Programmation Il (M21-54) [SMI4-fsr]

Cours de Programmation Il
(Module M21)

[Filiere SMI, Semestre 4]

Département d’Informatique
Faculté des sciences de Rabat

Par
B. AHIOD

(ahiod@fsr.ac.ma)
2014-2015

Objectifs

» Approfondir les connaissances de la
programmation en langage C :

— pointeurs, fonctions et chaines de caracteres
— enregistrements et fichiers

» Utiliser le langage de programmation C pour
implémenter :

— les structures de données
— les algorithmes qui les manipulent

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 2

Programmation Il (M21-54)

Pré-requis

* Notions de base d’algorithmique [Algorithmique I (S2),
Algorithmique Il (§3)] :
— Conception d’algorithmes itératifs et récursifs
— Analyse de complexité d’algorithmes
— Structures de données élémentaires
* Programmation en langage C [Programmation | (53)] :
— Programmation structurée
Notions de tableaux, de fonctions, ...
Manipulation des pointeurs et allocation dynamique

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 3

Contenu

Introduction :
— Algorithme vs Programme, Itératif vs Récursif, ...

Rappels :
— Phases de programmation en C, structure et composants d’un programme en C, types de base,
instructions, ...

Pointeurs et allocation dynamique :
— Pointeurs et tableaux, pointeurs et fonctions, allocation de mémoire, ...

Types structures, unions et synonymes :
— Notion de structure, union et type synonyme, énumérés, structures auto-référentielles, ...

Chaines de caracteéres :
— Définition, manipulation, tableaux de chaines de caracteres, ...

Structures de données linéairesen C :

— type abstrait de données, structure de données, implémentation en C, exemples et applications
(piles, files, listes)

Fichiers :
— Types de fichiers (textes et binaires), accés (séquentiel et direct), manipulation (ouvrir, fermer, lire,

écrire)
Compléments :
— Compilation séparée, directives du préprocesseur , ...
[SMI4-fsr] Programmation Il (M21-54) 2014-2015

[SMI4-fsr]

Programmation Il (M21-54) [SMI4-fsr]

Introduction

v Algorithme vs Programme

v' Itératif vs Récursif
Voo

Notion de programme

Algorithmes + structures de données

Programme
[Wirth]

* Un programme informatique est constitué
d’algorithmes et de structures de données
manipulées par des algorithmes

[SMI4-fsr] Programma tion Il (M21-54) 2014-2015 6

Programmation Il (M21-54) [SMI4-fsr]

Notion de programme

* Synonymes

— Programme, application, logiciel

* Objectifs des programmes

— Utiliser I'ordinateur pour traiter des données afin d’obtenir des résultats
— Abstraction par rapport au matériel

* Un programme est une suite logique
d'instructions que l'ordinateur doit exécuter

— Chaque pro%ramme suit une Iotgique pour réaliser un traitement qui offre des
services (obtention des reésultats souhaites a partir de données

— Le processeur se charge d’effectuer |es opérations arithmétiques et logiques qui
transformeront les données en résultats

* Programmes et données sont sauvegardés dans
des fichiers

— Instructions et données doivent résider en mémoire centrale pour étre exécutées

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 7

De I'Analyse a I’Exécution

ANALYSE

Algorithme

TRADUCTION

EXECUTION

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 8

Programmation Il (M21-54) [SMI4-fsr]

Notion d’Algorithme

* Origine:
— Le terme algorithme vient du nom du mathématicien Al-
Khawarizmi (820 apres J.C.)

* Définition:

— Un algorithme est une suite finie de régles a appliquer dans un
ordre’déterminé g un nombre fini de donnees pour arriver, en
un nombre fini d'étapes, a un certain résultat, et cela
indépendamment des données

* Role fondamental :
— Sans algorithme il n'y aurait pas de programme

* Un algorithme est indépendant :

— de l'ordinateur qui I'exécute
— du langage dans lequel il est énoncé et traduit

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 9

Spécifier/Exprimer/Implémenter
un algorithme

* Spécification d 'un algorithme :
— ce que fait l'algorithme
— cahier des charges du probléme a résoudre

* Expression d 'un algorithme :
— comment il le fait
— texte dans un pseudo langage

* Implémentation d ‘un algorithme :

— traduction du texte précédent
—dans un langage de programmation

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 10

Programmation Il (M21-54) [SMI4-fsr]

Exemple : Recherche d’un élément

/* Cet algorithme recherche la place d’un élément val
dans un tableau tab contenant n éléments */

Algorithme recherche_sequentielle(tab: entier[]; n, val: entier) : entier
entrées : tab, n et val
sortie : indice de val dans le tableau tab, sinon -1
Début
variables locales : i: entier
i € o0; // 1
tant que ((i<n) et (tab[i] <> val)) faire // 2
i € i+l // 3
ftq // 4
si (i = n) alors retourner -1 // 5
sinon retourner i // 6
Fin

int recherche_sequentielle(int *tab, int n, int val) {
int i; // 1
i=o0; /7 2
while ((i<n) && (tab[i] !'= val)) // 3
i 4+ // 4
if (i == n) // 5
return(-1); // 6
else return(i); // 7
}
[SMI4-fsr] Programmation Il (M21-54) 2014-2015 11

Analyse descendante

* Consiste a décomposer un probléme en sous problémes,
eux-memes a décomposer en sous problemes, et ainsi de
suite jusqu 'a descendre a des actions dites primitives

— Les étapes successives de décomposition donnent lieu a
des sous algorithmes pouvant étre considérés comme des
actions dites intermédiaires

— Ces étapes sont appelées fonctions ou encore procédures

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 12

Programmation Il (M21-54)

Notion d’algorithme récursif

Un algorithme est dit récursif lorsqu'il s'appelle lui
méme de fagon directe ou indirecte.

Pour trouver une solution récursive d’'un probléme,
on cherche a le décomposer en plusieurs sous
probléemes de méme type, mais de taille inférieure.

On procéde de la maniére suivante :

— Rechercher un (ou plusieurs) cas de base et sa (ou leur)
solution (évaluation sans récursivité)

— Décomposer le cas général en cas plus simples eux aussi
décomposables pour aboutir au cas de base.

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 13

Itératif vs Récursif
(Exemple)

/* Calcul de la somme des carrés des entiers entre m et n (version itérative) */

Algorithme SommeCarres_iter (m: entier; n: entier) : entier
entrées : m et n
sortie : somme des carrés des entiers entre m et n inclus,
si m<=n, et 0 sinon
Début
variables locales : i, som: entier
som € 0 // 1
pour i de m & n faire // 2
som € som + (i*i) // 3
fpour // 4
retourner som // 5
Fin
/* Calcul de la somme des carrés des entiers entre m et n (version récursive) */
Algorithme SommeCarres_rec(m: entier; n: entier) : entier
entrées : m et n
sortie : somme des carrés des entiers entre m et n
pré-condition : m<=n
Début
si (m<>n) alors // 1
retourner ((m*m)+SommeCarres_rec (m+1,n) // 2
sinon // 3
retourner (m*m) // 4
fsi
Fin
[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 14

[SMI4-fsr]

Programmation Il (M21-54) [SMI4-fsr]

Programmation Procédurale vs
Programmation Orientée-Objet

* Programmation Procédurale :
— Centrée sur les procédures (ou opérations)

— Décomposition des fonctionnalités d'un programme en
procédures qui vont s'exécuter séquentiellement

— Les données a traiter sont passées en arguments aux
procédures

— Des langages procéduraux : C, Pascal, ...

* Programmation Orientée-Objet :
— Centrée sur les données

— Tout tourne autour des "objets" qui sont des petits
ensembles de données représentants leurs propriétés

— Des langages orientés-objets : C++, Java, ...

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 15

Rappels

Phases de Programmation en C
Structure de Programme en C
Types de Base des Variables
Instructions

Pointeurs et Allocation Dynamique

AN N NN

Programmation Il (M21-54)

[SMI14-fsr]

l

Fichiars an-téte Programme source

#include

#include ...

graphics.it

/ #Hinclude <graphics.f>
math.l #include <math.h>

Programmation Il (M21-S4) 2014-2015

17

/* Exemple de programme en C */
#include <stdio.h>
#include <math.h>
#define NFOIS 5

int main() {
inti;
floatx;
float racx ;

printf ("Bonjour\n") ;
printf ("Je vais vous calculer %d racines carrées\n", NFOIS) ;

for (i=0 ; i<NFOIS ; i++) {
printf ("Donnez un nombre
scanf ("%f", &x) ;
if (x < 0.0)
printf ("Le nombre %f ne posséde pas de racine carrée\n", x) ;
else {
racx = sqrt (x) ;
printf ("Le nombre %f a pour racine carrée : %f\n", x, racx) ;

}
printf ("Travail terminé - Au revoir") ;
return 0;

}

[SMI14-fsr] Programmation Il (M21-S4) 2014-2015

18

[SMI4-fsr]

Programmation Il (M21-54) [SMI4-fsr]

Composantes d’un Programme en C

* EnC, les programmes sont composés essentiellement
de fonctions et de variables.

* Définition d'une fonctionen C :
<TypeRésultat> <Nomfonction> (<TypeParl>, <TypePar2>, ...)

{

<déclarations locales>;
<instructions>;

}

* En C, toute instruction simple est terminée par un
point virgule (;).

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 19

Composantes d’un Programme en C

* La fonction main :
— Une fonction et une seule s'appelle main.

— C'est la fonction principale des programmes en C; elle se
trouve obligatoirement dans tous les programmes.

— L'exécution d'un programme entraine automatiquement
I'appel de la fonction main.
* Lesvariables :

— Contiennent les valeurs utilisées pendant I'exécution du
programme.

— Les noms des variables sont des identificateurs
guelconques.

— Toute variable doit étre déclarée avant les instructions et
son type spécifié des la déclaration.

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 20

10

Programmation Il (M21-54)

+ Types de base des variables :
— Les entiers : int, short int, long int
— Lesréels : float, double, long double
— Les caracteres : char

Exemples :
short int mon_salaire;
double cheese;
char avoile;

* Remarque :
variable indique un pointeur.

— Exemple :
double **mat;

Types base des variables en C

« Toutes les variables doivent étre explicitement typées

— La présence d 'une ou plusieurs étoiles devant le nom d’une

/I permet de déclarer une matrice (tableau a deux dimensions)

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 21
Instructions
e Tests:
If (expression) {bloc} else {bloc};
switch (expression)
{
case const1: instructions; break;
case const2: instructions; break;
default: instructions;
Boucles :
while (expression) {instructions;}
for (exprl ; expr2 ; expr3) { instructions;}
do
{instructions;}
while (expression);
. Quitter une boucle (for, do, while) ou un switch :
break;
. Passer a l'itération suivante, mais ne quitte pas la boucle :
continue:
[SMI4-fsr] Programmation Il (M21-54) 2014-2015 22

[SMI4-fsr]

11

Programmation Il (M21-54)

Pointeurs & Tableaux
Pointeurs & Fonctions
Allocation de mémoire

v
v
v
v

Notion de tableau :
— Untableau est une variable structurée formée d'un ensemble de variables du méme type, appelées les
composantes du tableau.
— Chaque élément est repéré par un indice précisant sa position.
— Le nom du tableau est son identificateur.

Tableaux a une dimension (vecteurs)
— Déclarationen C :
<TypeSimple><NomTableau> [<NombreComposantes>] ;
Exemple :
float B[200] ;

— Mémorisation :
* Les éléments d'un tableau sont rangés a des adresses consécutives dans la mémoire.
* lenom du tableau est le représentant de I'adresse du premier élément.

* Siun tableau est formé de N composantes, chacune ayant besoin de M octets en mémoire, alors le tableau occupera (N *

M) octets.
* L'adresse de la composante numéro i de du tableau A se calcule :
A+ (i * taille-de-la-composante)

— Accés aux composantes d'un tableau :
* Pour accéder a un élément on utilise un indice selon la syntaxe suivante :
<Nomtableau> [<indice>]
ou <indice> : expression entiére positive ou nulle.
Exemple :

Pour un tableau T de N composantes :
— Il'accés au premier élément se fait par T[0]
— Il'accés au dernier élément se fait par T[N-1]

[SMI14-fsr] Programmation Il (M21-S4) 2014-2015

[SMI4-fsr]

12

Programmation Il (M21-54) [SMI4-fsr]

Pointeurs & Tableaux

* Tableaux a deux dimensions (matrices) :

— Déclarationen C:
— <TypeSimple> <NomTableau> [NombreLignes] [NombreColonnes] ;

Exemple :
int A[10][20] ; /* matrice de 200 entiers (ayant 10 lignes

et 20 colonnes */

— Accés aux composantes :
<NomMatrice> [<Ligne>] [<Colonne>];

— Pour une matrice M formée de L lignes et C colonnes :
* La premiere composante de la matrice est A[0][0]
« La composante de la Lé™ [igne et C¥™e colonne est notée : A[L-1][C-1]

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 25

Pointeurs & Tableaux

* Notion de pointeur :
— Un pointeur est une variable qui peut contenir I'adresse d'une autre variable.
— Siun pointeur P contient I'adresse d'une variable A. on dit aue 'P pointe sur A"

A

¢ Déclaration d'un pointeur :
<type> *<NomPointeur> ;

Exemple :
int *Pnum ;

On dira que :
— " *Pnum est du type int ", ou bien
— " Pnum est un pointeur sur int ", ou bien
— " Pnum peut contenir I'adresse d'une variable du type int "

Pnum ne pointe sur aucune variable précise : Pnum est un pointeur non initialisé.
Soit la déclaration :int A ;

— L'initialisation du pointeur Pnum avec la variable se fait par :

— Pnum=&A; /* adresse de la variable A */

— Un poil estlié lici auntypeded ées. Ainsi, Pnum ne peut recevoir I'adresse d'une variable
d'un autre type que int.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 26

13

Programmation Il (M21-54)

Pointeurs & Tableaux

Un tableau est une zone mémoire qui peut étre identifiée par I'adresse du 1°
élément du tableau
Adressage des composantes d'un tableau :
— Ladéclaration : int A[10] ;
définit un tableau de 10 composantes : A[0], A[1], ..., A[9]

Si p est pointeur d'entiers déclaré par : int *p ;
alors,

I'instruction : p = A ; est équivalente a : p = &A[0] ;
p pointe sur A[0]

*(p+1) désigne le contenu de A[1]

*(p+2) désigne le contenu de A[2]

*(p+i) désigne le contenu de Ali]

* Dans une expression, une écriture de la forme Expr1[Expr2] est remplacée par :
*((Exprl) + (Expr2))

.

