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Cours d’Optique 

 

Objectif  

  L’objectif de ce demi- module est de donner les notions fondamentales de 

l’optique géométrique : marche des rayons lumineux, chemin optique, réflexion  et 

réfraction, formation d’images, stigmatisme, aplanétisme, aberrations. 

 Pour illustrer ces propriétés, différents systèmes optiques sont traités: miroirs, 

dioptres, lentilles, association de systèmes centrés. 

Une dernière partie de ce cours est réservé à l’étude de quelques instruments optiques: 

microscope, viseur, œil,… 

Programme 

 - Lois générales de l’optique géométrique  

 -  Réflexion et réfraction  

 -  Prisme  

 -  Dioptres  plan et sphérique  

 - Miroirs plan et sphérique  

 - Lentilles  épaisses et minces 

 - systèmes centrés 

 - Aberrations 

 - Focométrie 

 -  Instruments optiques…. 
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Chapitre 1 

GENERALITES 

1- Introduction 

 L’optique  est l’étude des radiations électromagnétiques qu’elles soient visibles 

ultraviolettes ou infrarouges. 

Les sources de lumières: 

1. Sources primaires : soleil, lampes, bougie  

2. Sources secondaires : lune, objet  éclairé 

Un milieu homogène  est un milieu dont la composition est la même en tout point. 

Un milieu isotrope est un milieu dont les propriétés sont les mêmes dans toutes les 

directions. 

 Dans un milieu homogène et isotrope  la lumière se propage en ligne droite : rayon de soleil 

qui pénètre dans une pièce sombre. 

 

 

      2. Double aspect de la lumière 

 Deux théories apparemment contradictoires ont été élaborées 

1. Théorie ondulatoire 

Basée  sur les équations de Maxwell et considère la lumière comme une onde 

électromagnétique  BE


,   . E


 vérifie l’équation de propagation EV
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



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
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


 le laplacien, V  vitesse de propagation de l’onde dans le milieu. 

La lumière est caractérisée en tant qu’onde électromagnétique par : 

a) sa fréquence   : fixée par la source et donc indépendante du milieu de propagation   

b)sa longueur d’onde qui la distance parcourue pendant une période, dans le vide cT  

 

 

Cette  théorie explique, les phénomènes de diffraction et d’interférences mais elle n’explique 

pas l’effet photoélectrique par exemple. 

 
E

B

c 

 = 0.4 à 0.7 m = c . T 
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Ci-dessous nous donnons le spectre des ondes électromagnétiques, le domaine visible 

n’occupe qu’une petite partie (entre 0,4 et 0,8 m ). La superposition de toutes les radiations 

visibles donne la lumière blanche. 

 

2. Théorie corpusculaire  

 La lumière a une structure corpusculaire (théorie de Planck) c-à-d l’énergie lumineuse 

  n’est pas répartie sur l’onde mais concentrée sous forme de particules appelées 

photons  h , h : constant de Planck. En 1924 Louis de Broglie montra le double aspect 

de la lumière: à toute particule  en mouvement on associe une onde  

 

3. Indice de réfraction 

L’indice du milieu   n est 
V

c
n ,      

C :   est la vitesse de la lumière dans le vide, V est la vitesse de la lumière dans le milieu 

considéré 

Exemple 

Air 0003.1an  

Eau 33.1en  

Verre 5.1vn  

Diamant 417.2dn  

Remarque :  

Comme la  vitesse  de propagation dépend   de la fréquence des radiations )(VV ,     l’ 

indice  de réfraction  dépend   de la fréquence )(nn sauf pour le vide où  1n  

 

 

4. Chemin optique 

 Soit Γ: courbe continue qui joigne deux points A et B d’un milieu transparent isotrope, non 

nécessairement homogène. On appelle le chemin optique (AB), entre les deux points A et B, 

le long de la courbe Γ, l’intégrale curviligne 
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


 ndlAB)(  où   dl est un élément de longueur de la courbe Γ 

   

Remarque : 


 ndlAB)(  


 )( AB ttccdtdl
V

c
 

 Le chemin optique n’est autre que le chemin parcourut par la lumière dans le vide 

pendant le temps de propagation dans le milieu considéré. 

 Dans le vide, le chemin optique  se confond avec le chemin géométrique 

ABnABAB )(  ( n=1) 

1. Cas de deux milieux homogènes : 

Un dioptre est une surface qui sépare deux milieux d’indices différents, On applique la 

définition du chemin optique aux milieux  (1) et (2) on a : 

(AB)= (AI)+(IB)= n1 AI+ n2IB 

 

2. Cas de plusieurs milieux  homogènes: 

Le chemin optique est donné par : 

BInIInAInAB mm 121211 ...)(   

 

5. Principe de Fermat et ses conséquences 

1. Enoncé du principe 

A 

B 

dl 

Γ 

milieu n 
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 Soient deux points A et B dans un milieu quelconque, le principe de Fermat s’énonce 

comme suit : le trajet effectivement suivi par la lumière pour aller de A à B est celui pour 

lequel le chemin optique 


 ndlAB)(  est stationnaire. 

 

Pour préciser la signification mathématique de cet énoncé, considérons une trajectoire 

obtenue en déformant Γ par un déplacement élémentaire M


 , en chaque point M de  Γ, tel 

que : 0


 BA   

L est stationnaire si la quantité élémentaire LLL  '  est infiniment petite par rapport à la 

valeur supérieur de M


  

 

Remarque :  

a. Le chemin optique étant proportionnel au temps que mettrait la lumière pour suivre 

un trajet donné, le principe de Fermat exprime que la durée du trajet suivi par la 

lumière est stationnaire par rapport aux trajets infiniment voisins. 

b. Dans milieu homogène (n=cte) et isotrope, l’intégrale 


ndl  ne peut être que 

minimale, ce qui implique la propagation rectiligne. 

c. )()()( BAdlnndlndlAB

B

A

A

B

B

A

   

notons dldl ' l’élément curviligne orienté de B vers A, on voit que 

)()( BAAB  ,comme (AB) est stationnaire,(BA) l’est aussi. 

Le trajet suivi par la lumière ne dépend pas du sens du chemin parcouru, c’est le 

principe de retour  inverse de la lumière. 

