Chapitre

Fonctions convexes

3.0.1 Définition de la convexité

Définition 3.1.

Soient / un intervalle de R et f : I — R une fonction.

i) On dit que f est convexe sur /, si pour tout x € / et pour tout y € I, avec x < y, on a
Vi€ [0,1] f(1=1)x+1y)) < (1—1)f(x) +1f(y)
ii) On dit que f est concave sur /, si pour tout x € I et pour tout y € I, avec x < y, on a

Vi € [0,1] f((1-0)x+1y)) = (1 -1)f(x) +2f())

Remarques

1. f est convexe, si et seulement si, — f est concave.

2. Si f est convexe sur I, alors d’apres la définition, on a

Vxelvyel, f<x42ry> < f)+ /)

2

3. Si f est convexe, alors pour tout x € [ et pour tout y € I, avec x <y, la courbe de f sur
I'intervalle [x,y] est en-dessous du segment joignant les points de coordonnées (x, f(x)) et

(v, f(y)) et toutes les tangentes sont en-dessous de la courbe de f.
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Yy

Concavité

\ Convexité /

3.1.1 Continuité et dérivabilité des fonctions convexes

Soient / un intervalle de R et f : I — R une fonction. Alors f est convexe sur /, si et

seulement si,

fO) = f(x)
y—Xx

Vxel,Vyel Vzel, x<y<z=— <

f(2) =1 (y)
z—y

Preuve

(=) Supposons que f est convexe sur [ et soient x,y,z € I, tels que x < y < z.

Comme y € |x,z[, alors y = (1 — A)x+ Az, avec A = D, donc A €]0, 1.
x

Comme f est convexe, alors f(y) < (1 —2A)f(x)+Af (_z)
Done (1-2)f(y) < (1 =A)f(x) +A(f(2) = f(¥))-

Ona?»:y etl—?»z—y,donconaura
7Z—X 7Z—Xx

(z=y)f) < (@=2)f(x)+ G —x)(f(z) = f())

Par suite, on a
fy)—fx)
y—Xx

<
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(<=) Supposons que pour tout x,y,z € I, avec x <y < z, on a

J) = fx)
y—Xx

<

f(2) = fO)
2y

Puis montrons que f est convexe sur /.

Pour cela, pour x,z € 1, avec x < z, et pour A € [0, 1], on doit montrer que
F(I=Mx+2z) < (1-A)f(x) +Af(2)

SiA=0oul=1,alors il est trivial que f((1 —A)x+Af(z)) < (1—A)f(x) +Af(2).
Donc on peut supposer que A €0, 1]. Soit y = (1 —A)x+ Az, alors on ax < y < z, donc, par
hypothese, on a
fO) = fx) _ [ = f)
y—x =y

avecy—x=A(z—x)etz—y=(1—A)(z—x), donc on aura

(I=2)(f») = f () <Mf(2) = f(V))

par suite, on a f(y) < (1 —A)f(x) +Af(z).

Soit f une fonction définit sur un intervalle / de R. Pour chaque a € I, on considere la

fonction @, définie sur 7\ {a} par

f(x) = f(a)

Vx e I\ {a}v (pa<x) = ]

Alors f est convexe sur /, si et seulement si, pour tout a € I, la fonction @, est croissante

sur I\ {a}.

Preuve

(=) Soientx €I\ {a}etyeI\{a}, avecx <y.
Pour montrer que ¢,(x) < @,(y), on considere trois cas :
Casoux <y<a,alorsonay €|x,a[, donc y = (1 —A)x+ Aa, avec A €]0, 1].
Comme f est convexe, alors f(y) < (1—2A)f(x) +Af(a).

Done £(y) — f(a) < (1= W) (f(x) - f(a)), avec 1 —h = ——2

Ainsi, on aura f(yc)l:;‘(a) < f(xc)l:i(a)‘
f(x) = f(a)

On en déduit donc que

< fb) —fa) , par suite Qq(x) < @q(y).
xX—a y—a

Le cas ol a < x < y est identique au cas précédent, il suffit de remplacer, dans la démons-

tration, x par a et a par x.