Il existe une différence entre un pointeur P et le nom d'un tableau A :

Un pointeur est une variable , donc les opérations comme P = A ou P++ sont permises.
— Lenom d'un tabl
impossibles.

est une constante, donc les opérations comme A = P ou A++ sont

[SMI4-fsr] Programmation Il (M21-54) 2014-2015

27

Pointeurs & Tableaux

/* Exemple : Lecture et affichage d'une matrice */
#include <stdio.h>

#definen 4

#define p 10

main() {

float A[n][p] ;

float *pA ;

inti,j;

/* lecture d'une matrice */

pA = &A[0][0] ;

for(i=0;i<n;i++) {
printf("\t ligne n° %d\n", i+1) ;
for(j=0;j<p; j++)

scanf("%f", pA+i*p+j);

/* ou bien pA = (float *) A ; */

}
for (i=0;i<n; i++) { /* 1% facon : affichage */
for(j=0;j<p; j++)
printf("%7.2f", *(pA+i*p+]j));
printf("\n") ;
}
for (i=0;i<n;i++) { /* 2¢™ facon : affichage */
pA = &A[i][0] ;
for(j=0;j<p; j++)
printf("%7.2f", pA[j]) ;
printf("\n") ;
}
return0;

}

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 28

[SMI4-fsr]

14

Programmation Il (M21-54) [SMI4-fsr]

Pointeurs & Fonctions

* EnC, la structuration d'un programme en sous-
programmes (modules) se fait a I'aide de fonctions

* Notion de fonction :

— Une fonction est définie par un entéte appelé prototype et un corps
contenant les instructions a exécuter :
[<ClasseAllocation>] [<Type>] <NomFonction> ([ListeParamétres])

<CorpsFonction>

— Prototype de fonction :
* Indique le type de données transmises et regues par la fonction :

* Chaque parametre (formel) ou argument doit étre fourni avec son type, qui peut étre
quelconque

— Corps d'une fonction :

e Unbloc d'instructions. a l'intérieur duquel, on peut :
— déclarer des variables externes
— déclarer des fonctions
— définir des variableslocales au bloc
— Mais il est interdit de définir des fonctions.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 29

Pointeurs & Fonctions

* Déclaration d'une fonction :
— |l faut déclarer une fonction avant de |'utiliser.

— La déclaration informe le compilateur du type des parametres et du
résultat de la fonction

— Sila fonction est définie avant son premier appel, alors pas besoin de
la déclarer

— Déclarer une fonction, c’est fournir son prototype

» Utilisation d'une fonction :

— se traduit par un appel a la fonction en indiquant son nom suivi de
parentheses renfermant éventuellement des parametres effectifs.

— Les parametres formels et effectifs doivent correspondre en nombre et
en type (les noms peuvent différer).

— L'appel d'une fonction peut étre utilisé dans une expression ou
comme une instruction.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 30

15

Programmation Il (M21-54) [SMI4-fsr]

Pointeurs & Fonctions

* Passage des paramétres d'une fonction
— Al'appel d'une fonction avec paramétres, la valeur ou l'adresse du
parametre effectif est transmise au parametre formel correspondant.
* Silavaleur est transmise, on a un passage par valeur.
« Sil'adresse est transmise, on a un passage par adresse (ou par référence)

— Passage par valeur :

¢ Sile nom d'une variable (sauf le nom d'un tableau) apparait dans |'appel
d'une fonction, comme parametre effectif, alors la fonction appelée recoit la
valeur de cette variable.

« Cette valeur sera recopiée dans le nom du paramétre formel correspondant.

* Apres I'appel de cette fonction, la valeur du paramétre effectif n'est pas
modifiée

— Passage par adresse :

« Lorsqu'on veut qu'une fonction puisse modifier |a valeur d'une variable passée
comme parametre effectif, il faut transmettre |'adresse de cette variable.

* La fonction appelée range I'adresse transmise dans une variable pointeur et la
fonction travaille directement sur I'objet transmis.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 31

Pointeurs & Fonctions

/* Exemple : Calcul de la moyenne d'un tableau de réels : */

#include <stdio.h>
#define max 50
void main() {

intn;

float t{max] ;

void lire_tab(float *, int *) ;

/* 2¢me facon : void lire2_tab(float [], int *) ; */

float moyenne(float [], int) ;

lire_tab(t, &n) ;

printf("\n \n \t moyenne = %7.2f\n", moyenne(t, n)) ;
}
void lire_tab(float *ptab, int *pn) {

/* 2¢™ facon : void lire2_tab(float tab(], int *pn) */
inti;

printf("Nombre de notes ? : ") ; scanf("%d", pn) ;
for (i=0;i<*pn;i++) {

printf("Noten® %d: ", i+1);
scanf("%f", ptab++) ; /* 2émefacon: scanf("%d",&tabli]); */

}
}
float moyenne(float X[, int nb) {
floats;

inti;
for(s=0,i=0;i<nb; i++)

s+=X[il;
return (s/nb) ;

}

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 32

16

Programmation Il (M21-54) [SMI4-fsr]

Allocation de Mémoire

* Déclaration statique de données :

— Chaque variable dans un programme induit une réservation automatique d'un certain nombre
d'octets en mémoire.

— Le nombre d'octets a réserver est connu pendant la compilation : c'est la "déclaration statique
de données".

Exemples:
float A, B, C; /* réservation de 12 octets */
short D[10][20] ; /* réservation de 200 octets */
double *G ; /* réservation de p octets (p = taille d'un mot machine. Dans notre cas, p = 2) */

* Allocation dynamique de la mémoire :

— Ladéclaration d'un tableau définit un tableau "statique" (il possede un nombre figé
d'emplacements). Il y a donc un gaspillage d'espace mémoire en réservant toujours I'espace
maximal prévisible.

— Il serait souhaitable que I'allocation de la mémoire dépend du nombre d'éléments a saisir. Ce
nombre ne sera connu qu'a I'exécution : c'est |' "allocation dynamique«

* Fonctions d'allocation dynamique de la mémaoire (malloc, calloc et realloc) :

— Chaque fonction prend une zone d'une taille donnée dans I'espace mémoire libre réservé pour
le programme (appelé tas ou heap) et affecte I'adresse du début de la zone a une variable
pointeur.

— S'iln'y a pas assez de mémoire libre a allouer, la fonction renvoie le pointeur NULL.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 33

Allocation de Mémoire

— Fonction malloc
<pointeur> = [<type>] malloc(<taille>) ;

<type> est un type pointeur définissant I'objet pointé par <pointeur>.
<taille> est le nombre d'octets alloués pour <pointeur>.
Exemple :
char *pc;
pc = (char *) malloc(4000) ;
soit a pc est affectée I'adresse d'un bloc mémoire de 4000 octets. Soit pc contient la valeur 0s'il n'y a pas assez de mémoire libre.

— Fonction calloc
<pointeur> = [<type>] calloc(<nb_elts>, <taille_elt>) ;

« S'ily a assez de mémoire libre, la fonction retourne un pointeur sur une zone mémoire de <nb_elts> éléments de
<taille_elt> octets chacun initialisés a 0.
Exemple :

pt = (int *) calloc(100, sizeof(int)); /* allocation dynamique d'un tableau de 100 entiers égaux a 0 */

— Fonction realloc

<pointeur> = [<type>] realloc(<pointeur>, <nouvelletaille>);
Permet de modifier la taille d'une zone précédemment allouée par malloc, calloc ou realloc.
* Si<pointeur>est NULL, alors realloc équivaut a malloc

¢ Libération de la mémoire (la fonction free) :

— Un bloc de mémoire réservé dynamiquement par malloc, calloc ou realloc, peut étre libéré a l'aide de la
fonction free

free <pointeur> ;
Libére le bloc de mémoire désigné par le pointeur <pointeur>.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 34

17

Programmation Il (M21-54)

Exercice

Ecrire un programme C qui :

— demande a l'utilisateur de saisir tant qu’il le
souhaite des nombres entiers au clavier

— au fur est a mesure de la saisie, remplit, en
utilisant I'allocation dynamique, un tableau
initialement vide

— effectue un tri par insertion des éléments du
tableau, une fois la saisie des nombres est
terminée

— dffiche les éléments du tableau.

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015

35

Types Structures, Unions et
Synonymes

Types Structures
Types Unions

Types Enumérés
Type Synonymes

SNENENENEN

[SMI4-fsr]

18

Programmation Il (M21-54)

Types structures (struct)

Une structure :

— est un nouveau type de données composé de plusieurs

champs (ou membres)
— sert a représenter un objet réel.

Chaque champ est de type quelconque pouvant

étre, lui aussi, une structure.

Le nom d'une structure n'est pas un nom de

variable (c'est un nom de type).
Exemple :

— Une date peut étre représentée par les
renseignements : jour, mois et année

b

struct adresse

{

char nom[25], prenom[25] ;
intn_rue; /* numéro de rue */
char rue[30] ;

char ville[20] ;

b

struct date date_de_naissance ;
struct adresse adrl, adr2 ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 37
Structures
(Exemples) (1)

struct date

{

int jour ;

int mois ;

intannee ;

38

[SMI4-fsr]

19

Programmation Il (M21-54) [SMI4-fsr]

struct complexe

{

doublere;

doubleim ;
}z1,22;

/* z1 et z2 deux variables de type complexe */

[SMI14-fsr] Programmation Il (M21-S4) 2014-2015

39

* Définition :
struct
{
<typel> <nom_champl>;
<type2> <nom_champ2>;

<typeN> <nom_champN>;
} <liste_de_variables> ;

* Exemple :
struct
{
int heure ;
int minute ;
int seconde ;
1,12

[SMI14-fsr]

Programmation Il (M21-S4) 2014-2015 40

20

Programmation Il (M21-54) [SMI4-fsr]

Portée d’une Structure

* Dépend de I'emplacement de sa déclaration :

— Au sein d'une fonction, elle n'est accessible que
dans cette fonction

— En dehors d'une fonction, elle est accessible de
toute la partie du fichier source qui suit
I'emplacement de la déclaration

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 41

Tableau de structures

<type_structure> <NomTableau> [<dimension>] ;

* Exemple:
struct client
{
int compte ;
char nom[20], prenom[20] ;
float solde ;
} banque[1000] ; /* un tableau de 1000 clients au plus */

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 42

21

Programmation Il (M21-54) [SMI4-fsr]

Imbrication/Pointeur

* Imbrication de Structures :
struct stage

{

char nom[40] ;
struct date debut, fin ;
}s, ts[10];

* Pointeur de Structure :
struct date *pd ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 43

Opérations sur les champs (1)

* Accés a un champ d'une structure :
<variable_structure>.<champ_structure>
* Exemple:
struct date d ;
d.jour=2; /* accés au champ jour de la date d */
scanf("%d", &d.jour) ;
printf("%d", d.jour) ;

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 a4

22

Programmation Il (M21-54)

Opérations sur les champs (2)

* Accés a un champ d'un pointeur de structure :
<pointeur_structure>-><champ_structure>
* Exemple:
struct date *pd, d;
pd=&d;
pd->jour=>5; /* accés au champ jour */
* Remarque:
— Iy a équivalence entre (*pd).jour et pd->jour

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 45

Opérations sur les variables structures
(1)

* Initialisation a la déclaration :
struct date d = {4, 10, 1999} ;

* Affectation :

— Les variables structures doivent étre de méme
type (a condition que des champs de la structure
ne soient pas déclarés comme constantes)

— Exemple :
struct date d1, d2 = {4, 10, 1999} ;
dl=d2;

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 46

[SMI4-fsr]

23

Programmation Il (M21-54)

Opérations sur les variables structures
(2)

* Opérateur d'adresse & :
struct date d, *pd ;
pd = &d;

» Opérateur sizeof :
printf("taille structure date : %d\n", sizeof(struct date)) ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 47

Structure Récursive

* Un ou plusieurs champs de la structure est un
pointeur sur elle-méme.

* Permet de représenter des suites (finies) de
taille quelconque avec ajouts et suppressions
efficaces d'éléments.

* Ces structures requierent généralement
I'allocation dynamique pour allouer et libérer
explicitement de la mémoire

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 48

[SMI4-fsr]

24

Programmation Il (M21-54) [SMI4-fsr]

Structure Récursive
(Exemple)

* Liste chainée de réels
struct cellule

{
double elt ;

struct cellule *suiv ;
}s
* Chaque cellule a deux champs, elt et suiv :
— elt est un réel
— suiv est un pointeur sur une structure cellule

e Lavaleur de suiv est soit I'adresse en mémoire
d'une cellule soit le pointeur NULL.

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 49

Fonctions et structures (1)

* Retour d'une variable structure par une fonction :

— Exemple :
struct date newdate()
{
struct date d ;
printf("Jour (1, 2, ..., 31) : ") ; scanf("%d", &d.jour) ;
printf("Mois (1, 2, ..., 12) : ") ; scanf("%d", &d.mois) ;
printf("Année (1900, ..., 1999) : ") ; scanf("%d", &d.annee) ;
returnd;

}

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 50

25

Programmation Il (M21-54) [SMI4-fsr]

Fonctions et structures (2)

* Passage par valeur en argument d'une variable structure
a une fonction :
— Exemple:
int chekdate(struct date) ;

* Passage par adresse en argument d'une variable structure
a une fonction :
— Exemple:
void lire_date(struct date *pd)
{
printf("Jour (1, 2, ..., 31) : ") ; scanf("%d", &(*pd).jour) ;
printf("Mois (1, 2, ..., 12) : ") ; scanf("%d", &(*pd).mois) ;
printf("Année (1900, ..., 1999) : ") ; scanf("%d", &pd->annee) ;
1

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 51

Champs de bits

* Syntaxe de définition :
struct <nom_structure>

{
unsigned int <nom_champ1> : <nombre_de_bits>;
unsigned int <nom_champ2> : <nombre_de_bits>;

unsigned int <nom_champN> : <nombre_de_bits> ;

};

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 52

26

Programmation Il (M21-54)

Champs de bits
(Exemple)

struct employel ;

{
struct langue int anglais ;
int allemand ;
{ int espagnol ;
unsigned int anglais: 1; int japonais ;
. . int russe ;
unsigned int allemand : 1 ;
unsigned int espagnol : 1; } ListeEmpl1[1000] ;
unsigned int japonais : 1; ?"”Ctemployez;
unsigned int russe : 1 ;
} . struct langue L ;
7’

] ListeEmpl2[1000] ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 53

Type union (1)

* Les unions permettent |'utilisation d'un méme espace mémoire par
des données de types différents a des moments différents :
* Une union ne contient qu'une donnée a la fois.

* Le systeme alloue un emplacement mémoire tel qu'il pourra
contenir le champ de plus grande taille appartenant a I'union.

* Syntaxe de définition :
union <nom_union>

{
<typel><nom_champl>;
<type2> <nom_champ2>;

<typeN> <nom_champN>;

}

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 54

[SMI4-fsr]

27

Programmation Il (M21-54)

* Exemple:
union zone

{

int entier;

long entlong ;
float flottant ;
double flotlong ;
}z1, z2;

[SMI14-fsr] Programmation Il (M21-S4) 2014-2015 55

* Permettent d'exprimer des valeurs constantes de type
entier en associant ces valeurs a des noms.
* Syntaxe de définition :
enum <nom_énumeération>

{

<identificateurl> ;
<identificateur2> ;

<identificateurN> ;
b

— Les identificateurs sont considérés comme des constantes
entieres.