 

2. Le principe de Fermat contient les lois Snell-Descartes 

 Les lois  de la réflexion étaient connues des grecs, les lois de réfraction furent 

découvertes par Ibn Haytem, puis retrouvées par Snell, puis Descartes, elles permettent 

de déterminer le rayon réfracté lorsque la lumière traverse un dioptre (Lois de réfraction) 

ou le rayon réfléchi sur un miroir (Lois de réflexion)  

1. Lois de réfraction 

 Soient deux points A1 et A2 situés dans deux milieux (1) et (2) transparents, 

homogènes, séparés par une surface S, le trajets A1I A2 suivi par la lumière comporte 

deux portions rectilignes A1I  dans le milieu (1) et I A2 dans le milieu (2) 
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Calculons le chemin optique (A1I A2) : 

IAUnIAUnIAAL 22211121 ..)(   

Imaginons un trajet   infiniment voisin de L  en déplaçant I   de dI  dans le surface S, dI  sera 

dans le plan tangent à S en I, Calculons le nouveau chemin optique : 

))(())(( 22221111 IdIAUdUnIdIAUdUndlL   

Soit  

 IAUdnIAUdnIdUnUndl 2221112211 )(  

où   est infiniment petit du second ordre. 

Or 
)2,1( iiU est un vecteur de module constant (unitaire), donc ii UdU  , donc 0IAUd ii    

dL devient  

IdUnUndL )( 2211   

Si  A1I A2 est un rayon lumineux, (principe de Fermat) , L est extremum par rapport à tout 

trajet infiniment voisin de L. Donc dL=0 quelque soit dI . 

2211 UnUn   est donc un vecteur normal à l’ensemble des vecteurs dI , c’est-à-dire 

orthogonale au plan tangent à S en I et orienté dans le sens de propagation de la lumière. Il 

existe un scalaire   tel que:  

2211 UnUn  = N  

Les vecteurs 2,1 UU  et N  qui sont liés par une relation linéaire, sont dans un même plan 

 

a. Première lois de la réfraction 

Le rayon incident, le rayon réfracté et la normale en I à S appartiennent au même plan  

appelé : plan d’incidence 

b. Deuxième  lois de la réfraction 

Multiplions scalairement par T  les deux membres de l’égalité précédente, on trouve: 

02211  TUnTUn  ( N  et T  étant orthogonaux) 

On pose ),( 11 UNi   (angle d’incidence) et ),( 22 UNi   (angle de réfraction), l’égalité  

précédente s’écrit alors :         

2211 sinsin inin   

i1 

i2 

T  
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2. Lois de réflexion 

La surface S (dioptre) est remplacée par un miroir, Le rayon réfracté IA2 est remplacé par le 

rayon réfléchi se propageant dans le milieu (1). L’égalité précédente  devient : 

NUUn  )( 211
 

a. Première lois de la réflexion 

 Le rayon réfléchi est dans le plan d’incidence 

b. Deuxième lois de la réflexion 

Multiplions scalairement par T  les deux membres de l’égalité précédente: 

0.21  TUTU  

Donc  )sin()sin( 21 ii   c'est-à-dire  
21 ii   

Si on compte les angles algébriquement à partir de la normale, ils sont de signes opposés: 

21 ii   

Remarques : 

 21 ii   donc 2211 sin)(sin inin   relation de la même forme que pour la réfraction. 

De ce point de vue, la réflexion peut être considérée comme un cas particulier de la 

réfraction dans lequel le deuxième milieu aurait un indice opposé à celui du premier 

milieu 

 A tout rayon incident en un point du dioptre S peut correspondre un rayon réfléchi et 

un rayon réfracté. 

Le rayon réfléchi existe toujours, sauf dans un cas particulier, dont l’étude est du domaine de 

l’optique ondulatoire  (Angle de Brewster) 

Lorsque 12 nn  , (le second milieu est plus réfringent que le premier), on peut toujours 

trouver 2i tel que 1sinsin 1

2

1

2  i
n

n
i  , le rayon réfracté existe toujours. 

Lorsque  12 nn  , 2i  ne peut pas être calculé si 1sin 1

2

1 i
n

n
. Il existe une valeur limite 

supérieure   de l’angle d’incidence 1i  telle que
1

2sin
n

n
 , pour les incidences 1i  il existe 

un rayon réfracté. Pour les incidences 1i , il n’ y a pas de rayon refracté : on dit qu’il y a 

réflexion totale,   est appelé angle de réfraction limite 

 

                                                                                 

                                                                                                                    

 

 

  

 

 

 

1i  

1'i  

N 
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3. Théorème de Malus 

1. Surface d’onde en optique géométrique 

Soit une source ponctuelle (S), on appelle surface d’onde (Σ) l’ensemble des points M tels 

que le chemin optique soit constant, ce chemin optique étant compté le long d’un rayon 

lumineux  

                              

 

 

 

 

 

 

 

2. Exemple 

Une source ponctuelle (S) est placée dans un milieu transparent, homogène et isotrope, les 

rayons lumineux sont alors rectilignes. Porter un chemin optique constant à partir de (S) 

revient à prendre sur chaque rayon une longueur constante ; les surfaces d’onde (Σ) sont 

donc des sphères de centre (S). 

Si on se place à des distances très éloignées de la source, les surfaces d’ondes deviennent des 

surfaces planes qu’on appelle des plans d’ondes. 

Enoncé du Théorème de Malus 

Les rayons lumineux provenant d’une source de lumière sont normaux aux surfaces d’ondes 

après un nombre quelconque de réflexion et de réfraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1 

M2 

M3 

Σ 

(S) 
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 10 

 

4.  indice de réfraction du prisme 

 

 

Le triangle I I’R montre que 'rrA   et  )'(' rriiD   donc 

 

AiiD  '  

Les lois de réfraction : 

rni sinsin   et 'sin'sin rni   

N.B : l’indice de réfraction de la face  d’entrée et celle de sortie est égale  est celle de 

l’air (n=1) 

Nous allons montrer que lorsque i  varie, D passe par une valeur minimale mD pour une 

radiation monochromatique (Minimum de déviation). 

Détermination de minimum de Déviation 

On a 'rrA                      'drdrdA  , ainsi 'drdr   

AiiD  '                        'dididD                          
di

di

di

dD '
1  

 

 

 

 

 

 

 

 

 

 

 

 

'sin'sin rni 

 
)'(sin)'(sin rndid   

 

on en déduit : 

dr
i

rn
di

'cos

'cos
'   
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cos
1  .

'cos cos

'cos

di

dD

i

i

r

r

' 
cos

cos 'cos
.di

'cos

r

r

i
di

i
cos

  n
cos rdr

idi

rdrnidi coscos   et rni sinsin 



 

 

 

Le minimum de déviation est atteint lorsque 0
di

dD
                  0

cos

'cos
.

'cos

cos
1 

r

r

i

i

di

dD
 

riri cos'cos'coscos                         riri
2222

cos'cos'coscos   

 

)sin1)('sin1()'sin1)(sin1(
222222

rrnrrn                         )'sin)(sin1(
222

rrn  ,  

ceci est vrai si  'sinsin
22

rr  , ce qui admet la seule solution 'rr   

 

riri
2222

cos'cos'coscos   

'rr                                                                        'ii   

 

'rr                        0
cos

'cos
.

