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Introduction 2

Plan du cours

H Introduction
H Analyse vectorielle
H Électrostatique
H Magnétostatique
H Phénomènes d’induction
H Équations de Maxwell
H Ondes électromagnétiques

26 séances cours + 26 séances TD (39h × 2)
H Optique ondulatoire

6 séances cours + 6 séances TD (9h × 2)

3

Règles du jeu / conseils

H Travail individuel

◮ Contrôles : 3 (IA) + 1 (PV)
◮ Coefficients croissants

14%, 18%, 22%, 26%
◮ Contrôle continu : quiz, tableau, etc.

20% (harmonisation des notes entre groupes TD)

H Les transparents
H Classeurs, prise de notes
H J@lon : http://jalon.unice.fr
H . . .

4
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Un tout petit peu d’histoire. . .

H L’ambre (ἤλεκτρον) et l’aimant (μαγνήτης) :
3000 ans d’histoire !

H Premières traces écrites :
Thalès (624–547 av. J.C.)
Platon (427–341 av. J.C.)

H Deux phénomènes distincts. . .
H . . . unifiés à la fin du XIXe siècle (1864)

par James Clerk Maxwell (1837–1879)
H (et après ?)

5

Qu’est-ce qu’on fait ici ?

H Pourquoi étudier l’électromagnétisme ?
H La technologie (toutes ces applications. . . )

C’est tout ?
H Les quatre forces (interactions) de la Nature :

1. Gravitationnelle
2. Électromagnétique
3. Nucléaire forte
4. Nucléaire faible

H Dans quels contextes ? Dans quel ordre ?

6
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Forces gravitationnelle et électrique

H Deux électrons
me = 9.1× 10−31 kg
qe = −1.6× 10−19C

H Force gravitationnelle

Fg = G
meme

r2
(G = 6.67 × 10−11 Nm2 kg−2)

H Force électrique

Fe = kc
qeqe
r2

(kc = 8.99 × 109 Nm2 C−2)

H Fe/Fg = 0.23 × 1042

H
Univers
proton

=
1× 1026 m

1.6× 10−15 m
= 0.6× 1041

7

L’É/M est partout !

Les forces et les phénomènes électromagnétiques se
trouvent partout autour de nous !

(mais pourquoi on ne sent rien ?)

8
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Champs électromagnétiques

H Pourquoi utiliser les champs ~E et ~B pour décrire ces phénomènes ?
H Force électrique entre deux charges : loi de Coulomb

~F = kc
q1q2
r2

û1→2

Valable uniquement si les charges sont immobiles !
Sinon ? la formule devient très compliquée. . .

H Force électromagnétique (force de Lorenz) :

~F = q(~E + ~v ∧ ~B) (1)

Exercée sur une charge q de vitesse ~v se déplaçant dans un champ ~E et ~B.
Valable toujours.

9

Comment ça marche ?

1. Les charges « sources » (immobiles ou pas) créent des champs.
2. Les champs agissent sur d’autres charges (force de Lorenz).

Il suffit de (bien) décrire les champs (~E et ~B) créés par les
sources.
Charge : valeur multiple de qe. . .

10
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Champ électrostatique

H « Statique » : les charges ne se déplacent pas
H Loi de Coulomb (1785)
H Force exercée par la charge 1 sur la charge 2 :

~F1→2 =
1

4πǫ0
︸ ︷︷ ︸

kc

q1q2
r2

û1→2

H Champ électrique généré par la charge 1 :

~E1 ,
~F1→2

q2
=

1

4πǫ0

q1
r2

û1→2

H Donc, à partir du champ électrique :
~F1→2 = q2 ~E1

11
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Analyse vectorielle : champ, flux 12

La notion de champ

H Champ scalaire : l’association à chaque point de l’espace d’un scalaire (un seul nombre) : p.ex.
température, altitude, . . .

H Champ vectoriel : l’association à chaque point de l’espace d’un vecteur (longueur et orientation) :
p.ex. vent, vitesse, . . .

H Il faut d’abord pouvoir se repérer et s’orienter dans l’espace !
H Systèmes de coordonnées (1, 2 ou 3 dimensions ?)
H Vecteurs

13

13 www.polytech.unice.fr/~aliferis

http://france.meteofrance.com/france/accueil
http://www.ign.fr/rubrique.asp?rbr_id=444&lng_id=FR
http://marine.meteofrance.com/marine/accueil?45899.path=marine%252Fimgmervent
http://creativecommons.org/licenses/by-nc-sa/2.0/fr/
www.polytech.unice.fr/~aliferis
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/index.php


École Polytechnique de l’UNS
Polytech’Nice-Sophia

Parcours des Écoles d’Ingénieurs Polytech, 2e année
2012–2013

Système de coordonnées cartésiennes

Variable valeurs longueur élémentaire

x ]−∞,∞[ dx
y ]−∞,∞[ dy
z ]−∞,∞[ dz

H Surface élémentaire dS
x constant : dy dz
y constant : dz dx
z constant : dxdy

H Volume élémentaire dV = dxdy dz
H Vecteur de position : ~r = xêx + yêy + zêz

H Un système d’exception ! les trois variables ont les mêmes dimensions (longueur) et sont
équivalentes.

H (et l’oreille interne ?)

14

Système de coordonnées cylindriques

Variable valeurs longueur élémentaire

ρ [0,∞[ dρ
φ [0, 2π] ρdφ
z ]−∞,∞[ dz

H Surface élémentaire dS
ρ constant : ρdφdz
φ constant : dρdz
z constant : ρdρdφ

H Volume élémentaire dV = ρdρdφdz
H Vecteur de position : ~r = ρêρ + zêz

15
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Système de coordonnées sphériques

Variable valeurs longueur élémentaire

r [0,∞[ dr
θ [0, π] r dθ
φ [0, 2π] r sin θ dφ

H Surface élémentaire dS
r constant : r2 sin θ dφdθ
θ constant : r sin θ dr dφ
φ constant : r dr dθ

H Volume élémentaire dV = r2 sin θ dr dθ dφ
H Vecteur de position : ~r = rêr

16

Vecteurs

H Objet mathématique ayant une longueur (norme), une direction et un sens (orientation).
H Notation :

le vecteur : ~A

sa norme : ‖ ~A‖ ou A (un nombre)
H Un vecteur est défini par ses trois composantes :

~A =





A1

A2

A3





Les A1, A2, A3 dépendent du système de coordonnées choisi, mais le vecteur non !
H Astuce : le vecteur ûA = 1

‖ ~A‖
~A a la même orientation que ~A mais ‖ûA‖ = 1 !

Vecteur « unitaire »

17

15 www.polytech.unice.fr/~aliferis

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/
www.polytech.unice.fr/~aliferis
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/index.php


École Polytechnique de l’UNS
Polytech’Nice-Sophia

Parcours des Écoles d’Ingénieurs Polytech, 2e année
2012–2013

Le produit scalaire : une projection

H Le produit scalaire de ~A et ~B, deux vecteurs formant un angle θ :

~A · ~B = ‖ ~A‖‖ ~B‖ cos θ (2)

~A · ~B = AB cos θ (notation plus simple)

(Ne pas oublier le point · entre les vecteurs !)
H A cos θ : la projection de ~A sur la direction de ~B !
H Si û un vecteur unitaire (orientation) :

~A · û = projection de ~A sur la direction de û

H Dans tous les systèmes de coordonnées :

~A · ~B = A1B1 +A2B2 +A3B3 (3)

18

Vecteurs unitaires

H Des vecteurs « à part »
H Notation : lettre miniscule + chapeau û, n̂, ê, . . .
H Information sur l’orientation :

◮ Systèmes de coordonnées : êx, êρ, êθ , . . .
montrent le sens d’augmentation de la variable concernée

◮ Surfaces : n̂
montrent le sens de la normale par rapport à la surface (donc la définissent + entrée/sortie)

H « Utilité » :

◮ « Extraire » la composante d’un vecteur ~A sur la direction du vecteur unitaire û : ~A · û
(C’est quoi les composantes d’un vecteur ?)

19
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[Extra] Le vecteur de position ~r

H Pour chaque point M , le vecteur ~r indique :
la distance par rapport à l’origine (OM)
l’orientation (de O vers M).

H Coordonnées cartésiennes, M(x, y, z) :

~r = xêx + yêy + zêz

H Coordonnées cylindriques, M(ρ, φ, z) :

~r = ρêρ + zêz

(où est passé φ ?)
H Coordonnées sphériques, M(r, θ, φ) :

~r = rêr

(où sont passés θ et φ ?)

20

Système de coordonnées cartésiennes (bis)

Variable valeurs longueur élémentaire

x ]−∞,∞[ dx
y ]−∞,∞[ dy
z ]−∞,∞[ dz

H Surface élémentaire dS
x constant : dy dz
y constant : dz dx
z constant : dxdy

H Volume élémentaire dV = dxdy dz
H Un système d’exception ! les trois variables ont les mêmes dimensions (longueur) et sont

équivalentes.
H En plus, les trois vecteurs unitaires êx, êy, êz, restent les mêmes à chaque point de l’espace !

21
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Champ scalaire

H Champ scalaire : l’association à chaque point de l’espace d’un scalaire (un seul nombre) : p.ex.
température, altitude, . . .

H Un champ scalaire est une fonction de 3 variables
p.ex. en coordonnées cartésiennes : Φ(x, y, z)

22

Champ vectoriel

H Champ vectoriel : l’association à chaque point de l’espace d’un vecteur (module et direction) :
p.ex. vent, vitesse, . . .

H Un champ vectoriel est un ensemble de 3 fonctions (les composantes) chacune de 3 variables (les
coordonnées) :

~A(x, y, z) =





Ax(x, y, z)
Ay(x, y, z)
Az(x, y, z)





H Ne pas confondre composantes et coordonnées !

23
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Flux d’un champ vectoriel (intro)

(Qu’est-ce qui traverse une surface ?)

H Champ vectoriel ~h : kg s−1 m−2

H Surface élémentaire (ouverte) dS

◮ Vecteur normal à la surface n̂

◮ Vecteur d~S = n̂ dS
◮ Que représente ~h · d~S ?

H Surface ouverte S

◮ Que représente
∫

S
~h · d~S ?

H Surface fermée S

◮ Que représente
∮

S
~h · d~S ?

24

Flux d’un champ vectoriel

H Champ vectoriel ~A

H Surface (ouverte) S
Flux du champ ~A à travers S :

∫

S

~A · d~S ou
∫

S

~A · n̂ dS (4)

H Surface (fermée) S (n̂ sortant)
Flux du champ ~A à travers S :

∮

S

~A · d~S ou
∮

S

~A · n̂ dS (5)

Le flux à travers une surface fermée donne des informations sur les « sources » du champ à
l’intérieur de la surface

25
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Loi de Gauss (électrostatique)

H Électrostatique : les charges sont immobiles
H Loi de Gauss : « Le flux du champ électrique à travers une surface fermée est proportionnel à la

charge totale incluse à l’intérieur de cette surface »

∮

S

~E · d~S =

∮

S

~E · n̂ dS =
Qint

ǫ0
(6)

H La constante ǫ0 (permittivité du vide) est égale à 8.85 × 10−12 Fm−1 ≈ 10−9

36π Fm−1 (rappel sur les
dimensions : F = CV−1).

H n̂ est perpendiculaire à chaque point de la surface S et sa direction est vers l’extérieur de celle-ci.
H Le champ électrique en Vm−1

26
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Analyse vectorielle 2 : divergence 27

Couper un volume en morceaux. . .

H Volume V entouré par S (donc fermée)
H Partager V en V1,V2, entourés par S1, S2

∮

S

~A · n̂ dS =

∮

S1

~A · n̂1 dS +

∮

S2

~A · n̂2 dS

H Continuer. . .

∮

S

~A · n̂ dS =
∑

i

(∮

Si

~A · n̂i dS

)

(7)

H . . . jusqu’où ?
H Surface fermée Si élémentaire

28
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Divergence

H Quel est le flux à travers une surface élémentaire fermée ?
H Divergence = flux surface élémentaire / volume
H

div ~A , lim
∆V→0

1

∆V

∮

S

~A · d~S (8)

H div ~A : un champ scalaire ! (> 0, < 0,= 0)
H À chaque point de l’espace, div ~A ∝ flux à travers surface fermée autour de ce point
H flux ∝ sources
H La divergence du champ ~A est proportionnelle

à la densité volumique des sources qui le génèrent.

29

Loi de Gauss (électrostatique) : forme locale

H Surface élémentaire autour d’un volume élémentaire ∆V incluant une charge ∆Q :

∮

S

~E · d~S =

∮

S

~E · n̂ dS =
∆Q

ǫ0

H Densité volumique de charge ρ = dQ/dV
H Charge ∆Q =

∫

∆V ρdV = ρ∆V
∮

S

~E · d~S =
ρ∆V
ǫ0

div ~E =
ρ

ǫ0
(9)

H (et alors ?)

30
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Calcul de la divergence

H Système de coordonnées cartésiennes
H Surface élémentaire autour de (x, y, z) :

cube centré à (x, y, z), de dimensions ∆x,∆y,∆z
H Calculer le flux à travers sa surface
H

div ~A = lim
∆x,∆y,∆z→0

flux
volume

H

div ~A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
(10)

H Systèmes de coordonnées cylindriques et sphériques. . .

31

Théorème de la divergence (1)

H Surface fermée S autour d’un volume V
H Découper V en plusieurs petits morceaux Vi
H Si la surface (fermée) autour de Vi

flux à travers S =
∑

i

flux à travers Si

∮

S

~A · n̂ dS =
∑

i

(∮

Si

~A · n̂i dS

)

H À la limite où la surface Si devient infiniment petite (englobe ∆V → 0) :

lim
∆V→0

1

∆V

∮

Si

~A · n̂i dS = div ~A

32
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Théorème de la divergence (2)

divergence =
flux

volume
∮

Si

~A · n̂i dS = div ~A dV

H Donc :
∮

S

~A · n̂ dS =

∫

V
div ~A dV (11)

H Théorème

◮ de la divergence
◮ de Gauss
◮ de Ostrogradsky

33

Loi de Gauss : intégrale vers locale

H Loi de Gauss, forme intégrale (6), tr.26 :
∮

S

~E · n̂ dS =
Qint

ǫ0

H La charge à l’intérieur de S : Qint =
∫

V ρ(~r) dV
H Le flux à travers S :

∮

S
~E · n̂ dS =

∫

V div ~E dV
H ∫

V
div ~E dV =

∫

V

ρ(~r)
ǫ0

dV

div ~E =
ρ

ǫ0

34
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Superposition 35

Le principe de superposition : ~1 + ~1 = ~2

H L’effet de la somme = la somme des effets
H Charge ponctuelle qi à ~ri,

crée un champ ~Ei à ~r :

~Ei(~r) =
1

4πǫ0

qi
‖~r − ~ri‖2

~r − ~ri

‖~r − ~ri‖

H Ensemble de charges crée ~E(~r) =
∑

i
~Ei(~r)

H Distribution continue de charges,
densité volumique ρ (Cm−3), crée :

~E(~r) =
1

4πǫ0

∫

V ′

1

‖~r − ~r ′‖2
~r − ~r ′

‖~r − ~r ′‖ ρ(~r
′) dV ′

︸ ︷︷ ︸

dq

H Condition : pas d’interaction entre les charges !

