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Systemes de Coordonnées

Coordonnées Cartésiennes : (x,y,z) Coordonnées Cylindriques: (r.6.z) (r.6.9)
+ Base Cartésienne : ui,u_‘_.u,] + Base Cylindrique : (U_,.U_H,H_:]
z
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Intégrales Scalaires
1. Intégrale simple

- Soit y = f(x) définie et y
continue sur [a,b]

On veut calculer 'aire aABDb f(x;)
[a,b] divisé en n intervalles

Ax; Infiniment petits:

A =X =% (@=Xy, b=X,)

-~ Aire S, =f(x,) [AX,

Sin-ow, A -0 e > f(x)Ax admetune limite:

=1

S(a,b) = Limif(xi)mxi avec  S(a,b) = [ (x) [t

= S(a,b) est I'integrale définie de f(x) entre les bornes a et b.
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2. Intégrale curviligne (sur une courbe)

Soit f(M) fonction de point a valeur scalaire définie sur (C) :

M O (C) - f(M) ¢ \ v B
dl
(©)

_ Si (C) découpée en n éléments Al = MM

T o

alors la somme Zf(Mi)mli admet une limite sin - o :
i=1

lim > f(M,) [, = jABf(M)w

=1

c’est I'integrale curviligne de la fonction f(M) le long de
'arc AB de la courbe (C).

* f(M)=1 = ABdI:Iongueurde I'arc AB
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3. Intégrale double (de surface)

Soit (S) est une surface plane

M O (S) - f(M)=f(x,y,)

- (S) découpee en n éléments
Infiniment petits de surface AS,

v X

Alors :

lim > f(M,) [AS, = j jsf(M)ms

=]

c’est I'intégrale double de la fonction f(M) sur la surface (S).

* f(M)=1 = _USdS: surface totale de (S).

* Surface plane en coordonnées cartésiennes :
AS =dx [ty = j jsf(M) S = j jsf(x,y) [eix [ely
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4. Intégrale triple (de volume)

- (V) volume défini dans 'espace

M O (V) - f(M)=1(x,y,z)

On découpe (V) en n elements infiniment
petits, centrées en M, de volume Av..

Alors :

lim if(mi)ursvi = _mvf(l\/l) [tlv

n—-oo <

c’est I'intégrale triple de la fonction f(M) sur le volume (V).

* f(M)=1 = jjjvdv:volumetotal de (V).

* En coordonnées cartésiennes:
Av =dx [y dz = mvf(M) [dv = j”v f(x,y,z) Ldlx Ldly [dlz
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Champ de scalaire et champ de vecteurs

e Un champ scalaire est une fonction de plusieurs
variables reliee a une propriété a laquelle on peut
associer une valeur unique en chaque point de l'espace

Exemples : champ de température , champ de pression
— Surfaces de niveau: lieu des points M tels que
f(x,y,z) = Cte

52—

0.5

P At e R SN NN

4:4:'--'-..‘-..'\\'\\\'\'\

ao] = = W R AN AN RNNNKN ) :

e~ a s 8% ®Unchamp vectorie | est une fonction de

o N N L NENENEN :: :: plusieurs variables reliée a une propriéeté a laquelle
2.s:ga~\q\\\\\ . .

o N L alssoc:|er un vecteur unique en chaque
S R R L point de l'espace.

I'Eiu-\\\\\'\'\\‘ ; TelBl
NIRRT L UL U U Exemples : champ des vitesses dans un liquide en

3 2 mouvement, champs électri magnéti
Representation graphique 2D d'un champou ement, champs €lectriques et magnetiques

vectorie/

e Un champ uniforme (scalaire/vecteur):

— Champ scalaire: 7 (M) = cste

— Champ de vecteurs :V (M) = Cste (module, direction et sens)

e Un champ invariant (scalaire/vecteur): Indépendant du temps.
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Ligne de champ / Tube de champ

— Ligne de champ : courbe tangente en chacun de ses points
au vecteur champ.

Une charge plongée dans le - - E E E

: - EAMM'=0=>—=—Y=_2=
champ a un endroit quelconque | £ dx dy dz
va suivre une ligne de champ

E=k MM+ SiMetM sontdeux points
quelconques de I'espace

Si E n'est pas nul, les lignes de
champ ne peuvent pas se couper. F

E

Elles peuvent par contre converger
vers une charge négative ou
diverger depuis une charge positive

Lignes de champ créés par
une charge ponctuelle positive
et negative

— Tube de champ : ensemble de lignes de champ s’appuyant
sur un contour ferme.
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Surfaces équipotentielles