'cos

cos
1 

r

r

i

i

di

dD
                                     0

di

dD
 

                                                                                                         'rr    

rni sinsin   

AiDm  2                       
2

AD
i m 
                                                    

2
sin

2
sin

A

AD

n

m 






 

  
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Chapitre 2 

Systèmes optiques – Stigmatismes - Approximation de Gauss 

I. Stigmatisme – Aplanétisme 

1. Système optique : un système optique est une suite de milieux transparents en général 

homogènes et isotropes limités par des dioptres et des miroirs. Si ces  surfaces ont un axe de 

révolution on dit qu’on a un système optique centré (plan, sphère).  

On distingue trois catégories de systèmes :  

Les systèmes dioptriques : comportant seulement des dioptres 

Les systèmes catoptriques : comportant que des miroirs  

Les systèmes catadioptriques : comportant des dioptres et des miroirs 

 

 

 

3. condition de Gauss 

un système est utilisé dans les conditions de Gauss lorsque les rayons lumineux qui le 

traverse sont paraxiaux c’est- a- dire peu inclinés par rapport à l’axe optique du système  

 

4. Image d’un point  

Soit A, une source ponctuelle objet envoyant sur la face d’entrée de S des rayons lumineux 

dits : rayons incident. Si après avoir traversé le système (s) les rayons correspondant dits 

rayons émergents passe tous par le même point  A’ ce point est dit Image de A, deux cas sont 

distingués 

- ou bien les rayons émergents passent réellement par A’ et dans ce cas on dit que A’   est 

une image réelle. 

- ou bien ce ne sont que les prolongements de ces rayons qui passent par A’, alors on dit que 

A’ est une image virtuelle. 

(l’image  A’ de A ne peut pas être matérialisée sur un écran) 
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Remarque : si A’ est l’image de A, si nous plaçons  en A’ une source ponctuelle, d’après le 

principe de retour  inverse de la lumière, tous les rayons émises de A’ passent par A. A est 

donc l’image de A’. pour tenir compte de cette symétrie on dit que le système optique est 

stigmatique pour le couple (A,A’). 
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- Espace objet réel - espace image virtuel : 

 

                      Espace Objet réel 

               La lumière                                                                            Espace objet virtuel  

 

 

 

 

 

- Espace image réelle  espace image virtuelle : 

 

 

Espace image virtuel                                                                            espace image réelle 

 

 

 

                                                                                                                         

                                                                                                                     

                                                                                                  

5. Stigmatisme rigoureux 

1. Définition 

Un système optique S est dit rigoureusement stigmatique pour le couple de points  (A,A’) si 

tout rayon passant par un point fixe A émerge de l’instrument  en donnant naissance à un 

rayon passant par un point A’ fixe de l’axe optique. On dit encore que A et A’ sont 

conjugués par rapport à S  

2. Conditions de stigmatisme rigoureux  

 

I et J désignent les intersection des rayons incidents et émergents avec les surfaces 

d’ondes ∑ et ∑’, calculons le chemin optique (AA’) 

'')()'( JAnIJnAIAA   pour tout I et J 
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'')()'( RnIJnRAA   

R et R’ désignent les rayons de courbure de  ∑ et ∑’. 

Quelque soit le rayon incident, le chemin optique )(IJ garde une valeur constante (chemin 

optique compris entre deux surfaces d’ondes). La structure de )'(AA est indépendante du 

rayon choisi.  

CteAA )'(  

3. Stigmatisme approché  

Sauf dans quelques très particuliers, le stigmatisme rigoureux n’est pas réalisable. En 

général, on se contente en pratique d’un stigmatisme approché.  

Un système optique sera considéré comme  stigmatique si les rayons issus d’un  point A 

passe à la sortie  du système, suffisamment près  de A’ pour que l’écart  n’apparaisse  pas au 

récepteur. La distance tolérée dépend entre autres, des qualités de ce récepteur. A’ peut être 

considéré  comme l’image ‘ approximative ‘de  A. L’image d’un point est une petite tache. 

4. Aplanétisme 

En général, le but d’un instrument d’optique ne se limite pas à obtenir une image ponctuelle 

d’un objet ponctuel ; il s’agit d’obtenir une image étendue d’un objet étendu. 

 

 

Limitons nous tout d’abord au cas assez fréquent où le but à atteindre est d’obtenir à l’aide 

d’un système centré une image plane d’un objet plan perpendiculaire à l’axe optique. 

1. Définition 

On dit qu’un système est aplanétisme pour le couple des points A et A’ situés sur l’axe 

optique lorsqu’il est non seulement stigmatique pour les points A et A’, mais aussi pour tout  

couple des points B et B’ au voisinage de l’axe. 

2. Conditions d’aplanétisme : relation d’Abbé  

 

Il y a stigmatisme pour (A,A’) et (B,B’), donc 

(AA’) = Cte = 1C  

Pour tout   

(BB’)=Cte= 2C  

Calculons la différence des chemins optiques 321)'()'( CCCAABB    pour tout   

''')'()'( AInIIAInAA   
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''')'()'( AJnJJBJnBB   

Mais d’après les conditions de gauss, on a aussi  dLAABB  )'()'(  

En admettant aussi le stigmatisme approché, tout rayon issu du point objet B parvient au 

point B’, en particulier le rayon issu de B et incident sur le dioptre en I, émergent en I’ et 

arrivant en B’. Dans ce cas, le chemin optique (BB’) s’écrit : 

''')'()'( BInIIBInBB   

Et donc pour la différence du chemin  )'()'( AABBdL   

''')'(''')'( AInIIAInBInIIBIndL   

)''''(')( AIBInAIBIn   

On a la relation vectorielle ABIBAI  , et en projetant sur l’axe optique en tenant compte 

des conditions de Gauss (petits angles) :  

)sin()
2

cos( 


ABABAIBI   

De même en abaissant la perpendiculaire à la droite (I’B’) du point A’, on obtient 

)'sin('')'
2

cos('''''' 


BABAAIBI   

 

Finalement, on obtient pour la différence du chemin optique  

)'sin(''')sin(  BAnABndL   

Pour tout point B du plan objet, le point B’ sera dans le même plan d’image si cette 

différence de chemin optique est constante, on écrit donc :  

teconsdL tan  

Cette constante peut donc être calculée en un point particulier, par exemple pour 0'  il 

vient alors : 

0)'sin(''')sin(   BAnABndL  

 

