocs transférés pour indiquer la prochaine opération de
lecture ou écriture : C'est |'acces séquentiel.

— Les fonctions suivantes permettent de connaitre la valeur de |la
position courante dans le fichier et de la modifier. Cela
permettra de réaliser des lectures ou des écritures en
n'importe quel endroit du fichier : C'est I'acces direct.

Déplacement dans le Fichier (Acces Direct)
(Fonctions associées a la position dans un fichier)

Fonction fseek
int fseek(FILE *<PointeurFichier>, long <Offset>, int <Base>) ;

— Change la position courante dans le fichier référencé par <PointeurFichier>
(permet de placer le pointeur de position sur un octet quelconque du fichier).

— <Offset>: déplacement a l'intérieur du fichier en nombre d'octets.
* Si<Offset> est positif, le déplacement se fait vers la fin du fichier.
* Si<Offset> est négatif, le déplacement se fait vers le début du fichier.

— <Base> : point de départ du déplacement. <Base> peut prendre les valeurs
suivantes définies dans <stdio.h> :
* 0 (ou SEEK_SET) : déplacement relatif au début du fichier.
* 1 (ou SEEK_CUR) : déplacement relatif a la position courante.
* 2 (ou SEEK_END) : déplacement relatif a la fin du fichier.

— Retourne :
* 0en casde succes.
* Une valeur différente de 0 si le déplacement ne peut étre réalisé

Déplacement dans le Fichier (Acces Direct)

(Fonctions associées a la position dans un fichier)

Remarques :

— Le 1°" octet du fichier (octet de rang 1) est a la
position 0.

— L'instruction :
fseek(pf, 1L * sizeof(enrg)*(n-1), SEEK_SET) ;

fait placer le pointeur de position sur le neme
enregistrement enrg du fichier référencé par pf.

— Utiliser fseek avec précaution pour un fichier
texte.

Déplacement dans le Fichier (Acces Direct)
(Fonctions associées a la position dans un fichier)

Utilite de fseek : modification d'un enregistrement
du fichier connaissant sa position dans le fichier.

Exemple : Modifier le né™ enregistrement
fseek(pf, 1L * sizeof(enrg)*(n-1), 0) ;
fread(&enrg, sizeof(enrg),1 ,pf) ;
/* Instructions pour Modifier I'enregistrement enrg */

fseek(pf, 1L * sizeof(enrg)*(n-1), 0) ;
fwrite(&enrg, sizeof(enrg),1 ,pf) ;

Déplacement dans le Fichier (Acces Direct)
(Fonctions associées a la position dans un fichier)

Fonction ftell
long ftell(FILE *<PointeurFichier>) ;

— Détermine la valeur de la position courante dans
le fichier référencé par <PointeurFichier>.

— Retourne :

 Sur les fichiers binaires : nombre d'octets entre la
position courante et le début du fichier.

 Sur les fichiers texte : une valeur permettant a fseek de
repositionner le pointeur courant a I'endroit actuel.

e -1L en cas d'erreur.

Déplacement dans le Fichier (Acces Direct)
(Fonctions associées a la position dans un fichier)

Remarque :

Pour connaitre la taille (le nombre d'octets) d'un
fichier, il suffit de faire :

long taille, nbre_enrg;

fseek(pf, OL, SEEK_END) ;
taille = ftell(pf) ;
nbre_enrg = taille / (sizeof(enrg)) ;

Déplacement dans le Fichier (Acces Direct)
(Fonctions associées a la position dans un fichier)

Fonction rewind
void rewind(FILE *<PointeurFichier>) ;

Permet de se placer en début de fichier.

rewind(pf) ;
est équivalente a fseek(pf, OL, SEEK_SET) ;

Déplacement dans le Fichier (Acces Direct)
(Exemple)

Modification de I'dge des voitures dans le
fichier FicParcAuto :

Le programme correspondant procede de Ia
maniere suivante :
* Lit un enregistrement du fichier dans une zone
memaoire
* Modifie la zone en mémoire

* Replace le pointeur courant sur le début de
I'enregistrement pour pouvoir réécrire cet
enregistrement

e Ecrit la zone mémoire dans le fichier.