36

Exemple de superposition : deux plans infinis

H Deux plans parallèles
H Distance entre les plans : d
H Un plan infini de densité surfacique +ρs
H Un plan infini de densité surfacique −ρs
H Calculer le champ ~E partout dans l’espace
H (un seul plan : TD 1, 1.3 ; WL, L3, 37m58s-41m00s )

~1 +~1 = ~2

37

25 www.polytech.unice.fr/~aliferis

http://elec.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/ep_uns_cip2_electromagnetisme_td_01.pdf
http://www.youtube.com/watch?v=XaaP1bWFjDA&feature=PlayList&p=C2CEECFD938FD494&index=3#t=37m58s
http://creativecommons.org/licenses/by-nc-sa/2.0/fr/
www.polytech.unice.fr/~aliferis
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/index.php


École Polytechnique de l’UNS
Polytech’Nice-Sophia

Parcours des Écoles d’Ingénieurs Polytech, 2e année
2012–2013

Visualisation de champs vectoriels 38

Deux approches

1. Dessiner des vecteurs

H À chaque point ~r dessiner le vecteur ~E(~r)
H L’origine du vecteur à ~r

H Diagramme “quiver” (carquois)

2. Dessiner des « lignes de champ »

H Lignes continues
H Tangentes au champ ~E (orientation)
H Lignes/surface ∝ ‖~E‖ (module)
H Ne se croisent jamais
H Pas de superposition !
H (moins maniables que le champ. . . )

39

Un autre regard sur le flux (et la divergence)

nombre de lignes
surface perpendiculaire

∝ E

H

flux à travers S =

∫

S

~E · d~S

∝
∫

S
nombre de lignes traversant dS

= nombre de lignes traversant S

H lignes traversant = lignes sortant − lignes entrant
H Flux positif : sorties > entrées
H Flux nul : équilibre entrées/sorties
H Flux négatif : sorties < entrées
H Divergence : flux « local »

40
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Lignes de champ en électrostatique

H Loi de Gauss :
∮

S
~E · n̂ dS = Q

ǫ0
ou div ~E = ρ

ǫ0
H Nombre de lignes traversant une surface fermée
∝ Q (à l’intérieur)

H Trois règles d’or :

1. Les lignes commencent (ր) sur les charges positives. . .
2. . . . et se terminent (ց) sur les charges negatives
3. Le nombre de lignes (ր −ց) autour d’une charge Q, est proportionnel à Q

H Exemples de lignes de champ :
Applet “Electric field lines”
et expériences de Walter Lewin (MIT) :
Graines de gazon (WL, L2, 42m25-43m40)
Jeu de ballon ! (WL, L2, 45m55-49m24)

41
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Travail dans un champ électrostatique : potentiel 42

Le travail de A vers B (1)

H Une charge (fixe) ponctuelle Q à l’origine
(le reste n’est que superposition !)

H On déplace une charge « test » q
dans le champ ~E de Q

H Quel est le travail dépensé de A à B ?
(« dépensé » : par celui qui déplace la charge)

H Travail = force × déplacement :

dW = ~F · d~l = ~F · t̂ dl (J = Nm)

H t̂ : vecteur unitaire, tangent à d~l
H

WA→B =

∫

Γ: ~rA→~rB

~F · d~l

43
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Le travail de A vers B (2)

H Force exercée sur la charge q pendant le déplacement :
(« exercée » : par celui qui déplace la charge)

~F = −~Fel = −(q ~E)

H Travail dépensé de A à B :

WA→B = −q
∫

Γ: ~rA→~rB

~E · d~l (12)

Γ : ~rA → ~rB le chemin de A vers B (lequel ? )

44

De quoi dépend WA→B ?

H . . . après réflexion,
WA→B ne dépend que de ~rA et ~rB

H (parce que ~E ‖ êr)
H Il n’y a que les points de départ et d’arrivée qui interviennent !
H Le chemin Γ de A à B ne compte pas !
H Conséquence :

le travail le long d’une courbe fermée est nul,
donc :

∮

Γ

~E · d~l =
∮

Γ

~E · t̂ dl = 0 (13)

H « La circulation du champ électrique
le long d’une courbe fermée, est nulle »

H Les forces électrostatiques sont conservatrices

45
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Du travail au potentiel

H WA→B = f(~rA,~rB) =?
H Remarque : WP→A +WA→P = 0
H

WA→B = WA→P→B (le chemin ne compte pas)

= WA→P +WP→B

= −WP→A +WP→B

H Travail dépensé de A à B par charge déplacée : WA→B/q
H

WA→B

q
=

WP→B

q
− WP→A

q
(14)

46

Potentiel : le travail par charge

H On choisit un point de référence P et on définit le potentiel à chaque point A de l’espace :

V (~rA) ,
WP→A

q

(
JC−1 = V

)
(15)

H Le potentiel V (~r) est un champ scalaire
H Le potentiel du point de référence :

V (~rP ) =
WP→P

q
= 0

H Le travail dépensé de A à B :

WA→B
(14),(15)

= q[V (~rB)− V (~rA)] (16)

47
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Travail : charge × ddp

H V (~rB)− V (~rA) : différence de potentiel (ddp)

WA→B = q[V (~rB)− V (~rA)] = charge × ddp (17)

H Si WA→B > 0 on fournit de l’énergie
à la charge déplacée

◮ q > 0 et V (~rB) > V (~rA)
◮ q < 0 et V (~rB) < V (~rA)

H Si WA→B < 0 on récupère de l’énergie
(déplacement « spontané » A→ B)

◮ q > 0 et V (~rB) < V (~rA)
◮ q < 0 et V (~rB) > V (~rA)

48

Potentiel créé par une charge ponctuelle

H Charge Q à l’origine
H ~E = 1

4πǫ0
Q
r2
êr

H Potentiel = travail / charge ; référence P à l’infini

V (~rA) =
W∞→A

q
= −

∫

Γ: ~r∞→~rA

~E · t̂ dl (18)

= − Q

4πǫ0

∫

Γ: ~r∞→~rA

1

r2
êr · (−êr dr)

=
Q

4πǫ0

∫ ∞

rA

1

r2
dr attention aux bornes !

=
Q

4πǫ0

[

−1

r

]∞

rA

=
1

4πǫ0

Q

rA

H Ensemble de charges ou distribution de charges :
superposition

49
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Du champ électrostatique au potentiel

H Travail dépensé de A vers B par charge déplacée :

WA→B

q
= V (~rB)− V (~rA)

= −
∫

Γ: ~rA→~rB

~E · d~l

alors que V (~rB)− V (~rA) =

∫

Γ: ~rA→~rB

dV

dV = −~E · d~l (19)

H À un point de l’espace, examiner les cas :
dV > 0 (max ?) ; dV < 0 (min ?) ; dV = 0

H Exemple : un condensateur (plaques parallèles) ;
Van de Graaf et tube fluorescent (WL, L4, 43m00-49m01) ;
Applet “Charges and Fields”

50

Du potentiel au champ électrostatique

H dV = −~E · d~l
H En coordonnées cartésiennes, V (~r) = V (x, y, z) :

dV =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz

et

d~l = dxêx + dyêy + dzêz

donc

−~E =
∂V

∂x
êx +

∂V

∂y
êy +

∂V

∂z
êz ,

−−→
gradV

~E = −−−→gradV (Vm−1) (20)

H Remarque : dV = −~E · d~l = −−→
gradV · d~l

51
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Analyse vectorielle 3 : gradient 52

Le gradient d’un champ scalaire

H dV =
−−→
gradV · d~l = −−→

gradV · t̂ dl

−−→
gradV · t̂ = dV

dl
dérivée selon t̂

H Le gradient d’un champ scalaire V :

1. Est un champ vectoriel
2. Perpendiculaire aux équipotentielles

(V = cste, dV = 0)
3. Montre la direction de la plus forte

augmentation de V (dV max)

4. Module : dV
dl

∣
∣
max

(max quand t̂ ‖ −−→gradV )

V (~rB)− V (~rA) =

∫

Γ: ~rA→~rB

−−→
gradV · t̂
︸ ︷︷ ︸

dV/dl

dl

rappel : f(b)− f(a) =

∫ b

a
f ′(x) dx =

∫ b

a

df

dx
dx

53

Le gradient dans les trois systèmes de coordonnées

H dV =
−−→
gradV · d~l

H Exprimer dV et d~l. . .
H Coordonnées cartésiennes

−−→
gradV =

∂V

∂x
êx +

∂V

∂y
êy +

∂V

∂z
êz (21)

H Coordonnées cylindriques
−−→
gradV =

∂V

∂ρ
êρ +

1

ρ

∂V

∂φ
êφ +

∂V

∂z
êz (22)

H Coordonnées sphériques

−−→
gradV =

∂V

∂r
êr +

1

r

∂V

∂θ
êθ +

1

r sin θ

∂V

∂φ
êφ (23)
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Du champ au potentiel : un raccourci

H V (~rB)− V (~rA) = −
∫

Γ: ~rA→~rB
~E · t̂ dl

H Deux conditions pour prendre un raccourci :

1. Le champ ~E n’a qu’une seule composante. . .
2. . . . correspondant à une variable de longueur

H Exemple : coord. cylindriques et ~E = Eρêρ

◮ Commencer par ~E = −−−→gradV
◮ Équ. (22) : ∂V/∂φ = 0 et ∂V/∂z = 0
◮ Donc V est fonction uniquement de ρ !
◮ Eρ(ρ) = − dV (ρ)

dρ = −V ′(ρ)

V (ρ) = −
∫

Eρ(ρ) dρ+ C (24)

◮ C : constante à déterminer en imposant une valeur de V
(p.ex. Vréf = 0)

55

34 www.polytech.unice.fr/~aliferis

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/
www.polytech.unice.fr/~aliferis
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/index.php


École Polytechnique de l’UNS
Polytech’Nice-Sophia

Parcours des Écoles d’Ingénieurs Polytech, 2e année
2012–2013

Analyse vectorielle 4 :
circulation, rotationnel 56

Couper une surface en morceaux. . .

H Circulation du champ ~A le long de Γ :
∫

Γ

~A · d~l ou
∫

Γ

~A · t̂ dl (25)

Circulation : un nombre (> 0, < 0, = 0)
égal à la valeur moyenne de Atan× longueur de Γ

H À partir de maintenant : courbe Γ fermée
H Surface S (ouverte) entourée par Γ (fermée)
H Partager S en S1, S2, entourées par Γ1,Γ2

∮

Γ

~A · t̂ dl =
∮

Γ1

~A · t̂1 dl+
∮

Γ2

~A · t̂2 dl
H Continuer. . .

∮

Γ

~A · t̂ dl =
∑

i

(∮

Γi

~A · t̂i dl
)

(26)

H . . . jusqu’où ?
H Courbe fermée Γi et surface Si : élémentaires

57
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Rotationnel

H Quelle est la circulation le long d’une
courbe élémentaire fermée ?

H Rotationnel , circulation courbe élémentaire fermée
aire surface plane entourée

H Faire intervenir le vecteur n̂ de la surface
H Sens de circulation t̂ ↔ sens de la normale n̂

(Périph’ externe ↔ tour Eiffel)
H

n̂ ·−→rot ~A , lim
∆S→0

1

∆S

∮

Γ

~A · t̂ dl (27)

H
−→
rot ~A : un champ vectoriel ! (norme + sens)

H À chaque point de l’espace, n̂ ·−→rot ~A (composante du
−→
rot ~A selon n̂) ∝ circulation autour de ce

point sur le bord d’une surface élémentaire ⊥ n̂

H Si le champ « tourne » (‖−→rot ~A‖ 6= 0), il fait des tourbillons autour du vecteur du rotationnel
(règle de la main droite).

H La surface dont n̂ ‖ −→rot ~A contient un tourbillon du champ.
H Visualisation : un moulin immergé dans le champ.

58

Rotationnel du champ électrostatique

H Courbe élémentaire autour d’une surface plane ∆S
H Circulation du champ électrostatique (13) :

∮

Γ

~E · d~l =
∮

Γ

~E · t̂ dl = 0

H Circulation par surface plane :

n̂ ·−→rot ~E = lim
∆S→0

1

∆S
0 = 0

H Pour toutes les surfaces ∆S, n̂ !
H Rotationnel du champ électrostatique :

−→
rot ~E = ~0 (28)

H (et alors ?)

59
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Calcul du rotationnel

H Système de coordonnées cartésiennes

n̂ ·−→rot ~A = lim
∆S→0

circulation courbe élémentaire fermée
aire surface plane entourée

H Trois courbes élémentaires autour de (x, y, z) :
1. n̂ = êz : surface plane, centrée à (x, y, z),
de dimensions ∆x,∆y (∆S = ∆x∆y)

H Calculer la circulation le long de cette courbe

êz ·−→rot ~A =
−→
rot ~A|z =

∂Ay

∂x
− ∂Ax

∂y

H Les deux autres courbes (n̂ = êx et n̂ = êy) :

−→
rot ~A|x =

∂Az

∂y
− ∂Ay

∂z
,

−→
rot ~A|y =

∂Ax

∂z
− ∂Az

∂x

60

Le rotationnel en coordonnées cartésiennes

−→
rot ~A =

∣
∣
∣
∣
∣
∣

êx êy êz
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣
∣
∣
∣
∣
∣

(29)

développer selon la première ligne !

=






∂Az

∂y −
∂Ay

∂z
∂Ax

∂z − ∂Az

∂x
∂Ay

∂x − ∂Ax

∂y





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Le rotationnel en coordonnées cylindriques

−→
rot ~A =

1

ρ

∣
∣
∣
∣
∣
∣

êρ ρêφ êz
∂
∂ρ

∂
∂φ

∂
∂z

Aρ ρAφ Az

∣
∣
∣
∣
∣
∣

(30)

=







1
ρ
∂Az

∂φ −
∂Aφ

∂z
∂Aρ

∂z − ∂Az

∂ρ
1
ρ

[
∂(ρAφ)

∂ρ − ∂Aρ

∂φ

]







62

Le rotationnel en coordonnées sphériques

−→
rot ~A =

1

r2 sin θ

∣
∣
∣
∣
∣
∣

êr rêθ r sin θêφ
∂
∂r

∂
∂θ

∂
∂φ

Ar rAθ r sin θAφ

∣
∣
∣
∣
∣
∣

(31)

=








1
r sin θ

[
∂(sin θAφ)

∂θ − ∂Aθ

∂φ

]

1
r

[
1

sin θ
∂Ar

∂φ −
∂(rAφ)

∂r

]

1
r

[
∂(rAθ)

∂r − ∂Ar

∂θ

]







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Énergie électrostatique 64

Charge ponctuelle

H Travail dépensé P → A = Énergie potentielle

WP→A = q[V (~rA)− V (~rP )] = qV (~rA) = Ue

H L’énergie potentielle électrostatique d’une charge q :

Ue = qV (~r) (32)

H V (~r) : potentiel créé par toutes les autres charges

65

Ensemble de N charges (1)

H Ue : Le travail dépensé pour déplacer toutes les charges de P → A
H Charges déplacées l’une après l’autre, qi à ~ri
H Vj(~ri) : potentiel créé au point ~ri par la charge qj

Déplacée Présente(s) Travail dépensé

q1 — 0
q2 q1 q2V1(~r2)
q3 q1, q2 q3V1(~r3) + q3V2(~r3)
. . . . . . . . .
qN q1, . . . , qN−1 qN [V1(~rN ) + . . . + VN−1(~rN )]

Total : Ue =
∑N

i=2

∑

j<i qiVj(~ri)

H Peut-on trouver une formule plus simple ?

66
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Ensemble de N charges (2)

H Ue =
∑N

i=2

∑

j<i qiVj(~ri)

H Remarque : qiVj(~ri) =
1

4πǫ0

qiqj
ri,j

= qjVi(~rj) (normal !)

H On ajoute l’autre moité des termes et on divise par deux !

