CHAPITRE 2

CHAMP
ELECTROSTATIQUE



|- DEFINITION

1- Champ électrostatique

— @ > 0 soumise a une force de nature électrostatique due a
une charge Q > 0.

-
-
-
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» g charge passive

= Q charge active (source)



— La charge (active) Q modifie I'espace environnant
— existence d’'un champ électrostatique :

= FM) 1 Q - r
co-FM L 95 Q ¢
g g,y I

=> Une charge électrique g placee en un point M de I'espace ou
existe un champ électrostatigue E(M) subit une force
électrostatigue F(M) =q E(M)

2- Propriétés

—» E vecteur d’origine M, de méme direction que F , son sens
dépend du de la charge active Q



* Unité: V.m-1 (volt / metre)

* Le champ électrostatique est la cause physique des forces
électrostatiques.

* Champ uniforme: champ gui possede les mémes
caractéristiques en tout point de I'espace.

IE(M) =0 E(I\/I) est alors indépendante de la position de g.

—> exemple: plan infini chargeé: ‘E‘ 5 Zi
&0




lI- CHAMP CREE PAR UNE DISTRIBUTION DE CHARGES

1- Charge ponctuelle unique _ Em)
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= Champ créeé par plusieurs charges ponctuelles:

— application du principe de superposition:

[
<
=
I
=
LS
Cl

> U, et E(M)=> E(M)

2- Champ créé par une distribution continue
= Distribution volumique de charges de densité p(P)

— Le volume élémentaire dv porte une charge dq = p(P) dv

—>en M, le champ
elémentaire crée par
dq est alors:




— champ total E(M) di & toutes les charges du volume V :

E(M) =

i, 2%

4dne,

= Distribution surfacique de charges de densite o(P)

ol H G(P) ds

4dne,

= Distribution linéique de charges de densité A(P)

1 J-A(P).dl .

r2

E(M) =
M) 4, !



lI- THEOREME DE GAUSS
1- Rappel: angle solide

= angle solide sous lequel on "voit" une surface guelcongue

e OM=r

e Nnnormale adS (dS=h-ds)

e a angle entre n et l'axe du cone

alors: dQ = U'SS - dS'CZOS &
r r ]




2- Flux du champ électrostatique a travers une surface
élémentaire.

e OM=r U

O

:

4TC8

e E(M)=

e Flux élémentaire de E a travers ' : d(IL —E.dS

== dCI)E = Q dQ} avec dQ: i-dS
As g, I

=» Surface finie non fermée S:

S Q Q est langle solide
D =_” dd.. =_U E-dS = Q21 sous lequel on voit la
o s s S Are X .
0 surface S a partirde O. 9



=» Surface fermée S:

— Charge O extérieure a S:

ds:

* Le cone élémentaire d'angle solide d<2 decoupe dS, et dS, sur S.

i-ds.
do, = Q - L= Q
Are, I 4re,
i-ds.
do = Q " 2 = Q
47‘580 r 47‘[80

=» Conclusion: Le flux total, a travers une surface fermée S, du champ

3\

dQ

dQ

.= d® =dd, +dD, =0 =

J

crée par une charge ponctuelle extérieure a S, est nul.




— Charge O intérieure a S:

. Flux de E a travers dS:

QdQ = @, Q

dod =
4re, / 4dre,

or HSdQ:4Tc = D, =

— Ce résultat est a l'intérieur
de S.
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3- Théoreme de GAUSS

— On considere un ensemble de charges et une surface
fermée quelconque S.

* charges extérieures a S: CDE/ =®, =0
S

s Z Qint

* charges intérieures a S: CDE/ =,
S 80

= . le flux total a travers S sera
alors:

— Jo zQint £ A
CD% = HSE-dS =0, +D, = 5 théoreme de Gauss
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= Théoreme:

Le flux du champ eélectrostatique, créé par une distribution
guelconque de charges, a travers une surface fermee S, est
égal a la charge intérieure a cette surface divisée par .

* S est appelee Elle est purement
geométrique et choisie arbitrairement en fonction des
symetries du systeme deseharges etudie. S ne doit pas
comporter de charges.

* > Q,, estla somme de TOUTES les charges contenues a

I'intérieur de S.

* E est le champ électrostatique TOTAL d0 & TOUTES les

charges présentes (interieures et extérieures a S). 1
1



4- Expression locale du théoréme de Gauss

— Soit un volume V chargé avec une densité de charges p(M)
et S la surface fermée deélimitant V.

e Théoreme de Gauss:

o, - o 5o 20l

0 €0

(M)-dv

e Théoreme de Green:

”SE(M).d—s’zmvdiv E(M)-dv

div E(M) = pP(M) |  Equation de
€9 POISSON

On en déduit:
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* Cas particulier:

Si p(M) =0 mais existence d'un
champ électrostatique en M, alors:
— Equation de
div EM)=0 LAPLACE

. d., =0
alors: £/

=>» Dans une region de I'espace ou il n'y a pas de charges, le
flux du champ E est conservatif.

