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Ce document contient les transparents du cours mais il n'est en aucun cas complet (auto-suffisant), une
grande quantité d’information (commentaires, explications, diagrammes, démonstrations etc.) est donnée
pendant les séances, oralement ou a I'aide du tableau.

@ Le logo du logiciel R a droite d'un titre contient un lien vers le script illustrant les résultats présentés
dans le transparent. L'étude du graphique (mais pas celle du script!) fait partie intégrante du cours. Tous
les scripts sont accessibles dans la partie « Documents / Compléments multimédia » du site :
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/

Toutes les ressources externes, disponibles en lien hypertexte & partir de ce document, sont aussi répertoriées
dans la partie « Ressources Externes » du site :
http://www.polytech.unice.fr/"aliferis/fr/teaching/courses/cip2/electromagnetisme/

Les extraits vidéo proviennent du cours du Professeur Walter Lewin, MIT : Walter Lewin, 8.02 Electricity
and Magnetism, Spring 2002. (Massachusetts Institute of Technology : MIT OpenCourseWare),
http://ocw.mit.edu/0OcwWeb/Physics/8-02Electricity-and-MagnetismSpring2002/CourseHome/
(Accessed September 9, 2009). License : Creative Commons BY-NC-SA.

| |
o ocol

‘Document prﬁparé avec ATEX et powerdot, sous licence Creative Commons BY-NC-SA :
Paternité — Pas d'Utilisation Commerciale — Partage des Conditions Initiales 3 I'ldentique 2.0 France.
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Introduction 2

Plan du cours

Introduction

Analyse vectorielle

Electrostatique

Magnétostatique

Phénoménes d'induction

Equations de Maxwell

Ondes électromagnétiques

26 séances cours + 26 séances TD (39h x 2)
Optique ondulatoire

6 séances cours + 6 séances TD (9h x 2)

4 4 4 4 4 <« «

<

Regles du jeu / conseils

v Travail individuel

» Contréles : 3 (IA) + 1 (PV)
» Coefficients croissants
14%, 18%, 22%, 26%
» Controéle continu : quiz, tableau, etc.
20% (harmonisation des notes entre groupes TD)

Les transparents
Classeurs, prise de notes
J@lon : http://jalon.unice.fr

4 4 <4 «
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Un tout petit peu d’histoire. ..
v L'ambre (fAektpov) et I'aimant (poyvitng) :
3000 ans d’histoire !
v Premieres traces écrites :
Thalés (624-547 av. J.C.)
Platon (427-341 av. J.C.)
v Deux phénoménes distincts. . .
v ...unifiés a la fin du XIXe® siécle (1864)
par James Clerk Maxwell (1837-1879)
v (et aprés?)
5
Qu’est-ce qu’on fait ici ?
v Pourquoi étudier |'électromagnétisme ?
v La technologie (toutes ces applications. . .)
C'est tout ?
v Les quatre forces (interactions) de la Nature :
1. Gravitationnelle
2. Electromagnétique
3. Nucléaire forte
4. Nucléaire faible
v Dans quels contextes ? Dans quel ordre?
6
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Forces gravitationnelle et électrique

v Deux électrons
me = 9.1 x 1073 kg
ge = —1.6x10719C
v Force gravitationnelle

MeMe

F,=G (G =6.67 x 10" Nm? kg™?)

r2

v Force électrique

F,= kcqege (k. = 8.99 x 10° Nm? C~2)
T
v F./F,;=0.23 x 10%2

v
Univers _ Ix 1026 m _ 0.6 x 101
proton 1.6 x 107 m
7
L'E/M est partout !
Les forces et les phénoménes électromagnétiques se
trouvent partout autour de nous!
(mais pourquoi on ne sent rien ?)
8
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Champs électromagnétiques

v Pourquoi utiliser les champs E et B pour décrire ces phénoménes ?
v Force électrique entre deux charges : loi de Coulomb

0 a192 .
F= kc—2U1—>2
T
Valable uniquement si les charges sont immobiles !
Sinon 7 la formule devient trés compliquée. . .

v Force électromagnétique (force de Lorenz) :

F=q(E+%AB) (1)
Exercée sur une charge ¢ de vitesse ¥ se déplagant dans un champ E et B.
Valable toujours.

9
Comment ca marche?
1. Les charges « sources » (immobiles ou pas) créent des champs.
2. Les champs agissent sur d’autres charges (force de Lorenz).
Il suffit de (bien) décrire les champs (E et B) créés par les
sources.
Charge : valeur multiple de ¢,. ..
10

\ |
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Champ électrostatique

v « Statique » : les charges ne se déplacent pas
v Loi de Coulomb (1785)
v Force exercée par la charge 1 sur la charge 2 :
= 1 qqa .
Fi2 = Tren 2 U1-2
TEy T
——
ke
v Champ électrique généré par la charge 1 :

B, 2 Fi,2 1 q s
- — D) —
72 dmeg 2

v Dongc, a partir du champ électrique :

Fy_2 = qFE,

11
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Analyse vectorielle : champ, flux

12

La notion de champ

v

v

Champ scalaire : I'association a chaque point de |'espace d'un scalaire (un seul nombre) : p.ex.
température, altitude, ...

Champ vectoriel : |'association a chaque point de I'espace d'un vecteur (longueur et orientation) :

p.ex. vent, vitesse, ...

[l faut d'abord pouvoir se repérer et s'orienter dans |'espace !
Systémes de coordonnées (1, 2 ou 3 dimensions 7)

Vecteurs
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Systéme de coordonnées cartésiennes

Variable  valeurs  longueur élémentaire
x | — 00, 00[ dz
y ] — 00,00 dy
z | — 00, 00[ dz

v Surface élémentaire d.S
x constant : dydz
y constant : dzdz
z constant : dxdy
v Volume élémentaire dV = daxdydz
Vecteur de position : 7 = xé, + yé, + zé.

<

v Un systéme d'exception! les trois variables ont les mémes dimensions (longueur) et sont
équivalentes.
v (et l'oreille interne ?)

14
Systéme de coordonnées cylindriques
Variable  valeurs longueur élémentaire
P [0, 00] dp
¢ 0, 2] pdo
z | — 00, 0] dz
v Surface élémentaire d.S
p constant : pdodz
¢ constant : dpdz
z constant : pdpd¢
v Volume élémentaire dV = pdpdedz
v Vecteur de position : 7 = pé, + zé.
15
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Systéme de coordonnées sphériques

Variable valeurs longueur élémentaire

r [0, c0] dr
0 [0, 7] rdé
o [0, 27] rsinfde

v Surface élémentaire d.S

r constant : r?sin@ d¢ dé

0 constant : rsinfdrde

¢ constant : rdrdf
v Volume élémentaire dV = r?sinfdr dfdeo
v Vecteur de position : 7 = ré,

16
Vecteurs
v Objet mathématique ayant une longueur (norme), une direction et un sens (orientation).
v Notation :
le vecteur : A
sa norme : ||Al| ou A (un nombre)
v Un vecteur est défini par ses trois composantes :
Ay
A=A
As
Les Aq, Ay, A3 dépendent du systéme de coordonnées choisi, mais le vecteur non!
v Astuce : le vecteur 14 = mA a la méme orientation que A mais | ||[G 4| = 1|!
Vecteur « unitaire »
17
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Le produit scalaire : une projection

v Le produit scalaire de A et B, deux vecteurs formant un angle 6 :
A-B = | A)|B| cost 2)
A.B = ABcosf (notation plus simple)

(Ne pas oublier le point - entre les vecteurs!)
v Acosf : la projection de A sur la direction de B!
v Si @ un vecteur unitaire (orientation) :

A q= projection de A sur la direction de @

v Dans tous les systémes de coordonnées :

A-B = AB) + AyBy + A3B3 (3)

18

Vecteurs unitaires

v Des vecteurs « a part »
v Notation : lettre miniscule 4+ chapeau @, 7, €, ...
v Information sur |'orientation :

» Systémes de coordonnées : é;, é,, €ég, ...
montrent le sens d'augmentation de la variable concernée
» Surfaces: 7

montrent le sens de la normale par rapport a la surface (donc la définissent + entrée/sortie)
v« Utilité » :

» « Extraire » la composante d'un vecteur A sur la direction du vecteur unitaire @ : A - @

(C'est quoi les composantes d'un vecteur ?)
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[Extra] Le vecteur de position 7

v Pour chaque point M, le vecteur 7 indique :
la distance par rapport a I'origine (OM)
I'orientation (de O vers M).

v Coordonnées cartésiennes, M(x,y, z) :

v Coordonnées cylindriques, M(p, ¢, z) :

(ou est passé ¢ 7)
v Coordonnées sphériques, M(r, 0, ¢) :

(ou sont passés 6 et ¢ 7)

20
Systéme de coordonnées cartésiennes (bis)
Variable  valeurs  longueur élémentaire
x | — 00, 00] dz
y ] — 00, 00] dy
z | — 00, 00] dz
v Surface élémentaire d.S
x constant : dydz
y constant : dzdzx
z constant : dxdy
v Volume élémentaire dV = dxdydz
v Un systéme d'exception ! les trois variables ont les mémes dimensions (longueur) et sont
équivalentes.
v En plus, les trois vecteurs unitaires &, &, €, restent les mémes a chaque point de I'espace!
21
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Champ scalaire

v Champ scalaire : |'association a chaque point de |'espace d'un scalaire (un seul nombre) : p.ex.
température, altitude, ...

v Un champ scalaire est une fonction de 3 variables
p.ex. en coordonnées cartésiennes : ®(z,y, 2)

22

Champ vectoriel

v Champ vectoriel : |'association & chaque point de I'espace d'un vecteur (module et direction) :

p.ex. vent, vitesse, ...
v Un champ vectoriel est un ensemble de 3 fonctions (les composantes) chacune de 3 variables (les

coordonnées) :
Az(z,y, 2)
A(wvyvz) = Ay(x7y7z)
Az (z,y, 2)

v Ne pas confondre composantes et coordonnées !

23
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Flux d’'un champ vectoriel (intro)
(Qu'est-ce qui traverse une surface?)
v Champ vectoriel h : kgs™! m—2
v Surface élémentaire (ouverte) dS
» Vecteur noLmaI a la surface 1
» Vecteur dS = fldS .
» Que représente h - dS7?
v Surface ouverte S
» Que représente fsl_i - dS7?
v Surface fermée S
» Que représente fsi_i - dS?
24

Flux d'un champ vectoriel

v Champ vectoriel A
v Surface (ouverte) S
Flux du champ A a travers S :

v Surface (fermée) S (7o sortant)
Flux du champ A a travers S :

A.-dS ou j{X-ﬁdS
S

S
Le flux a travers une surface fermée donne des informations sur les « sources » du champ a

I'intérieur de la surface

(5)

cocel
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Loi de Gauss (électrostatique)

v Electrostatique : les charges sont immobiles
v Loi de Gauss : « Le flux du champ électrique a travers une surface fermée est proportionnel a la
charge totale incluse & /'intérieur de cette surface »

fﬁ-ds?:jfﬁj-ﬁdsz@”t (6)
S S

v La constante ¢y (permittivité du vide) est égale & 8.85 x 10712 Fm~! ~ %F m~! (rappel sur les
dimensions : F = CV~1),

v 7 est perpendiculaire a chaque point de la surface S et sa direction est vers ['extérieur de celle-ci.

v Le champ électrique en Vm™!
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Analyse vectorielle 2 : divergence 27

Couper un volume en morceaux. ..

v Volume V entouré par S (donc fermée)
v Partager V en V1, Vs, entourés par S,S

}[A'-ﬁdsz A’-md5+7{ A - fydS
S S1 Sa

v Continuer. ..

I
N
ao~

B

S

o

n
N————

3

}[,&-ﬁds
S

Y ...jusquon?
v Surface fermée S; élémentaire

28
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Divergence
¥ Quel est le flux a travers une surface élémentaire fermée?
v | Divergence = flux surface élémentaire / volume
v
divA £ lim —%A dS (8)
AV—0 A
v divA : un champ scalaire! (> 0, < 0,= 0)
v A chaque point de I'espace, div A o flux a travers surface fermée autour de ce point
v flux o sources
v La divergence du champ A est proportionnelle
a la densité volumique des sources qui le générent.

29

Loi de Gauss (électrostatique) : forme locale

v Surface élémentaire autour d'un volume élémentaire AV incluant une charge AQ :

j{ E.-dS = j{ E. AQ
v Densité volumique de charge p = dQ/dV
v Charge AQ = [, pdV = pAV
]é B.a§=2Y
S €0
dvE =2 (9)
€0

v (et alors?)