— Le compilateur associe au 1°" identificateur la constante O,
au 28me |3 constante 1, ... et au Né™Me |3 constante N+1.

[SMI14-fsr] Programmation Il (M21-S4) 2014-2015 56

[SMI4-fsr]

28

Programmation Il (M21-54)

Type enum (2)

* Exemples :
enum couleurs
{rouge, vert, bleu} rvb ;
enum jour

{Lundi, Mardi, Mercredi, Jeudi, Vendredi, Samedi,
Dimanche};

enum jourjl, j2,j;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 57

Type enum (3)

» Opérations sur les variables de type énumeéré :
— Affectation :
j1=Lundi;
j2=j1;
— Comparaison :
if (j == Lundi) printf("Le jour est un Lundi\n") ;
— Incrémentation, décrémentation :
j2 = Dimanche; j2--;
for (j = Lundi ; j<Samedi ; j++)

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 58

[SMI4-fsr]

29

Programmation Il (M21-54) [SMI4-fsr]

Types synonymes (typedef)

* typedef permet de définir des types nouveaux
synonymes a des types existants.

* typedef ne réserve pas d'espace mémoire. Le
nom est un type;

* Syntaxe de définition :
typedef <type> <nom_de_remplacement1>,
<nom_de_remplacement2>,

<nom_de_remplacementN> ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 59

Type synonyme d'un type simple

typedef int entier, boolean ;
typedef float reel ;

entierel =23, te[50]={1, 2, 3,4,5,6, 7};
inti;

i=el+te[20];

te[20] =i-60;

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 60

30

Programmation Il (M21-54) [SMI4-fsr]

Type synonyme d'un type tableau

typedef int tab[10] ;
tab tt; /* tt est un tableau de 10 entiers */

typedef float matrice[10][20] ;
matrice a ;

[SMI4-fsr] Programma tion Il (M21-54) 2014-2015 61

Type synonyme @ une structure

typedef struct
{
int jour ;
int mois ;
int annee date ;
} date ;
date d, *ptd ;

[SMI4-fsr] Programma tion Il (M21-54) 2014-2015 62

31

Programmation Il (M21-54)

typedef char *chaine ;

chaine ch ;

[SMI14-fsr] Programmation Il (M21-S4) 2014-2015 63

Définition, déclaration et mémorisation
Chaines constantes

Initialisation

Ordre alphabétique et lexicographique
Manipulation des chaines de caractéres
Tableaux de chaines de caractéres

v
v
v
v
v
v

[SMI4-fsr]

32

Programmation Il (M21-54) [SMI4-fsr]

Définition

Une chaine de caracteres est :
— une suite de caracteres alphanumériques (du texte)

— représentée sur une suite d'octets se terminant par
un octet supplémentaire lié au symbole '\0'. Celui-
ci indique une fin de chaine.

— considérée comme un tableau de caractéres qui
peut étre manipulé d'une maniere globale (sans le
faire caracteére par caractere).

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 65

Déclaration & Mémorisation

Déclaration :
char <NomChaine> [<longueur>] ; /* sous forme de tableau */
ou
char *<NomChaine>; /* sous forme de pointeur */

Exemples :
char Nom[20] ; /* Nom est un tableau ne pouvant contenir au
plus que 19 caracteres utiles */
char *Prenom ;

Mémorisation :

— Le nom d'une chalne de caracteres est le représentant de |'adresse du
1°" caractere de la chaine.

— Pour mémoriser une chaine de N caractéres, on a besoin de N+1 octets.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 66

33

Programmation Il (M21-54)

Chaines constantes ou littérales

* Sont représentées entre guillemets. La chaine vide est notée "".
* Pour une chaine constante, le compilateur associe un pointeur constant.
* Dans une chaine, les caractéres de controle peuvent étre utilisés.

— Exemple:
"Ce \ntexte \nsera réparti sur 3 lignes.«

* Lesymbole " peut étre représenté a l'intérieur d'une chaine constante par \"

— Exemple:
"Affichage de \"guillemets\" \n"

* Plusieurs chaines de caractéres constantes séparées par des espaces, des
tabulations ou interlignes, dans le texte d'un programme, seront réunies en une
seule chaine constante lors de la compilation.

— Exemple:
"un" "deux"
"trois"
sera évaluée comme : "un deux trois"

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 67

Initialisation a la définition

Exemples :
char Chl[] = {IBI, IOI, InI, I'I’ IOI, 'U', Irl, I\OI};

char ch2[] = "Bonjour" ; /* initialisation particuliére aux chaines de caractéres */
char ch3[8] = "Bonjour" ;

eharch4{7] = "Bonjour" ; /* Erreur pendant I'exécution */

charch5[6] = "Bonjour" ; /* Erreur pendant la compilation */

char *ch6 = "Bonjour" ; /* pointeur sur char */

Remarques :

1. char *chl ="une chaine" ;
char *ch2 = "une autre chaine" ;
chl=ch2; /* chl et ch2 pointent sur la méme chaine "une autre chaine" */

2. char ch1[20] = "une chaine" ;
char ch2[20] = "une autre chaine" ;

char ch3[30] ;
chl=ch2; /* Impossible = Erreur */
ch3 ="Bonjour" ; /* Impossible = Erreur */
[SMI4-fsr] Programmation Il (M21-54) 2014-2015 68

[SMI4-fsr]

34

Programmation Il (M21-54)

Ordre alphabétique et
lexicographique

Ordre alphabétique des caracteres :
— dépend du code utilisé pour les caractéres.

— pour le code ASCII, on constate l'ordre suivant: ...,0,1,2,..,9,..,A,B,C, .., Z, .., ab,c, ..

Exemple :
'0' est inférieur a 'z et noté : '0'<'z" (code ASCII ('0') = 48 et code ASCII('z') = 90)

Ordre lexicographique des chaines de caractéres :
— basé sur I'ordre alphabétique des caractéres.

— suitI'ordre du dictionnaire et est défini comme suit :
1. La chaine vide "" précéde lexicographiquement toutes les autres chaines

2. La chaine "a,a,...a," (p caractéres) précéde lexicographiquement la chaine "b,b,...b," (m caracteres) si

I'une des deux conditions suivantes est remplie :
~ ar<by
— 'a;'='b,'et"a,..a," précéde lexicographiquement "b,..b."

Exemples :
"ABC" précéde "BCD" car 'A' < 'B'
"ABC" précéde "B"
"Abc" précéde "abc"
"ab" précéde "abcd" car "" précéde "cd"
" ab" précéde "ab" car''<'a' (ASCI(' ') = 12 et ASCII('a") = 97))

[SMI4-fsr] Programmation Il (M21-54) 2014-2015

69

Manipulation des chaines de caracteres
(Fonctions de stdio.h) (1)

Affichage de chaines de caracteres :
1. Fonction printf
int printf(const char *format [, argument, ...])
A utiliser avec le spécificateur de format %s

Exemple :
char ch[] = "Bonjour tout le monde" ;
printf("%s", ch) ; /* affichage normal */
printf("%7s", ch) ; /* largeur minimale de 7 caractéres */
printf("%.7s", ch) ; /* largeur maximale de 7 caract. */
printf("%25s", ch) ; /* alignement a droite sur 25 caract. */
printf("%-25s", ch) ; /* alignement & gauche sur 25 caract. */

2. Fonction puts
int puts(const char *ch) ;

Exemple :
char *ch = "Bonjour" ;
puts(ch) ; est équivalente a printf("%s\n", ch) ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015

70

[SMI4-fsr]

35

Programmation Il (M21-54)

Manipulation des chaines de caractéeres
(Fonctions de stdio.h) (2)

Lecture de chaines de caractéres :
1. Fonction scanf

int scanf(const char *format [, adresse, ...]) ;
A utiliser avec le spécificateur de format %s

Exemple :
char lieu[25] ;
printf("Entrez le lieu de naissance : ") ; scanf("%s", lieu) ;

2. Fonction gets
char *gets(char *ch) ;
Exemple :
char string[80] ;
printf("Entrez une chaine de caracteéres : ") ; gets(string) ;
printf("La chaine lue est : %s\n", string) ;

Remarque :

Contrairement a scanf, la fonction gets permet de saisir des chaines de caracteres
contenant des espaces et des tabulations.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 71

Manipulation des chaines de caractéeres
(Fonctions de string.h) (1)

Longueur d'une chaine de caracteéres :
1. Fonction strlen

int strlen(const char *s) ;
Retourne le nombre de caractéres présents dans la chaine s (sans compter '\0').

Concaténation de chaines de caracteéres :
1. Fonction strcat

char *strcat(char *s1, const char *s2) ;
Ajoute une copie de la chaine s2 a la fin de la chaine s1. Le caractére final '\O' de s1 est écrasé par le 1° caractére de s2.
Retourne un pointeur sur s1.

Exemple :
char *ch1 = "Bonjour" ;
char *ch2 =" tout le monde" ;
strcat(chl, ch2) ;
printf("%s", chl) ;

2. Fonction strncat

char *strncat(char *s1, const char *s2, int n) ;
Ajoute au maximum les n premiers caractéres de la chaine s2 a la chaine s1.

Exemple :
char ch1[20] = "Bonjour" ;
char *ch2 =" tout le monde" ;
strncat(chl, ch2, 5) ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 72

[SMI4-fsr]

36

Programmation Il (M21-54)

Manipulation des chaines de caractéres
(Fonctions de string.h) (2)

Comparaison de chaines de caracteres :
1. Fonction strcmp
int strcmp(const char *s1, const char *s2) ;

Compare lexicographiquement les chaines s1 et s2, et retourne une valeur :

=0 sisl et s2 sont identiques
<0 sisl précéde s2
>0 sis1suits2
Exemple :
if (Istremp(ch1, ch2)) printf("identiques\n");
else

if (stremp(chl, ch2)>0) printf("%s précéde %s\n", ch2, chl) ;
else printf("%s suit %s\n", ch2, chl) ;

2. Fonction strncmp
int strncmp(const char *s1, const char *s2, int n) ;

Ici, la comparaison est effectuée sur les n premiers caractéres.

3. Fonction stricmp
int stricmp(const char *s1, const char *s2) ;
Travaille comme stremp sans faire la distinction entre majuscules et minuscules.
4. Fonction strnicmp
int strnicmp(const char *s1, const char *s2, int n) ;

Travaille comme strenmp sans distinguer les majuscules des minuscules.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 73

Manipulation des chaines de caractéeres
(Fonctions de string.h) (3)

Copie de chaine de caracteres :
1. Fonction strcpy
char *strcpy(char *s1, const char *s2) ;

Copie la chaine s2 dans s1y compris le caractére '\0'.
Retourne un pointeur sur sl

2. Fonction strncpy
char *strncpy(char *s1, const char *s2, int n) ;

Copie au plus les n premiers caracteres de la chaine s2 dans s1 et retourne un pointeur sur s1.
La chaine s1 peut ne pas comporter le caractére terminal si la longueur de s2 vaut n ou plus.

Exemple :
char ch1[8] ;
char *ch2 = "bonjour" ;
strncpy(ch2, chl, 3) ;
ch2[3]="\0";
printf("%s\n", ch2) ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 74

[SMI4-fsr]

37

Programmation Il (M21-54)

Manipulation des chaines de caractéeres
(Fonctions de string.h) (4)

Recherche d’un caractére dans une chaine de caractéres :
1. Fonction strchr

char *strchr(const char *s, char c) ;
Recherche la 1% occurrence du caractére c dans la chaine s.

Retourne un pointeur sur cette 18" occurrence si c'est un caractére de s, sinon le pointeur
NULL est retourné.

2. Fonction strrchr

char *strrchr(const char *s, char c) ;

Identique a strchr sauf qu'elle recherche la derniére occurrence du caractére c dans la chaine
s.

Exemple :
char *ch = "Bonjour" ;
strchr(ch, '0') ;
puts(strchr(ch, '0")) ;
strrchr(ch, '0') ;
puts(strrchr(ch, '0")) ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 75

Manipulation des chaines de caractéeres
(Fonctions de string.h) (5)

Recherche d'une sous-chaine de caractéres dans une chaine de
caracteres :

1. Fonction strstr

char *strstr(const char *s1, const char *s2) ;
Recherche la 1% occurrence de la chaine s2 dans la chaine s1.

Retourne un pointeur sur cette 18" occurrence si la chaine s2 est une sous-chaine
de la chaine s1, sinon le pointeur NULL est retourné.

Exemple :
#include <string.h>

char *s1 = "Bonjour tout le monde" ;
char *s2 = "tout" ;

char *pch ;

pch = strstr(s1, s2) ;

printf("La sous-chaine est : %s\n", pch) ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 76

[SMI4-fsr]

38

Programmation Il (M21-54)

Manipulation des chaines de caractéeres
(Fonctions de string.h) (6)

Recherche d'une sous-chaine de caractéres dans une chaine de
caracteres :
2. Fonction strpbrk
char *strpbrk(const char *s1, const char *s2) ;

Recherche dans la chaine s1 la 1% occurrence d'un caractére quelconque de la
chaine s2

Exemple :
char *ch1 = "abcdefghij" ;
char *ch2 ="123f";
char *pch ;
pch = strpbrk(chl, ch2);
if (pch)
printf("strpbrk trouve le premier caractére %c\n", *pch) ;
else
printf("strpbrk ne trouve pas de caractéres\n") ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 77

Manipulation des chaines de caractéeres
(Fonctions de string.h) (7)

Recherche d'une sous-chaine de caracteéres dans une chaine de
caracteres :

3. Fonction strtok
char *strtok(char *s1, const char *scp) ;

Recherche dans la chaine s des éléments (des chaines da caractéres) séparés par des séparateurs définis dans la chaine de
caractéres constante scp.

Le 1¢ appel a strtok renvoie un pointeur sur le 1¢' caractére du 1¢" élément de la chaine s et écrit le caractére '\0' dans la
chaine s immédiatement apres I'élément renvoyé.

D'autres appels a strtok, avec NULL comme 1°" argument, traitent de la méme maniére, et jusqu'a épuisement, les autres
éléments de la chaine s.

Remarque :
strtok permet d'éclater la chaine s en différentes sous-chaines obtenues en considérant comme séparateurs les différents
caracteres de la chaine scp.