Finalement, la condition d’aplanétisme (condition des sinus d’Abbe) se traduit par la 

relation  

)'sin(''')sin(  BAnABn   

Condition découverte par le physicien Abbe 

Remarque : si l’angle d’ouverture du faisceau lumineux incident est faible, c’est à dire si le 

système travaille dans les conditions de Gauss  )sin(  on a  

 ''' BAnABn   Relation de Lagrange Helmholtz 

a. Grandissement linéaire  

 

On appelle grandissement  linéaire le rapport algébrique de la taille de l’image sur la taille 

de l’objet 
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AB

BA ''
  

On l’appelle aussi le grandissement transversal  

b. Grandissement angulaire 

On appelle grandissement angulaire le rapport algébrique de l’angle du rayon émergent sur 

l’angle du rayon incident 



 '
G  

On appelle aussi G le rapport de convergence 

 

3. Condition d’Herschel 

 

L’instrument est stigmatisme pour le couple de points A et A’, Le point objet C se déplace 

sur l’axe optique au voisinage de A ; son image C’est aussi voisin de A’ 

La condition nécessaire pour que le couple de point C et C’ soit stigmatisme est que le 

chemin optique (CC’) soit constant pour tout rayon issu de C. 

cteAACC  )'()'(  pour tout   

Un calcul analogue au précédent nous donne : 

)
2

'
(sin''')

2
(sin 22 

CAnACn    Relation d’Herschel 

4. Image d’un élément de volume  

On peut demander si les conditions d’Abbe et d’Herschel peuvent être compatibles, 

autrement dit si l’on peut avec certains systèmes optiques obtenir l’image d’un petit volume. 

Pour n, n’, '',,'', CAACBAAB  donnés, la condition  d’Abbé impose au rapport 
''

.
')'sin(

)sin(

BA

AB

n

n





 

de rester constant lorsque    varie, et la condition d’Herschel  impose au rapport : 

'''
)

2
(sin

)
2

'
(sin

2

2

CA

AC

n

n






 de rester constant lorsque  varie. 

Il faut donc que 




sin

'sin
 et 

)
2

(sin

)
2

'
(sin

2

2





 restent simultanément constant lorsque  varie, c’est à 

dire, il faut que 
)

2
(sin

)
2

'
(sin





 et 
)

2
(cos

)
2

'
(cos





  restent simultanément constant lorsque  varie. 

Les deux condition sont en général incompatibles (le cas du miroir plan '   est 

particulier. 
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n1 

n2 

*   A1 

Chapitre 3 

DIOPTRE PLAN ET LAMES A FACE PARALLELES 

 

I. Dioptre Plan 

 

Le dioptre plan est constitué de deux milieux transparents d’indices différents n1 et n2 

(inégalement réfringents) séparés par une surface plane. 

Exemple : l’aire et l’eau calme d’une piscine 

            

              

                       

 

 

 

 

 

 

 

 

 

 

Les indices n1 et n2 sont différents 

 

Les rayons lumineux issus d’un point objet A1 situé dans le milieu d’indice n1 se réfractent 

en traversant le dioptre plan.  

Les rayons issus du point objet A1 situé dans le milieu (1) d’indice n1 se réfractent en passant 

dans le milieu (2) d’indice n2. On cherche, en effectuant un raisonnement purement 

géométrique, s’il existe des points particuliers qui réalisent le stigmatisme rigoureux : c’est-

à-dire pour lesquels tous les rayons issus du point objet passent par un même point après 

réfraction. 

1.l’objet  A1 se trouve à l’infini. 

Tous les rayons incidents sont parallèles entre eux et forment un faisceau cylindrique.  

D’après la 3ème loi de DESCARTES : n1 sin i1 = n2 sin i2 tous les rayons émergents sont eux 

aussi parallèles et donc, pour un observateur, ils paraissent provenir d’un point A2 unique qui 

est également à l’infini.  
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n1 

n2 

*   A1 

H 

A2 

I 

i1 

i2 

K 

n2>n1 

 

Dioptre plan 

 

 

 

 

 

 

 

 

 

 

 

3. A1 est sur la surface du dioptre. 

Dans ce cas le stigmatisme rigoureux est évident. Mais ceci ne présente aucun intérêt 

pratique.  

4. l’objet A1 se trouve à une distance finie du dioptre plan 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Le système est de révolution autour de la normale A1H. Le rayon A1H traverse la surface 

sans déviation. Si une image de A1 existe, elle est donc nécessairement sur A1 H ; Le rayon 

A1I donne lieu à un rayon réfracté IK qui coupe A1H au point A2, nous obtenons les relations 

suivantes 

 

 

 

 

n1 
 

 

n2>n1 

A1 ∞ 

A2 ∞ 
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1

1
HA

HI
tgi                           11 .tgHAHI   

2

2
HA

HI
tgi                            22tgiHAHI   

 Pour les différents rayons issus de A1, i1 varie et 

cst
i

i


2

1

sin

sin
, mais 

2

1

tgi

tgi
 n’est pas constant                 au point objet A1 correspondent plusieurs 

images A2. Il n’ y a donc pas de stigmatisme pour les points à distance finie. (Les rayons 

réfractés ne se rencontrent donc pas tous en un même point)  

1. Etude des images dans le cas du stigmatisme approché. 

 

Si l’angle i1 est faible il en est de même pour l’angle i2 et on peut écrire :
11

sin itgi   et 

22 sin itgi   

On obtient alors avec une bonne approximation : 

 

1

2
1

2

1
1

2

1
12

sin

sin

n

n
HA

i

i
HA

tgi

tgi
HAHA   

Cette relation implique qu’à l’objet A1 correspond une seule image A2 D’où la formule du 

dioptre plan 

 

D’ou la formule du dioptre plan 
2

2

1

1

n

HA

n

HA
  

En conclusion, il y a stigmatisme approché  seulement pour les rayons lumineux peu inclinés 

par rapport à la normale au dioptre. 

 

 

 

 

  

 

 

 

 

 

 

 

)1(
1

2
12121

n

n
HAHAHAAA    

Cette relation implique un rapprochement apparent de A1 vers la surface (dans le cas où A2 

joue le rôle d’objet) c’est l’inverse qui se produit si l’objet et l’image sont permutés. Les 

2

1
12

tgi

tgi
HAHA   

+ n1 

n2 

A1 

A2 

H 

 n2>n1 

 

Dioptre plan 
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relations établies montrent que HA1 et HA2 sont de même signe et donc   A1 et A2 sont dans 

le même milieu et, par conséquent, de natures opposées.  

 

II. Lames à faces parallèles 

1. l’objet se trouve à l’infini  

On réalise la figure suivante en appliquant les résultats établis pour le dioptre 

plan

  
 

 

On remarque qu’après la traversée de la lame, deux rayons lumineux parallèles en sortent 

parallèles, donc l’image A" d’un objet A situé à l’infini  est rejetée à l’infini : il y a 

stigmatisme pour ce couple de points. 