Ue =
1

2

N∑

i=2

∑

j<i

qiVj(~ri) +
1

2

N−1∑

i=1

∑

j>i

qiVj(~ri)

=
1

2

N∑

i=1

∑

j 6=i

qiVj(~ri) =
1

2

N∑

i=1



qi




∑

j 6=i

Vj(~ri)









Ue =
1

2

N∑

i=1

qiV (~ri) (33)

H V (~ri) : potentiel créé au point ~ri par toutes les autres charges (sauf la qi)

67

Distribution continue de charges

1. Volumique : dq = ρ(~r) dV

Ue =
1

2

∫

V
ρ(~r)V (~r) dV (34)

2. Surfacique : dq = ρs(~r) dS

Ue =
1

2

∫

S
ρs(~r)V (~r) dS (35)

3. Linéique : dq = ρl(~r) dl

Ue =
1

2

∫

Γ
ρl(~r)V (~r) dl (36)

H V (~r) : le potentiel au point ~r créé par la distribution
H Intégrer sur les charges

68
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Densité volumique d’énergie

H Peut-on exprimer l’énergie en termes de champ ~E plutôt que de potentiel V et de charges ρ ?

Ue =
1

2

∫

V
ρ(~r)V (~r) dV

ρ = ǫ0div ~E

~E = −−−→gradV

H Sans démonstration : la (34) devient

Ue =
1

2

∫

V
ǫ0E

2(~r) dV (37)

H ǫ0E
2/2 : densité volumique d’énergie (Jm−3)

H Intégrer partout dans l’espace !
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Électrostatique : récapitulatif 70

Équations du champ électrique (1)

H Forme intégrale : flux et circulation
Forme locale : divergence et rotationnel

∮

S

~E · n̂ dS =
Qint

ǫ0
div ~E =

ρ

ǫ0
∮

Γ

~E · t̂ dl = 0
−→
rot ~E = ~0

H Potentiel

~E = −−−→gradV

V (~rB)− V (~rA) = −
∫

Γ: ~rA→~rB

~E · t̂ dl

Si ~E = Exêx : V (x) = −
∫

Ex(x) dx+ C

71
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Équations du champ électrique (2)

H Énergie potentielle électrostatique

Ue =
1

2

N∑

i=1

qiV (~ri)

Ue =
1

2

∫

V
ρ(~r)V (~r) dV

Ue =
1

2

∫

V
ǫ0E

2(~r) dV

72
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Conducteurs en électrostatique 73

Qu’est-ce qu’un conducteur ?

H Conducteur (contraire : isolant ou « diélectrique »)
H Contient des porteurs de charge en libre circulation
H « Porteurs de charge » :

électrons libres dans le métal
H Les charges (électrons) sont libres à se déplacer
H Les charges (+ ou −) se repoussent le plus loin possible : on retrouve des charges uniquement sur

la surface d’un conducteur. . .

74
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Le champ et les charges à l’intérieur

H « À l’intérieur » : dans le métal
H À l’équilibre électrostatique, les charges ne se déplacent plus (par définition). . .
H . . . alors qu’il y a des électrons libres à l’intérieur !
H Pas de déplacement parce que pas de force !

~E = ~0 à l’intérieur d’un conducteur

H Loi de Gauss à l’intérieur du conducteur :
forme intégrale : ~E = ~0 ⇒ Qint = 0
forme locale : ~E = ~0 ⇒ div ~E = 0⇒ ρ = 0

H L’intérieur du conducteur est neutre !
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Le champ et les charges dans une cavité

H « Cavité » : la partie interne d’un conducteur creux
H Cavité vide (neutre)
H Calculer la circulation de ~E : chemin Γ dans la cavité et dans le conducteur

~E = ~0 dans une cavité sans charge

H Loi de Gauss à l’intérieur du conducteur :
forme intégrale : Qcav +Qsurf. int = 0

H Pas de charges sur la surface interne si cavité vide !
(WL, L5, 28m26–31m27)

H Mêmes résultats en présence d’un champ ~Eext

(WL, L5, 43m13–45m41)
H Principe de blindage (cage de Faraday)

(WL, L5, 45m43–49m58)
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Le champ à la surface du conducteur (1)

H À l’équilibre, les charges ne se déplacent plus. . .
H . . . pas de composante ~E tangentielle
H Le champ ~E est nul à l’intérieur
H Des charges uniquement sur la surface :

densité surfacique ρs (Cm−2)
H Loi de Gauss : un cylindre autour de la surface

~E =
ρs
ǫ0
n̂ (38)

H Le champ ~E est

1. perpendiculaire à la surface du conducteur
2. proportionnel à la densité surfacique des charges

H Un conducteur (+ ses cavités sans charge)
forme une région équipotentielle
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Le champ à la surface du conducteur (2)

H Deux sphères métalliques, rayons R1, R2

H Très éloignées ; connectées par un fil conducteur
H Charges Q1, Q2

H Densité de charge surfacique ρsi = Qi/4πR
2
i

H Potentiel : V (Ri) =
1

4πǫ0
Qi

Ri

H « Connectées » : V (R1) = V (R2)
H =⇒ Q1

R1
= Q2

R2

H Si R1 > R2, ρs1 < ρs2 donc E1 < E2

Le champ électrique est plus fort aux endroits où le rayon de courbure est petit (p.ex.
pointes)

H Démonstration : une casserole chargée
(WL, L6, 6m30–9m00)
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Rigidité diélectrique

H Quand les isolants deviennent conducteurs. . .
H R.D. : valeur maximale du champ électrique dans un isolant avant qu’il ne devienne conducteur
H Mécanisme : quand E > Emax,

électrons libres accélérés par le champ ; avalanche d’électrons libres ; le milieu s’ionise et devient
conducteur ; formation d’arc électrique ; son et lumière à la recombinaison électrons/ions

H Dans l’air Emax = 3MV/m

H Si E > Emax, décharge électrostatique
(WL, L6, 40m27–42m10)

H Effet corona : décharge électrostatique sans formation d’arc ; « fuite » de charges par les pointes ;
champ électrique élevé, mais ne dépasse pas Emax

(WL, L6, 42m12–46m00)
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Rigidité diélectrique : quelques valeurs typiques

Matériau R.D. (MVm−1)

Air (sec, à 25 ◦C) 3
Quartz 8

Titanate de strontium 8
Néoprène 12

Nylon 14
Pyrex 14

Huile silicone 15
Papier 16

Bakelite 24
Polystyrène 24

Teflon 60

Remarque : MVm−1 = kVmm−1
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Courants électriques 81

Des charges en mouvement

H Courant électrique I = Charges / Temps
H Quelques précisions. . .
H « Courant » : à travers une surface
H « Charges » : traversant la surface de façon perpendiculaire
H Inclure la surface à la définition !
H Densité de courant ~J

◮ Vecteur (champ vectoriel)
◮ Direction : celle des charges positives
◮ Module : charges traversant une surface ⊥ par unité de temps et de surface
◮ Unités : C s−1m−2 = Am−2

82

Calculer la densité de courant

H Des porteurs de charges libres à se déplacer
H Densité volumique des porteurs : n (m−3)
H Charge des porteurs : q (C)
H Vitesse des porteurs : ~v (m s−1)
H Un cylindre de longueur l et de section A ;

section ⊥ ~v

H Charge totale dans le cylindre : Q = nlAq
traversant la section A en un temps t = l/v

H Densité de courant :
~J = nq~v (Am−2) (39)

H Si plusieurs types de porteurs :
~J =

∑

i

niqi~vi
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Conservation de la charge : forme intégrale

H Courant à travers une surface élémentaire :

dI = ~J · d~S = ~J · n̂ dS (> 0 ou < 0)

H Courant à travers une surface ouverte :

I =
dQsurf

dt
=

∫

S
dI =

∫

S

~J · d~S =

∫

S

~J · n̂ dS (40)

H Courant à travers une surface fermée :

∮

S

~J · n̂ dS = − dQint

dt
(41)

H La charge totale dans l’Univers est constante :

d

dt
(Qsurf fermée +Qint) = 0
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Conservation de la charge : forme locale

H À partir de (41) on remplace :
∮

S

~J · n̂ dS =

∫

V
div ~J dV (th. de la divergence)

Qint =

∫

V
ρ(~r) dV

H Conservation de la charge :

div ~J(~r) = −∂ρ(~r)

∂t
(42)

H Les « sources » du champ vectoriel ~J

sont les variations temporelles de ρ !
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Électronique : loi des nœuds

H En Électronique (« basses fréquences »),
pas d’accumulation de charges dans un circuit :

∂ρ(~r)

∂t
= 0 −→ div ~J = 0

H Donc sur une surface S autour d’une jonction :
∮

S

~J · n̂ dS =

∫

V
div ~J dV = 0

H Loi des nœuds (loi de Kirchhoff) :

∑

i

Ii = 0 , I sortant > 0

H Courant I constant le long d’un fil !
(6= d’une ligne de transmission. . . )
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Vitesses des électrons dans les conducteurs (1)

H Électrons libres, en absence de champ électrique :
mouvement aléatoire

H Données cuivre, température T = 300K
H Vitesse de Fermi : vF ≈ 106 ms−1

H Temps entre les collisions τ ≈ 10−14 s
H Distance entre les collisions : d = vF τ ≈ 10−8 m
H Densité des électrons libres : n ≈ 1029 m−3

H Densité de courant :
J = nqvF

?≈ 10291.6 × 10−19106 Am−2

H ? ? ?
H Vitesse moyenne nulle, ~J = ~0 !
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Vitesses des électrons dans les conducteurs (2)

H Conducteur de longueur l, de section A
H Appliquer une ddp U = V(+) − V(−)

H Champ dans le conducteur 6= ~0 !

~E = −−−→gradV = −U

l
ê(−)→(+) =

U

l
ê(+)→(−)

H Force ~Fe = qe ~E sur les électrons libres
H Collisions : force de « friction » ~Ff = −f~v
H Forces et vitesse sur le même axe : pas de vecteurs

me
dv

dt
= qeE − fv

me

f

dv

dt
+ v =

qe
f
E (43)
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Vitesses des électrons dans les conducteurs (3)

H Solution de (43) :

v = C exp

(

− f

me
t

)

+
qe
f
E

H Conditions initiales : v(t = 0) = 0
donc C = −qeE/f

H Unités de f/me : s−1, on peut l’appeler 1/τ

v(t) =
(

1− e−t/τ
) qeτ

me
E (44)

H Vitesse de dérive des électrons libres :

vd =
qeτ

me
E t≫ τ ≈ 10−14 s (45)

H Mobilité : µe = qeτ/me
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Courants dans les conducteurs

H Vitesse de dérive −→ densité de courant :

~J = nqe~vd =
nq2eτ

me

~E

H Loi d’Ohm (1827)
~J = σ ~E (46)

H Conductivité (Ω−1m−1 = ℧/m = Sm−1)

σ =
nq2eτ

me
= nqeµe (47)

H Résistivité ρ = 1
σ (Ωm)
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Conductivité : quelques valeurs typiques

Matériau σ (Sm−1)

Quartz ≈ 10−17

Polystyrène ≈ 10−16

Caoutchouc ≈ 10−15

Porcelaine ≈ 10−14

Verre ≈ 10−12

Eau distillée ≈ 10−4

Sol sec ≈ 10−3

Eau ≈ 10−2

Graisse animale ≈ 4× 10−2

Corps humain ≈ 0.2

Eau salée : quels porteurs ?
(WL, L9, 41m05–43m08)

Matériau σ (Sm−1)

Eau salée ≈ 4
Silicone 103

Graphite ≈ 105

Acier 2× 106

Plomb 5× 106

Tungsten 1.8 × 107

Aluminium 3.5 × 107

Or 4.1 × 107

Cuivre 5.7 × 107

Argent 6.1 × 107
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Électronique : loi d’Ohm

H ~J = σ ~E ou ~E = 1
σ
~J

H Densité de courant : J = I/A
H Champ électrique : E = U/l

~E =
1

σ
~J −→ U =

1

σ

l

A
I , RI

H Attention aux « conventions » :

1. U = V(+) − V(−) (ddp ou « tension »)

2. Sens de I : de (+) vers (−) (comme ~E et ~J)

H Attention, R n’est pas toujours constante !
H σ ∝ τ (temps entre collisions)
H I ↑⇒ T ↑⇒ τ ↓⇒ σ ↓⇒ ρ ↑⇒ R ↑
H Exemple : tungsten (WL, L9, 22m25–23m02)
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Électronique : puissance consommée

H « Appliquer une ddp U = V(+) − V(−) sur un conducteur »

H On crée un champ ~E et un courant ~J

H Des charges positives se déplacent spontanément : (+)→ (−)
H W(+)→(−) = q

(
V(−) − V(+)

)
= −qU

H W(+)→(−) < 0 : travail restitué par la charge. . .
H . . . donc fourni par le champ ; consommation
H Le champ dépense dW = U dq pour chaque charge dq
H Débit de charges déplacées : dq/dt = I
H Puissance consommée :

P =
dW

dt
=

U dq

dt
= UI (48)

H U et I selon les « conventions » (tr.92)
H Si P = UI < 0 : générateur !

(WL, L10, 47m20–50m03)
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Magnétostatique 94

Magnétisme

H Aimants, boussoles, . . .
H Quel rapport avec l’électricité ?
H Aucun, avant 1820 !
H Hans Christian Ørsted (1777–1851)

études médicales, thèse en philosophie (1799)
Professeur à l’Univ. de Copenhague (1806)

H Avril 1820 : cycle de conférences
H « Pourquoi l’aiguille d’une boussole bouge pendant les orages ? »
H Étude de l’interaction entre un courant électrique et une boussole
H LA Découverte : un courant électrique provoque un effet magnétique ! ! !
H La naissance de l’électromagnétisme

(WL, L11, 8m00–9m30)
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Loi de Biot-Savart

H . . . les nouvelles arrivent à Paris (11/9/1820)
H Biot (1774–1862) et Savart (1791–1841) : formulation quantitative (30/10/1820)
H Champ magnétique créé par un courant :

(loi de Biot-Savart)

d ~B =
µ0

4π

I d~l ∧ r̂

r2
(49)

H d~l : longueur élémentaire de courant
H ~r : de l’élément de courant au point d’observation
H r̂ = ~r/r
H µ0 = 4π10−7Hm−1 : perméabilité du vide

(valeur exacte)
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Champ magnétique d’une charge en mouvement

H Loi de Biot-Savart : d ~B = µ0

4π
I d~l∧r̂

r2

H Conducteur (fil) de section S
H I d~l = ~JS dl (astuce !)
H ~J = nq~v

d ~B =
µ0

4π

S dl ~J ∧ r̂

r2
=

µ0

4π

S dlnq~v ∧ r̂

r2

H S dln : nombre de charges dans l’élément de courant
H Champ magnétique créé par une seule charge :

~B =
µ0

4π

q~v ∧ r̂

r2
(50)

H Attention : pas de courant stationnaire avec une seule charge ! formule approximative. . .
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Sources du champ magnétique

H ~B : créé par des charges en mouvement (courants)
H Impossible d’isoler des « charges magnétiques »

(on a toujours deux pôles dans un aimant !)
H « Il n’existe pas de monopôles magnétiques » ( ?)
H Loi de Gauss pour le champ magnétique :

∮

S

~B · n̂ dS = 0 forme intégrale (51)

div ~B = 0 forme locale (52)
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Force magnétique (Laplace et Lorentz)

H Une charge en mouvement dans un champ magnétique subit une force :

~Fm = q~v ∧ ~B force de Laplace (53)

H Unités de ~B : NsC−1m−1 = T : Tesla
H Unité non SI : Gauss, 1G = 10−4 T
H Champ magnétique terrestre : ≈ 0.5G
H ~Fm ⊥ ~v : pas de travail !
H En présence d’un champ ~E et d’un champ ~B :

~F = ~Fe + ~Fm = q ~E + q~v ∧ ~B

= q(~E + ~v ∧ ~B) force de Lorentz (54)
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Force magnétique sur un courant

H Courant I dans un conducteur de section S
H Dans un champ ~B, sur chaque porteur de charge : ~Fm = q~v ∧ ~B

H Force sur l’élément d~l :
d~Fm = n dlS ~Fm = n dlSq~v ∧ ~B

H ~J = nq~v
H ~JS dl = ~I dl = I d~l
H Force magnétique sur un élément de courant I :

d~Fm = I d~l ∧ ~B (55)
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Force entre deux courants

H Deux conducteurs parallèles (infinis. . . )
H Courant I1 génère champ ~B1 (TD 5.1)

B1 = µ0
I1
2πρ

H Élement de courant I2 subit force d~Fm :

d~Fm = I2 d~l ∧ ~B1 , d~l ⊥ ~B1

force magnétique
longueur

= µ0
I1I2
2πρ

H (Conducteurs infinis → force totale infinie !)
H Deux courants parallèles s’attirent
H Deux courants opposés se repoussent

Ampère, 18/9/1820 (WL, L11, 15m00–17m15)
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Loi d’Ampère (forme intégrale)

H Ørsted : « le “champ magnétique” décrit des cercles »
H Lignes de champ magnétique (TD 5.1 et 5.2) :

entourent les courants
H Ampère : mise en équation
H La circulation du champ ~B, calculée sur une courbe Γ, est proportionnelle au courant traversant la

surface S associée à la courbe Γ :
∮

Γ

~B · t̂ dl = µ0

∫

S

~J · n̂ dS (56)

H Courbe Γ : pas nécessairement un cercle !
H Surface S : ouverte, Γ est son bord
H t̂ et n̂ : Périph’externe ↔ Tour Eiffel (tr.#58)
H

∫

S
~J · n̂ dS : le courant I enlacé par la courbe Γ
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Théorème du rotationnel

H (. . . après le rappel des tr.#57 et #58. . . )
H Surface S (ouverte) entourée par Γ (fermée)
H Partager S en S1, S2, . . ., entourées par Γ1,Γ2, . . .