Cas ou x < a < y, dans ce cas on obtient le résultat en appliquant le lemme précédent.
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(<) Soientx €1,y € IetA€]0,1[. Montrons que

FA=M)x+ry) <A =2)f(x)+Af(y)

Pour cela, on considére la fonction @, définie sur 7\ {x} par

alors par hypothese, @, est croissante sur 7 \ {x}. Comme (1 —A)x+Ay € I'\ {x} et comme
(I=A)x+Ay <y,alorson a @,((1 —A)x+Ay)) < @x(y), ainsi on aura

SIA=Mx+20y) = f(x) _ fO) = f(x)
Ay —x) T oy—x

On en déduit donc que f((1 —A)x+Ay)) < (1 =A)f(x) +Af(y).

Théoréme 3.4.

Soit f une fonction convexe sur un intervalle ouvert de R. Alors
i) f est dérivable a droite et a gauche sur /.

ii) f est continue sur /.

Preuve
i) Soit xg € I. Montrons que f est dérivable a droite et & gauche de xg.
[ est un intervalle ouvert, donc il existe a,b € I, tel que a < xg < b. Soit g la fonction définie

sur [a,b] \ {xo} par
f(x) = f(xo)

glx) = ——
X — XQ

alors d’apres le lemme précédent, g est croissante sur [a,b] \ {xo} et elle est majorée par
f(b) et minorée par f(a), donc g posséde une limite finie a droite et a gauche au point xo,

par suite f est dérivable a droite et a gauche au point xg.

ii) f est dérivable a droite et a gauche au point xp, donc f est continue a droite et a gauche au

point xp, par suite f est continue au point xo.

3.4.1 Caractérisation de la convexité

Théoréme 3.5.

Soit f une fonction définit et dérivable sur un intervalle / de R. Alors f est convexe, si

et seulement si, f’ est croissante sur /.

Preuve

(=) Supposons que f est convexe et montrons que f” est croissante.
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Pour cela, pour a € I et b € I, avec a < b, on considere les fonctions @, et @, définies

respectivement sur I \ {a} et sur I\ {b} par

i)~ L1 o g 101

Alors, on a f'(a) = lim @4(x).

xX—a

Or d’apres le lemme précédent, @, est croissante et on a a < b, donc f'(a) < @,(b).
On a aussi f'(b) = linll) @p(x), donc @, (a) < f'(b), car @y est croissante.
X—r

Comme @, (b) = @p(a), alors f'(a) < f'(b) et par suite, ' f est croissante.

(<=) Supposons que f’ est croissante et montrons que f est convexe.

Pour cela, d’apres le lemmel, il suffit de montrer quesiacl,bcletc€l,aveca <b <c,

alors on a
f() = fla) _ flc) = f(b)
b—a - c—b

En appliquant le théoréme des accroissements finis a f sur ]a,b[ puis sur |b, ¢[, on voit qu’il

existe a € ]a,b[ et il existe B €]b, ¢, tels que

f() = fla)=f(a)(b—a) et f(c)—f(b)=f(B)(c—b)

Ainsi, on aura

OO oy o LA iy
Or f’ est croissante et on a o0 < 3, donc f(b) ~ f(a) < fle) = f(b)
b—a c—b

Corollaire 3.6.

Soit f une fonction deux fois dérivable sur un intervalle I de R. Alors f est convexe sur

1, si et seulement si, pour tout x € I, on a f”(x) > 0.

Preuve
La démonstration de ce corollaire est une conséquence directe du théoreme précédent, car on
sait qu’une fonction dérivable sur un intervalle / est croissante, si et seulement si, sa dérivée est

positive sur /.
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3.6.1 Extremums d’une fonction convexe

Théoréme 3.7.

Soit f une fonction convexe sur un intervalle ouvert I de R et soit xg € 1.
i) Si xg est un minimum local de f, alors xy est un minimum global de f sur /.

ii) Si f est dérivable en xg et si f'(xo) = 0, alors xo est un minimum global de f sur /.