Déplacement dans le Fichier (Acces Direct)
(Exemple)

#include <stdio.h>
struct automobile {
int age;
char couleur[20], numero[10], type[10], marque[10] ;
} UneAuto ;
main() {
FILE *pf ;
inti;
unsigned fait ;
pf = fopen("FicParcAuto","r+b") ;
if (pf == NULL) {
printf("Can't open FicParcAuto\n"); returnil;
}
for (i=0;i<20; i++) {
/* lecture d'un enregistrement du fichier dans la zone
mémoire (variable) UneAuto du type struct automobile */
fait = fread(&UneAuto, sizeof UneAuto, 1, pf) ;
if (fait I=1) {
printf("Erreur lecture fichier ParcAuto\n"); return?2;
}
UneAuto.age++ ; /* modifier la valeur du champ age dans la
structure en mémoire */

/* Modifier la position courante du fichier pour
positionner le pointeur courant a I'adresse de début de
I'enregistrement qui est en mémoire */

fait = fseek(pf, -1L * sizeof UneAuto, SEEK_CUR) ;
if (fait 1=0) {
printf("Erreur déplacement fichier ParcAuto\n") ;
return 3 ;

}

/* Ecrire dans le fichier le contenu de la zone mémoire
UneAuto. Cette écriture provoque la modification de
I'enregistrement sur disque */
fait = fwrite(&UneAuto, sizeof UneAuto, 1, pf) ;
if (fait 1=1) {
printf("Erreur écriture fichier ParcAuto fait=%d\n",

fait); return4;
}

}
fclose(pf) ;

}

Gestion des erreurs

Les erreurs des fonctions d'entrées/sorties peuvent étre
recupérees par le programme. Pour donner plus d'informations
sur les causes d'erreur, les fonctions d'entrées/sorties utilisent
une variable globale de type entier appelée errno.

Par exemple, si un fichier n'a pas pu étre ouvert avec succes,
(résultat NULL), un code d'erreur est placé dans la variable
errno. Ce code désigne plus exactement la nature de l'erreur.
Les codes d'erreurs sont définis dans <errno.h>.

L'appel de |la fonction strerror(errno) retourne un pointeur sur
la chaine de caracteres qui décrit I'erreur dans errno.

L'appel de la fonction perror(s) affiche la chaine s suivie du signe
deux-points (:), puis le message d'erreur qui est défini pour
I'erreur dans errno, et enfin un caractere de saut de ligne.

Gestion des erreurs

(Exemples)

#include <stdio.h>

#include <errno.h>

main() {

char *buffer ;

buffer = strerror(errno) ;
printf("Error : %s\n", buffer) ;
return O ;

}

#include <stdio.h>

main() {

FILE *pf ;

pf = fopen("Test.dat", "r") ;
if (!pf)

en lecture") ;
return O ;

}

perror("Impossible d'ouvrir le fichier

Vider le Tampon associé a un Fichier

Fonction fflush
int fflush(FILE *<PointeurFichier>) ;

— Force I'écriture (physigue) sur disque des données en
attente dans le tampon (buffer) associé au fichier
référencé par le pointeur <PointeurFichier>.

— Retourne :
* 0 dans le cas normal.
* EOF en cas d'erreur (si I'écriture physique s'est mal passée)

Vider le Tampon associé a un Fichier
(Exemple)

int 3, int b, float c;

chard;

fflush(stdin) ; /* pour vider le buffer d'entrée standard */

d = getchar() ;

printf("%d %d %f %c\n",a,b,c,d) ;

fflush(stdout) ; /* pour vider le buffer de sortie standard et
donc forcer I'affichage du contenu de ce buffer */

Suppression Physique d'un Fichier

Fonction fflush
int remove (const char *<NomFichier>)
— Supprime le fichier <NomFichier> sur disque.
— S'assurer que le fichier a supprimer a été fermé.

— Retourne :
* 0 en cas de succes
e -1 si erreur

Suppression Physique d'un Fichier
(Exemple)

fich char[80] ;
printf("Fichier a supprimer ? : ") ; gets(fich) ;
if (remove(fich) == 0)

printf("Fichier \"%s\" supprimé\n", fich) ;
else

perror('remove") ;

v
v
v
v
v

Arguments de la fonction main
Fonctions sprintf et sscanf
Préprocesseur

Compilation séparée

La fonction main() peut recevoir un certain nombre d'arguments :

— Ceux-ci doivent étre transmis dans la ligne de commande (/a ligne destinée a appeler le
programme exécutable).