∮

Γ

~A · t̂ dl =
∑

i

(∮

Γi

~A · t̂i dl
)

=
∑

i

(

n̂i ·−→rot ~A ∆Si

)

=

∫

S

−→
rot ~A · n̂ dS

∮

Γ

~A · t̂ dl =
∫

S

−→
rot ~A · n̂ dS (57)

H Théorème de Stokes
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Loi d’Ampère (forme locale)

H Point de départ : loi d’Ampère forme intégrale, éq.(56) :
∮

Γ

~B · t̂ dl = µ0

∫

S

~J · n̂ dS

H Appliquer théorème de Stokes :
∫

S

−→
rot ~B · n̂ dS = µ0

∫

S

~J · n̂ dS

pour toute surface ouverte S
H Loi d’Ampère (forme locale) :

−→
rot ~B = µ0

~J (58)

H Le champ ~B « tourne » autour de ~J
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Magnétostatique : récapitulatif 105

Équations du champ magnétique

H Flux et circulation (formes intégrale et locale)
∮

S

~B · n̂ dS = 0 div ~B = 0

∮

Γ

~B · t̂ dl = µ0

∫

S

~J · n̂ dS
−→
rot ~B = µ0

~J
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Analyse vectorielle 5 : le nabla ~∇ 107

L’opérateur nabla

H « Opérateur » : doit agir sur quelque chose !
(il ne doit jamais rester seul)

H Champs (scalaires ou vectoriels) : fonctions de plusieurs variables
H Coordonnées cartésiennes : les trois dimensions sont équivalentes
H Définir un « vecteur » spécial :

~∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

(59)

~∇ =
∂

∂x
êx +

∂

∂y
êy +

∂

∂z
êz

H L’opérateur nabla est un vecteur gourmand !
il agit sur des champs (scalaires ou vectoriels)
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Opérations avec le nabla (1)

H On peut traiter ~∇ comme un vecteur ordinaire
1. Vecteur fois scalaire : Φ(x, y, z) champ scalaire

~∇Φ =
∂Φ

∂x
êx +

∂Φ

∂y
êy +

∂Φ

∂z
êz

(21)
=

−−→
gradΦ (60)

2. Vecteur · vecteur : ~A(x, y, z) champ vectoriel

~∇ · ~A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

(10)
= div ~A (61)

3. Vecteur ∧ vecteur : ~A(x, y, z) champ vectoriel

~∇ ∧ ~A =

∣
∣
∣
∣
∣
∣

êx êy êz
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣
∣
∣
∣
∣
∣

(29)
=

−→
rot ~A (62)
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Opérations avec le nabla (2)

H Vecteur ~∇ : les résultats sont valables dans tous les systèmes de coordonnées !
H Mais ~∇ a une forme simple que dans le cartésien

p.ex., ~∇ 6= ∂

∂r
êr +

∂

∂θ
êθ +

∂

∂φ
êφ !!!

H

Opération De À
−−→
gradΦ scalaire Φ vecteur ~∇Φ

div ~A vecteur ~A scalaire ~∇ · ~A
−→
rot ~A vecteur ~A vecteur ~∇ ∧ ~A

∆Φ scalaire Φ scalaire ∇2Φ
~∆ ~A vecteur ~A vecteur ~∇2 ~A
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Quelques formules avec le nabla

H Plutôt simples :

div
−−→
gradΦ = ~∇ · (~∇Φ) , ∇2Φ (63)

−→
rot

−−→
gradΦ = ~∇ ∧ (~∇Φ) = ~0 (64)

div
−→
rot ~A = ~∇ · (~∇ ∧ ~A) = 0 (65)

H Et une plus compliquée...

−→
rot

−→
rot ~A =

−−→
grad div ~A − ~∆ ~A (66)

ou

~∇ ∧ (~∇ ∧ ~A) = ~∇(~∇ · ~A)− ~∇2 ~A (67)

utiliser ~A ∧ ( ~B ∧ ~C) = ~B( ~A · ~C)− ~C( ~A · ~B)
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Le(s) Laplacien(s) : nabla au carré

H L’operateur ~∇ · ~∇ prend deux formes :
1. Opérateur sur un scalaire : laplacien scalaire

∆Φ , ∇2Φ , (~∇ · ~∇)Φ (68)

cart
=

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2

formules plus compliquées dans les autres systèmes !
2. Opérateur sur un vecteur : laplacien vectoriel

~∆ ~A , ~∇2 ~A , (~∇ · ~∇) ~A (69)
cart
= (∇2Ax)êx + (∇2Ay)êy + (∇2Az)êz

Attention : décomposition en composantes ∇2Ai uniquement en cartésiennes !
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Gauss, Stokes, etc. : un autre point de vue (1)

H Théorème de Gauss (11) :
∫

V
div ~A dV =

∮

S

~A · n̂ dS (3D → 2D)

H Théorème de Stokes (57)
∫

S

−→
rot ~A · n̂ dS =

∮

Γ

~A · t̂ dl (2D → 1D)

H Formule du gradient (tr.#53)
∫

Γ: ~rA→~rB

−−→
gradV · t̂ dl = V (~rB)− V (~rA) (1D → 0D)

H Formule de la primitive

∫ b

a
f(x) dx = F (b)− F (a) (1D → 0D sur une ligne droite)
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Gauss, Stokes, etc. : un autre point de vue (2)

H Théorème de Gauss (11) :
∫

V
~∇ · ~A dV =

∮

S

~A · n̂ dS (3D → 2D)

H Théorème de Stokes (57)
∫

S

~∇ ∧ ~A · n̂ dS =

∮

Γ

~A · t̂ dl (2D → 1D)

H Formule du gradient (tr.#53)
∫

Γ: ~rA→~rB

~∇V · t̂ dl = V (~rB)− V (~rA) (1D → 0D)

H Formule de la primitive

∫ b

a
f(x) dx = F (b)− F (a) (1D → 0D sur une ligne droite)
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Électrostatique – Magnétostatique :
une comparaison 115

Deux champs bien différents ( ?)

H 2+2 équations (formes locales)

Électrostatique

~∇ · ~E = ρ/ǫ0

~∇ ∧ ~E = ~0

(sources sans tourbillons)
Potentiel scalaire V

~∇ ∧ ~∇V = ~0

~E = −~∇V

Magnétostatique

~∇ · ~B = 0

~∇ ∧ ~B = µ0
~J

(tourbillons sans sources)
Potentiel vectoriel ~A

~∇ · ~∇ ∧ ~A = 0

~B = ~∇ ∧ ~A
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Phénomènes d’Induction
(enfin, un peu de mouvement !) 117

« Force » électromotrice (1)

H Dans un circuit (Électronique) :
force par charge, ~f, crée le courant

~f = ~fs + ~E (70)

H ~fs : force par charge dans la source
H ~E : champ électrostatique (partout)
H « Force » électromotrice (définition générale) :

fem ,

∮

Γ

~f · t̂ dl (V ) (71)

H Champ électrostatique : circulation nulle

fem =

∮

Γ

~fs · t̂ dl (V ) (72)

H Équ. (72) : cas spécial d’un circuit avec source
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« Force » électromotrice (2)

H Loi d’Ohm : ~J = σ ~f

H À l’intérieur de la source idéale : pas de résistance
σ =∞⇒ ~f = ~J/σ = 0⇒ ~fs = −~E

H ddp aux bornes de la source :

V+ − V− = −
∫

Γ:(−)→(+)

~E · t̂ dl

= −
∫

Γ:(−)→(+)
(−~fs) · t̂ dl

=

∮

Γ

~fs · t̂ dl
(72)
= fem

H fem = ddp aux bornes de la source !

H Polarité : le vecteur t̂ va du (-) au (+) de la source
H fem = IR
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fem due au mouvement

H Un circuit se déplace dans un champ magnétique
H . . .
H fem : uniquement pendant les phases d’entrée/sortie
H fem due au mouvement :

fem = − dΦB

dt
(73)

où ΦB est le flux magnétique à travers le circuit :

ΦB =

∫

S

~B · n̂ dS

H Changement de flux : source de tension !
H fem génère I qui s’oppose au changement de ΦB !
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fem due au mouvement : des exemples !

~B : constant et uniforme dans une région

H Circuit en déplacement |fem| = Blv (TD 8.1)
H Circuit en rotation (TD 8.2)

(WL, L17, 17m10–18m20)
(gén. humain : WL, L17, 25m13–27m25)
(ampoule : WL, L17, 41m52–44m40)

H Conducteur sur rails |fem| = Blv (TD 8.3)
H Courants de Foucault (frein magnétique)

(WL, L17, 40m18–41m52)
H Circuit en chute « libre » dans un champ magnétique

(WL, L17, 47m18–48m40)
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Induction électromagnétique

H Expériences de Faraday (1831)
H « Puisque ~J crée ~B. . .

est-ce que ~B crée ~J ? »
H Conclusion : ce n’est pas ~B qui crée ~J. . .

mais les changements de ~B !
H Aimant et boucle (WL, L16, 10m30–12m30)
H Il n’y a pas de source dans la boucle ! ~fs = ~0

H ~f = ~fs + ~E = ~E

H fem due au champ électrique induit (71)

fem =

∮

Γ

~E · t̂ dl 6= 0 (comparer avec (13) !) (74)

H La variation de ~B crée un champ ~E ! ! !
H « Champ électrique induit »
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Loi de Faraday (forme intégrale)

H

fem =

∮

Γ

~E · t̂ dl = −
∫

S

d ~B

dt
· n̂ dS (75)

H Courbe (fermée) Γ : le bord de la surface (ouverte) S
H Signe − : loi de Lenz :

Le champ électrique induit génère des courants qui, à leur tour, génèrent un champ secondaire ~B ′

s’opposant à la variation du flux du champ magnétique initial.
H (La Nature n’aime pas le changement)
H Rappel (TD 5) : champ ~B créé par une boucle de courant
H Solénoïde et boucle (WL, L16, 30m00–32m30)
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Loi de Faraday (forme locale)

H Point de départ : loi de Faraday (75) :

∮

Γ

~E · t̂ dl = −
∫

S

d ~B

dt
· n̂ dS

H Appliquer le théorème de Stokes :

∫

S

−→
rot ~E · n̂ dS = −

∫

S

d ~B

dt
· n̂ dS

pour toute surface S
H Loi de Faraday (forme locale) :

−→
rot ~E = − d ~B

dt
(76)

124

68 www.polytech.unice.fr/~aliferis

http://elec.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/ep_uns_peip2_electromagnetisme_td_05.pdf
http://www.youtube.com/watch?v=G3eI4SVDyME&feature=PlayList&p=C2CEECFD938FD494&index=16#t=30m00s
http://creativecommons.org/licenses/by-nc-sa/2.0/fr/
www.polytech.unice.fr/~aliferis
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/index.php


École Polytechnique de l’UNS
Polytech’Nice-Sophia

Parcours des Écoles d’Ingénieurs Polytech, 2e année
2012–2013

La règle du flux magnétique

H On combine la fem due au mouvement (73). . .
H et la fem due aux variations de ~B(t) (75)
H (deux phénomènes bien différents ! ! !)
H

fem = − dΦB

dt
(77)

∮

Γ

~E · t̂ dl = − d

dt

∫

S

~B · n̂ dS (78)

H En déhors de l’électrostatique, le champ ~E n’est plus conservatif ! (circulation 6= 0)
H L’intégrale ∫

Γ:~rA→~rB

~E · t̂ dl

dépend du chemin choisi !
H (on reviendra sur ce sujet contre-intuitif, tr.#131)
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Le champ électrique induit

H Que nous dit la loi de Faraday ?
H Les variations de ~B créent un champ ~E induit
H Dans une région neutre (ρ = 0),

~∇ · ~E =
ρ

ǫ0
= 0 et ~∇ ∧ ~E = − d ~B

dt

H Analogie avec le champ ~B en magnétostatique :

~∇ · ~B = 0 et ~∇ ∧ ~B = µ0
~J

H Les lignes du champ ~E induit sont des boucles !

H équivalences :

~B ~E induit

µ0
~J − d ~B/dt

µ0Ienlacé − dΦB/dt
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Inductance : mutuelle

H Deux circuits séparés (p.ex. solénoïde et boucle)
H Courant I1 ⇒ ~B1 ⇒ Φ2

Φ2 =

∫

S2

~B1 · n̂2 dS2 et ~B1 =

∮

Γ1

µ0

4π

I1 d~l1 ∧ r̂

r2
∝ I1

H Le flux à travers le 2 est proportionnel au courant de 1 :

Φ2 = M21I1 (79)

H M21 = M12 = M inductance mutuelle entre les circuits
H M : paramètre purement géométrique
H Variations de I1 génèrent un courant I2 = fem2/R2 :

fem2 = −
dΦ2

dt
= −M dI1

dt
(80)
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Inductance : self

H Même phénomène avec un seul circuit !
H Courant I ⇒ ~B ⇒ ΦB

ΦB =

∫

S

~B · n̂ dS et ~B =

∮

Γ
d ~B =

∮

Γ

µ0

4π

I d~l ∧ r̂

r2
∝ I

H Flux magnétique à travers un circuit ∝ courant

ΦB = LI (81)

H L : self-inductance ; unités Henry : H = WbA−1 = V sA−1

H L = ΦB/I : paramètre purement géométrique
H Variations de I génèrent une f.e.m. . . . :

fem = − dΦB

dt
= −L dI

dt
(82)

H . . . s’opposant aux variations !
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Énergie magnétique (1)

I
L

+−
(−LdI/dt)

⇐⇒

I
L

+ −
(LdI/dt)

H Puissance « consommée » : emmagasinée dans la self

P =

(

L
dI

dt

)

I (83)

H P > 0 quand I ↑
H I(t = 0) = 0 et I(t = t0) = I0
H Énergie magnétique stockée dans la self :

Um =

∫ t0

0
P dt = . . . =

1

2
LI20 (84)

129

Énergie magnétique (2)

H Sans démonstration : la (84) devient

Um =
1

2

∫

V

1

µ0
B2(~r) dV (85)

H B2/(2µ0) : densité volumique d’énergie (Jm−3)
H Intégrer partout dans l’espace !
H À comparer avec (37) :

Ue =
1

2

∫

V
ǫ0E

2(~r) dV
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[Bizarre] Champ ~E non conservatif

H Circuit simple : pile (fem = 1V), R1 = 100Ω, R2 = 900Ω
Calculer courant et tensions

H Remplacer pile par dΦB/dt

Calculer courant et tensions : VR1
6= VR2

! ! !