Preuve

i) xp est un minimum local de f, donc il existe o > 0, tel que |xp — o, xp + a[C I et tel que
Vx €1, x €]xp — a,xg+ o= f(x) > f(x0)

Soit x € I, avec x # xp.
Nous allons choisir A €]0, 1], tel que (1 —A)xo + Ax € Jxo — 0, x0 + O]

Pour cela, il suffit de choisir A, tel que 0 < A < , alors on aura

|x — xo|

Ael0, 1] et xo—o < (I —A)xp+Ax < xp+ 0

Donc f((1—2X)xp+Ax) > f(xp) et comme f est convexe, alors on aura

(1=2)f(x0) +Af(x) = f(x0), par suite, on a A(f(x) — f(x0)) = 0.
Donc pour tout x € I, on a f(x) > f(xo).

f(x) = f(x0)
X=X
convexe sur /, alors on sait que @, est croissante et comme lim @y, (x) = f'(xo) = 0, alors

X—X0

ii) On considere la fonction @, définie sur 7\ {xo} par @y (x) = . Comme f est

pour x < xg, on a @y, (x) < 0 et pour x > xp, on a @y, (x) > 0.
Donc, dans les deux cas, on voit que f(x) > f(xo), ainsi on a établi que pour tout x € I,

ona f(x) > f(xo), donc xp est un minimum global de f sur .

Théoreme 3.8.

Soit f une fonction convexe sur un intervalle ouvert / de R.

Si f possede un maximum global xg sur /, alors f est constante sur /.

Preuve

Supposons, par absurde, que f n’est pas constante sur /.

Comme x est un maximum global de f sur 7, alors il existe x € I, tel que f(x) < f(xp).

On a donc x # xp, par suite, on a ou bien x < xo ou bien x > xo.

On suppose, par exemple, que x < xo.

Comme [/ est un intervalle ouvert et comme xq € /, alors il existe y € I, tel que y € I, tel que y > xo,
donc xg € |x,y|, donc il existe A €]0, 1], tel que xo = (1 —A)x+Ay.
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Comme f est convexe, alors on aura

o) < (=M f(x) +Af(y) < (1 =A)f(x0) +Af(x0) = f(x0)

Ce qui est absurde.

Corollaire 3.9.

Soit f : [a,b] — R une fonction convexe et continue sur [a,b]. Alors f atteint son

maximum en a ou en b.

Preuve

La démonstration est une conséquence du théoreme du maximum et du théoréme précédent.

3.9.1 Quelques inégalités de convexité

3.9.1.1 Inégalité de la tangente

[Théoréme 3.10.}

Soit f une fonction convexe et dérivable sur un intervalle /. Alors on a

Vael,Vxel, f(x) > fla)+ (x—a)f'(a)

Preuve

Si x = a, alors I’inégalité est trivial.
Si x # a, on considere la fonction ¢, définie sur I\ {a} par

_f@) -~ f(a)

X—a

OAEY

Comme f est convexe, alors on sait que @, est croissante.
Orona f'(a) = lim @4(x).
X—a

Donc si x > a, alors f/(a) < @,(x), par suite, on obtient le résultat.

Ei six < a, alors f’(x) > @,(x), et comme x — a < 0, alors on a le résultat.
Exercice

Soit f une fonction dérivable sur un intervalle /, telle que
Vael,Vxel, f(x) > f(a)+ (x—a)f'(a)

Montrer que f est convexe.

Page 46 sur 98 Pr.Mohamed HOUIMDI



Analyse III SMIA-S2

Solution
Soientx € I, y € [ et A € [0, 1], alors, par hypothese, on a

Fx) = f(1=Mx+Ay) = My —x) /(1= M)x +Ay))

On a aussi

fO) 2 f((L=M)x+Ap) + (1 =A)(y = x)f (1= Mx+2y))

On en déduit donc que

(1 =2)f() +Af(y) = F((1=A)x+Ly))

Donc f est convexe.

3.10.0.1 Inégalité de Jensen

(Théoréme 3.11.

Soient f une fonction convexe sur un intervalle / et n un enteir > 2. Alors pour tout
X1,X2,-..,X, éléments de I et pour tout Aj, Ay, ..., A, des nombres réels positifs vérifiant
n

Y Mr=1,0ona
k=1

f(?\.lxl = 7\,2)62 = knxn) < 7\,1f(x1) = 7\,2f()C2) = knf(xn)

Et en particulier, on a

f <x1 +X2+...+xn> < FO) 4+ f)+...+ f(xn)

n n

Preuve

On procede par récurrence sur n, avec n > 2.