 

2. l’objet se trouve à une distance finie de la lame 

 

Nous reprenons le même travail qui a été fait dans le cas du dioptre plan 

Le premier dioptre nous donne : 

C’est A qui joue le rôle de l’objet.  

n

HA

n

HA '

1

 , 11 n            
n

HA
HA

'
  ou 

n

HA
AH

'
  

Le deuxième dioptre plan nous donne : 

Dans ce cas A’ joue le rôle de l’objet pour le deuxième dioptre plan 

2

"'''

n

AH

n

AH
  , 12 n                

n

AH
AH

''
"'   ou 

n

HA
HA

''
""   

 

 n1=1 
n  n2=1 

A’ 
A A" 
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En ajoutant l’action des deux dioptres on a : 

n

AH
HH

n

HA
AHHHAHAA

''
'

'
"''"               '

''''
" HH

n

HAAH
AA 


  

'
'

" HH
n

HH
AA  , on pose eHH ' , alors  on a : 

)
1

1("
n

eAA   

En conclusion, la position de l’image se déduit de celle de l’objet par une translation aux 

faces de la lame, d’amplitude constant, indépendante de la position de l’objet, l’indice est 

supérieur à 1 donc le déplacement apparent de l’image a lieu dans le sens de celui 

  de l’ objet : 

Si l’objet est plan et parallèle aux faces de la lame et s’il n’envoie que des rayons sous faible 

incidence, l’image A"B" de l’objet AB lui est parallèle et de nature opposée. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 n1=1  n2=1 
n 

H’ H A" A A 

+ 
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Chapitre 4 

DIOPTRE SPHERIQUE 

 
I. Définition 

On appelle dioptre sphérique l’ensemble de deux milieux réfringents transparents séparés par une surface 

sphérique qui, dans le cas général, est une calotte sphérique de centre O. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Le  centre C de la sphère est le centre du dioptre, La droite CO est l’axe principal du dioptre sphérique. Il 

rencontre la calotte sphérique en S qui est le sommet du dioptre. 

Le rayon du cercle de base est le rayon d’ouverture θ sous lequel on voit le rayon r est le demi angle 

d’ouverture 

Le dioptre est concave si le sens de propagation de la lumière est celui du vecteur reliant le centre du dioptre 

au sommet du dioptre (sens de la lumière suit CS ). Il est convexe dans le cas 

inverse.

 

II. Image d'un point lumineux sur l'axe du dioptre 

a. Invariant fondamental 

 

 

 

 

 

 

 

 

 

 

 

 

 

Première lois de réfraction 

n’ 
n’ n 

n 

C C S S 

+ Sens propagation 

R 

C O 

r 

S 

n n’ 

θ 

n’ n 

C 

S 

A A’ 

ω 
i 

i’ 

n<n’ 
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Le rayon incident AI, le rayon réfracté IA’, la normal CI appartiennent au plan d’incidence pris comme plan 

de figure. 

Entre les éléments des triangles CIA et CIA’, on a les relations suivantes : 

)sin()sin()sin( w

IA

w

IA

i

CA






 et    

)sin(

'

)'sin(

'

w

AI

i

CA
  donc 

')sin(

)'sin(
.

' IA

IA

i

i

CA

CA
  

Et en tenant compte de )'sin(')sin( inin  , nous aurons : 

'

'
'

AI

CA
n

IA

CA
n   

La quantité 
'CA

CA
n  qui se conserve à la traversée du dioptre sphérique est un invariant fondamental.  

 

III.  Recherche du stigmatisme rigoureux 

A’ image de A, donc cstCA ' si cstCA   d’où 

CA

CA

n

n

IA

IA '''
 = cte       pour tout I 

A’ sera une image rigoureusement stigmatique de A si la quantité 
IA

IA'
 reste  constante lorsqu’on passe d’un 

rayon lumineux à un autre, c’est à dire lorsque le point I se déplace sur le dioptre. Le lieu de I est une sphère 

qui divise harmoniquement le segment AA’. 

 

 Cas particuliers 

1. L’objet est placé sur le dioptre 

 

Dans ce cas  0IA , d’après l’invariant fondamental, 0' IA  c’est à dire A et A’ sont confondus, le 

stigmatisme rigoureux est réalisé pour tous les points de la surface du dioptre  (aucun intérêt pratique) . 

 

2. l’objet est placé au centre du dioptre 

CA   donc 0CA  et 0' CA  c’est à dire CAA  ' , I  sur le dioptre.  

Ce cas pouvait se prévoir directement, les rayons issus du centre traversent le  dioptre sans déviation. 

 

3. A et A’ conjugués harmoniquement par rapport au dioptre 

Les point A et A’ doivent satisfaire   la relation 
CA

CA

n

n

IA

IA '''
 =cst I  

En plaçant successivement le point I en S et S’, et en tenant compte des sens des segments   

On a 
CACSCASC

SS

ASSA

ASSA

AS

AS

SA

SA

CA

CA

n

n

IA

IA









'

'

'

'''

'

''''''
 

CA

CA

n

n

CACSCASC

SS ''

'

'



 soit 

CA

CA

n

n

CA

SS ''

2

'
  

d’où CS
n

n
CA

'
'   

 

De même 
'

'''

'

'''

'

'''''

SS

CACSCASC

ASSA

ASSA

AS

AS

SA

SA

CA

CA

n

n 





  soit 

CA

CA

n

n

SS

CA ''

'

'2
  

D’où CS
n

n
CA

'
'  . 
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Nous avons aussi 
2

'. CSCACA   et 

2

'

'










n

n

CA

CA
 

Les deux relations trouvés ci-dessus définissent la position des points conjugués A  et 'A , rigoureusement 

stigmatiques pour le dioptre sphérique ; ce couple de point est unique , ce sont les points de Weirstrass. 

 

IV. Stigmatisme approché 

a. stigmatisme approché dans les conditions de Gauss 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reprenons l’expression de l’invariant du dioptre   
'

'
'

AI

CA
n

IA

CA
n  , et considérons des rayons peu inclinés sur 

l’axe du dioptre alors 1 et 2  sont petits. 