L’intégrale

−
∫

Γ:~rA→~rB

~E · t̂ dl ?
= VB − VA

dépend du chemin choisi WL, L16, 48m25–51m27
(vidéo avec la théorie WL, L16, 34m51–51m27 ; texte détaillé)

H Champ électrique non conservatif : ∮

Γ

~E · t̂ dl 6= 0

ddp sur un chemin fermé 6= 0 (Contre-Intuitif)
M. C. Escher, “Ascending and descending” , 1960
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Induction : récapitulatif 132

Les 4 équations, forme intégrale

H Flux et circulation
∮

S

~E · n̂ dS =
1

ǫ0

∫

V
ρdV

∮

S

~B · n̂ dS = 0

∮

Γ

~E · t̂ dl = − d

dt

∫

S

~B · n̂ dS

∮

Γ

~B · t̂ dl = µ0

∫

S

~J · n̂ dS
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Les 4 équations, forme locale

H Divergence et rotationnel

~∇ · ~E =
ρ

ǫ0
~∇ · ~B = 0

~∇ ∧ ~E = − d ~B

dt
~∇ ∧ ~B = µ0

~J
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Équations de Maxwell 135

Un problème avec la loi d’Ampère ?

1. « Tester » les équations du rotationnel :

H ~∇ · ~∇ ∧ ~E = 0 OK
H ~∇ · ~∇ ∧ ~B = 0 ? ? ?

~∇ · ~J = 0
(42)−→ ∂ρ

∂t = 0

2. Appliquer la loi d’Ampère dans un cas ∂ρ
∂t 6= 0 :

fil + condensateur

La loi d’Ampère n’est pas valide en dehors de la magnétostatique

136

75 www.polytech.unice.fr/~aliferis

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/
www.polytech.unice.fr/~aliferis
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/index.php


École Polytechnique de l’UNS
Polytech’Nice-Sophia

Parcours des Écoles d’Ingénieurs Polytech, 2e année
2012–2013

Le terme qui manque : courant de déplacement

H Loi d’Ampère (forme locale) :
~∇ ∧ ~B = µ0

~J

H Loi d’Ampère-Maxwell (forme locale) :

~∇ ∧ ~B = µ0

(

~J + ~Jd

)

= µ0

(

~J + ǫ0
d~E

dt

)

(86)

H Loi d’Ampère-Maxwell (forme intégrale) :

∮

Γ

~B · t̂ dl = µ0

∫

S

~J · n̂ dS + µ0

∫

S
ǫ0

d~E

dt
︸ ︷︷ ︸

~Jd

·n̂ dS (87)

H ~Jd : courant « de déplacement »
H Les variations de ~E créent un champ ~B induit !
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James Clerk Maxwell (1831–1879)
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Les trois régimes en électromagnétisme

H Électrostatique (aucun déplacement de charges, dρ/dt = 0)
Magnétostatique (courants invariables dans le temps ; pas d’accumulation de charges,

dρ/dt = 0
(42)−→ ~∇ · ~J = 0)

~∇ · ~E =
ρ

ǫ0
~∇ · ~B = 0

~∇ ∧ ~E = ~0 ~∇ ∧ ~B = µ0
~J

H Quasistatique : des variations lentes dans le temps

~∇ · ~E =
ρ

ǫ0
~∇ · ~B = 0

~∇ ∧ ~E = − d ~B

dt
~∇ ∧ ~B = µ0

~J + . . .
︸︷︷︸

≈0

H Régime « complet » : les équations de Maxwell
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Les équations de Maxwell

H Maxwell, 1864

~∇ · ~E =
ρ

ǫ0
(88)

~∇ · ~B = 0 (89)

~∇ ∧ ~E = − d ~B

dt
(90)

~∇ ∧ ~B = µ0
~J + µ0ǫ0

d~E

dt
(91)

H 4 équations = 2 scalaires + 2 vectorielles = 2 + 6 = 8
H Équations : sources vers champs
H Force de Lorentz : effet des champs, ~F = q(~E + ~v ∧ ~B)

H Conservation de la charge : ~∇·(91) (88)−→ ~∇ · ~J = − dρ/dt
H Le champ électromagnétique s’auto-alimente !
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Ondes 141

Qu’est-ce qu’une onde ?

H Vagues (océan, fleuve, . . . )
H Ondes acoustiques
H Vibrations d’une corde
H Ondes sismiques
H Signaux électriques

(lignes de transmission, neurones)
H . . .
H Vagues mexicaines (la ola) : concert, match de foot.

Onde : une perturbation qui se propage dans un milieu, sans transporter de matière.

“Wave on a string”

142

[Rappel] L’argument d’une fonction

H f(t) : fonction initiale
H Comment décaler / retourner / changer d’échelle ?

1

2

0 1 2 3 4 5 6 7 8 9 10−1−2
t

f(t) f(t− 3) f(12(t− 7))

1

2

0 1 2 3 4 5 6 7 8 9 10−1−2
t

f(−t) f(−(t− 3)) f(−2(t− 7))
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Propagation d’une impulsion

0m

10m

0 s

20 s
t

z

b b b b b b b b b b b

b b b b b b b b b b bθ

tan θ = c = 0.5m s−1

durée T = 8 s

3m

10 s

7m
longueur L = 4m

c =
L

T
18 s

À z = z0, f(t− z0/c) : f(·) retardée de z0/c

À t = t0, f
(
−1

c (z − ct0)
)

: f(·) retournée, dilatée par c, décalée à ct0
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L’équation d’onde (1)

H f(t− z
c ) : onde se propageant vers +z

H f(t+ z
c ) : onde se propageant vers −z

H f(t± z
c ) = f( ct±z

c ) = g(z ± ct) : autre vue
H f(x, t) : fonction à deux variables, espace et temps
H Dérivées temporelles et spatiales. . . premières

∂f

∂t
= f ′

(

t± z

c

)′
= f ′ ∂f

∂z
= f ′

(

t± z

c

)′
= ±1

c
f ′

∂f

∂z
= ±1

c

∂f

∂t

H et secondes

∂2f

∂t2
= f ′′ ∂2f

∂z2
=

(

±1

c

)2

f ′′

∂2f

∂z2
=

1

c2
∂2f

∂t2
(92)

H (92) : équation d’onde (une dimension)
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L’équation d’onde (2)

H Équation d’onde (trois dimensions)

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= ∇2f =

1

c2
∂2f

∂t2
(93)

H Équations à dérivées partielles (spatiales et temporelle) :
la solution dépend des conditions initiales f(~r, t = 0) et des conditions aux limites f(~r = ~ri, t)

H f : propriété du milieu de propagation

◮ hauteur de la surface de l’eau
◮ pression acoustique
◮ déplacement transversal d’une corde
◮ . . .

H vitesse de propagation c : dépend des paramètres du milieu
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École Polytechnique de l’UNS
Polytech’Nice-Sophia

Parcours des Écoles d’Ingénieurs Polytech, 2e année
2012–2013

Ondes électromagnétiques 147

La prévision théorique de Maxwell (1)

H Les équations de Maxwell dans le vide, sans charges ni sources :

~∇ · ~E = 0 ~∇ · ~B = 0

~∇ ∧ ~E = −∂ ~B

∂t
~∇ ∧ ~B = µ0ǫ0

∂ ~E

∂t

H Équations différentielles couplées
H Dérivée seconde pour découpler : agir avec ~∇

(agir, mais comment ? quelles opérations ?)

~∇ ∧ ~∇ ∧ ~E = − ∂

∂t
~∇ ∧ ~B = −ǫ0µ0

∂2 ~E

∂t2

~∇ ∧ ~∇ ∧ ~E = ~∇(~∇ · ~E)− ~∇2 ~E = −~∇2 ~E
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La prévision théorique de Maxwell (2)

H Équation vectorielle

~∇2 ~E = ǫ0µ0
∂2 ~E

∂t2
(94)

se décompose (uniquement en coordonnées cartésiennes) :

∇2Ex,y,z = ǫ0µ0
︸︷︷︸

1/c2

∂2Ex,y,z

∂t2
(95)

H Des ondes électromagnétiques existent !
H Vitesse de propagation :

c =
1√
ǫ0µ0

≈ 1
√

10−9

36π 4π10−7
ms−1 ≈ 3× 108 ms−1 (96)
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La lumière est une onde électromagnétique !

H c = 1√
ǫ0µ0

= 299 792 458 m s−1

H À partir de ǫ0 et µ0 on obtient la vitesse de la lumière
H Une pure coïncidence ?

« La vitesse des ondes électromagnétiques est presque celle de la lumière. . . ce qui donne
une bonne raison de conclure que la lumière est en quelque sorte elle-même (en incluant
le rayonnement de chaleur, et les autres radiations du même type) une perturbation
électromagnétique qui se propage selon les lois de l’électromagnétisme. »
J.C. Maxwell, 1864

H Confirmation expérimentale en 1888 par H. Hertz (1857–1894)
H « Monsieur, à quoi ça sert ? »—« À rien. »
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Le spectre électromagnétique

Type Longueur d’onde λ (m) Fréquence f (Hz)

Radio > 1× 10−1 < 3× 109

Micro-ondes 1× 10−3–1× 10−1 3× 109–3× 1011

Infrarouge 7× 10−7–1× 10−3 3× 1011–4× 1014

Visible 4× 10−7–7× 10−7 4× 1014–7.5 × 1014

Ultraviolet 1× 10−8–4× 10−7 7.5 × 1014–3× 1016

Rayons X 1× 10−11–1× 10−8 3× 1016–3× 1019

Rayons Γ < 1× 10−11 > 3× 1019
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Ondes électromagnétiques planes, progressives,
monochromatiques (OPPM) 152

Onde monochromatique vers +z

H Rappel TD 10.1 + visualisation en 3D
H Perturbation initiale harmonique (à z = 0) :

f(z = 0, t) = cos

(
2π

T
t

)

= cos(ωt)

H Onde se propageant selon +êz : t→ t−z
c

f(z, t) = cos

(
2π

T
t− 2π

λ
z

)

= cos(ωt− kz)

H λ = cT : longueur d’onde, la période spatiale (en m)
H k = 2π/λ : nombre d’onde (en radm−1)
H ~k = kk̂ = k(+êz) : vecteur d’onde
H φ(z, t) = ωt− kz : la phase de l’onde
H vφ = ω/k = c : la vitesse de phase
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Propagation d’une sinusoïde

0m

10m

0 s

20 s
t

z

b b b b b b b b b b b

« duree » : période temporelle T = 8 s

3m

10 s

7m

« longueur » : période spatiale λ = 4m

18 s

c =
λ

T
=

2π/T

2π/λ
=

ω

k
= λf
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Onde électromagnétique PPM selon +êz

H Onde Plane Progressive Monochromatique (OPPM)

~E(~r, t) = ~E0
︸︷︷︸
cste

cos(ωt− kz) = ~E(z, t) (97)

H « Monochromatique » : cos(ωt− kz0)
À chaque point de l’espace (~r fixe), le champ ~E oscille dans le temps.
Les oscillations sont déphasées en fonction de l’endroit.

H « Progressive » : temps/espace couplés
f(t− z/c), onde selon +êz

H « Plane » : le champ ~E est constant sur tout le plan z = z0
H « Front d’onde » : lieu de points de même phase à t fixe
H Onde plane = fronts d’onde plans
H (D’autres formes d’onde existent : cylindriques, sphériques, . . . )
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Onde électromagnétique PPM selon k̂

H Onde PPM se propageant selon êz :

~E(~r, t) = ~E0 cos(ωt− kz)

H La phase de l’onde dépend uniquement de z
H z : la projection de ~r sur la direction de propagation êz

z = ~r · êz = ~r · k̂

H Cas général, onde PPM se propageant selon k̂ :

~E(~r, t) = ~E0 cos(ωt− k k̂ · ~r
︸︷︷︸

z si k̂=êz

) = ~E0 cos(ωt−~k · ~r) (98)

H Fronts d’onde : des plans perpendiculaires à k̂

H OPPM : remplit tout l’espace (modèle mathématique !)
H Déphasage entre deux points ~r1, ~r2 :

∆φ = φ1 − φ2 = ~k · (~r2 − ~r1) = ~k · ~r1→2 (99)
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Notation complexe : définition

H Formule d’Euler :
e jφ = cos(φ) + j sin(φ) → cos(φ) = Re

{

e jφ
}

H Application à une OPPM :

~E(~r, t) = ~E0 cos(ωt−~k · ~r + δ)

= Re
{

~E0e
j (ωt−~k·~r+δ)

}

= Re
{

~E0e
j δe j (ωt−

~k·~r)
}

= Re
{
~̃
E0e

j (ωt−~k·~r)
}

, Re
{
~̃
E(~r, ω)e jωt

}

(100)

H
~̃
E(~r, ω) : représentation (ou amplitude) complexe de ~E(~r, t)

temps ~E(~r, t)←→ ~̃
E(~r, ω) fréquence
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Notation complexe : avantages (1)

H
~̃
E(~r, ω) : plus simple à manipuler ! (addition)

~E(~r, t) = ~E1(~r, t) + ~E2(~r, t)

= ~E1 cos(ωt−~k · ~r + δ1) + ~E2 cos(ωt−~k · ~r + δ2)

= . . . ??? . . .

= Re
{
~̃
E1(~r, ω)e

jωt
}

+ Re
{
~̃
E2(~r, ω)e

jωt
}

= Re
{(

~̃
E1(~r, ω) +

~̃
E2(~r, ω)

)

e jωt
}

~̃
E(~r, ω) = ~̃

E1(~r, ω) +
~̃
E2(~r, ω) (101)

H On additionne les représentations complexes, comme des vecteurs
H On ne multiplie jamais des représentations complexes !