Pour n = 2, le résultat est vrai d’apres la définition de la convexité.

Supposons que la proprieté est vraire pour n et montrons qu’elle est aussi vraie pour n+ 1.

Soit x1,X2, ..., Xu, Xn+1 des éléments de I et soit Aj, Az, ..., Ay, Ay des nombres réels positifs tels
n+1
que Y A; = 1. Montrons que

i=1

Fuxi +2x2 4 F XXy + A 1xng1) S A1) F A2 f (x2) 4+ X f(x) + A1 f (1)

pour cela, posons A = Z A, alors deux cas sont possibles :

Si A =0, alors pour tout i€{l,2,...,n}, onal; =0, donc dans ce cas le résultat est trivial, car
M1 =1, donc f(Ayy1Xn41) < 7bn+1f(xn+1)-

. n
Si A # 0, pour chaque i € {1,2,...,n}, posons &; = -, donc on aura ¥ o; = 1.

A i=1
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Comme [ est un intervalle, alors Z o;x; € I. Ainsi on aura

n+1
f (Z 7~ixi>
i=1

—_

=

:f(kz(xxl+xn+lxn+l>
n n+1

( Zoc X)xnﬂ) (car Z?x,i: 1)
i=1

A
S <i (szz> —AN)f(xp+1) (car f est convexe)

n
Z iXi + }\'n+1xn+l>

=

IN
>

Donc on aura

(g <

m=

oif(xi)+ (1 —=A)f(x4+1) (d’apres I’hypothese de récurrence)

n
< Zk,f( )+ (1—=A)f(xn+1) (carpourtoutie {1,2,...,n}, Ao; =N;)
i=1
n+1
< ?\tif(xl)
i=1
N . 1
Le cas particulier s’obtient en posant A = Ay = ... = A, = —.
n

Exemple

La fonction définit sur R par f(x) = x? est convexe sur R, donc pour tout entier n > 2, en appliquant

) . 1
I’inégalité de Jensen pour A\ = Ay =... = A, = —, on aura
n

i=1

2
n n
2
Vx1,x2,...,x%, €ER, <Zx,-> Sanl-
i=1

3.11.0.1 Inégalité de Holder

(Théoreme 3.12.]

Soient ay,ay,...,a, et by,by,...,b, des nombres réels strictement positifs, p et g deux

. . 1 1
nombres réels strictement positifs, tels que — 4+ — = 1, alors on a
P 4

1 1

n n ? [ n q
oo (£) (2]
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Preuve

. c . . I 1 o
Soient u et v deux nombres réels strictement positifs, comme — + — = 1, alors la concavité de la
p q
fonction In permet d’écrire

1 1
avec —In(u”) + —In(v?) = In(uv), ainsi on obtient
P q

1 1
uy < —uf + -1

1 1 b

n p n 7 . .

Posons A = (Z af) , B= (Z b?) etpourchaqueie{1,2,...,n},posonsu,-:%etvi:E’,
i=1 i=1

alors on aura

1 1
Vie{l,2,...,n}, ujv; < ;uf’%—;v?

avec

n Zl a;b;
; ujv; = liAB
=

P
n Zl a;

p_ = _
Z“i Y =1
i=1

< 1 q
L b

1 1
Comme — + — = 1, alors on aura le résultat
P g

3.12.0.1 Inégalité de Minkowski

[Théoréme 3.13.]

Soient ay,ay,...,a,, b1,bs,...,b, des nombres réels strictement positifs et p un réel,

avec p > 1. Alors on a
($0000)
i=1
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Preuve L
Posons g = Ll’ alors ¢ > 0 et — + — = 1, donc d’apres I'inégalité de Holder, on a
p— P 4q

o< (£)'(
) (

En faisant la somme de ces deux inégalités, on obtient,

(ai+bi)? <Za>l (gbfy <g (ai+bi) )1_})

Donc en simplifiant, on aura

e
™=

(ai+bi)P~ )>

1

On a aussi

.M=
.M:
™=

bi(a;i+b;)P~ ' < < (a;+b;) P~ >

i=1 1

1

™=

I
—_

Page 50 sur 98 Pr.Mohamed HOUIMDI