 

1. relation de conjugaison dans les conditions de Gauss 

1. Origine au sommet 

 

'

'
'
SA

CA
n

SA

CA
n                       

'

'
'

SA

SACS
n

SA

SACS
n





 , en divisant par CS 



















CSSA
n

CSSA
n

1

'

1
'

11
 d’ou 

la relation de conjugaison                 

SC

nn

SA

n

SA

n 


'

'

'
 

 

Posons , '' pSA   et RSC    la relation  précédente s’écrit  

R

nn

p

n

p

n 


'

'

'
                                       Formule de Descartes 

 

                                                     

2. Origine au centre 

Reprenons l’équation de l’invariant du dioptre, on a 
'

'
'
SA

CA
n

SA

CA
n  , en l’ inversant, on aura  

CA

SA
n

CA

SA
n '

'

'
  qu’on peut écrire sous la forme 

CA

CASC
n

CA

CASC
n





'

'

'
 en divisant par SC nous obtenons la 

relations de conjugaison avec origine au centre.          
CS

nn

CA

n

CA

n ''

'


  

 

3. Foyers - convergence 

a. foyer image 

 

Par définition, le foyer image F’est le conjugué du point objet à l’infini  sur l’axe. Pour trouver sa position, 

on fait tendre SA vers l’infini dans la relation de conjugaison avec origine au sommet, ce qui donne  

n’ n 

C 

S 

A A’ 

i 

i’ 

I 

ω 
1  

2  
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SC

nn

SA

n

SA

n 


'

'

'
 (SA tend vers l’infini alors ''' fSFSA   : distance focale image 

SC

nn

SF

n 


'

'

'
 D’où 

nn

n
SCSF




'

'
.'  où encore 

C

n

nn

Rn
f

'

'

'
' 


  

R

nn
C




'
 est appelé vergence, c’est une caractéristique du dioptre sphérique , l’unité de C et la dioptrie 

(δ).la quantité SF’ (attention au signe) notée  f’ est appelée distance focale image. 

b. foyer objet 

 

le foyer objet F est tel que son conjugué est à l’infini sur l’axe optique ; on a donc 

 
SC

nn

SA

n

SA

n 


'

'

'
 , lorsque 'SA  on a fSFSA   : distance focal objet 

SC

nn

SF

n 


'
, 

 
C

n

nn

nR
f 




'
 

 

c. relation entre les distances focales 

''' n

n

f

f

SF

SF
  et Rff  '  

Ainsi les deux foyers  f et f’ sont situés à la même distance de S et C respectivement ; de plus ils sont situés 

de part et d’autre de S (SF et SF’ sont de signes contraires). 

d. convergence 

 

Si le foyer image d’un dioptre est réel, tous les rayons incidents parallèles à l’axe convergent en F’, ce 

dioptre à foyers réels est convergent. Si les foyers sont virtuels le dioptre est dit divergent . 

Différents cas de figures possibles suivant que  0R où 0R   et que nn '  où nn '  

 

 R et nn ' de même signe 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dioptres convergents 

 

0''  SFf                  0f  car 
'' n

n

f

f
  

 

 

 

n’ n 

C 

S 

R<0 

n’-n<0 

F 

F’ 

n’ n 

C 

S 

R>0 

n’-n>0 

F’ 
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 R et nn '  sont de signes contraires 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Dioptres divergents 

 

 

L’examen de ces figures montre que le centre d’un dioptre convergent est situé dans le milieu le plus 

réfringent et que celui d’un dioptre divergent est situé dans le milieu le moins réfringent. 

 

 
4. Formule de conjugaison avec double origine aux foyers 

 

n’ n 

C 

S 

R<0 

n’-n>0 

F’ F 

n’ n 

C 

S 

R>0 

n’-n<0 

F’ 
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En divisant les deux membres de la relation  
R

nn

p

n

p

n 


'

'

'
 par la convergence C, il vient  

1
'

'





pp

C
n

C
n

 soit 

1
'

'


p

f

p

f
 

  Sachant que pSA  , '' pSA  , fSF   et '' fSF  , RSC     

Posons FAx   et ''' AFx  , on a : 

xfFASFSAp    

''''''' xfAFSFSAp   et 1
''

'





 xf

f

xf

f
, 

 Soit  

'' ffxx  , '.''. ffAFFA   

 

Relation de conjugaison de Newton : elle montre que x et x’ sont toujours de signes opposés. 

 

5. construction géométrique 

 

a. Image d’un objet AB perpendiculaire à l’axe 

 

On reconnaît sur cette figure les rayons particuliers BI, BFJ et BC et les réfractés correspondants qui se 

coupe en B’. A’B’ est perpendiculaire à l’axe. 

 

 

 

 

 

 

 

 

 

Le rayon qui passe par le centre du dioptre n’est pas dévié et un rayon qui est parallèle à l’axe principal  en 

sort en passant par le foyer image F’ 

 

b. Image d’un point à l’infini  à l’écart de l’axe optique : 

 

 
 

 

C F’ 

S 

φ’ 

φ’ : foyer image secondaire 

F’ foyer image principal  
 

B 

A F 

I 

S 

C 

F’ 

B’ 

A’ 

n n’ 

Image d’un objet AB 
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6. Grandissement linéaire 

 

C’est le rapport d’une dimension linéaire de l’image à la dimension correspondante de l’objet 
AB

BA ''
  

 

a. origine centre 

 

CA

CA

AB

BA '''
  

 

b. origine au sommet 

 

En partant de la relation d’invariance dans les conditions de Gauss (
'

'
'
SA

CA
n

SA

CA
n  ) on trouve 

p

p

n

n

CA

CA

AB

BA '

'

'''
  

 

 

c. double origines aux foyers 

x

f

f

x

SF

AF

SI

BA

AB

BA


'

'

'

''''''
  Car ( x.x’=f.f’) 

 

V. Etude du miroir sphérique 

1- Définition 

 

C’est une portion de sphère réfléchissante. 

Miroir concave : la face réfléchissante est du côté de centre C. 

Miroir convexe : la face réfléchissante est du côté opposé de C.  

 

 

 

 

 

 

 

 

 

 

 

 

n>n’ 

n’ n 

C 

A 

B 

A’ 

B’ 
+ 

C 
C 

S 

+ Sens propagation 
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2- Stigmatisme 

 

Nous avons  vu que le miroir peut être traité comme un dioptre dans lequel l’indice du milieu image est 

égale et opposé à l’indice du milieu objet nn '  il suffit de reprendre les résultats obtenus pour le dioptre 

sphérique en se plaçant dans ce cas particulier. 

 

a. stigmatisme rigoureux  

Cas du dioptre sphérique 

- centre 

- les points appartenant au  dioptre 

- les points de weistrass 

CS
n

n
CA

'
  

CS
n

n
CA

'
'   

Cas du miroir sphérique 

 

- centre 

- les points du miroir sphérique 

- les points de weistrass conduisent au sommet qui n’est qu’un point du miroir sphérique. 

 

b. stigmatisme approché 

 

Comme dans le cas du dioptre sphérique, il y a stigmatisme approché si l’on se place dans les conditions de 

Gauss et pour des objets de petites dimensions. 