Exemples :
char ch[16] = "abc,d" ;
char *p;
p =strtok(ch, ",") ; /* 1°" appel a strtok */
if (p)
printf("%s\n", p) ; /* il s'affichera la chaine "abc" */
p = strtok(NULL, ",") ; /* 2¢™ appel a strtok avec comme 1¢'
argument NULL */
if (p)
printf("%s\n", p) ; /* il s'affichera la chaine "d" */

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 78

[SMI4-fsr]

39

Programmation Il (M21-54) [SMI4-fsr]

Manipulation des chaines de caracteres
(Exercice)

* Ecrire une fonction qui affiche les mots d'une phrase :

— Une phrase est une chaine de caractere constituée d’un ensemble de
mots

— Les mots de la phrase sont séparés par un seul espace.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 79

Conversion nombres/chaines de caractéres
(Fonctions de stdlib.h) (1)

Conversion d'une chaine de caractéres en une valeur
numérique :
Fonctions atoi, atol, atof
int atoi(const char *s) ;
long atol(const char *s) ;
double atof(const char *s) ;

atoi (respectivement atol, atof) retourne la valeur numérique

représentée par la chaine s comme un int (respectivement long int,
double).

Remarques :
Les espaces au début de la chaine de caractéres s sont ignorés.

La conversion s'arréte au 1°' caractére non valide (c.-a-d. non convertible).
Si aucun caractere n'est valide, les fonctions retournent zéro.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 80

40

Programmation Il (M21-54) [SMI4-fsr]

Conversion nombres/chaines de caractéres
(Fonctions de stdlib.h) (2)

Conversion d'une valeur numérique en une chaine de
caracteres (non ANSI) :
Fonctions itoa, Itoa, ultoa
char *itoa(int n, char *s, int b) ;
char *ltoa(long n, char *s, int b) ;
char *ultoa(unsigned long n, char *s, int b) ;

Convertissent I'entier n, représenté en base de numération b, dans
la chalne s

Remarques :

Si n est un entier négatif et b = 10, itoa et Itoa (pas ultoa) utilisent le 1°"
caractere de la chaine s pour le signe moins.

Si succes, les fonctions itoa, Itoa et ultoa renvoient un pointeur sur la
chafine résultante. Dans le cas contraire, elles retournent NULL.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 81

Classification de caractéeres
(Fonctions de ctype.h)

Fonctions de classification :
— retournent zéro si la condition respective n'est pas remplie.

— c est une valeur du type int qui peut étre représentée comme
un caractere

Fonction : Retourne une valeur différente de zéro :
isupper(c) si ¢ est une lettre majuscule (‘A', 'B', ..., 'Z')
islower(c) si ¢ est une lettre minuscule ('a', 'b', ..., 'z')
iSdigit(C) si ¢ est un chiffre décimal ('0', '1, ..., '9").
isalpha(c) siislower(c) ou isupper(c).
isalnum(c) siisalpha(c) ou isdigit(c).
iSXdigit(C) si ¢ est un chiffre hexadécimal ('0, ...,'9' ou'A, 'B, ..., 'F' ou 'a', 'b', ..., 'f').
isspace(c) si ¢ est un signe d'espacement (', '\t', "\n', "\r', '\f').
[SMI4-fsr] Programmation Il (M21-54) 2014-2015 82

41

Programmation Il (M21-54) [SMI4-fsr]

Conversion de caractéres
(Fonctions de ctype.h)

Fonctions de conversion :

— Retournent une valeur du type int qui peut étre
représentée comme caractere. La valeur originale
de c est inchangée.

Fonction : Retourne :
tolower(c) la lettre minuscule si ¢ est une
majuscule.
toupper(c) la lettre majuscule si c est une
minuscule.
[SMI4-fsr] Programmation Il (M21-54) 2014-2015 83

Tableaux de chaines de caracteres (1)

- Utiles pour mémoriser une suite de mots ou de phrases.

Exemples :

1. charlJour[7][9] = {"Lundi", "Mardi", "Mercredi", "Jeudi", "Vendredi",
"Samedi", "Dimanche"};

Déclaration d'un tableau de 7 chaines de caractéres, chacune contenant au maximum 9
caractéres (dont 8 significatifs).

2. Jour[4] = "Friday" ; /* affectation non valide ! */
En effet Jour[4] représente I'adresse du 1°" élément de la 42™ chaine de caractéres
Pour faire ce type d'affectation, utiliser la fonction strcpy :
strcpy(Jour[4], "Friday") ;

3. /* Affichage de la 1¢ |ettre des jours de la semaine */

for (i=0;i<7;i++)
printf("%c\t", Jour[i][0]) ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 84

42

Programmation Il (M21-54)

Tableaux de chaines de caracteres (2)

- Utiliser des tableaux de pointeurs pour mémoriser de fagcon économique des chaines de
caracteres de différentes longueurs

Exemples :
char *Day[] = {"Lundi", "Mardi", "Mercredi", "Jeudi",
"Vendredi", "Samedi", "Dimanche"} ;

Déclaration d'un tableau de 7 pointeurs sur char. Chacun des pointeurs est initialisé avec |'adresse de |'une des 7
chaines de caractéres constantes.

Day[0] —— [L|[u|n|[d]|]i]\0
Day[1] —t M a r d i \0

—t—> |[Mf[e|r[c|[r]efd]i]\
Day(2] —t— | J[e|uf[d]|] 1]\
Day(3] — vV e n d r e d i \0
Day[4] —t—> | S|[a|mf[e|[d]i [\

Dfi|mf[a|[n]c|[h]|]e]|\

Day([5] T
Day[6]

1. Day[4] = "Friday" ; /* Ici, affectation valable */

2. /* Affichage de la 1°™ lettre des jours de la semaine */
for(i=0;i<7;i++)
printf("%c\t", *Day[i]) ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 85

Structures de Données Linéaires
enC

Notion de Type Abstrait de Données
Notion de Structure de Données
Implémentation d’un TAD en C

ANER NI NEAN

Exemples de Structures de Données Linéaires en C

[SMI4-fsr]

43

Programmation Il (M21-54)

Notion de Type Abstrait de Données

* Un type abstrait de données (TAD) :

—est un ensemble de valeurs muni d’'opérations
sur ces valeurs

—sans faire référence a une implémentation
particuliere
e Un TAD est caractérisé par :

— sa signature : définit la syntaxe du type et des
opérations

— sa sémantique : définit les propriétés des
opérations

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015

87

Notion de Structure de Données

* Onditaussi:
— structure de données concréte

* Corresponda:
— l'implémentation d’un TAD

* Composée:
— d’un algorithme pour chaque opération
— des données spécifiques a la structure pour sa gestion

* Remarque:

— Un méme TAD peut donner lieu a plusieurs structures de
données, avec des performances différentes

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015

88

[SMI4-fsr]

44

Programmation Il (M21-54) [SMI4-fsr]

Implémentation d’'un TAD

* Pourimplémenterun TAD :
— Déclarer la structure de données retenue pour représenter le TAD :
LUinterface
— Définir les opérations primitives dans un langage particulier : La
réalisation

* Exigences:
— Conforme a la spécification du TAD ;
— Efficace en terme de complexité d’algorithme.

* Pour implémenter, on utilise :
— Les types élémentaires (entiers, caracteres, ...)
— Les pointeurs ;
— Les tableaux et les enregistrements ;
— Les types prédéfinis.

* Plusieurs implémentations possibles pour un méme TAD

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 89

Implémentation d’'un TAD en C

» Utiliser la programmation modulaire :

— Programme découpé en plusieurs fichiers, méme de petites tailles (réutilisabilité,
lisibilité, etc.

— Chaque compagsante logique (un module) regroupe les fonctions et types autour
e

d'un'méme theme.

* Pour chaque module truc, créer deux fichiers :

— fichier truc.h : I'interface (la partie publique) ; contient la spécification de la
structure;

— fichier truc.c : la définition (la Bartie privée) ; contient la réalisation des opérations
fournies par la structure. Il contient au début I'inclusion du fichier truc.h

* Tout module ou programme principal qui a besoin d'utiliser les fonctions
du module truc, devra juste inclure le truc.h

* Un module Cimplémente un TAD :

— L'encapsulation : détails d'implémentation cachés ; l'interface est la partie visible a
un utilisateur

— Laréutilisation : placer les deux fichiers du module dans le répertoire ou I'on
eveloppe I'application.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 90

45

Programmation Il (M21-54)

Structures de données linéaires

e Structure linéaire :

— C’est un arrangement linéaire d'éléments liés par
la relation successeur

* Exemples :
— Tableaux (/a relation successeur est implicite)
— Piles
— Files
— listes

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 91

Notion de Pile (Stack)

* Unepileest:

— une structure linéaire permettant de stocker et de restaurer des
données selon un ordre LIFO (Last In, First Out ou « dernier entré,
premier sorti »)

* Dans une pile:

— Les insertions (empilements) et les suppressions (dépilements) sont
restreintes a une extrémité appelée sommet de la pile.

* Applications:

— Vérification du bon équilibrage d’une expression avec parentheses
Evaluation des expressions arithmétiques postfixées
Gestion par le compilateur des appels de fonctions

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 92

[SMI4-fsr]

46

Programmation Il (M21-54)

Type Abstrait Pile

Type Pile
Utilise Elément, Booléen
Opérations
pile_vide : > Pile
est_vide : Pile = Booléen
empiler : Pile x Elément > Pile
dépiler : Pile = Pile
sommet : Pile - Elément
Préconditions
dépiler (p) est-défini-ssi est_vide(p) = faux
sommet (p) est-défini-ssi est_vide (p) = faux
Axiomes
Soit, e : Element, p : Pile
est_vide(pile_vide) = wvrai
est_vide (empiler(p,e)) = faux
dépiler (empiler(p,e)) = p
sommet (empiler (p,e)) = e
[SMI4-fsr] Programmation Il (M21-54) 2014-2015 93

Représentations d'une Pile

* Représentation contigué (par tableau) :
— Les éléments de la pile sont rangés dans un tableau
— Un entier représente la position du sommet de la pile

* Représentation chainée (par pointeurs) :
— Les éléments de la pile sont chainés entre eux

— Un pointeur sur le premier élément désigne la pile et
représente le sommet de cette pile

— Une pile vide est représentée par le pointeur yuzz

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 94

[SMI4-fsr]

47

Programmation Il (M21-54)

[SMI4-fsr]

/* Pile contigué en C */

// taille maximale pile
#define MAX PILE 7

// type des éléments
typedef int Element;

// type Pile
typedef struct {
Element elements[MAX PILE];
int sommet;
} Pile;

Programmation Il (M21-S4) 2014-2015 95

[SMI4-fsr]

/* Pile chainée en C */

// type des éléments
typedef int element;

// type Cellule

typedef struct cellule {
element valeur;
struct cellule *suivant;
} Cellule;

// type Pile
typedef Cellule *Pile;

Programmation Il (M21-S4) 2014-2015 96

[SMI4-fsr]

48

Programmation Il (M21-54)

Spécification d'une Pile Contigué

#ifndef _PILE_TABLEAU
#define _PILE_TABLEAU

#include "Booleen.h"

typedef struct {
Element elements[MAX_PILE]; /* les

/* fichier "Tpile.h" */

// Définition du type Pile (implémentée par un tableau)
#define MAX_PILE 7 /* taille maximale d'une pile */
typedef int Element; /* les éléments sont des int */

éléments de la pile */

int sommet; /* position du sommet */
} Pile;
// Déclaration des fonctions gérant la pile
Pile pile_vide ();
Pile empiler (Pile p, Element e);
Pile depiler (Pile p);
Element sommet (Pile p);
Booleen est_vide (Pile p);
#endif
[SMI4-fsr] Programmation Il (M21-54) 2014-2015 97
Réalisation d'une Pile Contigué
/* fichier "Tpile.c" */
#include "Tpile.h" // ajout d'un élément
include pile. Pile empiler(Pile p, Element e) {
// Définition des fonctions gérant la pile if (p.sommet >= MAX_PILE-1) {
printf ("Erreur : pile pleine !\n");
// initialiser une nouvelle pile exit (-1);
Pile pile_vide() { }
Pile p;
p;
p.sommet = -1; (p.sommet) ++;
return p; (p.elements) [p.sommet] = e;
} return p;
// tester si la pile est vide }
Booleen est_vide(Pile p) { 1
if (p.sommet == -1) return vrai; // enlever un élément
return faux; Pile depiler(Pile p) {
} /* pré-condition : pile non vide !*/
. if (est_vide(p)) {
// Valeur du sommet de pile : " R : N Ny -
Element sommet (Pile p) { printf ("Erreur: pile vide !\n");
/* pré-condition : pile non vide ! */ exit(-1);
if (est_vide(p)) { }
printf ("Erreur: pile vide !\n"); p.sommet——;
}ex’t(_l)" return p;
return (p.elements) [p.sommet]; }
}
[SMI4-fsr] Programmation Il (M21-54) 2014-2015 98

[SMI4-fsr]

49

Programmation Il (M21-54)

Utilisation d'une Pile Contigué

/* fichier "UTpile.c" */
#include <stdio.h>
#include "Tpile.h"

int main () {
Pile p = pile_vide();

empiler (p, 50);

empiler(p,5);

empiler (p, 20);

empiler (p,10);

rintf("%d au sommet aprés empilement de 50, 5, 20 et"

" 10\n", sommet (p));

depiler (p);

depiler (p);

printf ("%$d au sommet aprés dépilement de 10 et 20\n",
sommet (p)) ;

return O;

‘vt TTYTTU'D

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 99

Notion de File (Queue)

* Unefile est:

— une structure linéaire permettant de stocker et de restaurer des données
selon un ordre FIFO (First In, First Out ou « premier entré, premier sorti »)

* Dans une file :

— Les insertions (enfilements) se font a une extrémité appelée queue de la file
et les suppressions (défilements) se font a |'autre extrémité appelée téte de la
file

* Applications :
— Gestion travaux d’impression d’une imprimante
— Ordonnanceur (dans les systemes d’exploitation)

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 100

[SMI4-fsr]

50

Programmation Il (M21-54)

Type Abstrait File

Type File
Utilise Elément, Booléen
Opérations
file_vide : = File
est_vide : File > Booléen
enfiler : File x Elément > File
défiler : File - File
téte : File > Elément
Préconditions
défiler (f) est-défini-ssi est_vide(f) = faux
téte (f) est-défini-ssi est_vide(f) = faux
Axiomes
Soit, e : Element, f : File
est_vide (pile_vide) = wvrai
est_vide (enfiler(f,e)) = faux
si est_vide (f) vrai alors téte(enfiler (f,e)) e
si est_vide (f) faux alors téte(enfiler(f,e)) téte (f)
si est_vide (f) vrai alors défiler (enfiler(f,e)) = file_vide
si est_vide (f) faux
alors défiler (enfiler(f,e)) = enfiler (défiler(f),e)

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 101

Représentations d’une File

* Représentation contigué (par tableau) :
— Les éléments de la file sont rangés dans un tableau

— Deux entiers représentent respectivement les positions de
la téte et de la queue de la file

* Représentation chainée (par pointeurs) :
— Les éléments de la file sont chainés entre eux

— Un pointeur sur le premier élément désigne la file et
représente la téte de cette file

— Un pointeur sur le dernier élément représente la queue de
file
— Une file vide est représentée par le pointeur xvuzz

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 102

[SMI4-fsr]

51

Programmation Il (M21-54)

Notion de Liste

e Généralisation des piles et des files

Strtucture linéaire dans laquelle les éléments peuvent étre traités les uns a la suite des
utres

Ajout ou retrait d'éléments n'importe ou dans la liste
Accés a n'importe quel élément

¢ Uneliste est :

gne sluitle tfinie, éventuellement vide, d'éléments de méme type repérés par leur rang
ans |a liste

* Dans une liste :

Chaque élément de la liste est rangé a une certaine place
Les éléments d'une liste sont donc ordonnés en fonction de leur place

* Remarques :

Il existe une fonction notée succ qui, appliquée a toute place sauf la derniere, fournit la
place suivante

Le nombre total d'éléments, et par conséquent de places, est appelé longueur de la liste

* Applications :

Codage des polyndmes, des matrices creuses, des grands nombres, ...