— Laligne de commande est considérée comme un tableau de chaines de caracteres
— deux identificateurs prédéfinis sont destinés a récupérer ces arguments : argc et argv

La définition de la fonction main() est alors :
main(int argc, char *argv[])

{

/* code de la fonction main */

}

ou d'une maniere équivalente :

main(int argc, char **argv)

{

/* code de la fonction main */

}

Filiere SMI - Programmation Il (M21-54)
2014-2015

Arguments de la Fonction main

Signification :
— argc : nombre d'arguments transmis dans la ligne de
commande. Le nom du programme exécutable lui-

méme est pris en compte dans cette valeur (le nombre
d'arguments est-il toujours au moins égal a 1)

— argv : pointeur sur les différentes chaines de caracteres
passées dans la ligne de commande. Le premier
argument, argv[0], contient le nom du programme.

Les arguments transmis dans la lighe de commande
sont sépareés par un espace

Arguments de la Fonction main
(Exemple)

Soit la lighe de commandes suivante :
C:\>COPIE DE FICHA VERS FICHB

COPIE désigne le nom du programme exécutable
DE, FICHA, VERS et FICHB désignent les arguments de la commande

Supposons que le code source du programme COPIE est le suivant :
#include <stdio.h>
main(int argc, char *argv|])
{
inti;
for (i=1;i<argc; i++) /* affichage des arguments */
printf(%s \n", argvli]) ;
}

Arguments de la Fonction main
(Exemple)

argv[0] contient I'adresse du 1°" caractere du nom
du programme ("COPIE")

argv([1] celle du 1¢"argument ("DE")
argv([2] celle du 2°™e argument ("FICHA")
argv(argc-1] celle du dernier argument ("FICHB")

argv|[argc] contient NULL

Fonctions sprintf et sscanf

— Plusieurs fonctions font des conversions de format
telles que :
* scanf et printf.

* fprintf et fscanf travaillant sur des fichiers ouverts en
mode texte.

— Deux nouvelles fonctions appelées :
e sprintf et sscanf

s'utilisent pour faire de la conversion de données (ou
formatage de données) en mémoire.

Fonction sprintf

Prototype :
int sprintf(char *string, const char *format, ...) ;

— Permet de faire une conversion de données vers une zone
meémoire (string) par transformation en chaine de caracteres.
— Possede trois arguments :
» Zone dans laquelle les caractéres sont stockeés ;
* Format d'écriture des données ;
e Valeurs de données.

sprintf convertit les arguments (les valeurs de données) suivant
le format de contrdle et met le résultat dans la chaine string.
— Retourne :
* nombre de caracteres stockeés.
* valeur négative en cas d'erreur.

Fonction sprintf

Exemple :
#include <stdio.h>
char s1[81], s2[81] ;
char *ch;
int i, code;
| =15;
code = sprintf(s1, "%d", i) ;
code = sprintf(s2, "i vaut %d et sa moitié %f", i, i/2.0) ;
code = sprintf(ch, "%d", i) ;
/* Erreur ! on passe a sprintf un pointeur ch non initialisé */

/* Solution ! initialiser ch soit par un tableau de caracteres
suffisamment grand, soit par appel a une fonction d'allocation
dynamique comme calloc */

Fonction sscanf

Prototype :
int sscanf(char *string, const char *format, ...) ;

— Permet de faire une lecture formatée de données d'une zone
mémoire.

— Possede trois arguments :
e Zone dans laquelle les caracteres sont acquis ;
* Format de lecture des données ;
* Adresse des variables a affecter a partir des données.

sscanf extrait d'une chaine de caracteres (string) des valeurs qui sont
stockées dans des variables suivant le format de controle.

— Retourne:
* nombre de variables saisies.
* EOF en cas d'erreur empéchant toute lecture.

Exemple :
#include<stdio.h>

char *s,
int code ;
double 3, b, c;
s="12.5 12.3 11.6";
code = sscanf(s, "%f %f %f", &a, &b, &c) ;
/* sscanf va lire la chaine s pour
affecter les 3 valeurs a, b, ¢ */

Filiere SMI - Programmation Il (M21-54)
2014-2015

Fonctions sprintf et sscanf

Remarques :
— scanf est une source permanente de problemes !