(une seule exception, quand on sait ce qu’on fait. . . ; équ. (136), tr.#183)
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Notation complexe : avantages (2)

H
~̃
E(~r, ω) : plus simple à manipuler ! (∂/∂t)

∂

∂t
~E(~r, t) =

∂

∂t
Re
{
~̃
E(~r, ω)e jωt

}

= Re

{

~̃
E(~r, ω)

∂

∂t
e jωt

}

= Re
{

jω ~̃
E(~r, ω)e jωt

}

∂

∂t
~E(~r, t)←→ jω ~̃

E(~r, ω) (102)
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Notation complexe : avantages (3)

H
~̃
E(~r, ω) : plus simple à manipuler ! (∂/∂x, ∂/∂y, ∂/∂z)

∂

∂x
~E(~r, t)

OPPM
=

∂

∂x
Re
{
~̃
E0e

j (ωt−~k·~r)
}

= Re







~̃
E0
︸︷︷︸
cste

∂

∂x
e j (ωt−

~k·~r)







= Re
{

− j kx
~̃
E0e

j (ωt−~k·~r)
}

= Re
{

− j kx
~̃
E(~r, ω)e jωt

}

∂

∂x
~E(~r, t)←→ − j kx

~̃
E(~r, ω)

~∇ =
∂

∂x
êx +

∂

∂y
êy +

∂

∂z
êz ←→

←→ − j kxêx − j kyêy − j kzêz = − j~k (103)
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Notation complexe : application

H Notation complexe :

~E(~r, t) = Re
{
~̃
E(~r, ω)e jωt

}

Si OPPM : ~̃
E(~r, ω) = ~̃

E0e
− j~k·~r (104)

H Passer du domaine « temporel » au domaine « fréquentiel »
H Remplacer dans les équations de Maxwell :

~E(~r, t) −→ ~̃
E(~r, ω) (105)

∂/∂t −→ + jω (106)

Si OPPM : ~∇ −→ − j~k (107)
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Équations de Maxwell : régime harmonique

~E(~r, t) = Re
{
~̃
E(~r, ω)e jωt

}

H Dans le vide, sans charges ni courants :

~∇ · ~E = 0 −→ ~∇ · ~̃E = 0 (108)

~∇ · ~B = 0 −→ ~∇ · ~̃B = 0 (109)

~∇ ∧ ~E = −∂ ~B

∂t
−→ ~∇ ∧ ~̃

E = − jω ~̃
B (110)

~∇ ∧ ~B = ǫ0µ0
∂~E

∂t
−→ ~∇ ∧ ~̃

B = jωǫ0µ0
~̃
E (111)

H L’équation d’ondes (94) devient l’équation de Helmholtz :

~∇2 ~̃E + ω2µ0ǫ0
~̃
E = 0 (112)
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Équations de Maxwell dans le cas d’une OPPM

~E(~r, t) = ~E0 cos(ωt−~k · ~r + δ) = Re
{
~̃
E0e

j (ωt−~k·~r)
}

= Re
{
~̃
E(~r, ω)e jωt

}

H Dans le vide, sans charges ni courants :

~∇ · ~E = 0 −→ − j~k · ~̃E = 0 (113)

~∇ · ~B = 0 −→ − j~k · ~̃B = 0 (114)

~∇ ∧ ~E = −∂ ~B

∂t
−→ − j~k ∧ ~̃

E = − jω ~̃
B (115)

~∇ ∧ ~B = ǫ0µ0
∂~E

∂t
−→ − j~k ∧ ~̃

B = jωǫ0µ0
~̃
E (116)

1. (113) : ~̃
E ⊥ ~k, le champ électrique est transversal

2. (114) : ~̃
B ⊥ ~k, le champ magnétique est transversal

3. (115) ; ~̃
B = 1

ω
~k ∧ ~̃

E ;(116) : ~̃
E = c2 1

ω
~̃
B ∧~k (rappel k = ω/c)

4. (115) ou (116) : ~̃
E ⊥ ~̃

B
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Propriétés d’une OPPM dans le vide

H Une OPPM est une onde TEM :

◮ Le champ électrique est transversal (TE) : perpendiculaire à k̂

◮ Le champ magnétique est transversal (TM) : perpendiculaire à k̂

H Les vecteurs ~E, ~B, ~k forment un trièdre direct :

~E ∧ ~B ‖ ~k (117)

H Les champs électrique et magnétique sont en phase
H L’équation d’ondes en régime harmonique (112) impose :

(− j~k)2 + ω2µ0ǫ0 = 0 −→ k2 = ω2µ0ǫ0 (118)

H Le rapport ‖~E‖/‖ ~B‖ est constant :

~B =
~k ∧ ~E

ω

~E⊥~k−→ ‖ ~B‖ = 1

c
‖~E‖ (119)
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Polarisation linéaire d’une OPPM

H « Polarisation » : l’orientation du vecteur du champ électrique

~E = E0 cos(ωt−~k · ~r)û

H Cas d’une OPPM k̂ = êz : ~E ⊥ ~k

H Polarisation linéaire : l’orientation ne change pas dans le temps

◮ Polarisation verticale (V) : ~̃
E = E0e

− j kzêx

◮ Polarisation horizontale (H) : ~̃
E = E0e

− j kzêy

◮ Cas général : angle θ entre ~E et êx

~E = E0 cos(ωt− kz)(cos θêx + sin θêy) (120)

~̃
E = E0e

− j kz(cos θêx + sin θêy)
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Polarisation circulaire d’une OPPM

H Deux composantes Ẽx et Ẽy

H Même amplitude, déphasage 90◦

~̃
E = E0e

− j kz(êx + j êy)

~E = E0 cos(ωt− kz)êx − E0 sin(ωt− kz)êy (121)

H À t fixe, regarder dans le sens de propagation
H Rotation dans le sens horaire : polarisation droite (RCP)
H Rotation dans le sens anti-horaire : polarisation gauche (LCP) :

~̃
E = E0e

− j kz( j êx + êy)

~E = −E0 sin(ωt− kz)êx + E0 cos(ωt− kz)êy (122)

H Attention : à z fixe, le vecteur ~E tourne dans l’autre sens !
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OPPM dans les conducteurs 167

Conducteurs et loi d’Ohm (bis)

H Loi d’Ohm (46) :
~̃
J = σ ~̃

E

H Conducteur électrique « parfait » (PEC) : σ =∞ :

~̃
E =

~̃
J

σ

PEC−→ 0

H Champ ~̃
E nul à l’intérieur d’un conducteur parfait

H (Électrostatique : ~E = 0 indépendamment de σ)
H Rappel TD 4.4 :

ρ(t) = ρ(t = 0)e−t/tr , tr = ǫ0/σ

Régime harmonique : dans un conducteur ρ = 0 si T ≫ tr −→ f ≪ σ
ǫ0

H « Bon conducteur » : σ ≫ ǫ0ω
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Les équations de Maxwell dans un conducteur

H

~∇ · ~̃E = 0 ~∇ · ~̃B = 0

~∇ ∧ ~̃
E = − jω ~̃

B ~∇ ∧ ~̃
B = µ0

~̃
J + jωµ0ǫ0

~̃
E

= µ0(σ + jωǫ0)
~̃
E

~∇ ∧ ~∇ ∧ ~̃
E = − jω~∇ ∧ ~̃

B = (− jµ0ωσ + µ0ǫ0ω
2) ~̃E

~∇ ∧ ~∇ ∧ ~̃
E = ~∇(~∇ · ~̃E)− ~∇2 ~̃E = −~∇2 ~̃E

H Équation d’onde (vectorielle) :

~∇2 ~̃E = ( jµ0ωσ − µ0ǫ0ω
2) ~̃E (123)
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L’équation d’onde dans un conducteur

H Équation d’onde (scalaire, en cartésiennes) :

∇2Ẽ = ( jµ0ωσ − µ0ǫ0ω
2)Ẽ (124)

H Essayer une solution type OPPM (104) :

Ẽ = E0e
− j~k·~r

−k2 = −µ0ǫ0ω
2 + jµ0ωσ −→ k2 = ω2ǫ0µ0

(

1− j
σ

ǫ0ω

)

H Nombre d’onde complexe k̃ !
H Approximation bon conducteur :

σ ≫ ǫ0ω → k̃2 = − jµ0ωσ → k̃ =
1− j√

2

√
µ0ωσ (125)
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OPPM dans un bon conducteur

H Direction de propagation k̂ = êz :

~̃
E = ~E0e

− j k̃z

= ~E0 e
−
√

µ0ωσ

2
z

︸ ︷︷ ︸

atténuation

e− j
√

µ0ωσ

2
z

︸ ︷︷ ︸

propagation

(126)

H Épaisseur de peau :

δ ,

√
2

µ0ωσ
(127)

H OPPM dans un bon conducteur :
~̃
E = ~E0e

−z/δe− j z/δ (128)

H Longueur d’onde : λ = 2πδ
H Vitesse de phase : vφ = ω

1/δ =
√

2ω/µ0σ (dépend de ω !)
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Conditions aux limites vide-conducteur 172

Interface vide-conducteur

H Les équations de Maxwell dans un conducteur :

~∇ · ~̃E = 0 ~∇ · ~̃B = 0

~∇ ∧ ~̃
E = − jω ~̃

B ~∇ ∧ ~̃
B = µ0

~̃
J + jωµ0ǫ0

~̃
E

= µ0(σ + jωǫ0)
~̃
E

= jωµ0ǫ0

(

1 +
σ

jωǫ0

)

~̃
E

= jωµ0 ǫ0

(

1− j
σ

ωǫ0

)

︸ ︷︷ ︸

ǫ̃

~̃
E

H Que se passe-t-il à l’interface entre deux milieux ?
H Les champs peuvent être continus ou pas !
H Appliquer chaque équation sous forme intégrale :

choisir volumes/surfaces/courbes élémentaires de part et d’autre de l’interface
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Conditions aux limites

H Milieu 1 : vide ; milieu 2 : conducteur
H n̂ : ⊥ à l’interface ; du métal (2) vers le vide (1)

n̂ · ( ~̃E1 − ~̃
E2) = ρ̃s/ǫ0 n̂ · ( ~̃B1 − ~̃

B2) = 0

n̂ ∧ ( ~̃E1 − ~̃
E2) = ~0 n̂ ∧ ( ~̃B1 − ~̃

B2) = µ0
~̃
Js

H ρs : densité de charges surfacique (Cm−2)

H
~̃
Js : densité de courant surfacique (Am−1)
6= 0 seulement si σ =∞

H n̂ · ~E : composante normale à l’interface
H n̂ ∧ ~E : composante tangentielle à l’interface

Ẽnor1 − Ẽnor2 = ρ̃s/ǫ0 B̃nor1 − B̃nor2 = 0

Ẽtan1 − Ẽtan2 = 0 B̃tan1 − B̃tan2 = µ0J̃s

H Composantes tangentielles du champ électrique continues
H Composantes normales du champ magnétique continues
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Puissance électromagnétique : vecteur de Poynting 175

[Rappel] Énergie électro/magnétostatique

H Énergie électrostatique Ue (37) :

Ue =
1

2

∫

V
ǫ0E

2(~r) dV

H Énergie magnétostatique Um (85) :

Um =
1

2

∫

V

1

µ0
B2(~r) dV

H Électromagnétisme : les champs dépendent du temps

~E(~r)→ ~E(~r, t) E2(~r)→ E2(~r, t)
~B(~r)→ ~B(~r, t) B2(~r)→ B2(~r, t)
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Énergie électromagnétique

H L’énergie « stockée » dans un volume V :

Uem(t) =
1

2

∫

V

(

ǫ0E2(~r, t) +
1

µ0
B2(~r, t)

)

dV (129)

H Comment évolue l’énergie électromagnétique dans le temps ?
H Que se passe-t-il dans un volume V ?

1. Énergie Uem emmagasinée dans les champs ~E, ~B
2. Travail du champ sur les charges du volume (« milieu »)

à travers la force de Lorentz : puissance P fournie au milieu
3. Échange d’énergie avec le monde extérieur

à travers la surface S qui englobe V :
puissance Pt sortant du volume

H Conservation de l’énergie :
dUem

dt
+ P + Pt = 0
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Travail du champ électromagnétique

H Le champ électromagnétique ~E(~r, t), ~B(~r, t) agit sur les charges du volume :

~F = q(~E + ~v ∧ ~B)

H Travail élementaire dans un volume dV :

dW = ~F · d~l = ~F · ~v dt = q(~E + ~v ∧ ~B) · ~v dt

= q~E · ~v dt = ρdV ~E · ~v dt = ~E · ~J dV dt

H Puissance fournie par le champ É/M aux charges du volume V :

P =

∫

V

dW

dt
=

∫

V
~E · ~J dV (130)
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Énergie É/M et puissance fournie (1)

H Écrire ~E · ~J en fonction uniquement de ~E et ~B

H Utiliser Maxwell-Ampère pour éliminer ~J :

~E · ~J =
1

µ0

~E · (~∇ ∧ ~B)− ǫ0~E ·
∂~E

∂t

H Propriété analyse vectorielle :

~∇ · (~E ∧ ~B) = ~B · (~∇ ∧ ~E)− ~E · (~∇ ∧ ~B)

H Loi de Faraday :

~B · (~∇ ∧ ~E) = − ~B · ∂
~B

∂t

H Regrouper les trois équations :

~E · ~J = . . . (transparent suivant)
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Énergie É/M et puissance fournie (2)

H Densité volumique de puissance fournie :

~E · ~J = −ǫ0~E ·
∂~E

∂t
− 1

µ0

~B · ∂
~B

∂t
− 1

µ0

~∇ · (~E ∧ ~B)

H Densité volumique d’énergie électrique :

1

2
ǫ0E2 =

1

2
ǫ0~E · ~E =⇒ ∂

∂t

(
1

2
ǫ0E2

)

= ǫ0~E ·
∂~E

∂t

H Densité volumique d’énergie magnétique :

1

2µ0
B2 = 1

2µ0

~B · ~B =⇒ ∂

∂t

(
1

2

1

µ0
B2
)

=
1

µ0

~B · ∂
~B

∂t
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Énergie É/M et puissance fournie (3)

H Ce qui se passe dans un volume élementaire :

~E · ~J
︸ ︷︷ ︸

puissance/m3

+
∂

∂t

(
1

2
ǫ0~E · ~E +

1

2µ0

~B · ~B
)

︸ ︷︷ ︸

énergie/m3

+
1

µ0

~∇ · (~E ∧ ~B)
︸ ︷︷ ︸

flux de ?/m3

= 0 (131)

H Intégrer sur le volume V (+ théorème de la divergence) :

∫

V
~E · ~J dV +

d

dt

∫

V

1

2

(

ǫ0~E · ~E +
1

µ0

~B · ~B
)

dV

+

∮

S

1

µ0
(~E ∧ ~B) · n̂ dS = 0 (132)

H Conservation de l’énergie :

P +
dUem

dt
+ (puissance qui sort de V) = 0 (133)
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Puissance É/M transportée : vecteur de Poynting

H Puissance qui sort du volume V :

Pt =

∮

S

1

µ0
(~E ∧ ~B) · n̂ dS

H Densité surfacique de puissance transportée :

~S ,
1

µ0

~E ∧ ~B (Wm−2) (134)

H ~S : vecteur de Poynting , montre la direction de la puissance
H Puissance transportée par une onde à travers une surface S :

Pt =

∫

S

~S · n̂ dS (135)
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[Produit de deux fonctions harmoniques]

H Exemple : les champs d’une onde É/M harmonique

~E(z, t) = ~E0 cos(ωt− kz + φ) = Re
{

~E0e
jφe j (ωt−kz)

}

= Re
{
~̃
E(z)e jωt

}

~B(z, t) = ~B0 cos(ωt− kz + θ) = Re
{

~B0e
j θe j (ωt−kz)

}

= Re
{
~̃
B(z)e j ωt

}

H Produit des modules : EB 6= ẼB̃ !