Les surfaces équipotentielles sont les lignes reliant les points de potentiel identique
Elles sont par définition perpendiculaires aux lignes de champ

lign ham
ignes de champ 4 centreés sur q

Exemple du champ créeé par une charge
ponctuelle : tous les points situés a la meme
distance de la charge (sphere) sont au méme

potentiel

Equipotentielles = sphéres ﬂ

E=-VV
dV=VV.dOM
Si:dV=0=VV.dOM=0

Donc le gradient est
perpendiculaire a MM' donc a la
ligne de champ

Le champ « descend » les potentiels

T+
VIVVE
T
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Opérateurs differentiateurs

- 1l existe 3 opérateurs différentiels principaux

appelés rotationnel, divergence, gradient

qui généralisent la notion de dérivée

- ces 3 opérateurs peuvent s'exprimer avec I'opérateur nabl
(english : del) (défin1 uniquement en coord. cartésiennes)

grad(f)=V.f (0/ox
DO - 0. 0. 0. |.

div(F)=V.F V=—e +_—e +_—e =0/0y
T ox oy 0z /

rot(F)=VAF |0/ 0z |

- ils définissent des relations locales :
* valables en tout point
* i| faut intégrer pour atteindre les quantités physiques




Opérateurs differentiateurs
1. Opérateurs scalaire

@(f):af (X,y,Z)T+0f(X, Y, Z)T+a f(X, Y ZE

Gradient grad f = Vf X oy 0z

- s'applique a un champ c:!e scalaires i o T BT O

- donne un champ vectoriel B = e g
chaud

- caractérise une variation d'une grandeur physiqu e

Physiquement, Grad est le taux de variation d'une grandeur

scalaire. Grad T constitue un champ de vecteurs L aux surfaces de niveau,
dirigés vers les valeurs scalaires les plus grandes.

frond

T(x.v.z) un champ de scalaires

Différentielle de f(x,v,2): (températare par exemple)
df :idx +i dy+i dz= gradf dl- ( coord cartésienn
0X oy 0z
ou dl =dxi +dy j+dz k: vecteur déplacement élément
Si - f(M)=Cste df=0= gradf. d= gradfl] d
Le gradient est perpendiculaire aux surfaces de valeurs constantes du champ
scalaire (surfaces equipotentielles).

Laplacien de f(X,V,z): est un opérateur d’ordre deux, il mesure les irrégularités
dans les valeurs d'une fonction. 0 °f \ 0 f L0 S = =

Af - a 2 a 2 2
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Operateurs différentiateurs
2. Opérateurs vectoriels
Rotationnel (curl) v~ r

- s'applique a un champ de vecteurs
- donne un champ de vecteurs

——\_=_— [oF, OF |- [oF, oF, |- [0F, oF, |-
ot (F)=D00F =| T2 -— X |+ S22 -2 T 4| —L -2 K
dy 0z 0z O0X o0xX 0V
VAE =0 - champ « irrotationnel »
- - I .
e e
‘/ ’f’ - - - - \\\ .
ST e N\ ) - champ « tourbillonnant », « tournoyant »
VA e U U VL (N [T — - le champ résultant est perpendiculaire au
IR AN | VAE #0 lan d tp bill o rl? d'
VU e e plan du tourbillon (comme l'axe d'une
NN N T e toupie), ici vers le haut
N N e e "4*/_"/,/;
Ll T _
rot(/7) =0
A
[ = = \
rot(#) <0 rot(+£) >0
e — (”T
AT TN N eI N
TS 1’—-—-4—""‘{ e \ —_—! 7 A
| e—
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Opérateurs differentiateurs
2. Opérateurs vectoriels

Divergence V.F

- s'applique a un champ de vecteurs
- donne un champ scalaire

surface fermeée S

_
.

div(F) =0 div(F) <0 div(F) >0
\

J
Y

il existe une source ou un puits pour le champ
C} (symbolisés par@ etO )

div (F)=0.F = oF, , OF,  OF

0X oy 0z
champ « tournoyant »
div(fot(ﬁ')) — (O car rot(F) est un champ axial

4
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Intégrales vectorielles

1. Circulation d’'un vecteur
- le point d’application de A(M) décrit la courbe (C).
- dC = A(M)dl = circulation élémentaire A(M

»|C=[dC=[AM) — di
C C

e Si(c) estfermée _ C= |:J‘:|K(|V|)-ai

—_— N C_>
eSi C= EﬂA(M).dI =0 =» A(M)est a circulation conservative

('\

exemple: travail d'une force de rappel le long d’un déplacement rectiligne.
I'5

dW=-k7-d7 W= | kr-di = -k[
i

1
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Intégrales vectorielles
Propriétés de la circulation

* Si Addl = Ad=0=dC=0
* Si A(M) tangentadl = Adl=A.dl= dC=Adl

* Si A(M) est un champ de gradient (A = gradf ), la circulation
du gradient d'un point A a un point B est égale a la variation
du champ entre A et B:

C= _[ABgrad U dll = deu =U; —U, : Indépendant du chemin suivi.