Pour remeédier a ceci, on fait recours a
I'utilisation de gets et/ou de sscanf.

— sprintf et sscanf sont tres utilisées pour convertir
des numériques en chaine de caracteres et
Inversement.

Fonctions sprintf et sscanf
(Exemple pratique)

#include <stdio.h>

#include <stdlib.h> /* contient le prototype de la fonction random. random(n), avec n entier, permet de
générer un nombre aléatoire a tel que 0 <=a<n */

char *noms[4] = {"Nom1", "Nom2", "Nom3", "Nom4"} ;

#define NBRE 4

void main(void) {
inti;
char temp[4][80] ;
char nom([20] ;
int age ;
long salaire ;
/* créer les données nom, age et salaire */
for (i=0;i<NBRE; ++i)
sprintf(templi], "%s %d %ld", noms[i], random(10) + 20, random(5000) + 27500L) ;
/* afficher une barre de titres */
printf("%4s | %-20s | %5s | %15s\n", "#", "Nom", "Age", "Salaire") ;
printf(" \n");
/* lire et afficher les données nom, age et salaire */
for (i=0;i<NBRE; ++i) {
sscanf(templi],"%s %d %ld", &nom, &age, &salaire) ;
printf("%4d | %-20s | %5d | %15ld\n", i + 1, nom, age, salaire) ;
}
}

Préprocesseur

— Effectue un prétraitement, lors de la compilation d'un
programme (, :
* en supprimant dans un premier temps tous les commentaires,
e puis en traitant des "directives de compilation".
* Enfin, envoie le programme € modifié au compilateur.

— Les directives de compilation, dans un programme C,
commencent toutes par un caractere # et sont de trois
types :

* directive d'inclusion de fichiers ;
 directives de compilation conditionnelle ;

* directives de substitution symbolique. Ce type permet :
— la définition de constantes ;
— la définition de macros (substitution avec arguments)

Directive d’Inclusion de Fichier

#include
Exemples :

#include <fichier.h>

réalise l'inclusion du fichier fichier.h contenu dans un répertoire
spécial (connu par le préprocesseur)

#include "fichier.h"

réalise l'inclusion du fichier fichier.h contenu dans le répertoire de
travail ou, a défaut, dans le répertoire spécial. Il est également
possible d'indiquer un chemin précis pour la recherche du fichier, soit
par exemple, #include "c:\dev-cpp\include\fichier.h«

L'extension .h d'un fichier est |'abréviation de "header" (entéte).

Directives de Compilation Conditionnelle

— Role :
Incorporer ou exclure de la compilation des portions de texte de
programme selon que |'évaluation de la condition donne 0 ou 1.

— Plusieurs directives :

Directive Réle
#ifdef inclusion si symbole défini
#if defined méme chose
#ifndef inclusion si symbole non défini
#if inclusion si condition vérifiée
Helse sinon
Helif else if, c.-a-d. sinon si
#endif fin de si

#undef met fin a I'existence d'un symbole

Directives de Compilation Conditionnelle
(Exemple 1)

#define SYS1 1 /* définir symbole SYS1 et l'initialiser a 1 */

main() {

#if defined (SYS1)

.. /¥ décl. Ou instr. C */ /* Ces lignes seront incluses dans la compilation */

#endif

#if defined (SYS1)

.. /¥ décl. Qu instr. C */ /* idem que précédemment */

Helse

.. /¥ décl. Ou instr. C */ /* Ces lignes auraient été incluses dans la compilation si SYS1 n'avait pas été défini */
#endif

#if !defined (SYS1)

.. /¥ décl. Quinstr. C */ /* idem que précédemment */

#endif

H#if SYS1==1

.. /¥ décl. Qu instr. C */ /* Ces lignes seront incluses dans la compilation puisque SYS1 vaut 1*/
#endif

#if defined (SYS1) && defined (SYS2)

.. /¥ décl. Qu instr. C */ /* Ces lignes seraient été incluses dans la compilation si SYS1 et SYS2 seraient définis */
#endif

#if (sizeof(int) == 2)

.. /¥ décl. Qu instr. C */ /* lignes incluses si int est codé sur 16 bits */

#endif

Directives de Compilation Conditionnelle

(Exemple 2)
tdefine SYS1 1 Apres traitement des directives par
’:fa‘j‘:?)e{“sz"f‘ le préprocesseur, le texte résultat
#ifdef SYS1 de ce programme est ainsi :
inti,j;
Helse
floati, j ; main
#Hendif () {
j=i*2,’ ° . L
tifdef SYS1 lnt I’ J ’
i=5; T S
Helse J =1 2)
i=5.5; .
#endif 1=5 ,
#Hundef SYS2
#if defined (SYS2) }
j=6;
#endif
}

Directives de Compilation Conditionnelle

Remarques :

— Les comparaisons effectuées par le préprocesseur
ne peuvent porter que sur des constantes entieres
(et pas sur des variables du programme dont
I'évaluation n'est possible qu'a l'exécution...)