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 103
Type Abstrait Liste
Type Liste
Utilise Elément, Booléen, Place
Opérations
liste_vide : =2 Liste
longueur : Liste = Entier
insérer : Liste x Entier x Elément > Liste
supprimer : Liste x Entier > Liste
kéme : Liste x Entier - Elément
accés : Liste x Entier = Place
contenu : Liste x Place = Elément
succ : Liste x Place > Place
Préconditions

insérer(l,k,e) est-défini-ssi 1 < k < longueur (1l)+1
supprimer (1,k) est-défini-ssi 1 < k < longueur (1)
kéme (1,k) est-défini-ssi 1 < k < longueur (1)

accés (l,k) est-défini-ssi 1 < k < longueur (1)
succ(l,p) est-défini-ssi p # accés(l,longueur (1))

[SMI4-fsr]

Programmation Il (M21-54) 2014-2015 104

[SMI4-fsr]

52

Programmation Il (M21-54)

[SMI4-fsr]

* Les éléments sont rangés les uns a coté des autres dans un
tableau
— La ieme case du tableau contient le ieme élément de la liste
— Le rang est donc égal a la place ; ce sont des entiers

* Laliste est représentée par une structure en langage C :
— Un tableau représente les éléments
— Un entier représente le nombre d'éléments dans la liste
— La longueur maximale, Max ZI.57% de la liste doit étre connue

Programmation Il (M21-S4) 2014-2015 105

[SMI4-fsr]

/* Liste contigué en C */
// taille maximale liste
f##define MAX LISTE 10

0 1 2 3 4 5 6 7 8 9 // type des éléments

typedef int Element;

// type Place
typedef int Place;

// type Liste

typedef struct {
Element tab[MAX_ LISTE];
int taille;

} Liste;

Programmation Il (M21-S4) 2014-2015 106

[SMI4-fsr]

53

Programmation Il (M21-54)

* Les éléments ne sont pas rangés les uns a c6té des autres

— La place d'un élément est I'adresse d'une structure qui contient
I'élément ainsi que la place de I'élément suivant

— Utilisation de pointeurs pour chainer entre eux les éléments
successifs

* Laliste est représentée par un pointeur sur une structure en
langage C
— Une structure contient un élément de la liste et un pointeur sur
I'élément suivant
— La liste est déterminée par un pointeur sur son premier élément
— La liste vide est représentée par la constante prédéfinie NULL

[SMI14-fsr] Programmation Il (M21-S4) 2014-2015 107

/* Liste chainée en C */

// type des éléments
typedef int element;

// type Place
typedef struct cellule* Place;

// type Cellule

typedef struct cellule {
element valeur;
struct cellule *suivant;
} Cellule;

// type Liste
typedef Cellule *Liste;

[SMI14-fsr] Programmation Il (M21-S4) 2014-2015 108

[SMI4-fsr]

54

Programmation Il (M21-54)

Spécification d'une Liste Chainée

#ifndef _LISTE_CHAINEE
#define _LISTE_CHAINEE

typedef struct cellule {
element valeur; // un éléments de la liste
cellule suivante

} Cellule;

typedef Cellule *Liste;
Liste liste_vide (void);
int longueur (Liste 1);

Liste supprimer (Liste 1, int i);
element keme (Liste 1, int k);
Place acces (Liste 1, int i);
element contenu (Liste 1, Place i);
Place succ (Liste 1, Place i);

#endif

/* fichier "CListe.h" */

// Définition du type liste (implémentée par pointeurs)
typedef int element; /* les éléments sont des int */

typedef struct cellule *Place; /* la place

struct cellule *suivant; // adresse

// Déclaration des fonctions gérant la liste

Liste inserer (Liste 1, int i, element

= adresse cellule */

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 109

Réalisation d'une Liste Chainée (1)

Liste liste_vide (void) {
return NULL;
}

int longueur (Liste 1) {
int taille=0;
Liste p=1;
while (p) {
taille++;
p=p->suivant;

return taille;
}

Liste inserer(Liste 1, int i, element e) {
// précondition :0 £ i < longueur (1)+1

else {
int j;
Liste p=1;
for (3=0; j<i-1; j++)

PpP=p—>suivant;

pc—>suivant=p->suivant;
p->suivant=p;

}

return 1;

}

Place acces(Liste 1, int k) {

// pas de sens que si 0 £ k £ longueur(l)-1
int i;

Place p;

if (k<0 || k>=longueur(l)) {

if (i<0 || i>longueur(l)) { printf ("Erreur: rang invalide !\n");
printf ("Erreur : rang non valide !\n"); exit (-1);
exit (-1); }
} if (k 0)
Liste pc = (Liste)malloc(sizeof(Cellule)); return 1;
pc—>valeur=e; else {
pc—>suivant=NULL; p=1;
if (i for (i=0; i<k; k++)
pc->suivant=1; p=p->suivant;
1l=pc; return p;
} }
}
[SMI4-fsr] Programmation Il (M21-54) 2014-2015 110

[SMI4-fsr]

55

Programmation Il (M21-54)

Réalisation d'une Liste Chainée (2)

element contenu(Liste 1, Place p) {
// pas de sens si longueur (1)=0 (liste vide)

if (longueur(l) == 0) {
printf ("Erreur: liste vide !\n");
exit (-1);

}

return p->valeur;

Place succ(Liste 1, Place p) {
// pas de sens si p derniére place de liste
if (p—->suivant == NULL) {
printf ("Erreur: suivant derniére
place!\n");
exit (-1);
}
return p->suivant;

}

element keme (Liste 1, int k) {
// pas de sens que si 0 <= k <= longueur(1l)-1

Liste supprimer(Liste 1, int i) {

// précondition : 0 < i < longueur (1)
int j;

Liste p;

if (i<0 || i>longueur(l)+1) {

printf ("Erreur: rang non valide!\n");
exit (-1);

}

if (i
p=1;
1=1->suivant;

}

else {
Place q;
g=acces(1l,i-1);
p=succ(l,q);

0) {

if (k<0 || k>longueur(1)-1) { g->suivant=p->suivant;
printf ("Erreur : rang non valide !\n"); }
) exit (-1); free(p);
return contenu(l, acces(l,k)); }return 1i
}
[SMI4-fsr] Programmation Il (M21-54) 2014-2015 111

* Liste avec téte fictive

suppression)

ke

* Liste chainée circulaire

e

e Liste doublement chainée

téte
queue

tete riotive

XSS

Variantes de Listes Chainées

— Eviter d'avoir un traitement particulier pour le cas de la téte de liste (opérations d'insertion et de

[et et [t~ -o[m]

— Le suivant du dernier élément de la liste est le pointeur de téte

E\‘ wvaleur suivant

[l [e [od—5 o> ..o
; =

— Faciliter le parcours de la liste dans les deux sens (utilisation de deux pointeurs...)
T

valeur suivant

Vla] o f=Plelef A ool = o 5 en]]

* Liste doublement chainée circulaire

e Liste triée

— Lordre des enregistrements dans la liste respecte |'ordre sur les clés

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 112

[SMI4-fsr]

56

Programmation Il (M21-54)

Fichiers

Définition et propriétés

Fichiers de texte et fichiers binaires

Fichiers standards

Déclaration, ouverture et fermeture d’un fichier
Traitement du contenu d’un fichier
Déplacement dans le fichier (acces direct)

INENENENENENEN

Définition et Propriétés

Définition :

— Un fichier est une suite de données homogeénes
conservées en permanence sur un support externe
(disque dur, clef USB, ...).

— Ces données regroupent, le plus souvent, plusieurs
composantes (champs) d'une structure.

Exemples :
¢ Un fichier d'étudiants.
¢ Un fichier d'entiers.

Propriété :
— En C, les fichiers sont considérés comme une suite
d'octets (1 octet = caractere)

[SMI4-fsr] Programmation Il (M21-54) 2014-2015

114

[SMI4-fsr]

57

Programmation Il (M21-54) [SMI4-fsr]

Manipulation d’un Fichier

Principe de manipulation d'un fichier :
1. ouverture du fichier
2. lecture, écriture, et déplacement dans le fichier
3. fermeture du fichier

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 115

Manipulation d’un Fichier

Deux types de fonctions permettent de manipuler
un fichier:
— fonctions de bas niveau : dépendent du systeme

d'exploitation et font un acces direct sur le support
physique de stockage du fichier.

— fonctions de haut niveau : |'acces au fichier se fait par
I'intermédiaire d'une zone mémoire de stockage (/la
mémoire tampon). Ces fonctions sont construites a
partir des fonctions de bas niveau.

Remarque :

— Dans ce cours, seules les fonctions de haut niveau
seront étudiées et utilisées.

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 116

58

Programmation Il (M21-54)

Manipulation d’un Fichier

Deux techniques pour manipuler un fichier :

— l'acces séquentiel : pour atteindre |'information
souhaitée, il faut passer par la premiére puis la
deuxiéme et ainsi de suite.

— l'acces direct : consiste a se déplacer directement
sur l'information souhaitée sans avoir a parcourir
celles qui la précedent.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 117

Mémoire Tampon

— Les accés a un fichier (en vue d'une lecture ou
écriture d'informations) se font par l'intermédiaire
d'une mémoire tampon (buffer).

— Il s'agit d'une zone de la mémoire centrale qui
stocke une quantité, assez importante, de
données du fichier.

— Son rble est d'accélérer les entrées/sorties a un
fichier.

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 118

[SMI4-fsr]

59

Programmation Il (M21-54)

Types de Fichiers

— Deux types de fichiers :
* Fichiers de texte
* Fichiers binaires

— Un fichier de texte est une suite de lignes ; chaque
ligne est une suite de caracteres terminée par le
caractére spécial '\n'.

— Un fichier binaire est une suite d'octets pouvant
représenter toutes sortes de données. (/e systeme
n'attribue aucune signification aux octets
échangés)

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 119

Fichiers Standards

— Des fichiers spéciaux sont prédéfinis et ouverts
automatiquement lorsqu'un programme
commence a s'exécuter :

* stdin : entrée standard (par défaut, lié au clavier)

* stdout : sortie standard (par défaut, lié a I'écran)

* stderr : sortie d'erreur standard (par défaut, lié aussi a
I'écran)

— Ces fichiers peuvent étre redirigés au niveau de
I'interpréte de commandes par |'utilisation de
symboles > et < a I'appel du programme.

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 120

[SMI4-fsr]

60

Programmation Il (M21-54)

Fichiers Standards

Exemples :

1. Soit le fichier de texte "c:\essai.txt"
Considérons les appels suivants du programme exécutable Prog :
Prog > c:\essai.tx
Prog écrira dans c:\essai.txt au lieu de I'écran
Prog < c:\essai.txt
Prog fera ses lectures dans c:\essai.tx)

2. Soient Progl et Prog2 deux programmes exécutables.
Soit I'appel suivant :
Prog1 | Prog2
Prog1 a sa sortie standard redirigée dans I'entrée standard de Prog2

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 121

Fichiers Standards

Aux fichiers standards :

sont associées des fonctions prédéfinies permettant
de réaliser les opérations suivantes :

— lecture et écriture caracteére par caractere
— lecture et écriture ligne par ligne
— lecture et écriture formatées

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 122

[SMI4-fsr]

61

Programmation Il (M21-54)

Fichiers Standards

Echanges caracteére par caractere :
Fonction getchar
int getchar() ;
Permet de lire un caractére sur stdin.
Retourne la valeur du caractere lu ou EOF (si fin du fichier ou erreur)
Exemple :
while ((c = getchar() != EOF) && (c !="")) ;
/* lit jusqu'au premier caractére non espace ou EOF */

Fonction putchar
int putchar(intc) ;
Permet d'écrire le caractére c sur stdout.
Retourne la valeur du caractere écrit c ou EOF en cas d'erreur

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 123

Fichiers Standards

Echanges ligne par ligne :
Une ligne est considérée comme une suite de caractéres terminée
par le caractére fin de ligne '\n' ou par la détection de la fin du
fichier.
Fonction gets
char *gets(char *s) ;

Lit une ligne sur stdin et la place dans la chaine s. Le caractére fin de ligne
'\n' est remplacé dans s par le caractére fin de chaine "\0'.

Retourne NULL a la rencontre de la fin de fichier ou en cas d'erreur

Fonction puts
int puts(char *s) ;
Permet d'écrire la chaine de caracteres s, suivie d'un saut de ligne sur
stdout.
Retourne le dernier caractere écrit ou EOF en cas d'erreur.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 124

[SMI4-fsr]

62

Programmation Il (M21-54)

[SMI4-fsr]

Fichiers Standards

Echanges avec formats :
Fonction scanf

int scanf(char *, ...) ;

Effectue une lecture formatée sur stdin.

Fonction printf

int printf(char *, ...) ;

Effectue une écriture formatée sur stdout.

Programmation Il (M21-54) 2014-2015 125

[SMI4-fsr]

Déclaration d'un Fichier

FILE *<PointeurFichier>;

— Le type FILE est défini dans <stdio.h> en tant que structure.

— Al'ouverture d'un fichier, la structure FILE contient un certain
nombre d'informations sur ce fichier telles que :

adresse de la mémoire tampon,

position actuelle dans le tampon,

nombre de caractéres déja écrits dans le tampon, ...,
type d'ouverture du fichier : écriture, lecture, ...,

— Pour pouvoir travailler avec un fichier dans un programme,
ranger l'adresse de la structure FILE dans le pointeur de fichier
et tout acces ultérieur au fichier se fait par I'intermédiaire de ce
pointeur.

Programmation Il (M21-54) 2014-2015 126

[SMI4-fsr]

63

Programmation Il (M21-54) [SMI4-fsr]

Ouverture d'un Fichier

— Association d'un objet extérieur (/e fichier) au programme en
cours d'exécution.