EB = E0B0 cos(ωt− kz + φ) cos(ωt− kz + θ)

=
1

2
E0B0 [cos(φ− θ) + cos(2ωt− 2kz + φ+ θ)]

<EB> =
1

2
E0B0 cos(φ− θ) = . . . =

1

2
Re
{

E0e
jφB0e

− j θ
}

<EB>=
1

2
Re
{

ẼB̃∗
}

(136)

H Le seul cas où on peut multiplier des amplitudes complexes ! (cf. tr.#158)
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Énergie et puissance d’ondes É/M harmoniques

H Énergie moyenne É/M emmagasinée dans les champs :

<Uem>=
1

4

∫

V

(

ǫ0Re
{
~̃
E · ~̃E∗

}

+
1

µ0
Re
{
~̃
B · ~̃B∗

})

dV (137)

H Puissance moyenne É/M fournie au milieu :

<P>=
1

2

∫

V
Re
{
~̃
E · ~̃J∗

}

dV (138)

H Puissance moyenne É/M transportée par l’onde :

<Pt>=

∫

S

~<S> · n̂ dS (139)

< ~S>=
1

2µ0
Re
{
~̃
E ∧ ~̃

B∗
}

(140)

H Intensité : I = ‖ < ~S> ‖ (Wm−2)
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OPPM énergie électrique = magnétique

H Une OPPM d’amplitude E0 se propageant selon k̂ = êz dans le vide :

~E = E0 cos(ωt− kz)êx
~̃
E = E0e

− j kzêx

~B =
k

ω
E0 cos(ωt− kz)êy

~̃
B =

k

ω
E0e

− j kzêy

H Densités volumiques d’énergie (TD 13.1a) :

instantanée moyenne

élec. :
1

2
ǫ0E

2
0

1

2
[1 + cos(2ωt− 2kz)]

1

4
ǫ0E

2
0 (141)

mag. :
1

2

1

µ0

k2

ω2
E2

0

1

2
[1 + cos(2ωt− 2kz)]

1

4

1

µ0

k2

ω2
E2

0 (142)

H OPPM dans le vide : énergie électrique = énergie magnétique
H Égalité en énergies instantanées (et moyennes)
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Impédance caractéristique du vide

H Densité de puissance transportée par une OPPM (TD 13.1e) :

~S =
1

µ0

k

ω
E2

0

1

2
[1 + cos(2ωt− 2kz)] êz

< ~S> =
1

2µ0

k

ω
E2

0 êz =
1

2

√
ǫ0
µ0

E2
0 êz

H On peut réécrire le dernier résultat :

‖ < ~S> ‖ =
(
E0/
√
2
)2

√

µ0/ǫ0
=

(
E0/
√
2
)2

Z0
(143)

H Rappel : en électronique, <P >= V 2
eff/R

H Impédance caractéristique du vide :

Z0 ,

√
µ0

ǫ0
= (120π)Ω ≈ 377Ω (144)
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Champ électrique dans la matière 187

Diélectriques (isolants)

H Les charges ne sont pas libres à se déplacer
H Tous les électrons sont liés aux atomes/molécules
H 6= conducteurs
H Intrinséquement neutres
H Quel est l’effet d’un champ ~E extérieur ?

(retour pour l’instant à l’électrostatique)

1. Création de dipôles (−q/+ q) induits

~p , qdû−→+ moment dipolaire

2. Effet proportionnel à la cause

~p = α~E α : polarisabilité atomique

3. Alignement des dipôles permanents
Rappel : graines de gazon
(WL, L2, 42m25-43m40)
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Effet de la polarisation de la matière

H « Polarisation » : se réfère aux dipôles
H (Rien à voir avec linéaire/circulaire etc.)
H On n’examine pas les causes pour l’instant

(polarisation induite ou permanente)
H Matière : grand nombre de dipôles dans un volume
H Vecteur de polarisation ~P :

densité volumique de moment dipolaire électrique :

~P , lim
∆V→0

1

∆V

∑

i

~pi (Cmm−3 = Cm−2) (145)
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Polarisation : charges induits

H Matière neutre polarisée :
apparition de charges « liées » !

H Dans un volume V :

1. À la surface :
ρs liées = ~P · n̂ (Cm−2) (146)

2. À l’intérieur :
ρliées = −~∇ · ~P (Cm−3) (147)

3. Matière neutre : ∮

S
ρs liées dS +

∫

V
ρliées dV = 0

H ρliées, ρs liées génèrent champ électrique dû à ~P
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Loi de Gauss dans les diélectriques

H Deux types de charges :

1. « Libres » : on peut les choisir/placer etc.
2. « Liées » : on n’a aucun contrôle sur elles

H Loi de Gauss (électrostatique) :

~∇ · ~E =
1

ǫ0
(ρliées + ρlibres)

=
1

ǫ0
(−~∇ · ~P + ρlibres)

~∇ · (ǫ0 ~E + ~P) = ρlibres

~D , ǫ0 ~E + ~P (Cm−2) (148)

~∇ · ~D = ρlibres (149)

H ~D : déplacement (ou induction) électrique, en Cm−2
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Milieux LHI

H Linéaire :

~P = ǫ0χe
~E (150)

χe : susceptibilité électrique

~D = ǫ0 ~E + ~P = ǫ0(1 + χe) ~E (151)

, ǫ0ǫr ~E = ε~E

ǫr : permittivité relative ε/ǫ0 (ou constante diélectrique)

H Homogène : ǫr ne dépend pas de ~r

H Isotrope : ǫr est un scalaire
H Milieux lhi :

(149) : ~∇ · ~D = ρlibres

~D=ǫ0ǫr ~E−→ ~∇ · ~E = ρlibres/ǫ0ǫr

remplacer ρ −→ ρlibres et ǫ0 −→ ǫ0ǫr dans la loi de Gauss
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Permittivité relative : quelques valeurs typiques

Matériau ǫr

Vide 1
Hydrogène 1.00025
Air (sec) 1.00054
Diamand 5.2

Sel 5.9
Silicone 11.8

Eau 80.1
Glace (−30 ◦C) 99
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Champ magnétique dans la matière 194

Phénomènes magnétiques : dus aux courants

H Aimants, boussoles, Pôle Nord, etc. :
des courants dans la matière

H Une boucle de courant I :
~m , IAn̂

H ~m : moment dipolaire magnétique
H A : aire de la boucle
H Dans la matière, ~m créés par les électrons
H Orientation aléatoire : résultat nul
H Quel est l’effet d’un champ ~B extérieur ?

1. Diamagnétisme : ~m s’orientent contre ~B

2. Paramagnétisme : ~m s’orientent selon ~B

3. Ferromagnétisme : ~m s’orientent selon ~B à grandes échelles
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Magnétisation : courants induits

H Équivalent de la polarisation ~P

H Vecteur de magnétisation ~M :
densité volumique de moment dipolaire magnétique :

~M , lim
∆V→0

1

∆V
∑

i

~mi (Am2 m−3 = Am−1) (152)

H Dans un volume V :

1. À la surface :
~Js liés = ~M ∧ n̂ (Am−1) (153)

2. À l’intérieur :
~Jliés = ~∇ ∧ ~M (Am−2) (154)
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Loi d’Ampère dans les diélectriques

H Deux types de courants :

1. « Libres » : on peut les choisir/placer etc.
2. « Liés » : on n’a aucun contrôle sur eux

H Loi d’Ampère (magnétostatique) :

~∇ ∧ ~B = µ0( ~Jliés + ~Jlibres)

= µ0(~∇ ∧ ~M + ~Jlibres)

~∇ ∧
(

1

µ0

~B − ~M

)

= ~Jlibres

~H ,
1

µ0

~B − ~M (Am−1) (155)

~∇ ∧ ~H = ~Jlibres (156)

H ~H : « champ H » (excitation magnétique) en Am−1
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Milieux LHI

H Linéaire :

~M = χm
~H (157)

χm : susceptibilité magnétique

~B = µ0( ~H + ~M) = µ0(1 + χm) ~H (158)

, µ0µr
~H = µ ~H

µr : perméabilité relative µ/µ0

H Homogène : µr ne dépend pas de ~r

H Isotrope : µr est un scalaire
H Milieux lhi :

(156) : ~∇ ∧ ~H = ~Jlibres

~B=µ0µr
~H−→ ~∇ ∧ ~B = µ0µr

~Jlibres

remplacer ~J −→ ~Jlibres et µ0 −→ µ0µr dans la loi d’Ampère
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Susceptibilité magnétique : quelques valeurs

Matériau dia- χm

Or −3.4× 10−5

Argent −2.4× 10−5

Cuivre −9.7× 10−6

Eau −9.0× 10−6

CO2 −1.2× 10−8

Hydrogène −2.2× 10−9

Matériau para- χm

Oxygène 1.9 × 10−6

Sodium 8.5 × 10−6

Aluminium 2.1 × 10−5

Tungsten 7.8 × 10−5

Platine 2.8 × 10−4

Oxygène liquide 3.9 × 10−3

H µr = 1 + χm ≈ 1
H Oxygène liquide démo (WL, L21, 43m00-46m22)
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Ferromagnétisme

H µr entre 102 et 106 !
H Orientation de ~m par domaines (≈ 1020 atomes)
H Orientation permanante : magnétisation
H Dans un champ magnétique ~B non uniforme : force d’attraction vers ~B fort

(WL, L21, 20m10-23m00)
H Écouter les domaines magnétiques s’orienter : effet Barkhausen (1919) (WL, L21, 25m50-30m30)
H Phénomène d’hystérésis ~B/ ~H

H Température de Curie (WL, L21, 37m00-40m10)

Matériau Tc(
◦C)

Nickel (Ni) 354
Fer (Fe) 770

Cobalt (Co) 1115

H Équivalent : matériaux ferroélectriques, hystérésis ~P/~E
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Équations de Maxwell dans la matière 201

Courant de polarisation

H Retour aux phénomènes variables dans le temps

H Régime harmonique (∂/∂t −→ jω, ~E −→ ~̃
E etc.)

H Polarisation/magnétisation dans la matière
H Apparition de charges/courants « liés » :

polarisation (147) : ρ̃liées = −~∇ · ~̃P

magnétisation (154) : ~̃
Jliés = ~∇ ∧ ~̃

M

H Variation de ρ̃liées : courant de polarisation

(Rappel (42) : ~∇ · ~̃J = − jωρ̃)

~∇ · ~̃Jpol = − jωρ̃liées
(147)
= − jω(−~∇ · ~̃P) = ~∇ · jω ~̃

P

~̃
Jpol = jω ~̃

P (159)

H Un nouveau terme de courant à ajouter dans l’équation de Maxwell-Ampère !
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Équations de la divergence

H Champ électrique (loi de Gauss)

(88) : ~∇ · ~̃E =
ρ̃

ǫ0
=

1

ǫ0
(ρ̃liées + ρ̃libres) =

1

ǫ0
(−~∇ · ~̃P + ρ̃libres)

~∇ · (ǫ0 ~̃E + ~̃
P) = ~∇ · ~̃D = ρ̃libres (160)

H Champ magnétique

(89) : ~∇ · ~̃B = 0 (161)
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Équations du rotationnel

H Champ électrique (loi de Faraday)

(90) : ~∇ ∧ ~̃
E = − jω ~̃

B (162)

H Champ magnétique (loi de Maxwell-Ampère)

(91) : ~∇ ∧ ~̃
B = µ0(

~̃
Jliés +

~̃
Jlibres +

~̃
Jpol + jωǫ0

~̃
E)

(159)
= µ0(~∇ ∧ ~̃

M + ~̃
Jlibres + jω ~̃

P + jωǫ0
~̃
E)

= µ0(~∇ ∧ ~̃
M + ~̃

Jlibres + jω ~̃
D)

~∇ ∧
(

1

µ0

~̃
B − ~̃

M

)

= ~∇ ∧ ~̃
H = ~̃

Jlibres + jω ~̃
D (163)
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Équations de Maxwell dans la matière (1)

H Forme « inutilisable »

~∇ · ~̃E = ρ̃/ǫ0 (164a)

~∇ · ~̃B = 0 (164b)

~∇ ∧ ~̃
E = − jω ~̃

B (164c)

~∇ ∧ ~̃
B = µ0(

~̃
J + jωǫ0

~̃
E) (164d)

H Charges et courants : « libres » et « liés »

ρ̃ = ρ̃liées + ρ̃libres

~̃
J = ~̃

Jliés +
~̃
Jlibres +

~̃
Jpol

H Équations valables quel que soit le milieu
H Incovénient : calculer les charges/courants que l’on ne contrôle pas

205

110 www.polytech.unice.fr/~aliferis

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/
www.polytech.unice.fr/~aliferis
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/index.php


École Polytechnique de l’UNS
Polytech’Nice-Sophia

Parcours des Écoles d’Ingénieurs Polytech, 2e année
2012–2013

Équations de Maxwell dans la matière (2)

H Forme « généralisée »

~∇ · ~̃D = ρ̃libres (165a)

~∇ · ~̃B = 0 (165b)

~∇ ∧ ~̃
E = − jω ~̃

B (165c)

~∇ ∧ ~̃
H = ~̃

Jlibres + jω ~̃
D (165d)

H Charges et courants : uniquement « libres » (on ne l’écrira plus !)
H Relations constitutives

~̃
D = ǫ0

~̃
E + ~̃

P

~̃
B = µ0(

~̃
H + ~̃

M)

H Équations valables quel que soit le milieu

H Difficulté : calculer les champs ~̃
P et ~̃

M
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Équations de Maxwell dans la matière (3)

H Forme spéciale : milieux linéaires, homogènes, isotropes (lhi)

~∇ · ~̃E = ρ̃libres/ǫ

~∇ · ~̃H = 0

~∇ ∧ ~̃
E = − jωµ ~̃

H

~∇ ∧ ~̃
H = ~̃

Jlibres + jωǫ ~̃E

(166a)

(166b)

(166c)

(166d)

H Charges et courants : uniquement « libres » (on ne l’écrira plus !)
H Relations constitutives : utilisées dans (165) −→ (166)

~̃
D = ǫ0

~̃
E + ~̃

P
lhi
= ǫ0ǫr

~̃
E = ǫ ~̃E

~̃
B = µ0(

~̃
H + ~̃

M)
lhi
= µ0µr

~̃
H = µ ~̃

H

H Équations valables uniquement pour les milieux lhi (y compris le vide !)
H Ressemblent aux équations (164) mais avec ǫ, µ et charges/courants libres
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Énergie et puissance dans la matière

H On peut reprendre les calculs qui ont conduit à (131) mais à partir des équations de Maxwell
généralisées (165)

pertes :
dP
dV = ~E · ~J (W/m3)

énergie é/m :
dUem

dV =
1

2
~D · ~E +

1

2
~B · ~H (Jm−3) (167)

Poynting : ~S = ~E ∧ ~H (Wm−2) (168)

H Dans le cas spécial du vide, on retrouve (129) et (134)
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OPPM dans les milieux lhi 209

OPPM dans un milieu lhi

H On peut reprendre tous les résultats obtenus dans le vide
H Remplacer ǫ0 −→ ǫ et µ0 −→ µ
H Faire apparaître uniquement les charges et les courants « libres »
H Dans un milieu lhi sans sources ni courants :

◮ Une OPPM est une onde TEM
◮ Les vecteurs ~E, ~H, ~k forment un trièdre direct
◮ Le nombre d’onde est donné par :

k = ω
√
µǫ = ω

√
µ0ǫ0
√
µrǫr = k0

√
µrǫr (169)

◮ Le rapport ‖~E‖/‖ ~H‖ est constant :

~B = µ ~H =
~k ∧ ~E

ω

~E⊥~k−→ ‖ ~H‖ = k

ωµ
‖~E‖ =

√
ǫ

µ
‖~E‖

Z ,

√
µ

ǫ
=
‖~E‖
‖ ~H‖

impédance caractéristique (Ω) (170)

◮ Les champs ~E et ~H sont en phase si ǫ, µ réels
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Types de pertes dans la matière

1. Pertes de conductivité (ohmiques)

(46) : ~̃J = σ ~̃
E loi d’Ohm

σ : conductivité en Sm−1

2. Pertes diélectriques : (150)→ ~̃
P = ǫ0χ̃e

~̃
E

ǫ̃ = 1 + χ̃e , ǫ′ − j ǫ′′ = ǫ0(ǫ
′
r − j ǫ′′r) = ǫ0ǫ̃r

3. Pertes magnétiques : (157)→ ~̃
M = χ̃m

~̃
H

µ̃ = 1 + χ̃m , µ′ − jµ′′ = µ0(µ
′
r − jµ′′

r) = µ0µ̃r

(on considère toujours ici µr ≈ 1)
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Permittivité effective

H Pertes ohmiques et diélectriques dans Maxwell-Ampère :