Exemple :
grad U Champ électrostatique :
A d B A =E = —gradV
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Intégrales vectorielles
2. Flux d’'un champ de vecteurs

a. Orientation de surface

= Surface ouverte (S) :

Orienter (S) = choisir un sens [J a la normale N : n
- regle du " tire-bouchon "

_, vecteur-surface: dS =n S

N vecteur unitaire normal a ds.

= Surface fermée : orientée de l'intérieur vers l'extérieur.
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Intégrales vectorielles
2. Flux d’'un champ de vecteurs

b. Définition du flux

- (S) surface orientée quelconque.
> dCD% = AM)LdS = flux élémentaire

=

Y :jjSA(M)ﬁ :HSA.dS.cosa

x ®.,=0 < AM)DOdS

%

* Si ﬂ Ads=0 . A est a flux conservatif (flux entrant = flux sortant)

S(ferméeg
Exemple . Champ a swvinctrie sphéerigue
Calculer le flux du vecteur VAN = I(r)ér a travers une sphére de centre

) et de ravon r.
On a tout simplement :

N
< =_#- v NdS:ﬁ Fir)ds
5 5 d.5
= dar> £(r) Lo o
car f(r) est constant gquand on se déplace sur la

spheére. *
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Intégrales vectorielles
3. Théoremes intégraux

a. Théoreme de Stockes / Champ conservatif

- (C) courbe fermée orientee.

- (S) surface quelcongue s'appuyant sur (C).

j(C)A(M) dll = j j(s)ﬁt’ A(M) [dS

Champ a circulation conservative :
C= [_ﬂ(c),&(M) dl=0 [ (C) fermée

alors: ~ 1ot A=0
-~ si A=gradU < rotA=0

un champ de gradient est un champ a
circulation conservative
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Intégrales vectorielles

b. Théoreme de Green-Ostrogradsky

S surface fermée quelconque entourant un volume V.

A(M) champ de vecteurs.
Y =[] Atds = [[] div Al
S

— Champ a flux conservatif: CD% = UjSA [ds =0

alors: S divA=0

= le flux est le méme a travers toute section d'un
tube de champ.
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Notion d’angle solide

1. Angle plat secteur /< 0
—~ Arc de cercle p=R6 G = L
si R = unité, alors p=0 R

(6 mesure de I'angle plat)
= 0B,y = 2TR radian = 2 mtradian

2. Angle solide

-~ Sphere de rayon R = unité.

- Le cone d’angle dQ découpe sur la
sphere une surface élémentaire
dS =dQ (par analogie avec l'angle
plat)

= dQ est I'angle solide sous lequel on "voit" la surface dS
a partir de O

Q,1o= 4TR? = 411 Stéradian
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Notion d’angle solide
3. Angle solide sous lequel on "voit" une surface«iielconque

O

e OM=r i

e Nnormale adS (dS =fdS)
e o angle entre n et I'axe du cone
= Définition:

_GS  dSleos o

r.2 I,2

dQ

* dS cos a = projection de dS sur la sphere (O,r)
passant par M.
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Notion d’angle solide

3. Angle solide sous lequel on "voit" une surface guelcongue
angle solide élementaire

dScoso

Toutes ces surfaces définissent le
méme angle solide élémentaire Q

Elles sont limitees par le méme
cone.
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Notion d’angle solide
3. Angle solide sous lequel on "voit" une surface guelcongue
Pour calculer un angle solide (angle sous lequel est « vue » une surface S) il faut :

\

4- Definir une sphere

1 - Une surface s'appuyant sur le cone

précédemment défini
3- Définir le cone qui
englobe la surface
2- Un point
d'observation de M M

cette surface : M

5- Determiner I'angle solide a partir de la surface de la sphere Q = dS/r=.

On peut se rappeler I'angle solide © défini par un cone d'ouverture o : | 2=2mw(1l—-cos«)
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Notion d’angle solide
3. Angle solide sous lequel on "voit" une surface quelconque

En coordonnées sphériques, la surface €lémentaire & r constant vaut dS = r’sinfddy.
L'angle solide €lémentaire §'écrit alors dQ = smBdfdg . Ainsi, I'angle solide délimité par un
cone de révolution, d'angle au sommet ¢ vaut

X a
Q= f{fﬂ! = ff!q'fsin Hdf = 2x(1-coser)
fl fl
Le demi-espace, engendré avec a=n/2 (radians), correspond donc a un angle solide de 2
stéradians, tandis que I'espace entier correspond 4 un angle solide de 4x (¢=n).

€l =

_‘f~ Py _dS neu _ dScosf ds’
r: ¥ - > - 5

r r r
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