— Réalisée par la fonction fopen selon la syntaxe :

FILE *fopen(char *<NomFichier>, char *<TypeQuverture>) ;
Exemple :

pf = fopen("essai.dat", "rb") ;

fopen tente d'ouvrir le fichier désigné par <NomFichier> pour le
type d'ouverture spécifié <TypeOuverture>.

Si succeés, crée une structure de type FILE, y stocke les
informations relatives a ce fichier et retourne I'adresse de cette
structure.

Sinon, NULL est retourné.

Le type d'ouverture indique la nature des opérations que le
programme devra exécuter apres |'ouverture du fichier.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 127

Types d’Ouverture d’un Fichier

Les différents types d'ouverture d'un fichier :

r'" : ouverture en lecture seule. Si fichier inexistant, la fonction retourne
NULL.

— "w" : création pour écriture. Si fichier préexistant, il est vidé (son contenu est
perdu)

— "a": ouverture pour ajout ; ouverture en écriture en fin de fichier ou création
pour écriture si fichier inexistant.

— "r+" : ouverture de fichier préexistant pour mise a jour (lecture/écriture).

— "w+": création pour mise a jour (lecture/écriture). Si fichier préexistant, le
contenu est perdu.

— "a+" : ouverture pour ajout ; ouverture pour mise a jour en fin de fichier ou
création si fichier inexistant.

Remarques :
— Pour indiquer qu'un fichier doit étre ouvert ou créé en mode texte, ajouter t a

la chaine ("rt", "wt", "at", "rt+" ou "r+t", "wt+" ou "w+t", "at+" ou "a+t").
— Pour le mode binaire, ajouter b ("rb", "wb", ...).

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 128

64

Programmation Il (M21-54)

Fermeture d’un Fichier

— Termine la manipulation d'un fichier ouvert en faisant appel a la fonction
fclose selon la syntaxe :

int fclose(FILE *<PointeurFichier>) ;
Exemple :
fclose(pf) ; /* pf est un pointeur de fichier */

— fclose est la fonction inverse de fopen ; elle détruit le lien entre le pointeur de
fichier et le nom du fichier.

— Retourne:
¢ 0dans le cas normal.
* EOFencasd'erreur.

Remarques :
Quand un fichier ne sert plus, il est conseillé de le fermer.
Dés qu'un fichier est fermé, la mémoire tampon est libérée.

Apres fclose(pf), le pointeur pf est invalide. Des erreurs graves pourraient donc
survenir si ce pointeur est utilisé par la suite.

[SMI4-fsr]

Programmation Il (M21-54) 2014-2015 129

Ouverture et Fermeture d'un fichier
(Exemple)

#include <stdio.h>
#include<string.h>
void main()
{
char nomfich[20] ; /* nom physique du fichier a traiter */
FILE *pf ; /* pf est un pointeur de fichier */
printf("Nom de sauvegarde du fichier : ") ;
gets(nomfich) ;
pf = fopen(nomfich, "r") ; /* Ouvre en lecture le fichier */
if (pf == NULL)
printf("Impossible d'ouvrir le fichier\n") ;
else
... /[* traitement du fichier */
fclose(pf) ; /* fermer le fichier référencé par pf */

}

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 130

[SMI4-fsr]

65

Programmation Il (M21-54)

Traitement du Contenu d'un Fichier

— Une fois le fichier ouvert, C permet plusieurs types de
traitement du fichier :
* par caractéres
* par lignes
* par enregistrements
* par données formatées

— Dans tous les cas, les fonctions de traitement du
fichier (sauf les opérations de déplacement (voir plus
loin)) ont un comportement séquentiel. L'appel de ces
fonctions provoque le déplacement du pointeur
courant relatif au fichier ouvert.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 131

Traitement Caractéere par Caractéere

Fonction fgetc
int fgetc(FILE *<PointeurFichier>) ;

— Lit un caractére dans le fichier référencé par le pointeur
<PointeurFichier>

— Retourne:
¢ Le caractere lu sous forme d'un int
¢ EOF a la rencontre de la fin du fichier ou en cas d'erreur.

Fonction getc
int getc(FILE *<PointeurFichier>) ;
— Identique a fgetc() sauf que cette fonction est réalisée par une
macro définie dans <stdio.h>.
— Pour une macro, les instructions sont générées en ligne (et
répétées a chaque appel) ce qui évite un appel de fonction
(codteux).

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 132

[SMI4-fsr]

66

Programmation Il (M21-54)

Traitement Caractéere par Caractéere

Fonction fputc
int fputc(int <Caractere>, FILE *<PointeurFichier>) ;

— Ecrit dans le fichier référencé par le pointeur
<PointeurFichier>le caractere placé dans la variable
<Caractere>.

— Retourne :
¢ Lavaleur sous forme d'int du caractére écrit dans le fichier.
* EOF en cas d'erreur.

Fonction putc
int putc(int <Caractere>, FILE *<PointeurFichier>) ;

Identique a fputc() sauf que cette fonction est réalisée par
une macro

[SMI4-fsr] Programmation Il (M21-54) 2014-2015

133

Traitement Caractéere par Caractéere
(Exemple 1)

Création d’un fichier texte :

main() {

FILE *pf ;

char *nomf ; /* nom physique du fichier */
int c; /* le caractére a traiter */

printf("Nom de sauvegarde : ") ; gets(nomf) ;
if ((pf = fopen(nomf,"w")) 1= NULL) {
printf("Entrez votre texte et terminez par CTRL-Z\n") ;
while ((c = getchar() != EOF))
fputc(c,pf) ;
fclose(pf) ;
}
else printf("Probleme d'ouverture") ;
return0;

}

[SMI4-fsr] Programmation Il (M21-54) 2014-2015

134

[SMI4-fsr]

67

Programmation Il (M21-54) [SMI4-fsr]

Traitement Caractéere par Caractéere
(Exemple 2)

Lecture d’un fichier texte :

main() {
FILE *pf ;
char *nomf;
int ¢ ; /* caractére a traiter */
printf("Nom du fichier a lire : ") ; gets(nomf) ;
if ((pf = fopen(nomf,"r")) != NULL) {
while ((c = fgetc() != EOF))
putchar(c) ;
if (Ifeof(pf)) /* feof est une fonction qui détecte la fin d'un fichier (voir plus loin */
printf("Erreur de lecture") ;
fclose(pf) ;

else printf("Probleme d'ouverture") ;
return0;
[SMI4-fsr] Programmation Il (M21-54) 2014-2015 135

Traitement Caractéere par Caractéere

Remarques :

— ¢ = getchar() équivalente a c = getc(stdin) ou c =
fgetc(stdin)

— putchar(c) équivalente a putc(c, stdout) ou
fputc(c, stdout)

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 136

68

Programmation Il (M21-54)

Traitement par Lignes
(Lecture de Chaines)

Fonction fgets
char *fgets(char *<Chaine>,int<Nbre>,FILE *<PointeurFichier>);

— Lit une ligne de caractéres dans le fichier référencé par
<PointeurFichier>. Cette ligne est stockée dans <Chaine>.
<Nbre> est le nombre maximum de caracteres a lire.
— Retourne:
* Un pointeur vers le début de la chaine.
* NULL en cas d'erreur ou a la rencontre de la fin de fichier.
— La lecture s'arréte lorsque un des événements se produit :
* Lecture de saut de ligne '\n' ('\n' est recopié dans <Chaine>)
. I,.ec’ture d'au plus (<Nbre> - 1) caractéres (fgets termine <Chaine> par

* Rencontre de la fin de fichier

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 137

Traitement par Lignes
(Ecriture de Chaines)

Fonction fputs
int fputs(char *<Chaine>, FILE *<PointeurFichier>) ;

— Ecrit la chaine <Chaine> dans le fichier référencé par
<PointeurFichier>.

— Retourne:

* Une valeur positive (code ASCII du dernier caractere écrit) si
|'écriture s'est correctement déroulée.

* EOF en cas d'erreur.

— La chaine <Chaine> doit étre terminée par '\0'. Ce
caractére n'est pas transféré dans le fichier. Il faut
mettre explicitement la fin de ligne dans la chaine
pour qu'elle soit présente dans le fichier.

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 138

[SMI4-fsr]

69

Programmation Il (M21-54)

Traitement par Lignes
(Exemple)

Lecture ligne a ligne d’un fichier aprés ouverture :

void main() {
char nomfich[20] ; /* fichier a traiter */
FILE *pf ;
char BigBuf[256] ; /* pour stocker une ligne de caractéres */
printf("Nom de sauvegarde du fichier : ") ;
gets(nomfich) ;
pf = fopen(nomfich, "r") ;
if (pf == NULL) {
printf("Impossible d'ouvrir le fichier %s \n", nomfich) ;
return1;
}
while (fgets(BigBuf, sizeof BigBuf, pf) != NULL)
fputs(BigBuf, stdout) ; /* écrire la ligne lue a partir du
fichier référencé par pf sur la sortie standard */
fclose(pf) ; /* fermer le fichier référencé par pf */

}

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 139

Traitement par Enregistrements

— Permet de lire et écrire des objets,

* |le plus souvent représentés par des structures
(appelées enregistrements) dans un fichier.

— Pour ce type de traitement,
* le fichier doit étre ouvert en mode binaire.

* Les données échangées ne sont pas traitées comme des
caracteres. Elles sont traitées sous forme de blocs
d'octets.

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 140

[SMI4-fsr]

70

Programmation Il (M21-54)

Traitement par Enregistrements

Fonction fread (lecture d'un bloc d'octets d'un fichier)
unsigned int fread(void *<pb>, unsigned <taille>,
unsigned <nb>, FILE *<pf>);

— Lit un certain nombre de données (des enregistrements) de taille
identique depuis un fichier référencé par <pf> vers un bloc
mémaoire.

* Le bloc mémoire d'adresse <pb> regoit les enregistrements lus.
* <taille> : taille d'un enregistrement en nombre octets.
* <nb>: nombre d'enregistrements a échanger (lire).
o <pf>: fait référence a un fichier ouvert en mode binaire.
¢ Le nombre d'octets lus est (<nb> * <taille>)
— Retourne:
* Le nombre d'enregistrements lus (et non le nombre d'octets).
¢ Si EOF ou erreur, une valeur inférieure a <nb> (ou méme 0).

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 141

Traitement par Enregistrements

Fonction fwrite (écriture d'un bloc d'octets dans un fichier)
unsigned int fwrite(void *<pb>, unsigned <taille>,
unsigned <nb>, FILE *<pf>) ;

— L'espace mémoire d'adresse <pb> fournit les données a
écrire dans les enregistrements.

— Ecrit <nb> éléments (enregistrements) ayant chacun une
taille de <taille> octets a la fin d'un fichier référencé par
<pf>.

Le nombre d'octets écrits est (<nb> * <taille>)

— Retourne:
* Le nombre d'enregistrement écrits (et non le nombre d'octets).
* Si erreur, une valeur inférieure a <nb> (ou méme 0).

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 142

[SMI4-fsr]

71

Programmation Il (M21-54) [SMI4-fsr]

Traitement par Enregistrements
(Exemple)

Lecture d'enregistrements dans un fichier :
— Cet exemple :

* est une lecture du contenu d'un fichier appelé FichParcAuto

* avec stockage du contenu de ce fichier dans un tableau en
mémoire ParcAuto.

— Les cases du tableau sont des structures contenant :
* un entier,
* une chaine de 20 caracteres et
* 3 chaines de 10 caracteres.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 143

Traitement par Enregistrements
(Exemple)

struct automobile {
int age;
char couleur[20], numero[10], type[10], marque[10];
} ParcAuto[20] ;
main() {
FILE *pf ; /* pointeur de fichier */
inti;
unsigned fait ;
pf = fopen("FicParcAuto","rb+") ; /* Remarquer le type d'ouverture du fichier */
if (pf == NULL) {
printf("Can't open FicParcAuto\n"); returnl;
}
for (i=0 ; i<20 ; i++) {
fait = fread(&ParcAutol[i], sizeof(struct automobile),1,pf) ;
if (fait 1= 1) {
printf("Erreur lecture fichier ParcAuto\n"); return2;
}
}
fclose(pf) ;
}

[SMI4-fsr]

Programmation Il (M21-54) 2014-2015 144

72

Programmation Il (M21-54)

Traitement par Enregistrements
(Exemple)

Remarque :

Il est possible de demander la lecture de 20
enregistrements en une seule opération, en remplagant
la boucle for par :

fait = fread(ParcAuto, sizeof(struct automobile), 20, pf) ;
ou bien par :

fait = fread(ParcAuto, sizeof ParcAuto, 1, pf) ;

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 145

Lecture et Ecriture Formatées
dans les Fichiers

— Sont utilisées les deux fonctions fprintf et fscanf

— permettent de réaliser le méme travail que printf
et scanf sur des fichiers ouverts en mode texte :

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 146

[SMI4-fsr]

73

Programmation Il (M21-54)

Ecriture Formatée dans les Fichiers

Fonction fprintf (écriture formatée sur un fichier ouvert en mode
texte)
int fprintf(FILE *<PointeurFichier>, char *<Format>,
<Arguments>);

Ecrit les données formatées dans un fichier.

— Fonctionne ainsi :
¢ Accepte une série d'arguments (les valeurs des données a écrire).

* Applique a chaque argument un spécificateur de format dans
<Format>.

* Envoie les données formatées dans un fichier.
— Retourne:

¢ Le nombre de caracteres écrits

¢ Une valeur négative en cas d'erreur.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 147

Ecriture Formatée dans les Fichiers

Remarques :

— Le nombre d'arguments doit satisfaire le nombre
de formateurs :
* S'ily a trop d'arguments (pas assez de formateurs),
ceux en trop sont ignorés.
— En pratique,
* |les arguments représentent les rubriques qui forment

un enregistrement et dont les valeurs respectives sont
écrites dans le fichier.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 148

[SMI4-fsr]

74

Programmation Il (M21-54) [SMI4-fsr]

Ecriture Formatée dans les Fichiers
(Exemple)

#tinclude <stdio.h>

int main(void) {

FILE *pf ;

inti=100;

charc="C';

float f=1.234;

pf = fopen("Essai.txt", "w+") ; /* ouverture mise a jour */
fprintf(pf, "%d %c %f", i, c, f) ;

fclose(pf) ; /* fermer le fichier */

return 0 ;

}

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 149

Lecture Formatée dans les Fichiers

Fonction fscanf (lecture formatée dans un fichier ouvert en mode
texte)

int fscanf(FILE *<PointeurFichier>, char *<Format>, <Adresses>);

— Lit des données formatées dans un fichier :

* <PointeurFichier> fait référence au fichier.

* <Format> : format de lecture des données.

* <Adresses> : adresses des variables a affecter a partir des données.