30
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Calcul de la divergence

v Systéme de coordonnées cartésiennes
v Surface élémentaire autour de (z,vy, 2) :

cube centré a (x,y, ), de dimensions Az, Ay, Az
v Calculer le flux a travers sa surface

Y fl
divA = im >
Az,Ay,Az—0 volume
v
- 0A 0A 0A
divA = —= . - 10
v ox * y + 0z (10)
v Systémes de coordonnées cylindriques et sphériques. . .
31
Théoreme de la divergence (1)
v Surface fermée S autour d'un volume V
v Découper V en plusieurs petits morceaux V;
v S, la surface (fermée) autour de V;
flux a travers S = Zﬂux a travers S;
i
fj-ﬁdszz(j{ A’.mds>
v A la limite ou la surface S; devient infiniment petite (englobe AV — 0) :
lim ]é A 7;dS = divA
im — -1; dS = div
AVS0 AV Jg ’
32
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Théoreme de la divergence (2)

flux

divergence =
volume

jé A -7;dS =divAdy
S;

v Donc:
fj-ﬁdsz/divjdv (11)
S 1%

v Théoréme

» de la divergence

» de Gauss

» de Ostrogradsky

33

Loi de Gauss : intégrale vers locale

v Loi de Gauss, forme intégrale (6), tr.26 :

j{E-ﬁdS: Oin
S

€0

v La charge a l'intérieur de S : Qine = [, p(7) AV
v Le flux a travers S : fsE' fdS = fvdivEdV

\{
/divﬁdvz/@ dv
% v

divE = £
€0

34
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Superposition 35

Le principe de superposition : T + 1 = 2

v L'effet de la somme = la somme des effets
v Charge ponctuelle ¢; a 75,

crée un champ E; a 7 :
= 1 gi T —T;

E;(7) =
i) = e TP AP =7l

<

Ensemble de charges crée E(7) = > E;(7)
v Distribution continue de charges,
densité volumique p (Cm~3), crée :

— 1 1 r
E(r) =
() = Treo /V U

v Condition : pas d'interaction entre les charges!

-7’ —/ !
bl || ———

dq

36
Exemple de superposition : deux plans infinis
v Deux plans paralléles
v Distance entre les plans : d
v Un plan infini de densité surfacique +ps
v Un plan infini de densité surfacique —ps
v Calculer le champ FE partout dans I'espace
v (unseul plan: TD 1, 1.3; WL, L3, 37m58s-41m00s )
1+1=2
37
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Visualisation de champs vectoriels 38

Deux approches

1. Dessiner des vecteurs

v A chaque point 7 dessiner le vecteur E(7)
v L'origine du vecteur a ¥
v Diagramme “quiver” (carquois)

2. Dessiner des « lignes de champ »

Lignes continues

Tangentes au champ E (orientation)
Lignes/surface o || E|| (module)

Ne se croisent jamais

Pas de superposition !

(moins maniables que le champ...)

4 4 4 4 < «

39

Un autre regard sur le flux (et la divergence)

nombre de lignes

surface perpendiculaire

‘flux a travers S‘ = / E.-dS
S

@/ nombre de lignes traversant dS
S

= ‘ nombre de lignes traversant S‘

lignes traversant = lignes sortant — lignes entrant
Flux positif : sorties > entrées

Flux nul : équilibre entrées/sorties

Flux négatif : sorties < entrées

Divergence : flux « local »

4 4 4 4 «

40
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Lignes de champ en électrostatique

v Loi de Gauss :
$oE-ndS=2oudivE =2
. 0 60 7
v Nombre de lignes traversant une surface fermée
x @ (a l'intérieur)
v Trois régles d'or :

1. Les lignes commencent () sur les charges positives. . .
2. ...et se terminent (\) sur les charges negatives
3. Le nombre de lignes (,* — ) autour d'une charge @, est proportionnel a Q

v Exemples de lignes de champ :
Applet “Electric field lines”
et expériences de Walter Lewin (MIT) :
Graines de gazon (WL, L2, 42m25-43m40)
Jeu de ballon! (WL, L2, 45m55-49m24)

41
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Travail dans un champ électrostatique : potentiel 42

Le travail de A vers B (1)

v Une charge (fixe) ponctuelle @ a I'origine
(le reste n'est que superposition!)
v On déplace une charge « test » ¢
dans le champ E de Q
v Quel est le travail dépensé de A a B?
(« dépensé » : par celui qui déplace la charge)
v Travail = force x déplacement :

AW =F.dl = F-£dl (J=Nm)

v i : vecteur unitaire, tangent a ar

Wil :/ F.al
I FAHT_"B

43
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Le travail de A vers B (2)

v Force exercée sur la charge ¢ pendant le déplacement :
(« exercée » : par celui qui déplace la charge)

v Travail dépensé de A a B :

I': ¥4 — 7B le chemin de A vers B (lequel 7)

44

De quoi dépend W, .57

v ...aprés réflexion,

Wa_sp ne dépend que de 74 et 7

(parce que E || &)

Il n'y a que les points de départ et d'arrivée qui interviennent !
Le chemin I" de A 3 B ne compte pas!

Conséquence :

le travail le long d'une courbe fermée est nul,

donc :
%E-df:%ﬁ-fdl:o (13)
I I

v« La circulation du champ électrique
le long d'une courbe fermée, est nulle »
v Les forces électrostatiques sont conservatrices

4 4 <4 «

45
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Du travail au potentiel
Y Wap = f(¥a,7B) ="
v Remarque : Wp_oa+Wa . .p=0
v
= Wa—,p—p (le chemin ne compte pas)
=Wasp+Wpop
‘ =-Wpa+WpB ‘
v Travail dépensé de A a B par charge déplacée : W4_,5/q
v
W, 4% 4%
A—B _ P—B P—A (14)
q q q
46
Potentiel : le travail par charge
v On choisit un point de référence P et on définit le potentiel a chaque point A de |'espace :
1%
V(Fa) 2 24 (Jol=v) (15)
q
v Le potentiel V() est un champ scalaire
v Le potentiel du point de référence :
1%
V(Fp) = —£ =0
q
v Le travail dépensé de A 3 B :
14),(15 R R
Wasp "B gV (i) - V(7a) (16)
47
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Travail : charge x ddp
v V(¥B) — V(7a) : différence de potentiel (ddp)
Wasp = alV(Fs) — V(7a)] = charge x ddp (17)
v Si W4, > 0 on fournit de I'énergie
a la charge déplacée
> ¢>0etV(rfg)>V(Fa)
> ¢<0etV(Fp) <V(Fa)
v Si W4_.,p < 0 on récupére de |'énergie
(déplacement « spontané » A — B)
> ¢>0etV(FB) <V (Fa)
> ¢<0etV(rfg)>V(Fa)
48
Potentiel créé par une charge ponctuelle
v Charge @ a l'origine
v E= 47r160 T%é"'
v Potentiel = travail / charge; référence P a l'infini
W — ~
V(7a) :ﬂ:—/ E-tdi (18)
q I FOOH"A
Q 1 R
= — —é,. - (—é.d
471'60 T FOOH-A T2 er ( er T)
Q [>1 :
= — dr  attention aux bornes!
dmeg Jp, T
_Q { 1]00 _ 1 Q
4meg Ty 4men T A
v Ensemble de charges ou distribution de charges :
superposition
49

| |
I cocC 31
| |

www.polytech.unice.fr/"aliferis



http://creativecommons.org/licenses/by-nc-sa/2.0/fr/
www.polytech.unice.fr/~aliferis
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/index.php

Ecole Polytechnique de I'UNS Parcours des Ecoles d'Ingénieurs Polytech, 2¢ année
Polytech’Nice-Sophia 2012-2013

Du champ électrostatique au potentiel

v Travail dépensé de A vers B par charge déplacée :

W
— = V() V()
= —/ E.dl
I 7Fa—TB
alors que V(¥g) — V(Ta) = / dVv
I': Fa—TB
AV = —E - dl (19)

v A un point de I'espace, examiner les cas :
dV >0 (max?); dV <0 (min?); dV =0

v Exemple : un condensateur (plaques paralléles) ;
Van de Graaf et tube fluorescent (WL, L4, 43m00-49m01);
Applet “Charges and Fields”

50
Du potentiel au champ électrostatique
v dVv=-E.dl
v En coordonnées cartésiennes, V (¥) = V(z,y, z) :
ov ov ov
dV =—d —d —d
o T YD
et
dl = daeé, + dyé, + dzé,
donc
- oV_. ovV_ V. ,—
—F = Eez + a—ey =+ — €y = gradV
— "
E=—gradV (Vm™) (20)
— - E— -
v Remarque: dV=—-E-dl=gradV -dl
51
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Analyse vectorielle 3 : gradient 52

Le gradient d’'un champ scalaire

— - —
v dV =gradV -dl =gradV -tdi

— ~ d -
gradV -t = T‘l/ dérivée selon t

v Le gradient d'un champ scalaire V :

1. Est un champ vectoriel

2. Perpendiculaire aux équipotentielles
(V = cste, dV =0)

3. Montre la direction de la plus forte
augmentation de V' (dV max)

~, —
4. Module : 4 max (Max quand ¢ || grad V)

— .
V(FB) — V(Fa) = / gradV -t di
I: FAHT_"B%/_/

av/di
b b df
rappel : f(b) — f(a) :/ fl(x)dz :/ adx
53
Le gradient dans les trois systémes de coordonnées
— -
v dV=gradV -dl
v Exprimer dV et dl...
v Coordonnées cartésiennes oy oy oV
a9V oV oV 21
gradV 8xegg—l— 8yey—i- 5, ¢ (21)
v Coordonnées cylindriques
— ov 10V ov
dV = —é,+-———¢é €z 22
gradV 8pep+p8¢e¢+8ze (22)
v Coordonnées sphériques
— ov 10V 1 oV
dV=—¢&.+———ég+ ———¢ 23
gra 87°e +7“8660+7“sin68¢e¢ (23)
54
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Du champ au potentiel : un raccourci

Y V(7B) = V(Fa) = = [r.spsiy B - Tl
v Deux conditions pour prendre un raccourci :

1. Le champ En'a qu'une seule composante. ..
2. ...correspondant a une variable de longueur

v Exemple : coord. cylindriques et E = E.é,
— ___)

Commencer par E = —gradV

Equ. (22) : OV/0¢p =0 et OV/3z =0

Donc V est fonction uniquement de p!
av
Ep(p) = =g = —V'(p)

vvyyvyy

Vip) =— /Ep(p) dp+C (24)

» C : constante a déterminer en imposant une valeur de V
(p.ex. Viegr = 0)

55
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Analyse vectorielle 4 :
circulation, rotationnel 56

Couper une surface en morceaux. ..

v Circulation du champ Ale long de I' :

/A’-df ou /A’-idz (25)
r r

Circulation : un nombre (> 0, < 0, = 0)

égal a la valeur moyenne de Aia, X longueur de I’
v A partir de maintenant : courbe I' fermée
v Surface S (ouverte) entourée par I' (fermée)
v Partager S en Sy, .59, entourées par I'1, 1"y

r
v Continuer. ..

v ...jusqu'ou?
v Courbe fermée I'; et surface S; : élémentaires

57
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Rotationnel

¥ Quelle est la circulation le long d'une

courbe élémentaire fermée?

: A circulation courbe élémentaire fermée
v Rotationnel = aire surface plane entourée

v Faire intervenir le vecteur #i de la surface
v Sens de circulation £ < sens de la normale 7
(Périph’ externe < tour Eiffel)

\{
s = T A 0 1 N
-rotA = 1 — ¢ A-tdl 27
nore ASS0 Asfi (27)
v rotA :un champ vectoriel ! (norme + sens)

A

v A chaque point de |'espace, 7 - rot A (composante du rot A selon 71) o circulation autour de ce
point sur le bord d'une surface élémentaire 1. 71

v Sile champ « tourne » (HrG{A’H # 0), il fait des tourbillons autour du vecteur du rotationnel

(régle de la main droite).

La surface dont 72 || rot A contient un tourbillon du champ.

v Visualisation : un moulin immergé dans le champ.

<«

58
Rotationnel du champ électrostatique
v Courbe élémentaire autour d'une surface plane AS
v Circulation du champ électrostatique (13) :
fE’- df:j{E-Edlzo
r r
v Circulation par surface plane :
—3 = . 1
n-rotE= 1 —0=0
e ASS0AS
v Pour toutes les surfaces AS, 7!
v Rotationnel du champ électrostatique :
rotE =0 (28)
v (et alors?)
59
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Calcul du rotationnel
v Systéme de coordonnées cartésiennes

- . circulation courbe élémentaire fermée

AS—0 aire surface plane entourée

v Trois courbes élémentaires autour de (z,y, z) :
1. n = é, : surface plane, centrée a (z,y, 2),
de dimensions Az, Ay (AS = AzAy)

v Calculer la circulation le long de cette courbe

oy 0z 0z Ox
60
Le rotationnel en coordonnées cartésiennes
R éx &y é,
A_|9 9 9
rotA =5 5, o (29)
A, A, A
développer selon la premiére ligne!
aAz _ 8"41/
5} 0z
Y
- 0z ox
JAy A,
ox oy
61
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Le rotationnel en

—

rotA’ =

;(

1
p

coordonnées cylindriques

ﬁ::l; %D|Q>"D ’

P
el
09

pAg

10A, 8A¢

p 0@ 0z
04, _ 9A;

0z dp
8(,DA¢) o 8Ap
dp op

(30)

)

62

—

—

<

Le rotationnel en coordonnées sphériques

|

1 94,  O(rdy)
sinf 0¢

~

€r
0

rég 1rsinféy
9 el
or 00 By
A, rAg rsinfAy

O(sinfAy) dAp
00 0

|

or

8(7"149) _ 0A,
or 00

|

| |
i cocel
| |
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Energie électrostatique 64

Charge ponctuelle

v Travail dépensé P — A = Energie potentielle
Wpoa=q[V(Fa) = V(Fp)] = qV(Fa) = Ue
v L'énergie potentielle électrostatique d'une charge ¢ :
ue = qV(F) (32)

v V/(7) : potentiel créé par toutes les autres charges

65
Ensemble de N charges (1)
v U, : Le travail dépensé pour déplacer toutes les charges de P — A
v Charges déplacées I'une aprés |'autre, ¢; a 75
v V;(7;) : potentiel créé au point #; par la charge g;
Déplacée  Présente(s) Travail dépensé
a1 — 0
Q2 T q2Vi(72)
q3 a1, 92 q3V1(73) + q3Va(73)
qN Q-5 qn-1 qN [VI(FN) + o+ Ve (FN))]
N N
Total : Ue =10 D5 0iV5(Ti)
v Peut-on trouver une formule plus simple?
66
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Ensemble de N charges (2)

N -
Vo Ue =302 wV5(T) A
v Remarque : ¢;V;(7;) = 47350 Zflqj = ¢;Vi(7) (normall)

v On ajoute I'autre moité des termes et on divise par deux!