< le flux est le méme a travers toutes les sections d'un
tube de champ
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lll- SYMETRIE DU CHAMP ELECTROSTATIQUE

=> Principe de Curie:

" Les éléments de symétrie des causes doivent se
retrouver dans les effets produits"

< Siun systeme physique possede des symétries,

toute grandeur physicue produite par ce systeme
aura au minimum toutes ces symetries.
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1- Plan de symétrie

— (m) plan de symétrie d'une E IE
distribution de charges. —

—

—> E’' symétrique de E par @
rapport a ().

=» Lorsqu'une distribution de charges est symetriqgue par
rapport a un plan, le potentiel et le champ éelectrostatique
gu'elle crée sont symetriques par rapport a ce plan.

= Le champ électrostatique crée sur un plan de symétrie des

charges est contenu dans ce plan.
17



2- Plan d'antisymétrie

—le plan d'antisymétrie des ) I
charges (n') transforme p E
en (- p). >
! i ()
— E'(M’) = —sym E(M)
|
E!

=» Lorsqu'une distribution de charges est
, le potentiel et le champ électrostatique
gu'elle cree sont antisymeétriques par rapport a ce plan.

= Le champ electrostatique crée sur un plan d'antisymeétrie
des charges est orthogonal a ce plan.

= Le potentiel electrostatique est nul en tout point du plan
d'antisymétrie des charges. 18



3- Regles de symétrie

=» Invariance par translation / axe (Ox, Oy, ou Oz)

— effets independants de x, y ou z.

=> Invariance par rotation / Oz (symetrie axiale)
— effets indépendants de 8: E(M) = E(p,2)

= Invariance par translationif@zetpar rotation / Oz

(symétrie cylindrique).
— effets indépendants de 6 et de z:  E(M) = E(p)

=» Invariance par ‘oute rotation autour du point O

(symétrie spherique).

— effets indépendants de 6 et de ¢:  E(M) = E(r)
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=> Axe de symétrie:
= intersection plans de symétrie

— E < atous ces plans

e Le champ electrostatique creé sur I'axe de symetrie d'une
distribution de charges est porte par cet axe.

=> Centre de symétrie:
= intersection axes de symetrie

—

= E € atous ces axes = E — (0 en ce point

e Le champ électrostatique creé au centre de symetrie
d'une distribution de charges est nul.

e E est radial.
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EXxercice d'application

Un anneau filiforme de centre O et de rayon R porte une charge Q uniformément répartie
sur sa circonférence.

1) En utilisant les propriétés de symeétrie de la distribution de charge, donner la direction et
le sens du champ E(M)créé en un point M de 'axe de révolution de I anneau situé 3
une distance z du centre O.

2) Determiner en fonction de z le module de E(M), noté E(2)

3) Tracer la courbe de variation de E(z).
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1) Symeétrie : Tous les plans passant par I'axe z'0Oz sont des plans de symetrie
= E(M )e alintersection de ces plans ('axe 20z). E(M)= Ek .
Invariance du champ par rotation autour de z’Oz. Donc le champ
ne dépend pas de 6. De plus p=cte=R = E(M)=E(z)k

2) Calcul du module E(z)

Un élément de longueur d/ = Rdé# de charge €lémentaire dg = Ad/

centre en P, créee en M un champ &lementaire :
1 Adl —— 17 Adl .

2

EM) = e, Bk M= e,
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Seule la composante suivant k intervient dans le champ total E(M ).

dE(M) = y 1_ ’:‘f:" cos(a )k

a

Le champ total :

27TRA -

Adl
cos ok

- COS O k=
4me,r dre,r

E(M)= | dE(M)= |

ARFean QuRea

COS X I dlk =

RN

5

! dre,r’

ARz
EE”(RE +:3/’]].-"3

IE=E('3)R:,

E(M)=

3) Variation de E(z)
E(-z)=-E(z)

z=0; E(z)=0
z—=0o0 ; E(z)—=0

dEG) o .—ri2

dz
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Methodologie pour calculer les effets
Electriques crees par un systeme charge

Inventaire des éléments de symeétrie du systeme
En deduire les surfaces eéquipotentielles
Repondre a la question: EN QUEL POINT M dois-je
calculer le champ et potentiel
IDENTIFIER la surface equipotentielle qui contient le
point M
Definir la surface de Gauss FERMEE qui se confond
totalement ou partiellement avec I'equipotentielle
contenant le point M.

5. Calculer le flux du champ électrostatique a travers la
surface de Gauss

6. Appliquer le théoreme de Gauss pour déduire le
champ électrostatique

7. En déduire le potentiel électrostatique par circulation
du champ sans oublier une constante d’intégration

8. Fixer la constante par les conditions aux limites de
votre systeme et parla continuité du potentiel




= Déterminer la direction du champ E a partir des considérations de symétries (radiale pour des

géometries cylindriques et sphériques, normale pour des géométrie planes). Les symétries

permettent aussi de réduire le nombre de variables d'espace dont dépend la norme de E .
= Choisir une surface de Gauss imaginaire dans la region ou I'on souhaite déterminer E. Il
faudra que la surface de Gauss possede les mémes propriétés de symétrie que la distribution de

charges et donc que du champ électrostatique.
= Calculer le flux du champ électrostatique a travers la surface de Gauss choisie EH)E.D‘A. Le

calcul de l'intégrale de surface sera tres simple si I'on choisie une surface de Gauss ayant les
mémes symeétries que E. La plupart du temps nous allons rencontrer les cas suivants (voir les
exemples des paragraphes suivants) :