 

2. Foyers 

Cas du dioptre sphérique 

C

n

nn

nR
f 




'
 

C

n

nn

Rn
f

'

'

'
' 


  

Cas du miroir sphérique 

2
',

2

R
f

R
f   et RSC   

Donc 
2

'
R

ff   
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3. Relations de conjugaison 

 

Origine au sommet 

 

Dioptre sphérique 

 

SC

nn

SA

n

SA

n 


'

'

'
 

 

Posons pSA  , '' pSA   et RSC    
R

nn

p

n

p

n 


'

'

'
 

Miroir sphérique 

Rpp

21

'

1
  

Origine au centre  

 

Dioptre sphérique 

 

CS

nn

CA

n

CA

n ''

'


  

Origines aux foyers 

 

Dioptre sphérique 

'.''. ffAFFA   

Miroir sphérique 
2''. fAFFA   

 

4. Grandissement 

 

Dioptre sphérique 

CA

CA'
           

p

p

n

n '

'
      

'

'

f

x

x

f
  

Miroir sphérique 

CA

CA'
          

p

p'
    

'

'

f

x

x

f
  

5. construction géométrique  
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6. Tableau récapitulatif : 

Dioptre sphérique Miroir sphérique 

 

Stigmatisme 

 

- centre 

- les points appartenant au  

dioptre 

- les points de weistrass 

 

  - centre 

- les points du miroir sphérique 

 

Foyers 

 C

n

nn

nR
f 




'
 

C

n

nn

Rn
f

'

'

'
' 


  

  

2
'

R
ff   

Relations 

de conjugaison 

Origine au sommet 

SC

nn

SA

n

SA

n 


'

'

'
 

Origine au centre 

CS

nn

CA

n

CA

n ''

'


  

Origines aux foyers 

'.''. ffAFFA   

  Origine au sommet 

Rpp

21

'

1
  

Origine au centre 

CSCACA

21

'

1
  

Origines aux foyers 
2''. fAFFA   

Grandissement 

 
CA

CA'
      

p

p

n

n '

'
      

'

'

f

x

x

f
  

 

  

CA

CA'
          

p

p'
    

f

x

x

f '
  

 

 

 

 

 

 

 

 

 

 

 

B 
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B’ 
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Image réelle inversée 
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Chapitre 5 

SYSTEMES DIOPTRIQUES A FOYER  

1. Introduction 

Un  système dioptrique est un système centré constitué par un ensemble de dioptres plan ou 

sphériques ; dans certains cas (lentilles épaisse par exemple), il peut être commode de déterminer l’image 

définitive A’B’ de AB en considérant de proche l’action successive des différents dioptres. Mais le plus 

souvent nous avons intérêt à utiliser des points ou des plans possédant des propriétés particulières 

permettant la construction simple de rayons réfractés : c’est l’objet de ce chapitre.  

De la position des foyers  résulte une distribution entre les systèmes centrés : s’ils sont à distance finie, 

le système est dit à foyer, dans le cas inverse, le système est afocal.  

2. plans principaux 

 

Soit SI un rayon incidents parallèle à l’axe. L’émergent I’S’ (ou son prolongement correspondant 

passe par le foyer image F’  

Soit K’ 

Soit K’ l’intersection de ces rayons (ou de leurs prolongements). Par symétrie, K’ situé sur une surface 

de révolution que nous allons confondre, dans les conditions de Gauss, avec son plan tangent, normal à 

l’axe et passant par H’. ce plan est appelé principale image, et H’ le point principale image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Le plan principale image est donc le lieu des points d’intersection des rayons incidents parallèles à 

l’axe avec les émergents correspondants. D’une façon analogue, le plan principal objet est le lieu des points 

d’intersection des rayons émergents parallèles à l’axe avec les incidents correspondants. 

Les plans principaux possédant la propriétés fondamentales suivante : ils sont conjugués l’un de 

l’autre et le grandissement linéaire (ou transversale) est égale à 1. 

En effet, soit HK l’objet placé dans le plan principal objet ; traçons les deux rayons passant par K 

indiqués sur la figure précédente; ces deux rayons se coupent en K’ situé dans le plan principale image ; 

H’K’ est l’image de HK ; De plus, cette figure montre que :  

HKKH ''  
C’est à dire 

1
''


HK

KH
 

 

 

 

S 

F 

I 

J 

K 

H 

P 

K’ J’ 

I’ 

R’ 

S’ 
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3. distances focales - construction géométriques 

 

par définition, les distances focales objets et image sont respectivement les grandeurs algébriques :  

HFf   et '' HFf   

a. l’objet AB appartient au plan focal objet (nos n’avons pas représenté les faces d’entrée et de 

sortie : une partie des rayons peut être virtuelle). 

 

 
''//'' SHFK  

La formule de Lagrange Helmholtz appliquée au rayons conjugués BH et H’S’ se réduit à : 

'' nn   puisque  ''HKKH   

Or  fHFFB  .  et '')'.(''''  fFHKH   

Et comme  .. fHFFB  il s’ensuit que  

''.. ff    

La division membre à membre de cette égalité par l’équation '' nn   conduit à la relation 

fondamentale : 

'' n

n

f

f
  

La définition de la vergence donnée pour les dioptres sphériques est valable pour les systèmes centrés.                   

f

n

f

n


'

'
  

Quand la vergence est positive, le système est convergent ; quant elle est négative, le système est divergent. 

 

Remarques 

Une vergence positive prend le nom de  convergence,, et une vergence négatif, le nom de divergence. 

 

 

 

 

 

 

 

 

 

B 

A≡ F 

K 

H 

K’ 

H’ 

F’ 

S’ 

(n) (n’) 

α 

α’ 
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Construction d’une image connaissant F, F’, H et H’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Le rayon BI // à l’axe principale donne lieu au rayon émergent I’F’. 

Le rayon BFJ passant par le foyer objet donne lieu au rayon émergent J’B’// à l’axe principal. D’où la 

construction de A’B’ image de AB. 

Cas particuliers : 

L’objet est dans le plan focal objet donne lieu à une image à l’infinie. 

L’objet est à l’infinie donne lieu à une image dans le plan focal image. 