1 N 1 N-1
Ue= 5D > aVi(Fi) +5 D Y V()
i=2 j<i i=1 j>i
1 N 1 N
= 5 qul‘/j(ﬁ) = 5 qi Zvj(ﬁ)
i=1 j#i i=1 J#i
1 N
Ue = 5 ZzquV(Fl) (33)

v V/(7;) : potentiel créé au point 7; par toutes les autres charges (sauf la g;)

67
Distribution continue de charges
1. Volumique : dg = p(7)dV
Ue=3 [ evimav (34)
2. Surfacique : dg = ps(¥)dS
U =3 [ oV (s (3)
3. Linéique : dg = p(7) dl
o= / o7V (7) (36)
v V(%) : le potentiel au point 7 créé par la distribution
v Intégrer sur les charges
68
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Densité volumique d’énergie

v Peut-on exprimer |'énergie en termes de champ E plutdt que de potentiel V et de charges p?

1
U =+ / p(7F)V (7) AV
2 Jv
p=eydivE
— —>
FE=—gradV
v Sans démonstration : la (34) devient
1 2 —»
Ue = = | eE*(F)dV (37)
2.y

v FE?/2 : densité volumique d’'énergie (Jm~3)
v Intégrer partout dans l'espace !

69

_ ©O8Q _ 41 www.polytech.unice.fr/"aliferis
\ \



http://creativecommons.org/licenses/by-nc-sa/2.0/fr/
www.polytech.unice.fr/~aliferis
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/index.php

Ecole Polytechnique de I'UNS Parcours des Ecoles d'Ingénieurs Polytech, 2¢ année
Polytech’Nice-Sophia 2012-2013

Electrostatique : récapitulatif 70

Equations du champ électrique (1)

v Forme intégrale : flux et circulation
Forme locale : divergence et rotationnel

7413 ndS—Q'nt dvE =2
€0
7{ E-fdl=0 rotE =0
v Potentiel
E=—gradV
V(Fg) — V(Fa) = —/ E.tdl
r TAHT_"B

71
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Equations du champ électrique (2)

v Energie potentielle électrostatique

1 —

Ue = 5 ZQZ‘V(TZ)

=1

1

U, = —/p(r)V(r)dV
2 Jy

u =L / e F2(7) AV
2 )y

72
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Conducteurs en électrostatique

73

Qu’est-ce qu’'un conducteur?

v
v
v

Conducteur (contraire : isolant ou « diélectrique »)
Contient des porteurs de charge en libre circulation
« Porteurs de charge » :

électrons libres dans le métal

Les charges (électrons) sont libres a se déplacer

Les charges (+ ou —) se repoussent le plus loin possible : on retrouve des charges uniquement sur

la surface d'un conducteur. . .

cocel 44
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Le champ et les charges a |'intérieur
v « A l'intérieur » : dans le métal
v A l'équilibre électrostatique, les charges ne se déplacent plus (par définition). . .
v ...alors qu'il y a des électrons libres a I'intérieur !
v Pas de déplacement parce que pas de force !
E =0 a/lintérieur d’'un conducteur
v Loi de Gauss a l'intérieur du conducteur :
forme intégrale : E = 0 = Qint = 0
forme locale : E=0=dvE=0=p=0
v L'intérieur du conducteur est neutre !
75
Le champ et les charges dans une cavité
v « Cavité » : la partie interne d'un conducteur creux
v Cavité vide (neutre)
v Calculer la circulation de E : chemin I" dans la cavité et dans le conducteur
E =0 dans une cavité sans charge
v Loi de Gauss a l'intérieur du conducteur :
forme intégrale : Qcav + Qsurf. int = 0
v Pas de charges sur la surface interne si cavité vide!
(WL, L5, 28m26-31m27)
v Meémes résultats en présence d'un champ Fey:
(WL, L5, 43m13-45m41)
v Principe de blindage (cage de Faraday)
(WL, L5, 45m43-49m58)
76
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Le champ a la surface du conducteur (1)

v A I'équilibre, les charges ne se déplacent plus. . .
v ...pas de composante E tangentielle
v Le champ E est nul a I'intérieur
v Des charges uniquement sur la surface :
densité surfacique ps (Cm~2)
v Loi de Gauss : un cylindre autour de la surface
E="p (38)
€0

v Le champ E est

1. perpendiculaire a la surface du conducteur
2. proportionnel a la densité surfacique des charges

v Un conducteur (+ ses cavités sans charge)
forme une région équipotentielle

77

-
(¢}

champ a la surface du conducteur (2)

Deux sphéres métalliques, rayons Ry, Ry
Trés éloignées ; connectées par un fil conducteur

Charges Q1, Q2

Densité de charge surfacique ps; = Q; /47 R?
Potentiel : V(R;) = 72— %
« Connectées » : V(R1) = V(R2)

— &1 _
Ri —_ R

2
Si Ry > Rs, ps1 < ps2 donc By < Ey

4 4 4 4 4 <4 « «

Le champ électrique est plus fort aux endroits ol le rayon de courbure est petit (p.ex.
pointes)

v Démonstration : une casserole chargée
(WL, L6, 6m30-9m00)

78
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Rigidité diélectrique
v Quand les isolants deviennent conducteurs. . .
v R.D. : valeur maximale du champ électrique dans un isolant avant qu'il ne devienne conducteur
v Meécanisme : quand E > Eqax,
électrons libres accélérés par le champ; avalanche d'électrons libres; le milieu s'ionise et devient
conducteur ; formation d'arc électrique; son et lumiére a la recombinaison électrons/ions
v Dans l'air ‘ FEpax = 3MV/m‘
Vv Si E > Enax, décharge électrostatique
(WL, L6, 40m27-42m10)
v Effet corona : décharge électrostatique sans formation d'arc; « fuite » de charges par les pointes;

champ électrique élevé, mais ne dépasse pas Fmax
(WL, L6, 42m12-46m00)

79
Rigidité diélectrique : quelques valeurs typiques
Matériau RD. (MVm™1)
Air (sec, a 25°C) 3
Quartz 8
Titanate de strontium 8
Néopréne 12
Nylon 14
Pyrex 14
Huile silicone 15
Papier 16
Bakelite 24
Polystyréne 24
Teflon 60
Remarque : MV m™!' = kVmm™!
80
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Courants électriques

8l

Des charges en mouvement

4 4 4 4 < «

Courant électrique I = Charges / Temps

Quelques précisions. . .

« Courant » : a travers une surface

« Charges » : traversant la surface de facon perpendiculaire
Inclure la surface a la définition !

Densité de courant J

» Vecteur (champ vectoriel)

» Direction : celle des charges positives

» Module : charges traversant une surface L par unité de temps et de surface
» Unites: Cs'm2=Am?

82

4 4 <4 4 «

<

Calculer la densité de courant

Des porteurs de charges libres a se déplacer
Densité volumique des porteurs : n (m~3)
Charge des porteurs : ¢ (C)
Vitesse des porteurs : T (ms™!)
Un cylindre de longueur [ et de section A;
section 1 ¥
Charge totale dans le cylindre : Q = nlAq
traversant la section A en un temps t = /v
Densité de courant :
J=ng% (Am?)

T=> niq¥;
7

Si plusieurs types de porteurs :

(39)
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Conservation de la charge : forme intégrale

v Courant a travers une surface élémentaire :

—

Al =J-dS=J-7dS (>0o0u <0)

v Courant a travers une surface ouverte :

I— dqurf:/dI:/f. dg’:/fﬁdS (40)
dt S S S

v Courant a travers une surface fermée :

- d
fJ-ﬁdS:— O (41)
5 dt
v La charge totale dans |'Univers est constante :
d
E (qurf fermée T Qint) =0
84
Conservation de la charge : forme locale
v A partir de (41) on remplace :
jI{ J-ndS = / div JdV (th. de la divergence)
S %
Qi = [ pl) v
%
v Conservation de la charge :
- Ip(7)
divJ(7) = — 42
ivJ(7) 5t (42)
v Les « sources » du champ vectoriel J
sont les variations temporelles de p!
85
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Electronique : loi des noeuds

v En Electronique (« basses fréquences »),
pas d'accumulation de charges dans un circuit :

Op(7) _

o 0 — divJ=0

v Donc sur une surface S autour d'une jonction :

j{f.ﬁ,dsz/divfdvzo
S 1%
v Loi des nceuds (loi de Kirchhoff) :

Z[i =0 , [ sortant >0
i

v Courant I constant le long d'un fil !
(# d'une ligne de transmission. . .)

86
Vitesses des électrons dans les conducteurs (1)
v Electrons libres, en absence de champ électrique :
mouvement aléatoire
v Données cuivre, température T'= 300 K
v Vitesse de Fermi : vp ~ 105 ms!
v Temps entre les collisions 7 ~ 10~ s
v Distance entre les collisions : d = vp7T ~ 10~ m
v Densité des électrons libres : n ~ 10%? m—3
v Densité de courant : ,
J = nqup ~ 10%°1.6 x 1071910% A m 2
v 777
v Vitesse moyenne nulle, J = 0!
87
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Vitesses des électrons dans les conducteurs (2)
v Conducteur de longueur [, de section A
v Appliquer une ddp U = V() — V|
v Champ dans le conducteur # 0!
— — U . U .
E=—gradV = ——€)5+) = 7éH) ()
v Force ﬁe = qeﬁ sur les électrons libres
v Collisions : force de « friction » Fy = — ¥
v Forces et vitesse sur le méme axe : pas de vecteurs
dv
Me—gr = ¢l = fu
me dv Qe
< =LF 43
YT (43)
88
Vitesses des électrons dans les conducteurs (3)
v Solution de (43) :
Y / de
v=Cexp|——t)+=F
Me f
v Conditions initiales : v(t =0) =0
donc C = —q.E/f
v Unités de f/m, : s~1, on peut I'appeler 1/7
u(t) = (1 - e*t/7> 1T (44)
Me
v Vitesse de dérive des électrons libres :
Vg = TR t>r~10"Ms (45)
Me
v Mobilité : pe = ge7/me
89
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Courants dans les conducteurs
v Vitesse de dérive — densité de courant :
J=nqgby=—"F
Me
v Loi d'Ohm (1827)
J=0oE (46)
v Conductivité (7 'm™! = U/m =Sm™)
2
ngsT
= 2T ngepe (47)
Me
v Résistivité p= 1 (Qm)
90
Conductivité : quelques valeurs typiques
Matériau o (Sm™1) Matériau o (Sm™!)
Quartz ~ 10717 Eau salée ~ 4
Polystyréne ~ 10716 Silicone 103
Caoutchouc ~ 1071 Graphite ~ 10°
Porcelaine ~10714 Acier 2 x 106
Verre ~ 10712 Plomb 5 x 108
Eau distillée ~ 1074 Tungsten 1.8 x 107
Sol sec ~ 103 Aluminium 3.5 x 10:
Eau ~ 10—2 QI’ 4]. X ].07
Graisse animale ~ 4 x 1072 Cuivre 5.7 x 10
Argent 6.1 x 107
Corps humain ~ 0.2
Eau salée : quels porteurs?
(WL, L9, 41m05-43m08)
91
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Electronique : loi d’'Ohm
v FeoBouB-LJ
v Densité de courant : J = I/A
v Champ électrique : E =U/I
S i 11
E=—J—|U=—-—I%RI
o cA
v Attention aux « conventions » :
L U=V -V (ddp ou « tension »)
2. Sensde I : de (+) vers (—) (comme E et J)
v Attention, R n'est pas toujours constante !
v o x 7T (temps entre collisions)
vV It=Tt=71l=0l=pt=R?
v Exemple : tungsten (WL, L9, 22m25-23m02)
92
Electronique : puissance consommée
v« Appliquer une ddp U = V() — V() sur un conducteur »
v On crée un champ E et un courant J
v Des charges positives se déplacent spontanément : (+) — (—)
Y Wi =a(Vio) —Vip) = —aU
v W)—(—) <0 travail restitué par la charge. ..
v ...donc fourni par le champ; consommation
v Le champ dépense dW = U dq pour chaque charge dg
v Débit de charges déplacées : dg/dt =1
v Puissance consommeée :
dWw  Udg
P=—=2"H_yr 48
dt dt (48)
v U et [ selon les « conventions » (tr.92)
v Si P=UI <0 : générateur!
(WL, L10, 47m20-50m03)
93
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Magnétostatique

94

Magnétisme

Aimants, boussoles, . ..