* Un formateur et une adresse doivent étre fournis pour chaque variable.
— Retourne:

* Le nombre d'éléments lus (0 si aucun élément n'a été traité totalement)
* EOF si fin de fichier.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 150

75

Programmation Il (M21-54) [SMI4-fsr]

Lecture Formatée dans les Fichiers
(Exemple)

#include <stdlib.h>
#include <stdio.h>
int main(void) {
inti;
printf("Introduisez un entier : ") ;
/* lire un entier a partir de I'entrée standard */
if (fscanf(stdin, "%d", &i))
printf("L'entier lu est : %i\n", i) ;
else {
fprintf(stderr, "Erreur en lisant un entier sur stdin\n") ;
exit(1) ;
}
return 0 ;

}

[SMI4-fsr]

Programmation Il (M21-54) 2014-2015 151

Lecture et Ecriture Formatées
dans les Fichiers

Remarques :
— fprintf(stdout, "Bonjour\n")

équivalente a printf("Bonjour\n")

Dans les fichiers texte, il faut ajouter le symbole de fin de ligne
\n' pour séparer les données.

— fscanf(stdin, "%d", &N)

équivalente a scanf("%d", &N)

A l'aide de fscanf, il est impossible de lire toute une phrase
dans laquelle les mots sont séparés par des espaces.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 152

76

Programmation Il (M21-54) [SMI4-fsr]

Détection de la Fin de Fichier

Function feof
int feof(FILE *<PointeurFichier>) ;

— Consulte un "indicateur de fin de fichier" sur
lequel agissent les différentes fonctions de
manipulation de fichier.

— Retourne :

* Une valeur égale a O si la fin de fichier (EOF) n'a pas été
détectée.

¢ Une valeur différente de 0 sinon.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 153

Déplacement dans le Fichier
(Acces Direct)

— Les fonctions précédentes modifient de maniéere automatique
le pointeur courant dans le fichier correspondant (adresse de
I'octet dans le fichier a partir duquel se fera la prochaine
opération de lecture ou écriture).

— Aprés chaque opération de lecture ou d'écriture, ce pointeur
de position (défini dans FILE) est incrémenté du nombre de
blocs transférés pour indiquer la prochaine opération de
lecture ou écriture : C'est |'accés séquentiel.

— Les fonctions suivantes permettent de connaitre la valeur de la
position courante dans le fichier et de la modifier. Cela
permettra de réaliser des lectures ou des écritures en
n'importe quel endroit du fichier : C'est I'accés direct.

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 154

77

Programmation Il (M21-54) [SMI4-fsr]

Déplacement dans le Fichier (Accés Direct)
(Fonctions associées a la position dans un fichier)

Fonction fseek
int fseek(FILE *<PointeurFichier>, long <Offset>, int <Base>) ;

— Change la position courante dans le fichier référencé par <PointeurFichier>
(permet de placer le pointeur de position sur un octet quelconque du fichier).

— <Offset>: déplacement a l'intérieur du fichier en nombre d'octets.
« Si<Offset> est positif, le déplacement se fait vers la fin du fichier.
* Si<Offset> est négatif, le déplacement se fait vers le début du fichier.

— <Base>: point de départ du déplacement. <Base> peut prendre les valeurs
suivantes définies dans <stdio.h> :
¢ 0 (ou SEEK_SET) : déplacement relatif au début du fichier.
¢ 1 (ou SEEK_CUR) : déplacement relatif a la position courante.
¢ 2 (ou SEEK_END) : déplacement relatif a la fin du fichier.

— Retourne:

* 0Oen casde succes.
* Une valeur différente de O si le déplacement ne peut étre réalisé

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 155

Déplacement dans le Fichier (Accés Direct)

(Fonctions associées a la position dans un fichier)

Remarques :
— Le 1°" octet du fichier (octet de rang 1) est a la
position 0.
— L'instruction :
fseek(pf, 1L * sizeof(enrg)*(n-1), SEEK_SET) ;

fait placer le pointeur de position sur le néme
enregistrement enrg du fichier référencé par pf.

— Utiliser fseek avec précaution pour un fichier
texte.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 156

78

Programmation Il (M21-54) [SMI4-fsr]

Déplacement dans le Fichier (Accés Direct)
(Fonctions associées a la position dans un fichier)

Utilité de fseek : modification d'un enregistrement
du fichier connaissant sa position dans le fichier.

Exemple : Modifier le né™¢ enregistrement
fseek(pf, 1L * sizeof(enrg)*(n-1), 0) ;
fread(&enrg, sizeof(enrg),1 ,pf) ;
/* Instructions pour Modifier I'enregistrement enrg */

fseek(pf,1L * sizeof(enrg)*(n-1), 0) ;
fwrite(&enrg, sizeof(enrg),1 ,pf) ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 157

Déplacement dans le Fichier (Accés Direct)
(Fonctions associées a la position dans un fichier)

Fonction ftell
long ftell(FILE *<PointeurFichier>) ;

— Détermine la valeur de la position courante dans
le fichier référencé par <PointeurFichier>.
— Retourne:

* Sur les fichiers binaires : nombre d'octets entre la
position courante et le début du fichier.

* Sur les fichiers texte : une valeur permettant a fseek de
repositionner le pointeur courant a I'endroit actuel.

e -1L en cas d'erreur.

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 158

79

Programmation Il (M21-54)

Déplacement dans le Fichier (Accés Direct)
(Fonctions associées a la position dans un fichier)

Remarque :

Pour connaitre la taille (le nombre d'octets) d'un
fichier, il suffit de faire :

long taille, nbre_enrg;
fseek(pf, OL, SEEK_END) ;

taille = ftell(pf) ;
nbre_enrg = taille / (sizeof(enrg)) ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 159

Déplacement dans le Fichier (Accés Direct)
(Fonctions associées a la position dans un fichier)

Fonction rewind
void rewind(FILE *<PointeurFichier>) ;

Permet de se placer en début de fichier.

rewind(pf) ;
est équivalentea fseek(pf, OL, SEEK_SET) ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 160

[SMI4-fsr]

80

Programmation Il (M21-54)

Déplacement dans le Fichier (Accés Direct)
(Exemple)

Modification de I'dge des voitures dans le

fichier FicParcAuto :

Le programme correspondant procéde de la

maniére suivante :

* Lit un enregistrement du fichier dans une zone

mémoire

¢ Modifie la zone en mémoire

* Replace le pointeur courant sur le début de
I'enregistrement pour pouvoir réécrire cet

enregistrement

e Ecrit la zone mémoire dans le fichier.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 161

Déplacement dans le Fichier (Accés Direct)
(Exemple)

#include <stdio.h>
struct automobile {
int age ;
char couleur[20], numero[10], type[10], marque[10] ;
}UneAuto ;
main() {
FILE *pf ;
inti;
unsigned fait ;
pf = fopen("FicParcAuto","r+b") ;
if (pf == NULL) {
printf("Can't open FicParcAuto\n") ; return1l;
}
for (i=0;i<20; i++) {
/* lecture d'un enregistrement du fichier dans la zone
mémoire (variable) UneAuto du type struct automobile */
fait = fread(&UneAuto, sizeof UneAuto, 1, pf) ;
if (fait I=1) {

/* Modifier la position courante du fichier pour
positionner le pointeur courant a |'adresse de début de
I'enregistrement qui est en mémoire */

fait = fseek(pf, -1L * sizeof UneAuto, SEEK_CUR) ;
if (fait 1= 0) {
printf("Erreur déplacement fichier ParcAuto\n") ;
return 3;

}

/* Ecrire dans le fichier le contenu de la zone mémoire
UneAuto. Cette écriture provoque la modification de
I'enregistrement sur disque */
fait = fwrite(&UneAuto, sizeof UneAuto, 1, pf) ;
if (fait I=1) {
printf("Erreur écriture fichier ParcAuto fait=%d\n",

fait); return4;

printf("Erreur lecture fichier ParcAuto\n") ; return2; }}
}
fclose(pf) ;
UneAuto.age++ ; /* modifier la valeur du champ age dans la } (pf);
structure en mémoire */
[SMI4-fsr] Programmation Il (M21-54) 2014-2015 162

[SMI4-fsr]

81

Programmation Il (M21-54) [SMI4-fsr]

Gestion des erreurs

— Les erreurs des fonctions d'entrées/sorties peuvent étre
récupérées par le programme. Pour donner plus d'informations
sur les causes d'erreur, les fonctions d'entrées/sorties utilisent
une variable globale de type entier appelée errno.

— Par exemple, si un fichier n'a pas pu étre ouvert avec succes,
(résultat NULL), un code d'erreur est placé dans la variable
errno. Ce code désigne plus exactement la nature de l'erreur.
Les codes d'erreurs sont définis dans <errno.h>.

— L'appel de la fonction strerror(errno) retourne un pointeur sur
la chaine de caracteres qui décrit I'erreur dans errno.

— L'appel de la fonction perror(s) affiche la chaine s suivie du signe
deux-points (:), puis le message d'erreur qui est défini pour
I'erreur dans errno, et enfin un caractére de saut de ligne.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 163

Gestion des erreurs

(Exemples)
#include <stdio.h> #include <stdio.h>
#include <errno.h> main() {
main() { FILE *pf ;
char *buffer ; pf = fopen("Test.dat", "r") ;
buffer = strerror(errno) ; if (!pf) - o
printf("Error : %s\n", buffer) ; perror("Impossible d'ouvrir le fichier
returnO; ' ' en lecture") ;
} ’ returnO0;
}
[SMI4-fsr] Programmation Il (M21-54) 2014-2015 164

82

Programmation Il (M21-54)

Vider le Tampon associé a un Fichier

Fonction fflush
int fflush(FILE *<PointeurFichier>) ;
— Force I'écriture (physique) sur disque des données en

attente dans le tampon (buffer) associé au fichier
référencé par le pointeur <PointeurFichier>.

— Retourne:
* 0 dans le cas normal.
* EOF en cas d'erreur (si I'écriture physique s'est mal passée)

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 165

Vider le Tampon associé a un Fichier
(Exemple)

inta, intb, float c;

chard;

fflush(stdin) ; /* pour vider le buffer d'entrée standard */

d = getchar() ;

printf("%d %d %f %c\n",a,b,c,d) ;

fflush(stdout) ; /* pour vider le buffer de sortie standard et
donc forcer I'affichage du contenu de ce buffer */

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 166

[SMI4-fsr]

83

Programmation Il (M21-54)

Suppression Physique d'un Fichier

Fonction fflush
int remove (const char *<NomFichier>)
— Supprime le fichier <NomFichier> sur disque.
— S'assurer que le fichier a supprimer a été fermé.
— Retourne :

* 0 en cas de succes
e -1 si erreur

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 167

Suppression Physique d'un Fichier
(Exemple)

fich char[80] ;
printf("Fichier a supprimer ? : ") ; gets(fich) ;
if (remove(fich) == 0)

printf("Fichier \"%s\" supprimé\n", fich) ;
else

perror("remove") ;

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 168

[SMI4-fsr]

84

Programmation Il (M21-54)

v" Arguments de la fonction main
v Fonctions sprintf et sscanf

v’ Préprocesseur

v' Compilation séparée

v

La fonction main() peut recevoir un certain nombre d'arguments :
— Ceux-ci doivent étre transmis dans la ligne de commande (/a ligne destinée a appeler le
programme exécutable).
— Laligne de commande est considérée comme un tableau de chaines de caractéres
— deux identificateurs prédéfinis sont destinés a récupérer ces arguments : argc et argv

La définition de la fonction main() est alors :
main(int argc, char *argv([])

/* code de la fonction main */

}

ou d'une maniére équivalente :

main(int argc, char **argv)

{

/* code de la fonction main */

}

[SMI14-fsr] Programmation Il (M21-S4) 2014-2015

[SMI4-fsr]

85

Programmation Il (M21-54) [SMI4-fsr]

Arguments de la Fonction main

Signification :
— argc : nombre d'arguments transmis dans la ligne de
commande. Le nom du programme exécutable lui-

méme est pris en compte dans cette valeur (le nombre
d'arguments est-il toujours au moins égal a 1)

— argv : pointeur sur les différentes chaines de caractéres
passées dans la ligne de commande. Le premier
argument, argv[0], contient le nom du programme.

Les arguments transmis dans la lighe de commande
sont séparés par un espace

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 171

Arguments de la Fonction main
(Exemple)

Soit la lighe de commandes suivante :
C:\>COPIE DE FICHA VERS FICHB

COPIE désigne le nom du programme exécutable
DE, FICHA, VERS et FICHB désignent les arguments de la commande

Supposons que le code source du programme COPIE est le suivant :
#include <stdio.h>
main(int argc, char *argv([])
{
inti;
for (i = 1; i<argc ; i++) /* affichage des arguments */
printf(%s \n", argvl[i]) ;
}

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 172

86

Programmation Il (M21-54)

Arguments de la Fonction main
(Exemple)

argv[0] contient I'adresse du 1°" caractére du nom
du programme ("COPIE")

argv[1] celle du 1°¢"argument ("DE")

argv[2] celle du 2é™me argument ("FICHA")
argv[argc-1] celle du dernier argument ("FICHB")
argv[argc] contient NULL

[SMI4-fsr] Programmation Il (M21-54) 2014-2015

173

Fonctions sprintf et sscanf

telles que :
* scanf et printf.

* fprintf et fscanf travaillant sur des fichiers ouverts en
mode texte.

— Deux nouvelles fonctions appelées :
* sprintf et sscanf

s'utilisent pour faire de la conversion de données (ou
formatage de données) en mémoire.

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015

— Plusieurs fonctions font des conversions de format

174

[SMI4-fsr]

87

Programmation Il (M21-54)

[SMI4-fsr]

Fonction sprintf

Prototype :

int sprintf(char *string, const char *format, ...) ;

Permet de faire une conversion de données vers une zone
mémoire (string) par transformation en chaine de caractéres.
Possede trois arguments :

¢ Zone dans laquelle les caractéres sont stockés ;

¢ Format d'écriture des données ;

¢ Valeurs de données.

sprintf convertit les arguments (les valeurs de données) suivant
le format de contréle et met le résultat dans la chaine string.

Retourne :
* nombre de caractéeres stockés.
* valeur négative en cas d'erreur.

Programmation Il (M21-54) 2014-2015 175

[SMI4-fsr]

Fonction sprintf

Exemple :

#include <stdio.h>

char s1[81], s2[81] ;

char *ch;

inti, code;

i=15;

code = sprintf(s1, "%d", i) ;

code = sprintf(s2, "i vaut %d et sa moitié %f", i, i/2.0) ;

code = sprintf(ch, "%d", i) ;

/* Erreur ! on passe a sprintf un pointeur ch non initialisé */

/* Solution ! initialiser ch soit par un tableau de caractéres
suffisamment grand, soit par appel a une fonction d'allocation
dynamique comme calloc */

Programmation Il (M21-54) 2014-2015 176

[SMI4-fsr]

88

Programmation Il (M21-54) [SMI4-fsr]

Prototype :
int sscanf(char *string, const char *format, ...) ;

Permet de faire une lecture formatée de données d'une zone
mémoire.