 

4. formule de conjugaisons 

1. double origine aux foyers 

 

Examinons la figure précédente  le triangle BFA et FHJ sont semblables, ce qui permet d’écrire 

x

f

FA

f

FA

FH

AB

HJ

AB

BA


''
  

De même, les triangles H’T’F’ et F’A’B’ étant semblables : 

'

'

'

''''

f

x

f

AF

AB

BA
  

Soit en égalent les deux expressions de   

'.''. ffAFFA   Formule de Newton  

 

 

2. origines aux points principaux 

 

on pose HAp   et ''' AHp   

pfHAFHFA   et '''' pfAF   d’après la formule de Newton : ';)'')(( fffpfp   et en 

divisant les deux membres par pp’ on aura 

'

'

'

'
11

pp

ff

p

f

p

f


















  où 

'

'
1

p

f

p

f
  

B 

A 

I 

H 

I’ 

H’ 

F’ 

S’ 

(n) (n’) J 

F 

J’ B’ 

A’ 
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Pour obtenir l’expression du grandissement, considérons la figure suivante : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

La formule de Lagrange Helmholtz donne : 

'.'''...  IHnHIn   

avec 

HA

AB
  et 

''

''
'

AH

BA
  

comme '' IHHI   (plans principaux) , la relation précédente s’écrit  

''

''
'

AH

BA
n

HA

AB
n   

D’où 

p

p

n

n

AB

BA '
.

'

''
  

Remarques : 

 dans le cas où les milieux extrêmes sont identiques nous aurons : 

p

p
ff

'
,'    et 

'

11

'

1

fpp
  

 il est facile de voir que les formules précédentes généralisent  celles obtenus pour le dioptre 

sphérique ; les plans principaux du dioptre sont confondus avec les plans passant par le sommet S et 

perpendiculaire à l’axe optique.  

 

 

5. Applications aux lentilles minces 

 

1-Définition : 

On appelle lentilles minces, des systèmes centrés constitués d'un milieu transparent limité par deux dioptres 

dont l'un au moins est un dioptre sphérique dont les sommes sont pratiquement confondus en un point O 

(appelé centre optique de la lentille). Suivant les dispositions relatives de ces deux dioptres, on distingue les 

lentilles à bord mince (dont le pourtour est plus mince que le centre), et les lentilles à bord épais. L'axe 

principal de la lentille passe par les centres des dioptres. 

B 

A 

I 

H 

I’ 

H’ 

F’ 

S’ 

(n) (n’) 

F 

J’ B’ 

A’ 

α α’ 
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 biconvexe    plan-convexe   ménisque à bord mince 

 
 
 
 
 
  

biconcave    plan concave   ménisque à bords 
épais 

 

Les rayons de courbure des deux dioptres sont comptés algébriquement par rapport au sens de propagation 

de la lumière : R1 = 11CS et R2 = 22CS  

L'épaisseur de la lentille correspond à la longueur du segment S1 S2 qui sépare les 
sommets des deux dioptres sur l'axe du système.  

Soit e = 21SS  La distance entre ces deux sommets. Pour qu’une lentille puisse être considérée comme 

mince, il faut que les conditions suivantes soient simultanément satisfaites : 

e <<  |R1|; e <<  |R2 | et  e << |R1 - R2| 

Lorsque ces conditions sont remplies, les sommets des deux dioptres sont considérés 

comme confondus avec le centre O de la lentille. ( OSS  21 ) 

La représentation schématique d'une lentille mince est alors donnée par un segment de droite 

perpendiculaire à l'axe, et l'on représente la nature de la lentille (convergente ou divergente) comme ci-

dessous. 

 

 

 

 

 

 

 

 Propriété : tout rayon passant par le centre O de la lentille n'est pas dévié. 

1. Foyers, plans focaux, distances focales  

 

On appelle foyer principal objet le point F de l’axe principale dont l’image est à l’infini sur l’axe.   

 

S1 S2 C2 C1 

S1 S2 C1 

• • 
C2 

S1 
S2 C1 

• • 
C2 

S1 S2 C1 

• 

S1 S2 C2 

• • 
C1 C1 

• 
S1 S2 S1 

S2 C2 

• • 
C1 

lentille mince 

convergente 

(à bords minces) 

lentille mince 

divergente 

(à bords épais) 

  
 

 O 
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L’expérience montre que F est réel pour une lentille convergente et virtuelle pour une lentille divergente.  

On appelle plan focal objet le plan de front (perpendiculaire à l’axe en F). 

La distance focale objet est la distance algébrique OFf   

On appelle foyer principal image le point F’ de l’axe principale où se forme  l’image d’un point objet à 

l’infini sur l’axe.     

 

 
 

La distance focale image est la distance algébrique '' OFf   

On se limite dans cette étude au cas où la lentille est placée dans l'air  dont l’indice égale à 1.  

Dans ce cas, les foyers principaux sont symétriques par rapport à la lentille, c'est-à-dire : ff ' . 

La vergence  d’une lentille  est l’inverse de la distance focale image D = 
'f

1
 . Elle s’exprime en dioptries 

(). La vergence d’une lentille convergente est positive, celle d’une lentille divergente est négative. 

Image d'un petit objet plan perpendiculaire à l'axe 

Dans le cas de l’approximation de Gauss,  un petit objet plan et perpendiculaire à l’axe a une image  

perpendiculaire à l’axe de la lentille.  

Considérons un objet AB quelconque, 

que nous représenterons par une flèche 

(Le plus simple pour déterminer la 

position de l’image A’B’ consiste à 

construire l’image B’ de B. Le point A’ 

se déduit de B’ en traçant la ligne 

perpendiculaire à l’axe passant par B’.  

 
 

Pour obtenir l’image B’, il suffit de considérer deux rayons différents issus de B, de chercher leur marche à 

travers la lentille : l’intersection des rayons émergents détermine B’ 

2- Formule de conjugaison et de grandissement  

'

11

'

1

fpp
  et  

p

p'
  

avec OAp   et '' OAp   

O F F O 

F' 

O 

F' 

O 

O 

F 
F’ 

A 

B 

A’ 

B’ 

I 

J 
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La relation 

p

p'
  montre que le rayon passant  par le centre optique n’est pas dévié. Cette  propriété est 

particulièrement utile pour effectuer la construction des images. 

les formules de newton s’écrivent : ( FAx   et ''' AFx  )  

22 ''. ffxx   et 

'

'

f

x

x

f
  

 

 

Remarques 

Nous avons écris les formules de conjugaisons d’une lentille mince à partir des résultats généraux. 

Cependant, pour obtenir la position de l’image A’ d’un objet A sur l’axe, nous aurions pu appliquer deux 

fois la formule de conjugaison des dioptres en considérant l’image intermédiaire A1 que le premier dioptre 

donne de  A. 

 

 

 

 

11

11

SC

n

SASA

n 
    

                         









21

11
)1(

1

'

1

SCSC
n

SASA
 

Or pOASA   et ''' pOASA   

La relation précédente s’écrit 

'

11

'

1

fpp
  avec 










21

11
)1(

'

1

RR
n

f
 

 

 

A 

(1) 

A1 

(n) 

A’ 

(1) 

DS1 DS2 

21

1

'

1

SC

n

SA

n

SA



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