Quel rapport avec |'électricité?

Aucun, avant 1820!

Hans Christian @rsted (1777-1851)

études médicales, thése en philosophie (1799)

Professeur a I'Univ. de Copenhague (1806)

Avril 1820 : cycle de conférences

« Pourquoi I'aiguille d'une boussole bouge pendant les orages? »
Etude de I'interaction entre un courant électrique et une boussole
LA Découverte : un courant électrique provoque un effet magnétique ! 'l
La naissance de I'électromagnétisme

(WL, L11, 8m00-9m30)

4 4 <4 «

4 4 4 4 «

_ ©O8Q _ 54 www.polytech.unice.fr/"aliferis
\ \

95
Loi de Biot-Savart
v ...les nouvelles arrivent & Paris (11/9/1820)
v Biot (1774-1862) et Savart (1791-1841) : formulation quantitative (30/10/1820)
v Champ magnétique créé par un courant :
(loi de Biot-Savart)
L o IdIAR
dB = — 49
Adr 2 (49)
v Al longueur élémentaire de courant
v 7 : de |'éléement de courant au point d'observation
v F=7F/r
Y o =4710""Hm™! : perméabilité du vide
(valeur exacte)
96
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Champ magnétique d'une charge en mouvement

Loi de Biot-Savart : dB = Z—g%}’q
Conducteur (fil) de section S
Idl = JSdl (astuce!l)

J = nqgv

4 4 <4 «

L o SATAF pg SdingG A+

dB="———+—="—+—————
4 12 47 r2

v Sdin : nombre de charges dans I'élément de courant

v Champ magnétique créé par une seule charge :

5 HOQUAT
B== 50
A 12 (50)
v Attention : pas de courant stationnaire avec une seule charge! formule approximative. . .
97
Sources du champ magnétique
v B : créé par des charges en mouvement (courants)
v Impossible d'isoler des « charges magnétiques »
(on a toujours deux pdles dans un aimant!)
v « Il n'existe pas de monopdles magnétiques » (7)
v Loi de Gauss pour le champ magnétique :
7{ B-AdS=0 forme intégrale (51)
S
divB =0 forme locale (52)
98
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Force magnétique (Laplace et Lorentz)

v Une charge en mouvement dans un champ magnétique subit une force :
F,,=qoAB force de Laplace (53)

Unités de B : NsC!m~! =T : Tesla

Unité non SI : Gauss, 1G =10"*T

Champ magnétique terrestre : =~ 0.5 G
F,lo: pas de travail |

En présence d'un champ E et d'un champ B:

4 4 <4 4 «

—g(E+TAB) force de Lorentz (54)

99

Force magnétique sur un courant

v Courant I dans un conducteur de section S
v Dans un champ B, sur chaque porteur de charge : F,, = qv A B
v Force sur I'élément di :

dF,, = ndlSF,, =ndlSqv A B

-

J = nqgv
JSdl=TIdli=1dl
v Force magnétique sur un élément de courant I :

4 <

dF,, =I1dlAB (55)

100
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Force entre deux courants

v Deux conducteurs paralléles (infinis. .. )
v Courant I; génére champ By (TD 5.1)

force magnétique  I11>

longueur 0 2mp

v (Conducteurs infinis — force totale infinie!)
v Deux courants paralléles s'attirent
v Deux courants opposés se repoussent
Ampeére, 18/9/1820 (WL, L11, 15m00-17m15)

101

Loi d’Ampére (forme intégrale)

v Drsted : « le "champ magnétique” décrit des cercles »

v Lignes de champ magnétique (TD 5.1 et 5.2) :
entourent les courants

v Ampére : mise en équation

v La circulation du champ B, calculée sur une courbe T, est proportionnelle au courant traversant la
surface S associée a la courbe I :

fﬁ-fdz:uo/f-ﬁds (56)
r S

Courbe T' : pas nécessairement un cercle!
Surface S : ouverte, I est son bord

t et i : Périph'externe <+ Tour Eiffel (tr.4:58)
fgJ - dS : le courant I enlacé par la courbe T

4 4 <4 «
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Théoréme du rotationnel

v (...apreés le rappel des tr.#57 et #58...)
v Surface S (ouverte) entourée par I' (fermée)
v Partager S en 51,5, ..., entourées par I'1, s, ...

A-idl = fﬂ-f,-dl)
jé ZZ:<F1

=" (Tt 4 As)
:/E%A’.ﬁds
S

%E-fdl:/aj-ﬁds (57)
T S

v Théoréme de Stokes

103
Loi d’Ampére (forme locale)
v Point de départ : loi d'’Ampére forme intégrale, éq.(56) :
fﬁ-fdzzﬂo/f-ﬁds
r S
v Appliquer théoréme de Stokes :
/ro’%é-ﬁdszuo/iﬁds
S S
pour toute surface ouverte S
v Loi d'Ampére (forme locale) :
rot B = joJ (58)
v Le champ B « tourne » autour de J
104
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Magnétostatique : récapitulatif 105

Equations du champ magnétique

v Flux et circulation (formes intégrale et locale)

fé-ﬁdszo divB =0

S

%E-fdl:po/f-ﬁdS rot B = joJ
T S

106
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Analyse vectorielle 5 : le nabla V 107
L'opérateur nabla
v« Opérateur » : doit agir sur quelque chose!
(il ne doit jamais rester seul)
v Champs (scalaires ou vectoriels) : fonctions de plusieurs variables
v Coordonnées cartésiennes : les trois dimensions sont équivalentes
v Définir un « vecteur » spécial :
- o 9 0
V=|—+—, = (59)
Ox’ Oy 0z
- 0 0 0
V=_—é,+_-—-¢é,+—¢é
or * oy Y 0z ¢
v L'opérateur nabla est un vecteur gourmand!
il agit sur des champs (scalaires ou vectoriels)
108
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Opérations avec le nabla (1)
v On peut traiter V comme un vecteur ordinaire
1. Vecteur fois scalaire : ®(x,y, z) champ scalaire
= 0P _ o0d . 0P . (21) —
Vo = 7 e + 8—yey + 5, = grad ® (60)
2. Vecteur - vecteur : ff(m,y, z) champ vectoriel
- o 0A 0A 0A, (10) ,. =
oz * oy * 0z W (61)
3. Vecteur A vecteur : A(x,y,z) champ vectoriel
é:l: Ay AZ
VANA= Gl y 2z = rot A (62)
A, A, A,
109
Opérations avec le nabla (2)
v Vecteur V : les résultats sont valables dans tous les systémes de coordonnées !
v Mais V a une forme simple que dans le cartésien
- 0 0 0
ex., V #—é.+—ég+—é, !
p-ex 7 grfr T g%t 55%
Opération H De ‘ A
— _ N
grad & scalaire ® vecteur V&
div A vecteur A | scalaire V - A
v —_— - — — —
rot A vecteur A | vecteur VA A
AD scalaire ® | scalaire V2@
Aff vecteur /T vecteur 6%&
110
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Quelques formules avec le nabla
v Plutét simples :
e — —
divgrad® = V - (V) £ V2@ (63)
rot grad® = VA (V®) =0 (64)
divrot A=V (VAA)=0 (65)
v Et une plus compliquée...
S — S
rot rot A = graddivA — AA (66)
ou
VANVANA)=V(V-A)-V2A (67)
utiliser AN (BAC)=B(A-C)—C(A-B)

111
Le(s) Laplacien(s) : nabla au carré
v L'operateur V-V prend deux formes :
1. Opérateur sur un scalaire : laplacien scalaire
AD L V2D L (V.V)d (68)
o022 Oy? 022
formules plus compliquées dans les autres systémes !
2. Opérateur sur un vecteur : laplacien vectoriel
AA2VIA2(V-V)A (69)
A (V2A,)éqr + (V2A4,)e, + (V2A,)e,
Attention : décomposition en composantes V2 A; uniquement en cartésiennes !
112
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Gauss, Stokes, etc. : un autre point de vue (1)

v Théoréme de Gauss (11) :
/divA’dV:]éA’-ﬁdS (3D — 2D)
12 S
v Théoréme de Stokes (57)
/ro’%,&-ﬁdS:]él-idz (2D — 1D)
S r
v Formule du gradient (tr.#53)
— .
/ gradV -tdl =V (¥g) — V(TFa) (1D — 0D)
I FAHT_"B

v Formule de la primitive

/bf(x) dz = F(b) — F(a) (1D — 0D sur une ligne droite)

113
Gauss, Stokes, etc. : un autre point de vue (2)
v Théoréme de Gauss (11) :
/6-£d1}:7{fi-ﬁds (3D — 2D)
v S
v Théoréme de Stokes (57)
VAA-ndS=¢ A-idl (2D — 1D)
S r
v Formule du gradient (tr.#53)
/ VV.idl=V(fg) —V(F4) (1D — 0D)
I': Fpa—7TB
v Formule de la primitive
b
/ f(z)dz = F(b) — F(a) (1D — 0D sur une ligne droite)
114
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Electrostatique — Magnétostatique :
une comparaison 115
Deux champs bien différents ( 7)
Y 242 équations (formes locales)
Electrostatique Magnétostatique
VAE=0 VAB =g
(sources sans tourbillons) (tourbillons sans sources)
Potentiel scalaire V' Potentiel vectoriel A
E=-VV B=VAA
116
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Phénomeénes d’Induction
(enfin, un peu de mouvement!) 117

« Force » électromotrice (1)

v Dans un circuit (Electronique) :
force par charge, f, crée le courant
F=Ffs+tE (70)

v f_; : force par charge dans la source
E : champ électrostatique (partout)
v « Force » électromotrice (définition générale) :

<«

kméffim (V) (71)
r
v Champ électrostatique : circulation nulle
fem :j[f;-fdz V) (72)
r

v Equ. (72) : cas spécial d'un circuit avec source

118
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« Force » électromotrice (2)
v Loid'Ohm:J=0of
v A l'intérieur de la source idéale : pas de résistance
c=00=f=J/c=0=fs=—-F
v ddp aux bornes de la source :
V+—V_:—/ E-tdl
L:(=)=(+)
-/ (—fo) -
L:(=)=(+)
PR 2
:jéfs-tdl 2 fem
r
v |fem = ddp aux bornes de la source! ‘
Y Polarité : le vecteur t va du (-) au (+) de la source
v fem=1IR
119
fem due au mouvement
v Un circuit se déplace dans un champ magnétique
W\"*..
v fem : uniquement pendant les phases d'entrée/sortie
v fem due au mouvement :
ddp
fem = ——— 73
" dt (73)
ot ®p est le flux magnétique a travers le circuit :
dp = / B -7ndsS
S
v Changement de flux : source de tension !
v ‘fem génére I qui s'oppose au changement de &g ! ‘
120
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fem due au mouvement : des exemples!
B : constant et uniforme dans une région
v Circuit en déplacement |fem| = Blv (TD 8.1)
v Circuit en rotation (TD 8.2)
(WL, L17, 17m10-18m20)
(gén. humain : WL, L17, 25m13-27m25)
(ampoule : WL, L17, 41m52-44m40)
v Conducteur sur rails |fem| = Blv (TD 8.3)
v Courants de Foucault (frein magnétique)
(WL, L17, 40m18-41m52)
v Circuit en chute « libre » dans un champ magnétique
(WL, L17, 47m18-48m40)
121
Induction électromagnétique
v Expériences de Faraday (1831)
v « Puisque J crée B. ..
est-ce que B crée J7 »
v Conclusion : ce n'est pas B qui crée J...
mais les changements de B!
v Aimant et boucle (WL, L16, 10m30-12m30)
v I n'y a pas de source dans la boucle! f, =0
vV f=fs+tE=FE
v fem due au champ électrique induit (71)
fem = j{ E-tdl #0 (comparer avec (13)1) (74)
r
v La variation de B crée un champ E!!!
v« Champ électrique induit »
122
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Loi de Faraday (forme intégrale)

v
fem:jfﬁ-fdzz—/—-ﬁds (75)
r S

<«

Courbe (fermée) I : le bord de la surface (ouverte) S

v Signe — : loi de Lenz :
Le champ électrique induit génére des courants qui, a leur tour, générent un champ secondaire B’
s'opposant a la variation du flux du champ magnétique initial.

v (La Nature n'aime pas le changement)

Rappel (TD 5) : champ B créé par une boucle de courant

v Solénoide et boucle (WL, L16, 30m00-32m30)