Possede trois arguments :
* Zone dans laquelle les caracteres sont acquis ;
¢ Format de lecture des données ;
* Adresse des variables a affecter a partir des données.

sscanf extrait d'une chaine de caractéres (string) des valeurs qui sont
stockées dans des variables suivant le format de contréle.

Retourne :
¢ nombre de variables saisies.
* EOF en cas d'erreur empéchant toute lecture.

[SMI14-fsr] Programmation Il (M21-S4) 2014-2015 177
Exemple :
ttinclude<stdio.h>
char *s,
int code ;

double 3, b, c;
s="12.5 12.3 11.6";
code = sscanf(s, "%f %f %f", &a, &b, &c) ;
/* sscanf va lire la chaine s pour
affecter les 3 valeurs a, b, c */

[SMI14-fsr] Programmation Il (M21-S4) 2014-2015 178

89

Programmation Il (M21-54) [SMI4-fsr]

Fonctions sprintf et sscanf

Remarques :

— scanf est une source permanente de problémes !

Pour remédier a ceci, on fait recours a
I'utilisation de gets et/ou de sscanf.

— sprintf et sscanf sont tres utilisées pour convertir
des numériques en chaine de caracteres et
inversement.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 179

Fonctions sprintf et sscanf
(Exemple pratique)

#include <stdlib.h> /* contient le prototype de la fonction random. random(n), avec n entier, permet de
générer un nombre aléatoire a tel que 0<=a<n */

char *noms[4] = {"Nom1", "Nom2", "Nom3", "Nom4"} ;

#define NBRE 4

void main(void) {
inti;
char temp[4][80] ;
char nom[20] ;
int age ;
long salaire ;
/* créer les données nom, age et salaire */
for (i=0; i< NBRE; ++i)
sprintf(templi], "%s %d %ld", noms[i], random(10) + 20, random(5000) + 27500L) ;
/* afficher une barre de titres */
printf("%4s | %-20s | %5s | %15s\n", "#", "Nom", "Age", "Salaire") ;
printf(" \n");
/* lire et afficher les données nom, age et salaire */
for (i=0; i< NBRE; ++i) {
sscanf(templi],"%s %d %Id", &nom, &age, &salaire) ;
printf("%4d | %-20s | %5d | %15Id\n", i + 1, nom, age, salaire) ;
}
}

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 180

90

Programmation Il (M21-54) [SMI4-fsr]

Préprocesseur

— Effectue un prétraitement, lors de la compilation d'un
programmeC, :
* en supprimant dans un premier temps tous les commentaires,
* puis en traitant des "directives de compilation".
* Enfin, envoie le programme € modifié au compilateur.

— Les directives de compilation, dans un programme C,
commencent toutes par un caractere # et sont de trois
types:

* directive d'inclusion de fichiers ;
* directives de compilation conditionnelle ;

* directives de substitution symbolique. Ce type permet :
— la définition de constantes ;
— la définition de macros (substitution avec arguments)

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 181

Directive d’Inclusion de Fichier

#include
Exemples :

#include <fichier.h>

réalise l'inclusion du fichier fichier.h contenu dans un répertoire
spécial (connu par le préprocesseur)

ttinclude "fichier.h"

réalise l'inclusion du fichier fichier.h contenu dans le répertoire de
travail ou, a défaut, dans le répertoire spécial. Il est également
possible d'indiquer un chemin précis pour la recherche du fichier, soit
par exemple, #include "c:\dev-cpp\include\fichier.h«

L'extension .h d'un fichier est I'abréviation de "header" (entéte).

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 182

91

Programmation Il (M21-54)

Directives de Compilation Conditionnelle

— Role:
Incorporer ou exclure de la compilation des portions de texte de
programme selon que I'évaluation de la condition donne 0 ou 1.

— Plusieurs directives :

Directive Role
#ifdef inclusion si symbole défini
#if defined méme chose
#ifndef inclusion si symbole non défini
#if inclusion si condition vérifiée
#else sinon
ttelif else if, c.-a-d. sinon si
#endif fin de si
#undef met fin a |'existence d'un symbole
[SMI14-fsr] Programmation Il (M21-54) 2014-2015 183

Directives de Compilation Conditionnelle
(Exemple 1)

#define SYS1 1 /* définir symbole SYS1 et l'initialiser a 1 */

main() {

#if defined (SYS1)

... /* décl. Ou instr. C */ /* Ces lignes seront incluses dans la compilation */
#endif

#if defined (SYS1)

... /* décl. Ou instr. C */ /* idem que précédemment */

#else

... /* décl. Ou instr. C */ /* Ces lignes auraient été incluses dans la compilation si SYS1 n'avait pas été défini */
#endif

#if !defined (SYS1)

... /* décl. Ou instr. C */ /* idem que précédemment */

#endif

#if SYS1==1

... /* décl. Ou instr. C */ /* Ces lignes seront incluses dans la compilation puisque SYS1 vaut 1*/
#endif

#if defined (SYS1) && defined (SYS2)

... /* décl. Ou instr. C */ /* Ces lignes seraient été incluses dans la compilation si SYS1 et SYS2 seraient définis */
#endif

#if (sizeof(int) == 2)

... /* décl. Ou instr. C */ /* lignes incluses si int est codé sur 16 bits */

#endif

)...

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 184

[SMI4-fsr]

92

Programmation Il (M21-54) [SMI4-fsr]

Directives de Compilation Conditionnelle
(Exemple 2)

#defineSYS1 1 Apres traitement des directives par
f;ﬁ[‘)e{m” le préprocesseur, le texte résultat
#ifdef SYS1 de ce programme est ainsi :
inti,j;
#else
floati, j; main
#endif () {
J' = i*2 ; . . .,
#ifdef SYS1 Int I’J 4
i=5; HE-E .
#else J =1 2 ’
i=55; .
#endif i=5 ;
#undef SYS2
#if defined (SYS2) }
j=6;
#endif
}

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 185

Directives de Compilation Conditionnelle

Remarques :

— Les comparaisons effectuées par le préprocesseur
ne peuvent porter que sur des constantes entieres
(et pas sur des variables du programme dont
I'évaluation n'est possible qu'a I'exécution...)

— Les opérateurs interprétables par le préprocesseur
sont: !, ~(complément a 1), -, +, *, /, | (ou binaire
inclusif), %, * (ou binaire exclusif), & (et binaire),
<,,<,,<= = 1= &&, [/, ==, et |'opérateur
ternaire conditionnel ?:

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 186

93

Programmation Il (M21-54) [SMI4-fsr]

Directives de Compilation Conditionnelle
(Exemple 3)

#define _DEBUG_

#ifdef DEBUG_
printf("Ligne 1234 : x = %d - y = %d -- z = %d\n",x,y,z) ;
#endif

#ifdef DEBUG_
printf("Ligne 2345 : x = %d - y = %d -- z = %d\n",x,y,z) ;
#endif

— Les directives de compilation conditionnelles sont particulierement
utiles pour la "mise au point" d'un programme C:

* Dans I'exemple ci-dessus :

— La "trace" (I'affichage de la valeur des variables dans les principales étapes
d'un programme) n'est effective que si le symbole _DEBUG_ est défini.

— La suppression de la définition de ce symbole dans le programme produira la
disparition de cet affichage apres la prochaine compilation.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 187

Directives de substitution symbolique
(Définition de constantes)

#define <symbole> <équivalent>
#undef

— Le préprocesseur remplace dans un programme C (en
dehors des lignes commengant par un caractére #) toutes
les occurrences du symbole <symbole> par son équivalent
<équivalent>, en réitérant le processus si besoin est, sauf
si cela engendre une infinité de remplacements.

— Le domaine de visibilité de la substitution d'un symbole
s'étend entre la directive #define de ce symbole et la
directive #define suivante de ce méme symbole ou la
directive #undef de ce méme symbole ou, a défaut,
jusqu'ala fin du programme.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 188

94

Programmation Il (M21-54) [SMI4-fsr]

Directives de substitution symbolique
(Définition de constantes)

— Le symbole <symbole> est formé de lettres, de
chiffres et du caractére _ et doit impérativement
commencer par une lettre.

— L'équivalent <équivalent> doit étre tapé sur une
seule ligne. Si I'écriture de |'équivalent nécessite
plusieurs lignes, il faut faire précéder la frappe de
chaque caractére retour-chariot par un caractere \

[SMI4-fsr] Programma tion Il (M21-54) 2014-2015 189

Directives de substitution symbolique
(Définition de constantes)

Exemples :
#define P1 3.14159
#define FAUX 0
#define VRAI 1

#undef PI

[SMI4-fsr] Programma tion Il (M21-54) 2014-2015 190

95

Programmation Il (M21-54) [SMI4-fsr]

Définition de macros (ou macro-instructions)

— Il existe une forme paramétrée pour la substitution
symbolique :

#define <symbole(param1, param2,...)> <équivalent>

— Les parametres qui suivent une occurrence de <symbole>,
dans le programme, sont identifiés par le préprocesseur a
paraml1, param?2, ...etc.

— L'équivalent <équivalent> est envoyé au compilateur par le
préprocesseur, avec la méme substitution des paramétres.
On appelle cela une "macro-instruction" (ou "macro").

— La parenthése ouvrante avant la liste des parametres doit

suivre immédiatement le symbole (il ne doit pas y avoir
d'espace).

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 191

Définition de macros (ou macro-instructions)
(Exemple 1)

#define ABS(n) ((n0) ? n: -n)

La séquence suivante :
L1 : main() {
L2:intm,n=-8;

L3: m=ABS(n);
L4 : printf("%d",m) ;
L5:}

deviendra, apres le passage du préprocesseur :

main() {
intm,n=-8;
m=((n0)?n:-n);
printf("%d",m) ;

}

A I'exécution, |a valeur 8 s'affichera a I'écran.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 192

96

Programmation Il (M21-54) [SMI4-fsr]

Définition de macros (ou macro-instructions)

Remarque :

— L'emploi des macro-instructions doit faire I'objet
d'une attention particuliere. Pour éviter de
nombreux probléemes (dus aux priorités des
opérateurs) :

* il est conseillé de parentheser les parameétres de la
macro-instruction

* |l faut, de plus, éviter de rendre le programme
incompréhensible par I'abus de #define.

[SMI4-fsr]

Programmation Il (M21-54) 2014-2015 193

Définition de macros (ou macro-instructions)

(Exemple 2)
#define SOMME(X,Y) X+Y
main() { main() {
inti,j, k; inti, j, k;
floata, b, c; floata, b, c;
k = SOMME(i,j) ; _m k=i+;
¢ = SOMME(a,b) ; c:a+!:>;
k = SOMME(5%*i,b-a) ; k = 5*i+b-a ;
1 }

Il est a noter que pour ce programme,

#define SOMME(X,Y) ((X)+(Y))

aurait été meilleur car a I'abri de toute erreur en cas d'utilisation a l'intérieur

d'une expression arithmétique ou en cas d'utilisation avec des arguments qui
sont eux-mémes des expressions.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015

194

97

Programmation Il (M21-54)

Utilité d’une macro-instruction

— permet d'optimiser le code compilé, en limitant le
nombre d'appels a une fonction dans le
programme exécutable.

— permet d'effectuer des actions sur des variables
dont le type n'est pas connu a priori :

* (dans I'exemple 1 donné ci-dessus, la macro ABS peut
calculer la valeur absolue d'un entier ou d'un réel).

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 195

Macro-instruction sans parametre

— |l est possible de définir une macro-instruction
sans parameétre, comme dans |'exemple suivant,
effectivement présent dans le fichier stdio.h :

#define getchar() getc(stdin)

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 196

[SMI4-fsr]

98

Programmation Il (M21-54) [SMI4-fsr]

Opérateurs et symboles prédéfinis

Opérateur #

— Dans une macro, il permet de substituer un parametre
par sa valeur convertie en chaine de caracteres.

Exemple :

#tdefine chainel(c) #c

#define chaine2(c) "c"
printf("%s\n",chainel(Module 4)) ;
printf("%s\n",chaine2(Licence)) ;

produit I'affichage a I'écran de :

Module 4
C

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 197

Opérateurs et symboles prédéfinis

Opérateur #i#

— Cet opérateur effectue la concaténation de deux
symboles.

Exemple :

#define f(a,b) a##tb
f(Module,4) ; /* est remplacé par Module4 */

[SMI4-fsr] Programmation Il (M21-S4) 2014-2015 198

99

Programmation Il (M21-54) [SMI4-fsr]

Compilation séparée

— Permet de fragmenter un grand programme en des parties
qui peuvent étre compilées indépendamment les unes des
autres.

— En C, un programme source peut étre décomposé en un
ensemble de fichiers de texte (aussi appelés source) :
* Ces fichiers pourront étre compilés séparément et finalement reliés
par I'éditeur de liens pour en faire un programme exécutable.
— |l sera ainsi possible :
» d'apporter des modifications a un fichier sans devoir recompiler
I'ensemble

* de créer des librairies de fonctions (sous forme de fichiers
d'extension .lib) sans avoir a mettre le texte de ces fonctions a la
disposition des utilisateurs.

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 199

Compilation séparée

PROGRAMME SOURCE

[

|

|

|

| fichierl.c fichier2.c fichier3.c

| (source) (source) (source)

; (module) (module) (module)

|
Compilation Compilation Compilation

v v v

fichierl.obj fichier2.0bj fichier3.obj

(objet) (objet) (objet)

Edition|de liens

programme exécutable
(.exe)

[SMI4-fsr] Programmation Il (M21-54) 2014-2015 200

100

Programmation Il (M21-54)

[SMI4-fsr]

Compilation séparée

— Chaque fichier source contient les éléments suivants dans
un ordre quelconque :

déclarations de variables et de fonctions externes,
définitions de types synonymes ou de modeéles de structures,

définitions de variables globales (des demandes de réservation
mémoire destinées a I'éditeur de liens),

définitions de fonctions,

directives de précompilation et des commentaires (les deux sont
traités par le préprocesseur).

— Le compilateur ne voit que les quatre premiers types
d'objets.

— Les fichiers inclus par le préprocesseur ne doivent contenir
que des déclarations externes ou des définitions de types
et de modeles de structures.

Programmation Il (M21-54) 2014-2015 201

}

{
}

[SMI4-fsr]

Compilation séparée
(Exemple)

module 1 (prl.c)

void func(void) ; /* fonction prototype */

int nb; /* provoque allocation de mémoire (2 octets) */
main()

{

nb=2;

func() ; /* défini dans un module compilé séparément */

module 2 (pr2.c)
externint nb; /* pas d'allocation de mémoire */
void func(void)

printf("nb : % \n", nb) ;
Les deux modules sont compilés séparément. La compilation de prl.c crée

prl.obj et celle de pr2.c crée pr2.obj. L'éditeur de liens génere le module
exécutable.

Programmation Il (M21-54) 2014-2015 202

[SMI4-fsr]

101