(166) : ~∇ ∧ ~̃
H = σ ~̃

E
︸︷︷︸

~̃
J

+ jωǫ̃ ~̃E = jωǫ0

(

ǫ̃r − j
σ

ωǫ0

)

~̃
E

H Définir une permittivité effective

ǫ̃reff , ǫ̃r − j
σ

ωǫ0
= ǫ′r − j

(

ǫ′′r +
σ

ωǫ0

)

= ǫ′reff − j ǫ′′reff (171)

H L’équation de Maxwell-Ampère (166)

~∇ ∧ ~H = jωǫ0ǫ̃reff
~̃
E

H On peut reprendre tous les résultats précédents (lhi sans pertes) et remplacer ǫr −→ ǫ̃reff
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Nombre d’onde complexe

H Le nombre d’onde
k = ω

√
µǫ −→ k̃ = ω

√

µǫ̃eff

H Nombre d’onde complexe !

k̃ , β− jα

~̃
E = ~E0e

− j k̃z = ~E0e
− j (β− jα)z = ~E0e

−αze− jβz

~E = ~E0e
−αz cos(ωt− βz)

H β : « constante de phase » (radm−1)
H α : « coefficient d’atténuation » (Npm−1)
H δ = 1/α : « profondeur de peau »
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Coefficients α et β

H Milieu lhi sans pertes magnétiques, avec permittivité complexe

k̃ = ω
√
µ0ǫ0

√

µrǫ̃reff = k0

√

µr(ǫ
′
reff − j ǫ′′reff) = k0

√

µrǫ
′
reff

√

1− j
ǫ′′reff
ǫ′reff

H Tangente de pertes , ǫ′′reff/ǫ
′
reff

H Coefficient d’atténuation / constante de phase :

α = k0

√

µrǫ′reff
2





√

1 +

(
ǫ′′reff
ǫ′reff

)2

− 1





1/2

(172)

β = k0

√

µrǫ′reff
2





√

1 +

(
ǫ′′reff
ǫ′reff

)2

+ 1





1/2

(173)
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Milieu lhi sans pertes

H Milieu sans pertes : ǫ′′ = 0

α = 0

β = ω
√

µǫ′

H La vitesse de phase :

vφ =
ω

β
=

c
√

µrǫ′r
=

c

n
≤ c (174)

H Indice de réfraction :
n ,

√

µrǫ′r (175)

H La longueur d’onde :

λ =
2π

β
=

λ0
√

µrǫ′r
=

λ0

n
≤ λ0
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Milieu lhi avec pertes

H Milieu avec pertes : ǫ′′ 6= 0

α 6= 0

β 6= ω
√

µǫ′

H La vitesse de phase (réelle) :

vφ =
ω

β
=

ω

Re
{

k̃
} =

ω

Re
{
ω
√
µǫ̃
} =

c

Re
{√

µr ǫ̃r
} =

c

Re {ñ} ≤ c (176)

H Indice de réfraction (complexe) :

ñ ,
√

µr ǫ̃r (177)

H La longueur d’onde (réelle) :

λ =
2π

β
=

2π

Re
{

k̃
} =

λ0

Re
{√

µr ǫ̃r
} =

λ0

Re {ñ} ≤ λ0
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Refléxion / transmission entre deux milieux lhi 217

Conditions aux limites entre deux milieux lhi

H Les équations de Maxwell dans la matière (165)

~∇ · ~̃D = ρ̃ ~∇ · ~̃B = 0

~∇ ∧ ~̃
E = − jω ~̃

B ~∇ ∧ ~̃
H = ~̃

J + jω ~̃
D

H Interface entre deux milieux lhi, n̂ de 2 vers 1
H Même procédure que celle du tr.#174

n̂ · ( ~̃D1 − ~̃
D2) = ρ̃s ǫ1Ẽnor1 − ǫ2Ẽnor2 = ρ̃s (178a)

n̂ · ( ~̃B1 − ~̃
B2) = 0 µ1H̃nor1 − µ2H̃nor2 = 0 (178b)

n̂ ∧ ( ~̃E1 − ~̃
E2) = ~0 Ẽtan1 − Ẽtan2 = 0 (178c)

n̂ ∧ ( ~̃H1 − ~̃
H2) =

~̃
Js H̃tan1 − H̃tan2 = J̃s (178d)

H
~̃
Etan continu ; ~̃

Hnor continu (si milieux non magnétiques)

H
~̃
Js : courant surfacique (Am−1), uniquement sur un conducteur parfait
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Incidence normale sur une interface

H Interface entre deux milieux lhi à z = 0
H Incidence normale : k̂i = êz (TD 14.1)
H Ondes incidente, réflechie et transmise :

~̃
Ei = Ei0e

− j~ki·~rêx = Ei0e
− j kizêx

~̃
Er = Ẽr0e

− j~kr ·~r êx = Ẽr0e
+ j kizêx

~̃
Et = Ẽt0e

− j~kt·~r êx = Ẽt0e
− j ktzêx

H Champs magnétiques ~̃
H = (k̂ ∧ ~̃

E)/Z̃ :

~̃
Hi = +

1

Z̃1

Ei0e
− j kizêy

~̃
Hr = − 1

Z̃1

Ẽr0e
+ j kizêy

~̃
Ht = +

1

Z̃2

Ẽt0e
− j ktzêy
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Incidence normale : conditions aux limites

H Appliquer les conditions aux limites (178) à z = 0

H (178a) : pas de composantes normales de ~̃
E

H (178b) : pas de composantes normales de ~̃
B

H (178c) : composantes tangentielles de ~̃
E (selon êx)

Ei0 + Ẽr0 = Ẽt0

H (178d) : composantes tangentielles de ~̃
H (selon êy)

Ei0

Z̃1

− Ẽr0

Z̃1

=
Ẽt0

Z̃2
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Incidence normale : coefficients amplitude

H Coefficients de réflexion/transmission en amplitude :

r̃ ,
Ẽr0

Ei0
=

Z̃2 − Z̃1

Z̃2 + Z̃1

(179)

t̃ ,
Ẽt0

Ei0
=

2Z̃2

Z̃2 + Z̃1

(180)

H Quelques propriétés

1. 1 + r̃ = t̃
2. r, t réels si milieux sans pertes : pas de déphasage

◮ r = Z2−Z1

Z2+Z1
< 0 si Z2 < Z1

◮ Milieux non magnétiques : Z2 < Z1 =⇒ ǫ1 > ǫ2
◮ ǫ1 > ǫ2 =⇒ v1 < v2 (milieu « lent » vers « rapide »)

3. Si milieu 2 conducteur parfait : Z̃2 =
√

µ2

ǫ′− j σ
ω
→ 0, r = −1, t = 0
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Incidence normale : coefficients puissance

H Puissance transportée :

Ii =
1

2
Re

{
1

Z̃1

}

E2
i0

Ir =
1

2
Re

{
1

Z̃1

}

|Ẽr0|2 =
1

2
Re

{
1

Z̃1

}

|r̃|2E2
i0

It =
1

2
Re

{
1

Z̃2

}

|Ẽt0|2 =
1

2
Re

{
1

Z̃2

}

|t̃|2E2
i0

H Coefficients de réflexion/transmission en intensité :

R ,
Ir
Ii

= |r̃|2 (181)

T ,
It
Ii

=
Re
{

1/Z̃2

}

Re
{

1/Z̃1

} |t̃|2 = 1−R (182)
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Incidence oblique sur une interface : définitions

H Interface entre deux milieux lhi à z = 0
H « Plan d’incidence » : défini par n̂ et k̂i

H « Angle d’incidence » θi : entre n̂ et k̂i (0 ≤ θi ≤ 90◦)
H « Angle de réflexion » θr : entre n̂ et k̂r (0 ≤ θr ≤ 90◦)
H « Angle de réfraction » θt : entre n̂ et k̂t (0 ≤ θt ≤ 90◦)
H Incidence oblique :

~ki = ki sin θiêx + ki cos θiêz

~kr = ki sin θrêx − ki cos θrêz (kr = ki)

~kt = kt sin θtêx + kt cos θtêz

H Polarisation perpendiculaire (⊥, s, TE) : ~E ⊥ plan d’incidence (TD 14.2)
H Polarisation parallèle (‖, p, TM) : ~E ‖ plan d’incidence (TD 14.3)
H Cas général : perpendiculaire + parallèle
H Milieux non magnétiques (µ1,2 = µ0) sans pertes (ǫ1,2 réels)
H k = k0

√
ǫr = nk0

H Z = Z0/
√
ǫr = Z0/n
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Incidence oblique ⊥ : champs

H Polarisation perpendiculaire (⊥, s, TE) : ~E ⊥ plan d’incidence (TD 14.2)
H Champs électriques :

~̃
Ei = Ei0e

− j~ki·~rêy
~̃
Er = Er0e

− j~kr ·~r êy
~̃
Et = Et0e

− j~kt·~r êy

H Champs magnétiques ~̃
H = (k̂ ∧ ~̃

E)/Z :

~̃
Hi =

1

Z1
Ei0e

− j~ki·~r(− cos θiêx + sin θiêz)

~̃
Hr =

1

Z1
Er0e

− j~kr ·~r(+ cos θrêx + sin θrêz)

~̃
Ht =

1

Z2
Et0e

− j~kt·~r(− cos θtêx + sin θtêz)
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Incidence oblique ⊥ : Snel – Descartes

H Appliquer les conditions aux limites (178) à z = 0
H (178c) : composantes tangentielles de ~E (selon êy)

Ei0e
− j~ki·~r + Er0e

− j~kr ·~r = Et0e
− j~kt·~r ∀~r = (x, y, 0)

H Égalité possible à condition que :

~ki · ~r = ~kr · ~r = ~kt · ~r ∀~r = (x, y, 0)

« Continuité de la phase sur l’interface »
H Conséquences :

~ki · ~r = ~kr · ~r ⇒ sin θi = sin θr ⇒ θi = θr (183)

~ki · ~r = ~kt · ~r ⇒ n1 sin θi = n2 sin θt (184)

Loi de (Willebrord) Snel – Descartes
H Simplifier la notation : θ1 , θi = θr et θ2 , θr
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Incidence oblique ⊥ : conditions aux limites

H Appliquer les conditions aux limites (178) à z = 0

H (178a) : pas de composantes normales de ~̃
E

H (178b) : composantes normales de ~̃
B (selon êz)

µ0
1

Z1
Ei0 sin θ1 + µ0

1

Z1
Er0 sin θ1 = −µ0

1

Z2
Et0 sin θ2

H (178c) : composantes tangentielles de ~̃
E (selon êy)

Ei0 + Er0 = Et0

(178b) + Z = Z0/n + Snell-Descartes = (178c)

H (178d) : composantes tangentielles de ~̃
H (selon êx)

− 1

Z1
Ei0 cos θ1 +

1

Z1
Er0 cos θ1 =

1

Z2
Et0 cos θ2

H Mêmes relations en incidence normale (cf. tr.#220) si on définit Z⊥ , Z/ cos θ
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Incidence oblique ⊥ : coefficients amplitude

H Coefficients de réflexion/transmission en amplitude :

r⊥ ,
Er0

Ei0
=

Z2⊥ − Z1⊥
Z2⊥ + Z1⊥

(185)

t⊥ ,
Et0

Ei0
=

2Z2⊥
Z2⊥ + Z1⊥

(186)

Z1⊥ ,
Z1

cos θ1

Z2⊥ ,
Z2

cos θ2

H r⊥, t⊥ dépendent de θ1
H r⊥ 6= 0 (TD 14.2g)
H Si milieu 2 conducteur parfait : Z2 = 0, r⊥ = −1, t⊥ = 0
H Z⊥ = |Etan|/|Htan| (comp. tangentielles à l’interface, ici |Ey|/|Hx|)
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Incidence oblique ⊥ : coefficients puissance

H Puissance transportée de façon normale à l’interface :

Ii =
1

2

1

Z1
E2

i0cos θ1

Ir =
1

2

1

Z1
E2

r0cos θ1 =
1

2

1

Z1
r2⊥E

2
i0cos θ1

It =
1

2

1

Z2
E2

t0cos θ2 =
1

2

1

Z2
t2⊥E

2
i0cos θ2

H Coefficients de réflexion/transmission en intensité :

R⊥ ,
Ir
Ii

= r2⊥ (187)

T⊥ ,
It
Ii

=
1/Z2

1/Z1

cos θ2
cos θ1

t2⊥ = 1−R⊥ (188)
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Incidence oblique ‖ : champs

H Polarisation parrallèle (‖, s, TM) : ~E ‖ plan d’incidence (TD 14.3)
H Champs magnétiques :

~̃
Hi =

1

Z1
Ei0e

− j~ki·~r êy
~̃
Hr =

1

Z1
Er0e

− j~kr ·~rêy
~̃
Ht =

1

Z2
Et0e

− j~kt·~r êy

H Champs électriques ~̃
E = ( ~̃H ∧ k̂)Z :

~̃
Ei = Ei0e

− j~ki·~r(+ cos θiêx − sin θiêz)

~̃
Er = Er0e

− j~kr·~r(− cos θrêx − sin θrêz)

~̃
Et = Et0e

− j~kt·~r(+ cos θtêx − sin θtêz)

H Même procédure que celle du cas ⊥ (cf. tr.#225) :

1. Continuité de phase sur l’interface : ~ki · ~r = ~kr · ~r = ~kt · ~r
2. Snel – Descartes : θi = θr et n1 sin θi = n2 sin θt
3. θ1 , θi = θr et θ2 , θt
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Incidence oblique ‖ : conditions aux limites

H Appliquer les conditions aux limites (178) à z = 0

H (178a) : composantes normales de ~̃
D (selon êz)

−ǫ1Ei0 sin θ1 − ǫ1Er0 sin θ1 = −ǫ2Et0 sin θ2

H (178b) : pas de composantes normales de ~̃
B

H (178c) : composantes tangentielles de ~̃
E (selon êx)

Ei0 cos θ1 −Er0 cos θ1 = Et0 cos θ2

H (178d) : composantes tangentielles de ~̃
H (selon êy)

Ei0

Z1
+

Er0

Z1
=

Et0

Z2

(178a) + Z = Z0/n + Snell-Descartes = (178d)
H On définit Z‖ , Z cos θ
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Incidence oblique ‖ : coefficients amplitude

H Coefficients de réflexion/transmission en amplitude :

r‖ , −
Er0

Ei0
=

Z2‖ − Z1‖
Z2‖ + Z1‖

(189)

t‖ ,
Et0

Ei0
=

2Z2‖
Z2‖ + Z1‖

cos θ1
cos θ2

(190)

Z1‖ , Z1 cos θ1

Z2‖ , Z2 cos θ2

H r‖ , −Er0/Ei0 parce que si θ1 ≈ 0, ~Ei et ~Er sont opposés
H r‖, t‖ dépendent de θ1
H r‖ = 0 si θ1 = θB : angle de Brewster, tan θB = Z1/Z2 (TD 14.3d)
H Si milieu 2 conducteur parfait : Z2 = 0, r‖ = −1, t‖ = 0
H Z‖ = |Etan|/|Htan| (comp. tangentielles à l’interface, ici |Ex|/|Hy|)
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Incidence oblique ‖ : coefficients puissance

H Puissance transportée de façon normale à l’interface :

Ii =
1

2

1

Z1
E2

i0cos θ1

Ir =
1

2

1

Z1
E2

r0cos θ1 =
1

2

1

Z1
r2‖E

2
i0cos θ1

It =
1

2

1

Z2
E2

t0cos θ2 =
1

2

1

Z2
t2‖E

2
i0cos θ2

H Coefficients de réflexion/transmission en intensité :

R‖ ,
Ir
Ii

= r2‖ (191)

T‖ ,
It
Ii

=
1/Z2

1/Z1

cos θ2
cos θ1

t2‖ = 1−R‖ (192)
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