— Les opérateurs interprétables par le préprocesseur
sont : !/, ~(complément a 1), -, +, *, /, | (ou binaire
inclusif), %, * (ou binaire exclusif), & (et binaire),
<<,,<,,<= = 1= &&, [, ==, et 'opérateur
ternaire conditionnel ?:

Directives de Compilation Conditionnelle
(Exemple 3)

#define DEBUG _

#ifdef DEBUG_
printf("Ligne 1234 : x = %d -- y = %d -- z = %d\n",x,y,z) ;
#endif

#ifdef DEBUG_
printf("Ligne 2345 : x = %d -- y = %d -- z = %d\n",x,y,z) ;
#endif

— Les directives de compilation conditionnelles sont particulierement
utiles pour la "mise au point" d'un programme C:

e Dans I'exemple ci-dessus :

— La "trace" (I'affichage de la valeur des variables dans les principales étapes
d'un programme) n'est effective que si le symbole DEBUG__ est défini.

— La suppression de la définition de ce symbole dans le programme produira la
disparition de cet affichage apres la prochaine compilation.

Directives de substitution symbolique
(Définition de constantes)

#define <symbole> <équivalent>
#undef

— Le préprocesseur remplace dans un programme C (en
dehors des lignes commencant par un caractere #) toutes
les occurrences du symbole <symbole> par son équivalent
<équivalent>, en réitérant le processus si besoin est, sauf
si cela engendre une infinité de remplacements.

— Le domaine de visibilité de la substitution d'un symbole
s'étend entre la directive #define de ce symbole et |a
directive #define suivante de ce méme symbole ou Ia
directive #undef de ce méme symbole ou, a défaut,
jusqu'a la fin du programme.

Directives de substitution symbolique
(Définition de constantes)

— Le symbole <symbole> est formé de lettres, de
chiffres et du caractere _ et doit impérativement
commencer par une lettre.

— L'équivalent <équivalent> doit étre tapé sur une
seule ligne. Si I'écriture de I'équivalent nécessite
plusieurs lignes, il faut faire précéder la frappe de
chaque caractere retour-chariot par un caractere \

Directives de substitution symbolique
(Définition de constantes)
Exemples :
ttdefine Pl 3.14159

#define FAUX O
#define VRAI 1

Hundef PI

Définition de macros (ou macro-instructions)

— |l existe une forme paramétrée pour la substitution
symbolique :

#define <symbole(param1, param?2,...)> <équivalent>

— Les parametres qui suivent une occurrence de <symbole>,
dans le programme, sont identifiés par le préprocesseur a
paraml, param2, ...etc.

— L'équivalent <équivalent> est envoyé au compilateur par le
préprocesseur, avec la méme substitution des parametres.
On appelle cela une "macro-instruction" (ou "macro").

— La parenthese ouvrante avant la liste des parametres doit
suivre immédiatement le symbole (il ne doit pas y avoir
d'espace).

#define ABS(n) ((n0) ? n : -n)

La séquence suivante :
L1 : main() {
L2:intm,n=-8;

L3 : m =ABS(n) ;
L4 : printf("%d",m) ;

L5 :}

deviendra, apres le passage du préprocesseur :
main() {
intm,n=-8;

m=((n0)?n:-n);
printf("%d",m) ;
}

A l'exécution, |la valeur 8 s'affichera a I'écran.

Filiere SMI - Programmation Il (M21-54)
2014-2015

Définition de macros (ou macro-instructions)

Remarque :

— L'emploi des macro-instructions doit faire I'objet
d'une attention particuliere. Pour éviter de
nombreux problemes (dus aux priorités des
opérateurs) :

* il est conseillé de parentheser les parametres de la
macro-instruction

* || faut, de plus, éviter de rendre le programme
incompréhensible par I'abus de #define.