<«

123
Loi de Faraday (forme locale)
v Point de départ : loi de Faraday (75) :
j{E-fdl:—/d—B-ﬁdS
v Appliquer le théoréme de Stokes :
/ro_%ﬁ-ﬁdsz/ 4B G as
pour toute surface S
v Loi de Faraday (forme locale) :
— = dB
tE=—— 76
ro i” (76)
124
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La regle du flux magnétique
v On combine la fem due au mouvement (73)...
v et la fem due aux variations de B(t) (75)
v (deux phénomeénes bien différents!!!)
Y do
fem = ——2 77
em r (77)
— A d — “
E-tdl=—-— | B-ndS (78)
r dt Js
v En déhors de I'électrostatique, le champ E n’est plus conservatif! (circulation # 0)
v L'intégrale
/ E-tdl
F:FAH’F’B
dépend du chemin choisi!
v (on reviendra sur ce sujet contre-intuitif, tr.#£131)
125
Le champ électrique induit
v Que nous dit la loi de Faraday?
v Les variations de B créent un champ F induit
v Dans une région neutre (p = 0),
2" - - dB
V E=L-0 e VANE=-""
€0 dt
v Analogie avec le champ B en magnétostatique :
V- B=0 et VAB=pJ
v Les lignes du champ E induit sont des boucles !
B E induit
v équivalences : ,Ltof —dﬁ/ dt
Holenlace — d(I)B/ de
126
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Inductance : mutuelle
v Deux circuits séparés (p.ex. solénoide et boucle)
v Courant I; = B; = 99
_ _ L dly A7
By= [ Bi-fgdSy et By=¢ LOLIDT
Ss T 47(' T
v Le flux a travers le 2 est proportionnel au courant de 1 :
by = Mo 1 (79)
v M = M3 = M inductance mutuelle entre les circuits
v M : paramétre purement géométrique
v Variations de I; générent un courant I, = femg/Ry :
d®, dI;
f =—=-M— 80
ema at at (80)
127
Inductance : self
v Meéme phénoméne avec un seul circuit !
v Courant I = B = ®p
_ - _ [din
Q)B:/B-ﬁdS et B:j{dB: R AL
S T T 47 T
v Flux magnétique 3 travers un circuit o< courant
Op = LI (81)
v L : self-inductance; unités Henry : H= WbA~! =VsA~!
v L =®p/I : paramétre purement géométrique
v Variations de I générent une f.e.m. ... :
dop dI
fem=—-———=-L— 82
dt dt (82)
v ...s'opposant aux variations !
128
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Energie magnétique (1)

I L I L
. Y . Y
_ (—LdI/dt) n n (LdI/ dt) _
—

v Puissance « consommée » : emmagasinée dans la self

dr
P=|L—|I
( dt) (83)
v P>0quand I
v [(t:O):OetI(t:to):[o
v Energie magnétique stockée dans la self :
to 1
um:/ Pdt=...= LI} (84)
0 2
129
Energie magnétique (2)
v Sans démonstration : la (84) devient
1 1
Up = = / —BY#)dy (85)
2. Jy o
v B2?/(2up) : densité volumique d'énergie (Jm~3)
v Intégrer partout dans l'espace !
v A comparer avec (37) :
1
U = = / eoB2(7) AV
2Jv
130
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[Bizarre] Champ E non conservatif

v Circuit simple : pile (fem =1V), R; =100, Ry =900 2
Calculer courant et tensions
v Remplacer pile par d®p/dt

Calculer courant et tensions | Vg, # Vg, |!!!

L'intégrale

dépend du chemin choisi WL, L16, 48m25-51m27
(vidéo avec la théorie WL, L16, 34m51-51m27 ; texte détaillé)
v Champ électrique non conservatif :

fﬁ-idz;&o
T

ddp sur un chemin fermé # 0 (CONTRE-INTUITIF)
M. C. Escher, “Ascending and descending”, 1960
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Induction : récapitulatif 132
Les 4 équations, forme intégrale
v Flux et circulation
. 1
%E-ndS:—/pdV
S € Jy
jf B-7dS=0
s
— ~ d — “
E-tdl=—— | B-ndS
r dt Js
fﬁ-t‘dzzuo/f-ﬁds
r s
133
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Les 4 équations, forme locale
v Divergence et rotationnel
v.E-P"
€0
V-B=0
- dB
VANE=——
dt
6 A E = Mo T
134
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Equations de Maxwell 135

Un probléeme avec la loi d'Ampére?

1. « Tester » les équations du rotationnel :

v V.VAE=00K
v V.-VAB=0777?
. (42) o
V. J=0=H%=¢
2. Appliquer la loi d'’Ampére dans un cas % #£0:
fil 4+ condensateur

La loi d'’Ampére n'est pas valide en dehors de la magnétostatique

136
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Le terme qui manque : courant de déplacement
v Loi d'Ampére (forme locale) :
V AB = pgd
v Loi d'Ampére-Maxwell (forme locale) :
V A B = py <J+Jd)=,u0 <J+€0H) (86)
v Loi d'Ampére-Maxwell (forme intégrale) :
P = dE
B -tdl=pg | J-ndS+ po [ eo—— ndS (87)
r s s 4t
Ja
v J;: courant « de déplacement »
v Les variations de E créent un champ B induit!

137

James Clerk Maxwell (1831-1879)
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Les trois régimes en électromagnétisme
v Electrostatique (aucun déplacement de charges, dp/dt = 0)
Magnétostatique (courants invariables dans le temps; pas d'accumulation de charges,
dp/dt =0 ¥ . J7=0)
— — . p — — _
V.- E=— V-B=0
€0
VAE=0 VAB=puoJ
v Quasistatique : des variations lentes dans le temps
— — _ p — — .
V- -E=~— V-B=0
€0
VANE=—-—— VAB=puyJ+ ...
q Ho +\~6/
v Régime « complet » : les équations de Maxwell
139
Les équations de Maxwell
v Maxwell, 1864
v.E=L (88)
€0
V-B=0 (89)
_ - dB
VANE=—— 90
% (90)
. - dE
V ANB = pod + Hoo= g (91)
v 4 équations = 2 scalaires + 2 vectorielles =2 +6 =8
v Equations : sources vers champs
v Force de Lorentz : effet des champs, F = q(E + U A B)
v Conservation de la charge : 6-(91)@ V.-J=—dp/dt
v Le champ électromagnétique s'auto-alimente !
140
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Ondes 141

Qu’est-ce qu'une onde?

v Vagues (océan, fleuve, ...)
v Ondes acoustiques

v Vibrations d'une corde

v Ondes sismiques

v Signaux électriques

(lignes de transmission, neurones)

<

Vagues mexicaines (la ola) : concert, match de foot.

<

Onde : une perturbation qui se propage dans un milieu, sans transporter de matiére.

“Wave on a string”

142
[Rappel] L'argument d'une fonction
v f(t) : fonction initiale
v Comment décaler / retourner / changer d'échelle ?
, 1 S0 E=3) f3(t=7)
F—=—t ' ‘ 1 ' ‘ 1 1 1 " t
-2 -1 0 2 3 4 ) 6 7 8 9 10
f(—t)2 f(=(t=3)) f(=2(t=17))
1 I\
1 ) ‘ ! 1 ‘ l l 1 l l t
-2 -1 0 1 2 3 4 ) 6 7 8 9 10
143
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Propagation d'une impulsion ®R
10m durée T'=8s
7m z

longueur L = 4m

f(t—zo/c) : f(-) retardée de zy/c
At=to, f(—L1(z—cto)) : f() retournée, dilatée par ¢, décalée a ctg

144
L’'équation d’onde (1)
v f(t— ) : onde se propageant vers +z
v f(t+Z) : onde se propageant vers —z
vV f(tE2) = f(9EE) = g(z £ ct) : autre vue
v f(x,t) : fonction a deux variables, espace et temps
v Dérivées temporelles et spatiales. . . premiéres
af , 2\’ af Z\/ 1
—_— = t:l:—): / - = /<t:l:_)::l:_,
ot / ( c ! 0z / c cf
af 10f
427
0z c Ot
v et secondes
2
ﬁ = f" ﬁ — :I:l 1"
ot? 022 c
O’f 1 0%f
922 2 ot (92)
v (92) : équation d'onde (une dimension)
145
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L’'équation d’onde (2)

v Equation d'onde (trois dimensions)

2 2 2
*f  Pf P _

522 B (%3)

10%f
Y — 2 - v
022 Vi c2 Ot?

v Equations a dérivées partielles (spatiales et temporelle) :
la solution dépend des conditions initiales f(#,t = 0) et des conditions aux limites f (¥ = 7, t)
v [ : propriété du milieu de propagation

» hauteur de la surface de |'eau

» pression acoustique

» déplacement transversal d'une corde
>

v vitesse de propagation ¢ : dépend des paramétres du milieu

146
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Ondes électromagnétiques 147
La prévision théorique de Maxwell (1)
v Les équations de Maxwell dans le vide, sans charges ni sources :
V-E=0 V.-B=0
. - OB . OE
NE=—— ANB = —
v ot v HO0
v Equations différentielles couplées
v Dérivée seconde pour découpler : agir avec V
(agir, mais comment ? quelles opérations ?)
GG =29 7B = e E
= — — € J—
ot 0K g2
VAVAB-V(V B) VB VB

148
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La prévision théorique de Maxwell (2)

v Equation vectorielle

. ’E
V2E = egpo—s 94
0H0 atz ( )
se décompose (uniquement en coordonnées cartésiennes) :
OBy
V2E, .. = oo —=22 95
z,Y,2 0H0 o2 ( )
1/c?
v Des ondes électromagnétiques existent !
v Vitesse de propagation :
1 1
c= ~ ms '~ 3x108ms! (96)
VA ) 10—9 -7
367 4710
149
La lumiére est une onde électromagnétique!
. 1 _ —1
? = oo = 299792458 m's
v A partir de ¢ et pg on obtient la vitesse de la lumiére
v Une pure coincidence?
« La vitesse des ondes électromagnétiques est presque celle de la lumiére. .. ce qui donne
une bonne raison de conclure que la lumiére est en quelque sorte elle-méme (en incluant
le rayonnement de chaleur, et les autres radiations du méme type) une perturbation
électromagnétique qui se propage selon les lois de I'électromagnétisme. »
J.C. Maxwell, 1864
v Confirmation expérimentale en 1888 par H. Hertz (1857-1894)
v « Monsieur, a quoi ca sert? »—« A rien. »
150

_ ©O8Q _ 82 www.polytech.unice.fr/"aliferis
\ \



http://creativecommons.org/licenses/by-nc-sa/2.0/fr/
www.polytech.unice.fr/~aliferis
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/index.php

Ecole Polytechnique de I'UNS Parcours des Ecoles d'Ingénieurs Polytech, 2¢ année
2012-2013

Polytech’Nice-Sophia

Le spectre électromagnétique

Fréquence f (Hz)

< 3 x 107
3 x 109-3 x 10!
3 x 1011—4 x 104
4 x 10M-7.5 x 10
7.5 x 1014-3 x 1016

Type Longueur d'onde A (m)

Radio >1x 1071
Micro-ondes 1x1073-1x 10!
Infrarouge 7x1077-1 x 1073

Visible 4x1077-7x 1077
1x1078%-4x 107

Ultraviolet
Rayons X 1 x10711-1 x 1078 3 x 1016-3 x 101?
Rayons I’ <1x10~1 > 3 x 1019
151
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Ondes électromagnétiques planes, progressives,

monochromatiques (OPPM) 152
Onde monochromatique vers +z
v Rappel TD 10.1 + visualisation en 3D ®R
v Perturbation initiale harmonique (3 z = 0) :
27
f(z=10,t) = cos <?t> = cos(wt)
v Onde se propageant selon +é, : t — t—2
2 2
f(z,t) = cos (%t - §z> = cos(wt — kz)
v A\ =cT : longueur d'onde, la période spatiale (en m)
v k=27/): nombre d'onde (en radm~1!)
v k =kk =k(+é,) : vecteur d'onde
Y ¢(z,t) =wt — kz : la phase de I'onde
v v =w/k = c: la vitesse de phase
153
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Propagation d'une sinusoide @®

« duree » : période temporelle T = 8s

« longueur » : période spatiale A =4m

oo
W"A
!

A_2n/T _w 20s
ST 2t/N ko

154

Onde électromagnétique PPM selon +é,
v Onde Plane Progressive Monochromatique (OPPM)
gf’,t = Ey cos(wt — kz zgz,t 97
(7,t) = Eo cos( ) = E(2,1) (97)

cste

¥ « Monochromatique » : cos(wt — kz)

A chaque point de I'espace (7 fixe), le champ £ oscille dans le temps.
Les oscillations sont déphasées en fonction de I'endroit.

« Progressive » : temps/espace couplés

f(t—z/c), onde selon +é,

« Plane » : le champ £ est constant sur tout le plan z = z

« Front d'onde » : lieu de points de méme phase a ¢ fixe

Onde plane = fronts d'onde plans

(D'autres formes d'onde existent : cylindriques, sphériques, .. .)