E x4xr® (sphere de rayon r)
#E.dA =+ E x 2nrl (flux latéral sur un cylindre de rayon r et de longueur L)
A 2E < A (flux sur les deux bases d'un cylindre de base A)

= Calculer la charge intérieure a la surface de Gauss Q_ . Il faudra calculer Q  avec la densité

de charge appropriée :

= Appliquer le théoréme de Gauss @, cﬂ: dA = Q.. et en déduire E .
A III



Exercice d'application: Th de Gauss

1. Sphére uniformément chargée en surface

une sphere de rayon R portant en surface la densite de charges o =cste

- un point A quelcongue de 1’espace.

Spherical symmetry

Direction du champ en AL ?

|—> symeitrie du probleme

Module £ du champ E ?

|—> Theéeoreme de Gauss [he field is radial

toward or away
Il faut déeterminer la surface de Gauss : from the center
—» une spheére de rayon » et de centre (.
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2 cas se présentent :

o< R:

Théoreme de Gauss — E4m*=0 = E=10
le champ électrique est nul a
I’intérieur de la sphere
or>R:

= R
Théoréme de Gauss — E4m? =0 4R’/ ey = E= —e
E,F

I

Représentation graphique :

E(r) 4 >
Le probléme ne permet pas de
définir E pour r =R




2. Le plan infini uniformément chargé

Analyse des symétries et invariances :

. Invariances par translation suivant x et y :
E = E(z)

On définit un point M de c6te z, au niveau duquel
on cherche a calculer le champ électrique.

Plans de symétrie :
Tout plan passant par M et perpendiculaire au
plan chargé est plan de symeétrie :

E = E(2)i,

Le plan chargé (z=0) est lui méme un plan de symétrie: E(—z2) = —F/(2)
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On choisit une surface fermeée (surface de Gauss) « pratique » étant données
les symeétries du probleme : ici, un cylindre a cheval sur le plan chargé et
symeétrique par rapport a ce plan convient bien.

" E(@0) On calcule le flux du champ électrique
a travers cette surface, orientée de
I'intérieur vers I'extérieur

O =P+ Py + Py

Pour z>0,0n a:

E (2<0) ¢ = E(2)nR* + 0 — E(—2)nR?

% —/r

\ - ’ . — 2
On calcule la charge Q. totale a l'intérieur de la surface : Qint = 0TR

int

Le théoréme de Gauss nous donne : E(z > () = %ﬂz et E(z<0)= _iﬁz
0 0
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E{M ) est uniforme et est discontinu & la traversé du plan chargé.

o, . ]
|l est non défini sur le plan chargé (z=0). La valeur de la discontinuite vaut 2_.;[.
. Oy
 2&0
Le potentiel V(M) : E(M)=—-grad V(M)
iy
£ =T pourz>0 = V(z)=-[E.(z)dz=~——z+C
I ] 2&0
Le potentiel est nul dans le plan (xQy) : V(0)=0 =V(z)=- g z
2e V2)
30 = Bf)=2 ; V(s)=-—: |
% 20 260 .
2<) = E@2)=-2-; V(z)=2
280 2€0
Ces deux résultats peuvent étre condensés sous la forme : E(z) = 9 2 20 : V(z) =;-':F—| z|
2e0 |z | 280



3. Sphere uniformément chargée en volume (Symétrie sphérique)
On considere une boule de centre O et de rayon R uniformément chargée en

volume, charge volumique p, soit une charge totale () =
— Etude des symétries et invariances ; surface de Gauss :

Les symétries et invariances sont identiques a celles de la charge ponctuelle, par
conséquent :
E = E.(r)i,
et on retient comme surface de (Gauss une sphére de rayon r centrée sur 1’origine
— Application du théoréme de Gauss : -
Oy, = E.(r) x 4mr?

Il reste & déterminer la charge contenue dans la sphére de rayon r; deux cas se

présentent :
4 3 " . . - = H
x* Pour r > R, Qe = Q = p X gﬂ'R : application du théoréme de Gauss conduit
a:
, Q _  pR®
Eeoxt = =

Uy = U
Aregr? T 3egr? "

Tout se passe comme si toute la charge étant concentrée au centre!



x Pour r < R, Qint = p X gﬂ’rd; ["application du théoréme de GGauss conduit & :

— p’r i
Ein.t — Uy
Je M

On constate que le champ est continu en r = R. Ceci est toujours vrai dans le cas
d'une distribution volumique de charge.

— Potentiel électrostatique :

* Pour 7 > R : (avec le choix d'un potentiel nul & I'infini)

Vi @ Q
dr  dmeor? > |Vr> R Vi) = Ameor

* Pour r < R : (avec la continuité du potentiel en r = R)
dV
— P vre,R, V(r)=

- 2 _
dr 35[] (3R ' )

66[]
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