Définition de macros (ou macro-instructions)
(Exemple 2)

#define SOMME(X,Y) X+Y

main() { main() {
inti,j, k; inti, j, k;
floata, b, c; floata, b, c;
devient :

k = SOMME(ij) ; k=i+j;

¢ = SOMME(a,b) ; c=ath;

k = SOMME(5*i,b-a) ; }k= 5%i+b-a;
}

Il est a noter que pour ce programme,

#tdefine SOMME(X,Y) ((X)+(Y))

aurait été meilleur car a I'abri de toute erreur en cas d'utilisation a l'intérieur
d'une expression arithmétique ou en cas d'utilisation avec des arguments qui
sont eux-mémes des expressions.

Utilité d’une macro-instruction

— permet d'optimiser le code compilé, en limitant le
nombre d'appels a une fonction dans le
programme exécutable.

— permet d'effectuer des actions sur des variables
dont le type n'est pas connu a priori :

* (dans I'exemple 1 donné ci-dessus, la macro ABS peut
calculer la valeur absolue d'un entier ou d'un réel).

Macro-instruction sans parametre

— |l est possible de définir une macro-instruction
sans parametre, comme dans |'exemple suivant,
effectivement présent dans le fichier stdio.h :

#tdefine getchar() getc(stdin)

Opérateurs et symboles prédéfinis

Opeérateur #

— Dans une macro, il permet de substituer un parametre
par sa valeur convertie en chaine de caracteres.

Exemple :

#tdefine chainel(c) #c

#tdefine chaine2(c) "c"
printf("%s\n",chainel(Module 4)) ;
printf("%s\n",chaine2(Licence)) ;

produit I'affichage a I'écran de :

Module 4
C

Opérateurs et symboles prédéfinis

Opeérateur ##

— Cet opérateur effectue la concaténation de deux
symboles.

Exemple :

#tdefine f(a,b) a#t#b
f(Module,4) ; /* est remplacé par Module4 */

Compilation séparée

— Permet de fragmenter un grand programme en des parties
qui peuvent étre compilées indépendamment les unes des
autres.

— En C, un programme source peut étre décomposé en un
ensemble de fichiers de texte (aussi appelés source) :
e Ces fichiers pourront étre compilés séparément et finalement reliés
par I'éditeur de liens pour en faire un programme exécutable.
— |l sera ainsi possible :

» d'apporter des modifications a un fichier sans devoir recompiler
I'ensemble

» de créer des librairies de fonctions (sous forme de fichiers
d'extension .lib) sans avoir a mettre le texte de ces fonctions a la
disposition des utilisateurs.

PROGRAMME SOURCE

fichierl.c fichier2.c fichier3.c
(source) (source) (source)
(module) (module) (module)
Compilation Compilation Compilation
v v v
fichierl.obj fichier2.obj fichier3.obj
(objet) (objet) (objet)

Edition|de liens

programme exécutable

(exe)

Filiere SMI - Programmation Il (M21-54)
2014-2015

Compilation séparée

— Chaque fichier source contient les éléments suivants dans
un ordre quelconque :
e déclarations de variables et de fonctions externes,
» définitions de types synonymes ou de modeles de structures,

« définitions de variables globales (des demandes de réservation
mémoire destinées a I'éditeur de liens),

» définitions de fonctions,
 directives de précompilation et des commentaires (/es deux sont
traités par le préprocesseur).

— Le compilateur ne voit que les quatre premiers types
d'objets.
— Les fichiers inclus par le préprocesseur ne doivent contenir

qgue des déclarations externes ou des définitions de types
et de modeles de structures.

module 1 (prl.c)
void func(void) ; /* fonction prototype */
int nb; /* provoque allocation de mémoire (2 octets) */
main()
{
nb=2;
func() ; /* défini dans un module compilé séparément */

}

module 2 (pr2.c)
extern int nb; /* pasd'allocation de mémoire */
void func(void)
{
printf("nb : % \n", nb) ;
}

Les deux modules sont compilés séparément. La compilation de prl.c crée
prl.obj et celle de pr2.c crée pr2.obj. L'éditeur de liens génere le module
exécutable.

Filiere SMI - Programmation Il (M21-54)
2014-2015