<

4 4 < «
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Onde électromagnétique PPM selon &

v Onde PPM se propageant selon é, :

—

E(7,t) = Egcos(wt — k2)

<

La phase de I'onde dépend uniquement de 2
v z:la projection de 7 sur la direction de propagation é,

=7 &, =7k
v Cas général, onde PPM se propageant selon k :
57",75 = Epcos(wt —k k-7 )= Egcos(wt —k -7 98
(7,t) = Eo cos( ) = Eo cos( ) (98)
Z si I;::éz
v Fronts d'onde : des plans perpendiculaires a k
v OPPM : remplit tout I'espace (modéle mathématique!)

v Déphasage entre deux points 7, 72 :

Ap=¢1— o=k (Fa—71) =k 72 (99)
156

Notation complexe : définition

v Formule d'Euler :
e3¢ = cos(9) + j sin(9) — cos(¢) = Re {ei’}

v Application a une OPPM :
E(F,t) = Egcos(wt — k -7+ 9)
= Re {Eoej(“t_E'F+5)}
= Re {E’Oej‘sej(‘”t*k"m}
e Bpel R
£ Re {E(F,w)eth} (100)

=
-

v E(F,w) : représentation (ou amplitude) complexe de &£(7,1)

temps E(F,t) +— E(¥,w) fréquence

157
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Notation complexe : avantages (1)

-

Y E(7,w) : plus simple a manipuler! (addition)
E(7,t) = E1(7F,t) + E(7,1)
= Ejcos(wt — k- 7+ 01) + Ez cos(wt — k - 7+ 63)
— 777

= Re {El(f",w)ejwt} + Re {E’2(F,w)ej“t}

:Re{ El('F’,w)JrEg(F,w) ej‘“t}

g

B(7,w) = Br(F,w) + Ba(F,w) (101)

<

On additionne les représentations complexes, comme des vecteurs
v On ne multiplie jamais des représentations complexes !
(une seule exception, quand on sait ce qu’on fait. .. ; équ. (136), tr.#£183)

158
Notation complexe : avantages (2)
v E(F,w) : plus simple a manipuler! (0/0t)
0 = 0 =
— = - = jwt
té'(r,t) 8tRe{E(r,w)e }
=4 0
=Re{ E et
e{ (r,w)ate }
= Re{JwE(ﬁw)ewt}
0z g
ag(r,t) — jwE(7,w) (102)
159
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Notation complexe : avantages (3)
v E(F,w) : plus simple a manipuler! (9/0x,0/0y,d/0z)
9 &=, OPPM O o j(wt—k) | _ = 0 j (wt—Kk-7)
8x£(r’t) = axRe{Eoe } =Re{ Ey 5°
cste
— Re {—j kaCEOei(wt—’?'F)} — Re {—j kxE(F,w)ejwt}
O &7 1) e — h B(Fw)
O ) J Rz )
V-6 426106
o Y oy Y 0z ”
> —jkply — jkyéy — jk.é,=—jk (103)
160
Notation complexe : application
v Notation complexe :
E(7,1) = Re {E(F,w)eiwt}
Si OPPM : E(7,w) = Ege 157 (104)
v Passer du domaine « temporel » au domaine « fréquentiel »
v Remplacer dans les équations de Maxwell :
E(F t) — E(F,w) (105)
90t — +jw (106)
Si OPPM : V — —jk (107)
161
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Equations de Maxwell : régime harmonique
E(7,1) = Re {E(ﬁw)eiwt}
v Dans le vide, sans charges ni courants :
V-£E=0 — V-E=0 (108)
V- -B=0 — V-B=0 (109)
. - 0B o = =
- — o€ - > =
V/\Bzeo,uoa — V AB = jweguoE (111)
v L'équation d'ondes (94) devient I'équation de Helmholtz :
V2E + wupeoE = 0 (112)
162
Equations de Maxwell dans le cas d’'une OPPM
E(F,t) = Egcos(wt — k - 7+ 8) = Re {Eoej (wt_E'F)} =Re {E(F,w)ej”t}
v Dans le vide, sans charges ni courants :
V-E=0 — —jk-E=0 (113)
V-B=0 — —jk-B=0 (114)
- oB - = =
V/\gz—a — —jkNE=—-jwB (115)
I o€ =2 =
VAB= €oko 5, — —jk ANB = jweguoE (116)
1. (113): E L k, le champ électrique est transversal
2. (114) : B L k, le champ magnétique est transversal
3. (115); B= %_’/\ E;(116) . E=c1BA k (rappel k = w/c)
4. (115) ou (116) : E 1L B
163
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Propriétés d’une OPPM dans le vide ®R
v Une OPPM est une onde TEM :

» Le champ électrique est transversal (TE) : perpendiculaire a k
» Le champ magnétique est transversal (TM) : perpendiculaire a k

v Les vecteurs E E k forment un triedre direct :
EAB |k (117)

v Les champs électrique et magnétique sont en phase
v L'équation d'ondes en régime harmonique (112) impose :

-

(—jk)? 4+ wugeg = 0 — k2 = w?pgeo (118)

v Le rapport || E]||/||B]| est constant :

— 1 — —
B = — |Bl = | E]l (119)
w c
164
Polarisation linéaire d’'une OPPM
v« Polarisation » : I'orientation du vecteur du champ électrique
€ = Eycos(wt — k - 7)aa
v Casdune OPPM k =é, : Elk
v Polarisation linéaire : I'orientation ne change pas dans le temps
» Polarisation verticale (V) : E = Ege~i#%¢,
» Polarisation horizontale (H) : E = Eye~1¥2¢,,
» Cas général : angle 6 entre E et é,
£ = Eycos(wt — kz)(cos Bé,, + sin 0é,)) (120)
E = Ege 1% (cos 0é,, + sin 0&,))
165
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Polarisation circulaire d'une OPPM ®@

v Deux composantes E, et Ey
v M&éme amplitude, déphasage 90°

B B (e 1 j2y)
€ = Eycos(wt — kz)é, — Eysin(wt — kz)éy (121)

v At fixe, regarder dans le sens de propagation
¥ Rotation dans le sens horaire : polarisation droite (RCP)
v Rotation dans le sens anti-horaire : polarisation gauche (LCP) :

E = Epe 1" (jé, + &)
€ = —Eysin(wt — kz)éq + Eq cos(wt — kz)éy (122)

v Attention : a z fixe, le vecteur € tourne dans I'autre sens !

166
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OPPM dans les conducteurs 167

Conducteurs et loi d’'Ohm (bis)
v Loi d'Ohm (46) :

J=0E
v Conducteur électrique « parfait » (PEC) : 0 = o0 :
= J
E=="50
o

v Champ E nul a l'intérieur d'un conducteur parfait
v (Electrostatique : E = 0 indépendamment de o)
v Rappel TD 4.4 :

p(t) =p(t =0)e M | 4. =¢/o

Régime harmonique : dans un conducteur p=0siT > t, — f < -
v « Bon conducteur » : 0 > eqw

168
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Les équations de Maxwell dans un conducteur

v

V-E=0 V- 0

u By
I

pod + jwpoeo B

to(o + jweo) E

VAE=—-jwB V AB

- -

jwV A B = (—j powo + poeow?) E
E=V(V-E)-V?E=-V?E

v Equation d'onde (vectorielle) :

—

V2E = (j powo — poeow?) E (123)

169

L’équation d’onde dans un conducteur

v Equation d'onde (scalaire, en cartésiennes) :

V2E = (j powo — poeow?)E (124)

v Essayer une solution type OPPM (104) :

E = E(]eijkﬂ?
—k? = —poeow? + j powo — k? = wleppg (1 —j L)
oW
v Nombre d'onde complexe % !
v Approximation bon conducteur :
- . 1=
0> eow — k2 = —jpowo — |k = WJM#OUJU (125)

170
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OPPM dans un bon conducteur ®R
v Direction de propagation k = é, :

E = Eoe_j%z
= Bye V5 2oV 572 (126)
atténuation prop;gration
v Epaisseur de peau :
2
= (127)
Howao
v OPPM dans un bon conducteur :
E = Ege™#/%¢712/0 (128)
v Longueur d'onde : A = 27§
v Vitesse de phase : vy = 75 = 2w/ o (dépend de w!)
171
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Conditions aux limites vide-conducteur 172
Interface vide-conducteur
v Les équations de Maxwell dans un conducteur :
eAE:—JwB’ ﬁAB:uoj—Fjw,uoeoE
= Mo(O' + jweo)E
—quo€o(1+. >E
Jweéo
o =
= jwpo €0 (1— J—> E
wWen
—_—
é
¥ Que se passe-t-il 4 I'interface entre deux milieux ?
v Les champs peuvent étre continus ou pas!
v Appliquer chaque équation sous forme intégrale :
choisir volumes/surfaces/courbes élémentaires de part et d'autre de I'interface
173
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Conditions aux limites

v Milieu 1 : vide; milieu 2 : conducteur
v @ : L alinterface; du métal (2) vers le vide (1)

- (Eq — E3)

ps/ €0 f- (By — By) =0
ﬁA(El—Ez):a B

ps : densité de charges surfacique (Cm~?)
J; : densité de courant surfacique (Am™")
# 0 seulement si o = 0o

7 - E : composante normale a |'interface

v 7 A E : composante tangentielle a |'interface

<

Enorl - Enor2 = ﬁs/éo Bnorl - Bnor2 =0
Etanl - EtanQ =0 Btanl - Btan2 = N(]js

<

Composantes tangentielles du champ électrique continues
v Composantes normales du champ magnétique continues
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Puissance électromagnétique : vecteur de Poynting 175

[Rappel] Energie électro/magnétostatique

v Energie électrostatique Ue (37) :

1
Ue = —/EQEQ(F) av
2 Jy
v Energie magnétostatique U, (85) :
1 1
Un == | —B*(F)dV

v Electromagnétisme : les champs dépendent du temps

E(7) — E(7t) E2(7) — EX(7,t)
B(7) — B(7,t) B%(7) — B(7,t)

176
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Energie électromagnétique

v L'énergie « stockée » dans un volume V :

Uem(t) = %/V <€052(’F, t) + ibﬁ(’f", t)) dV (129)

v Comment évolue I'énergie électromagnétique dans le temps ?
v  Que se passe-t-il dans un volume V7

1. Energie Uem emmagasinée dans les champs S_’,B'
2. Travail du champ sur les charges du volume (« milieu »)

a travers la force de Lorentz : puissance P fournie au milieu
3. Echange d'énergie avec le monde extérieur

a travers la surface S qui englobe V :

puissance P; sortant du volume

v Conservation de I'énergie :

dUem
=0
i +P+P
177
Travail du champ électromagnétique
v Le champ électromagnétique 5(F,t),g(F, t) agit sur les charges du volume :
F=q&+3AB)
v Travail élementaire dans un volume dV :
AW =F.-dl=F-¢dt = q(E+TAB)-Tdt
=¢€-Tdt = pdVE - Tdt =€ - Jdvdt
v Puissance fournie par le champ E/M aux charges du volume V :
d — —
P:/—W:/S-Jdv (130)
v odt v
178
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Energie E/M et puissance fournie (1)

v Ecrire £- jen fonction uniquement de EetB
v Utiliser Maxwell-Ampére pour éliminer J :

— — 1 — — — —
E.J=—E (VAB)—ef &
Ho t

v Propriété analyse vectorielle :

v Loi de Faraday :

v Regrouper les trois équations :

E-J = ... (transparent suivant)
179

Energie E/M et puissance fournie (2)

v Densité volumique de puissance fournie :

1 - o (1 - 0
5605 = 5608 E— a <§€05 > =& - _t
v Densité volumique d'énergie magnétique :
1 1 d (11 1~ 0B
—B*= BB=>—<—— 2): B —
240 240 ot \ 2 po po Ot
180
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Energie E/M et puissance fournie (3)

v Ce qui se passe dans un volume élementaire :

£-J +2(1605-5+i5-5>+i6-(5AB'):0 (131)
puissance/m® flux de?/m3

énergie/m3

v Intégrer sur le volume V (4 théoréme de la divergence) :

/8-JdV+—/—(608-8+—B-B>dV
1% Ho

dt Jy 2
1 5 =
+ ¢ —(EAB)-ndS=0 (132)
S Ho
v Conservation de I'énergie :
dUem _ _
P+ T (puissance qui sort de V) =0 (133)
181
Puissance E/M transportée : vecteur de Poynting
v Puissance qui sort du volume V :
1 — — “
P = 7{ —(EANB)-ndS
S Ho
v Densité surfacique de puissance transportée :
=N 1 — — —9
S=—E&EANB (Wm ) (134)
Ho
v & : vecteur de Poynting, montre la direction de la puissance
v Puissance transportée par une onde a travers une surface S :
P :/g-ﬁds (135)
s
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[Produit de deux fonctions harmoniques]
v Exemple : les champs d'une onde E/M harmonique
E(z,t) = Egcos(wt — kz + ¢) = Re {Eoej¢ej (wt*kz)} = Re {E’(z)ej‘”t}
B(z,t) = By cos(wt — kz + ) = Re {goejeej (“’t_kz)} = Re {B(Z)ej‘“t}
v Produit des modules : |EB # EB ||
EB = EyBy cos(wt — kz + ¢) cos(wt — kz + 0)
1
= 5Eng [cos(¢ — 0) + cos(2wt — 2kz + ¢ + 0)]
1 1 o —i0
<&EB> = §EOBO cos(p—0)=...= §Re {EOeJ Bpe™! }
1 [ %
<EB>= 5Re{EB } (136)
v Le seul cas ot on peut multiplier des amplitudes complexes! (cf. tr.#158)
183
Energie et puissance d'ondes E/M harmoniques
v Energie moyenne E/M emmagasinée dans les champs :
1 = 1 ==
<uem>:—/ (eoRe{E-E }—i——Re{B-B }) dv (137)
4 Jy 1o
v Puissance moyenne E/M fournie au milieu :
1 = =
<P>:§/Re{E-J}dV (138)
%
v Puissance moyenne E/M transportée par I'onde :
<7>t>:/ <8> -ndS (139)
s
- 1 = =
<S>:—Re{E/\B } (140)
240
v Intensité : [ =| <&>| (Wm2)
184
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OPPM énergie électrique = magnétique
v Une OPPM d'amplitude Ej se propageant selon k = &, dans le vide :
E=E, cos(wt — kz)ég E = Eye1F7e,
] > k .
B = —Eycos(wt — kz)éy, B = —Fye i*7¢,
w w
v Densités volumiques d'énergie (TD 13.1a) :
instantanée moyenne
) 1,1 1,
élec. : §€0E0§ [1 4 cos(2wt — 2kz)] ZEOEO (141)
11 k2,1 11k,
v OPPM dans le vide : énergie électrique = énergie magnétique
v Egalité en énergies instantanées (et moyennes)
185
Impédance caractéristique du vide
v Densité de puissance transportée par une OPPM (TD 13.1e) :
- 1k _51
S %JEgE [1 4 cos(2wt — 2kz)] é,
<8>=—-Fjé, =,/ —Ejé
20w 07T 2\ g 0

v On peut réécrire le dernier résultat :

H <‘§'> H _ (EO/\/E) _ (EO/\/i) (143)

V o/ €o Zo

Can 4 : _ 2
v Rappel : en électronique, <P>=V_z/R
v Impédance caractéristique du vide :

Zo 2 JE = (120m)Q ~ 3770 (144)
€0

186

_ @IS _ 102 www.polytech.unice.fr/"aliferis
\ \



http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/ep_uns_cip2_electromagnetisme_td_13.pdf
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/ep_uns_cip2_electromagnetisme_td_13.pdf
http://creativecommons.org/licenses/by-nc-sa/2.0/fr/
www.polytech.unice.fr/~aliferis
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/index.php

Ecole Polytechnique de I'UNS Parcours des Ecoles d'Ingénieurs Polytech, 2¢ année
Polytech’Nice-Sophia 2012-2013

Champ électrique dans la matiére 187

Diélectriques (isolants)

Les charges ne sont pas libres a se déplacer

Tous les électrons sont liés aux atomes/molécules
= conducteurs

Intrinséquement neutres

Quel est I'effet d'un champ E extérieur ?

(retour pour l'instant a I'électrostatique)

4 4 4 4 <«

1. Création de dipdles (—¢/ + ¢) induits

P = qdi__,, moment dipolaire

2. Effet proportionnel a la cause
p= oE a: polarisabilité atomique

3. Alignement des dipoles permanents
Rappel : graines de gazon
(WL, L2, 42m25-43m40)

188
Effet de la polarisation de la matiére
v« Polarisation » : se référe aux dipéles
v (Rien a voir avec linéaire/circulaire etc.)
v On n’examine pas les causes pour l'instant
(polarisation induite ou permanente)
v Matiére : grand nombre de dipdles dans un volume
v Vecteur de polarisation P :
densité volumique de moment dipolaire électrique :
— 1
P2 lim — 5; (Cmm™> =Cm 2 145
AV S0 AV Zi:pz ( ) ( )
189
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Polarisation : charges induits

v Matiére neutre polarisée :
apparition de charges « liees » |
v Dans un volume V :

1. A la surface :
Ps lices = P-n (C m72) (146)

2. A l'intérieur :
Plices = -Vv.P (C mig) (147)

% Ps lices ds + / Pliees dy =10
S %

Y Diices, Ps lices E€Nérent champ électrique di a P

3. Matiére neutre :

190
Loi de Gauss dans les diélectriques
v Deux types de charges :
1. « Libres » : on peut les choisir/placer etc.
2. « Liées » : on n'a aucun contréle sur elles
v Loi de Gauss (électrostatique) :
- = 1
V-E= %(pliées + plibres)
1 — —
=—(-V -P+ plibres)
€0
6 ) (EOE+ 13) = Plibres
D2 ¢E+ P|(Cm™?) (148)
6 : l_j = Plibres (149)
v D : déplacement (ou induction) électrique, en C m~2
191
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Milieux LHI
v Linéaire :
P=¢x.E (150)

Xe : susceptibilité électrique

D =¢qE+P=¢(1+x.)E (151)

L ¢, E =¢cE

€, : permittivité relative /¢y (ou constante diélectrique)

v Homogeéne : €, ne dépend pas de
Isotrope : €, est un scalaire
v Milieux lhi :

<«

D=¢per

— — FE = —
(149) : V - D = pilires  — V- E = plipres/ €06y

remplacer p — plibres €t €0 — €g€, dans la loi de Gauss

192
Permittivité relative : quelques valeurs typiques
Matériau €
Vide 1
Hydrogeéne 1.00025
Air (sec) 1.00054
Diamand 5.2
Sel 5.9
Silicone 11.8
Eau 80.1
Glace (—30°C) 99
193
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Champ magnétique dans la matiére 194

Phénomeénes magnétiques : dus aux courants

v Aimants, boussoles, Péle Nord, etc. :
des courants dans la matiére
v Une boucle de courant I :

m : moment dipolaire magnétique

A : aire de la boucle

Dans la matiére, m créés par les électrons
Orientation aléatoire : résultat nul

Quel est I'effet d'un champ B extérieur ?

4 4 4 4 «

1. Diamagnétisme : m s'orientent contre B
2. Paramagnétisme : m s'orientent selon B
3. Ferromagnétisme : m s'orientent selon B a grandes échelles

195
Magnétisation : courants induits
v Equivalent de la polarisation P
v Vecteur de magnétisation M :
densité volumique de moment dipolaire magnétique :
- . 1 - _ _
M2 Jim gp 2o (Anfa = am (152)
v Dans un volume V :
1. A lasurface :
Joties=MAn (Am™1) (153)
2. A lintérieur :
Jies=VAM (Am?) (154)
196
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Loi d’Ampeére dans les diélectriques

v Deux types de courants :

1. « Libres » : on peut les choisir/placer etc.
2. « Liés » : on n'a aucun contrdle sur eux

v Loi d'Ampére (magnétostatique) :

6 A\ E = ,UO('-fliés + jibres)
= ,u(](e A M"‘ jibres)

— 1 — — -
V A (—B — M) = Jlibres
Ho

—

B—M|(Am™) (155)

V AH = Jipres (156)

v H: «champH» (excitation magnétique) en Am~!

197
Milieux LHI
v Linéaire :
M = xH (157)
Xm : susceptibilité magnétique
B = jup(H + M) = pio(1 + xm)H (158)
2 oy, H = pH
iy : perméabilité relative i/ pg
v Homogeéne : u, ne dépend pas de 7
v lIsotrope : p, est un scalaire
v Milieux lhi : . ~
S f_ 7 BrwAg & =
(156) :VANH= Jlibres — VAB = ,U'O,U'rjlibres
remplacer J— f“bres et o — poptr dans la loi d’Ampére
198
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Susceptibilité magnétique : quelques valeurs
Matériau dia- Xm Matériau para- Xm
Or —3.4x107° Oxygeéne 1.9 x 1076
Argent —24x107° Sodium 8.5 x 1076
Cuivre —9.7x 107¢ Aluminium 2.1 x107°
Eau —9.0x 1076 Tungsten 7.8 x107°
CO, -1.2x 1078 Platine 2.8 x 1074
Hydrogéne  —2.2x 107  Oxygéne liquide 3.9 x 1073
Y oup=1l+xm=1
v Oxygene liquide démo (WL, L21, 43m00-46m22)
199

Ferromagnétisme

pr entre 102 et 1061

Orientation de M par domaines (=~ 10?° atomes)

Orientation permanante : magnétisation

Dans un champ magnétique B non uniforme : force d’attraction vers B fort

(WL, L21, 20m10-23m00)

Ecouter les domaines magnétiques s'orienter : effet Barkhausen (1919) (WL, L21, 25m50-30m30)
Phénomene d'hystérésis B/ H

v Température de Curie (WL, L21, 37m00-40m10)

Matériau  T.(°C)

Nickel (Ni) 354
Fer (Fe) 770
Cobalt (Co) 1115

v Equivalent : matériaux ferroélectriques, hystérésis 13/1_75

4 4 <4 «

4 <

200
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Equations de Maxwell dans la matiére 201
Courant de polarisation
v Retour aux phénomeénes variables dans le temps
v Régime harmonique (9/0t — jw, € — E etc.)
v Polarisation/magnétisation dans la matiére
v Apparition de charges/courants « liés » :
polarisation (147) : plices = -V.-P
magnétisation (154) : Jijes = V A M
v Variation de pjices : courant de polarisation
(Rappel (42) : V - J = —jwp)
- 2 L (147) . - = - . =
Vo Jpol = —jwhiiges = —jw(=V -P)=V - jwP
Jool = jwP (159)
v Un nouveau terme de courant 3 ajouter dans I'équation de Maxwell-Ampére !
202
Equations de la divergence
v Champ électrique (loi de Gauss)
- = p 1 . - 1 - =2
(88) V- E=—= _(pliées + plibres) = _(_V - P+ plibres)
€0 €0 €0
V - (E+P)=|V D = pjipres (160)
v Champ magnétique
(89):|V-B=0 (161)
203
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Equations du rotationnel

v Champ électrique (loi de Faraday)

=

(90): |V AE

v Champ magnétique (loi de Maxwell-Ampére)

(91) : 6 A B = ﬂo(jliés + jlibres + jpol + jWGOE)
159 L =z oz =
(:) MO(V ANM + Jlibres + JwP+ JWﬁQE)

= MO(6 A M+ tilibres + Jwﬁ)

Sy

N 1 = N = = =
V A <u_ —M> = |V AH = Jjpres + jwD (163)
0

204

Equations de Maxwell dans la matiére (1)
v Forme « inutilisable »
V. E=j/e (164a)
V.B=0 (164b)
VAE=—jwB (164¢)
YV AB = puo(J + jweoE) (164d)
v Charges et courants : « libres » et « liés »
p = Diices + Plibres
f= jliés + jl’ibres + j;)ol
v Equations valables quel que soit le milieu
v Incovénient : calculer les charges/courants que I'on ne contrdle pas
205
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Equations de Maxwell dans la matiére (2)
v Forme « généralisée »
VD = fie (165a)
V.B=0 (165b)
VAE=—juB (165¢)
VA f} = j;ibres + jwﬁ (165d)
v Charges et courants : uniquement « libres » (on ne |'écrira plus!)
v Relations constitutives
D=«E+P
B- Ho H + :)
v Equations valables quel que soit Ie m|||eu
v Difficulté : calculer les champs P et M
206
Equations de Maxwell dans la matiére (3)
v Forme spéciale : milieux linéaires, homogeénes, isotropes (lhi)
V- E = jires/e (166a)
V.H=0 (166b)
VAE=—jouH (166¢)
VA I} J|.bres + JweE (166d)
v Charges et courants : uniquement « libres » (on ne |'écrira plus!)
v Relations constitutives : utilisées dans (165) — (166)
5 = 605+ﬁ@ eoerl_@:: 61_7/:
B = po(H + M) ™ oy, H = pH
v Equations valables uniquement pour les milieux lhi (y compris le vide!)
¥ Ressemblent aux équations (164) mais avec e, i et charges/courants libres
207
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Energie et puissance dans la matiére

v On peut reprendre les calculs qui ont conduit a (131) mais a partir des équations de Maxwell

généralisées (165)
dP 2 3
pertes : vk E-J (W/m?)
_ WUem 1z = 1z = B
é é : =-D- =B 1
énergie é/m v 5 E+ 2B H| (Jm™) (167)
Poynting: S=EAH (Wm™?) (168)
v Dans le cas spécial du vide, on retrouve (129) et (134)
208
\ \
112 www.polytech.unice.fr/"aliferis

cocel


http://creativecommons.org/licenses/by-nc-sa/2.0/fr/
www.polytech.unice.fr/~aliferis
http://www.polytech.unice.fr/~aliferis/fr/teaching/courses/cip2/electromagnetisme/index.php

Ecole Polytechnique de I'UNS Parcours des Ecoles d'Ingénieurs Polytech, 2¢ année
Polytech’Nice-Sophia 2012-2013

OPPM dans les milieux lhi 209

OPPM dans un milieu lhi

On peut reprendre tous les résultats obtenus dans le vide
Remplacer g — € et ug —> 1

Faire apparaitre uniquement les charges et les courants « libres »
Dans un milieu lhi sans sources ni courants :

» Une OPPM est une onde TEM
» Les vecteurs E, H, k forment un triédre direct
» Le nombre d'onde est donné par :

4 4 <4 «

k= W/ HE = Wr/Lo€0/ Ur€r = kO\/ M Er (169)
» Le rapport ||E||/| H]| est constant :
— — I;;/\ E —’J__‘ — k — € —
Bl = RE B - 8 - [
w wh I
E
& B = u impédance caractéristique (€2) (170)
€ |H]|

» Les champs E et H sont en phase si €, u réels

210
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Types de pertes dans la matiére

1. Pertes de conductivité (ohmiques)

—

(46): = oF loi d'Ohm

o : conductivité en Sm™! .
2. Pertes diélectriques : (150) — P = epXe

o[}

~ ~ A < I / < I ~
E=14+xe=€ —je =¢€p(e, — je,.) = €ér

—

3. Pertes magnétiques : (157) — M = 3, H
fo=1+Xm = p = jp" = polp, — jp) = pofir

(on considére toujours ici p, = 1)

211
Permittivité effective
v Pertes ohmiques et diélectriques dans Maxwell-Ampére :
(166) : VAH = 0E +jwéE = jweg <€T— ji> E
~— weg
J
v Définir une permittivité effective
. . .0 ) o .
Ereff = & — ] ver € — ] (fg + w—60> = Ereff — I €reff (171)
v L'équation de Maxwell-Ampére (166)
6 VAN I‘_j = jWE(]gTeffE
v On peut reprendre tous les résultats précédents (lhi sans pertes) et remplacer €, — €.ef
212
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Nombre d’'onde complexe

v Le nombre d'onde

v Nombre d'onde complexe !

FE = Oe*jkz — Eoe*j(ﬁﬂa)z — Eoe*aze*jﬁz

€ = Ege % cos(wt — z)

v 3 : « constante de phase » (radm™!)
Y «a: «coefficient d’atténuation » (Npm~1)
v §=1/a: « profondeur de peau »
213
Coefficients « et
v Milieu |hi sans pertes magnétiques, avec permittivité complexe
~ E// i
k= wy/Ho€o/ piréreft = ko \/W(E/reff = J€er) = kO\/ fir€rogy [ 1 — ] E/Te
reff
v Tangente de pertes £ €/ /€ o
v Coefficient d'atténuation / constante de phase :
1/2
,Urel e 2
a=ko Tff 1+<7eff> -1 (172)
€reff
1/2
,Urel e 2
8 = ko —2"eff 1+ (,—ff) +1 (173)
€reff
214
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Milieu lhi sans pertes
v Milieu sans pertes : ¢/ =0
a=0
B = wy/ pe
v La vitesse de phase :
w c c
Vp = — = =—<c 174
©= 3 g n (174)
v Indice de réfraction :
n 2/ e (175)
v La longueur d'onde
2
A= D= Ao _ 2o < Xo
B Ur€. M
215
Milieu lhi avec pertes
v Milieu avec pertes : ¢/ # 0
a#0
B # wr/ pe
v La vitesse de phase (réelle) :
w w w c c
Vpy = — — — = — = — - ~ S & (176)
"B Re [} Re{wvie} Re{Viu&} Refi)
v Indice de réfraction (complexe) :
i £ \/ préy (177)
v La longueur d'onde (réelle)
2m 2w )\0 )\0
)\ S S — ~ — — = ~ S )\0
B Re{k:} Re {Vé} Re{n}
216
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Refléxion / transmission entre deux milieux lhi 217
Conditions aux limites entre deux milieux lhi
v Les équations de Maxwell dans la matiére (165)
VAE=—jwB VAH=J+ jwD
v Interface entre deux milieux |hi, 7+ de 2 vers 1
v M&éme procédure que celle du tr.#174
Tl - (ﬁl — E2) = Ps 61Enor1 - 62E~nor2 = Ps (1783)
n - (Bl — Bz) =0 ,Ualﬁnorl - MQﬁnorQ =0 (178b)
LA (El — Ez) =0 Etanl - EtanQ =0 (178C)
A (ﬁl — .FIQ) = js ﬁtanl - ﬁtan2 = js (178d)
E\an continu; Hpo, continu (si milieux non magnétiques)
J : courant surfacique (Am~1), uniquement sur un conducteur parfait
218
Incidence normale sur une interface
v Interface entre deux milieux lhi 3 2 =0
v Incidence normale : k; = é, (TD 14.1)
v Ondes incidente, réflechie et transmise :
E~i = Ezoe_J #"Fém = El-ge_jklze
Er = ~r067J -T.Féa: = ErOeJrjklzém
Et = E’t(]eiJ _‘t Féw = Etoeijktzém
v Champs magnétiques H = (k A E)/Z
G 1 —jkiz s
H/L :—|—~—E206 IFizg
A
= 1 -~ .
H, = —Z—lEroeﬂklze
= 1 =~ .
H; = + = Eye F2g,
Zo
219
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Incidence normale : conditions aux limites

Appliquer les conditions aux limites (178) & z =0
(178a) : pas de composantes normales de E

(178b) : pas de composantes normales de B

4 4 4 <«

(178c) : composantes tangentielles de E (selon &)
Eio + Ero = Ey
v (178d) : composantes tangentielles de H (selon éy)

Eo  En _ Ey

7 7 Z

220
Incidence normale : coefficients amplitude
v Coefficients de réflexion/transmission en amplitude :
E Zo— 17
e (179)
Eio  Zy+ 74
-, E 27
Fal 72 (180)
EZO ZQ + Zl
v Quelques propriétés
1. 1+7=t
2. r,t réels si milieux sans pertes : pas de déphasage
> =25 <0si 2y < 7
» Milieux non magnétiques : Zy < Z1 = €1 > €9
> €1 > ea = v1 < v2 (milieu « lent » vers « rapide »)
3. Si milieu 2 conducteur parfait : Z, = e,fﬁg -0, r=-1,t=0
221
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Incidence normale : coefficients puissance

1
Q:—%{—}ﬁj
2
1 - 1
I = 5Re {—} |Erol® = §Re{ } 7> ES

1 ~ 1 -
Iy = §Re{2 } |Erol* = §Re{—2} g2

v Coefficients de réflexion/transmission en intensité :

v Puissance transportée :

|H N — N —
— —
»—th|H

=

i

[\

I
R& L =i (181)

N I ) e
T_Ti —W\t\ =[1-R| (182)

222

Incidence oblique sur une interface : définitions

Interface entre deux milieux lhi 3 2 =0

« Plan d'incidence » : défini par 7 et k;

« Angle d'incidence » 6; : entre f et k; (0 < 6; < 90°)
« Angle de réflexion » 0, : entre 7 et IAcr (0 <6, <90°)
« Angle de réfraction » 6; : entre 7 et ky (0 <6, <90°)
Incidence oblique :

4 4 4 4 <« «

k;sin0;é, + k; cos 0;€.,
i

kisin0.éy — k;cos0,.é, (k. = k;)

kr
Et = k¢ sin 0;é, + ki cos 0:€,

Polarisation perpendiculaire (L, s, TE) : E L plan d'incidence (TD 14.2)
Polarisation paralléle (||, p, TM) : E || plan d'incidence (TD 14.3)

Cas général : perpendiculaire + paralléle

Milieux non magnétiques (11,2 = jto) sans pertes (€1 2 réels)

k= k?(]\/a = nk‘o

7 = Zo)Jar = Zo/n

4 4 4 4 <4 «
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Incidence oblique L : champs
v Polarisation perpendiculaire (1, s, TE) : E L plan d'incidence (TD 14.2)
v Champs électriques :

~

E; = Eioeijkiwéy E, = EroeijkT.Téy E; = Et(]eijktqley

= 1 R I
H; = 7 e ik (—cosB;é, +sinb;é,)
= 1 LT o
H, = 7 Toe_Jk"'T(+ cos 6,.é, +sinb,.€,)
= 1 SP o
H,; = ZEtoekat'T(— cos 014 + sin 6,€ )
224
Incidence oblique L : Snel — Descartes
v Appliquer les conditions aux limites (178) a z =0
v (178c) : composantes tangentielles de E (selon €é,)
EiOe_jEi.F + ETOe_jET.F = Et(]e_j _’t.F VI = (x> Y, 0)
v Egalité possible a condition que :
ki 7=k, - =k -7 V7= (z,y,0)
« Continuité de la phase sur l'interface »
v Conséquences :
ki 7=k, 7= sinf; =sin, = |0; =0, (183)
ki 7P=ky 7= nlsinﬂi:ngsinet‘ (184)
Loi de (Willebrord) Snel — Descartes
v Simplifier la notation : §; £ 6; =6, et 63 £ 9,
225
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Incidence oblique L : conditions aux limites

Appliquer les conditions aux limites (178) & z =0
(178a) : pas de composantes normales de E

(178b) : composantes normales de B (selon é.)

1 1 1
NOZEZ'O sin 61 + MOZEro sinfy = —NOZEtO sin 0

(178c) : composantes tangentielles de E (selon é,)
Eio + Ero = Eyo
(178b) + Z = Zy/n + Snell-Descartes = (178c)

(178d) : composantes tangentielles de H (selon é;)

1 1 1
—ZEZ‘O cos B + ZETO cosfy = ZEto cos By

Mémes relations en incidence normale (cf. tr.4£220) si on définit Z, = Z/cos @

226

v

4 4 <4 «

Incidence oblique L : coefficients amplitude

Coefficients de réflexion/transmission en amplitude :

_ Ero _ Zol — 211
E; Zol + 7211

2B _ 27
Ei Zol + 211

A
cos 01
Z2
cos 05

lI>

Z11

(1>

Za1

r, t| dépendent de 6;

ri#0 (TD 14.2g)

Si milieu 2 conducteur parfait : Zo =0,7r, =—-1,¢;, =0

Z| = |Ean|/|Htan| (comp. tangentielles a l'interface, ici |Ey|/|H;|)

)

(185)

(186)
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Incidence oblique L : coefficients puissance

v Puissance transportée de facon normale a I'interface :

11,
I; = EZEZ-OCOS 01
11 11
I, = §ZE30COS 0, = izriEgocos 01
11
I = 572Et20(308 0y = 5721‘3@20005 0
v Coefficients de réflexion/transmission en intensité :
1
R &+ = ri (187)
K3

I 1/Z5 cos by ,
T, £ = t* =|1—R 188
- : 1/Z, cosf; + (188)

I;
228
Incidence oblique || : champs
v Polarisation parralléle (||, s, TM) : E || plan d'incidence (TD 14.3)
v Champs magnétiques :
H = B %78, H,— —EgeF7e, Hy = —Ege F7e
z—Z i0€ €y 'I"_Z r0€ €y t—z t0€ €y
v Champs électriques E = (H A k)Z
E; = Ejpe”} —’“?(%— cos 0;é, — sinf;é,)
E, = Eroefjlz’“'f:(— cos 0,.é, — sinf,€,)
E, = Etoe’jgt'F(+ cos 0 €5 — sin €,
¥ Méme procédure que celle du cas L (cf. tr.#225) :
1. Continuité de phase sur 'interface : E, = ET = _*t -7
2. Snel — Descartes : 6; = 0, et nysinf; = nysin 6,
3. Hléei:&etegéﬁt
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Incidence oblique || : conditions aux limites
v Appliquer les conditions aux limites (178) a z =0
v (178a) : composantes normales de D (selon &)
—elEio sin 61 — €1Er0 sin 61 = —GQEtO sin 62
(178b) : pas de composantes normales de B
(178c) : composantes tangentielles de E (selon &)
FEigcos by — E,qcosf; = Eycosby
v (178d) : composantes tangentielles de H (selon éy)
E; ET‘O _ @
A Z Z
(178a) + Z = Zy/n + Snell-Descartes = (178d)
v On définit Z £ 7 cosf
230
Incidence oblique || : coefficients amplitude ()
v Coefficients de réflexion/transmission en amplitude :
E Ly — 2
2= 22 _Zl (189)
Ei  Zo) + 2y
E 27, 56
o= — 2l €057 (190)
FEig Z2|| + Zl” cos By
ZlH £ 7, cos b,
ZQH £ 7, cos by
Yo7 £ _ 0/ Eio parce que si 61 ~ 0, E", et ET sont opposés
v 7|, t) dépendent de 6,
v 7 =0si0=0p: angle de Brewster, tanfp = Z1/Zs (TD 14.3d)
v Si milieu 2 conducteur parfait : Zo = 0, r=-11t=0
V7 = |Etan|/|Htan| (comp. tangentielles a I'interface, ici |E,|/|H,|)
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Incidence oblique || : coefficients puissance
v Puissance transportée de facon normale a I'interface :

11

I; = §ZEZ-QOCOS 01
11 11
I, = §ZE3()COS 0, = §ZTﬁEi2(]COS 01
11 11
I = 572Et2000$ Oy = EztﬁEgocos 02
v Coefficients de réflexion/transmission en intensité :
1
Ry =+ =rf (191)
(2
I; 1/Z5 cos by
T 2 2Lt|=L2""— 22 _|1-R 192
=1 1/Z; cosfy | I (192)
232
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