
Chapitre 3
Fonctions convexes

3.0.1 Définition de la convexité

Soient I un intervalle de R et f : I �! R une fonction.

i) On dit que f est convexe sur I, si pour tout x 2 I et pour tout y 2 I, avec x < y, on a

8t 2 [0,1] f ((1� t)x+ ty)) (1� t) f (x)+ t f (y)

ii) On dit que f est concave sur I, si pour tout x 2 I et pour tout y 2 I, avec x < y, on a

8t 2 [0,1] f ((1� t)x+ ty))� (1� t) f (x)+ t f (y)

Définition 3.1.

Remarques
1. f est convexe, si et seulement si, � f est concave.

2. Si f est convexe sur I, alors d’après la définition, on a

8x 2 I,8y 2 I, f
✓

x+ y
2

◆
 f (x)+ f (y)

2

3. Si f est convexe, alors pour tout x 2 I et pour tout y 2 I, avec x < y, la courbe de f sur
l’intervalle [x,y] est en-dessous du segment joignant les points de coordonnées (x, f (x)) et
(y, f (y)) et toutes les tangentes sont en-dessous de la courbe de f .
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3.1.1 Continuité et dérivabilité des fonctions convexes

Soient I un intervalle de R et f : I �! R une fonction. Alors f est convexe sur I, si et
seulement si,

8x 2 I,8y 2 I,8z 2 I, x < y < z =) f (y)� f (x)
y� x

 f (z)� f (y)
z� y

Lemme 3.2.

Preuve
(=)) Supposons que f est convexe sur I et soient x,y,z 2 I, tels que x < y < z.

Comme y 2 ]x,z[, alors y = (1�l)x+lz, avec l =
y� x
z� x

, donc l 2 ]0,1[.

Comme f est convexe, alors f (y) (1�l) f (x)+l f (z).

Donc (1�l) f (y) (1�l) f (x)+l( f (z)� f (y)).

On a l =
y� x
z� x

et 1�l =
z� y
z� x

, donc on aura

(z� y) f (y) (z� y) f (x)+(y� x)( f (z)� f (y))

Par suite, on a
f (y)� f (x)

y� x
 f (z)� f (y)

z� y
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((=) Supposons que pour tout x,y,z 2 I, avec x < y < z, on a

f (y)� f (x)
y� x

 f (z)� f (y)
z� y

Puis montrons que f est convexe sur I.

Pour cela, pour x,z 2 I, avec x < z, et pour l 2 [0,1], on doit montrer que

f ((1�l)x+lz) (1�l) f (x)+l f (z)

Si l = 0 ou l = 1, alors il est trivial que f ((1�l)x+l f (z)) (1�l) f (x)+l f (z).

Donc on peut supposer que l 2 ]0,1[. Soit y = (1�l)x+lz, alors on a x < y < z, donc, par
hypothèse, on a

f (y)� f (x)
y� x

 f (z)� f (y)
z� y

avec y� x = l(z� x) et z� y = (1�l)(z� x), donc on aura

(1�l)( f (y)� f (x)) l( f (z)� f (y))

par suite, on a f (y) (1�l) f (x)+l f (z).

Soit f une fonction définit sur un intervalle I de R. Pour chaque a 2 I, on considère la
fonction ja définie sur I \{a} par

8x 2 I \{a}, ja(x) =
f (x)� f (a)

x�a

Alors f est convexe sur I, si et seulement si, pour tout a 2 I, la fonction ja est croissante
sur I \{a}.

Lemme 3.3.

Preuve
(=)) Soient x 2 I \{a} et y 2 I \{a}, avec x < y.

Pour montrer que ja(x) ja(y), on considère trois cas :

Cas où x < y < a, alors on a y 2 ]x,a[, donc y = (1�l)x+la, avec l 2 ]0,1[.

Comme f est convexe, alors f (y) (1�l) f (x)+l f (a).

Donc f (y)� f (a) (1�l)( f (x)� f (a)), avec 1�l =
a� y
a� x

.

Ainsi, on aura
f (y)� f (a)

a� y
 f (x)� f (a)

a� x
.

On en déduit donc que
f (x)� f (a)

x�a
 f (y)� f (a)

y�a
, par suite ja(x) ja(y).

Le cas où a < x < y est identique au cas précédent, il suffit de remplacer, dans la démons-
tration, x par a et a par x.

Cas où x < a < y, dans ce cas on obtient le résultat en appliquant le lemme précédent.
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((=) Soient x 2 I, y 2 I et l 2 ]0,1[. Montrons que

f ((1�l)x+ly) (1�l) f (x)+l f (y)

Pour cela, on considère la fonction jx définie sur I \{x} par

jx(t) =
f (t)� f (x)

t � x

alors par hypothèse, jx est croissante sur I \{x}. Comme (1�l)x+ly 2 I \{x} et comme
(1�l)x+ly  y, alors on a jx((1�l)x+ly)) jx(y), ainsi on aura

f ((1�l)x+ly))� f (x)
l(y� x)

 f (y)� f (x)
y� x

On en déduit donc que f ((1�l)x+ly)) (1�l) f (x)+l f (y).

Soit f une fonction convexe sur un intervalle ouvert de R. Alors

i) f est dérivable à droite et à gauche sur I.

ii) f est continue sur I.

Théorème 3.4.

Preuve
i) Soit x0 2 I. Montrons que f est dérivable à droite et à gauche de x0.

I est un intervalle ouvert, donc il existe a,b 2 I, tel que a < x0 < b. Soit g la fonction définie
sur [a,b]\{x0} par

g(x) =
f (x)� f (x0)

x� x0

alors d’après le lemme précédent, g est croissante sur [a,b] \ {x0} et elle est majorée par
f (b) et minorée par f (a), donc g possède une limite finie à droite et à gauche au point x0,
par suite f est dérivable à droite et à gauche au point x0.

ii) f est dérivable à droite et à gauche au point x0, donc f est continue à droite et à gauche au
point x0, par suite f est continue au point x0.

3.4.1 Caractérisation de la convexité

Soit f une fonction définit et dérivable sur un intervalle I de R. Alors f est convexe, si
et seulement si, f 0 est croissante sur I.

Théorème 3.5.

Preuve
(=)) Supposons que f est convexe et montrons que f 0 est croissante.
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Pour cela, pour a 2 I et b 2 I, avec a < b, on considère les fonctions ja et jb définies
respectivement sur I \{a} et sur I \{b} par

ja(x) =
f (x)� f (a)

x�a
et jb(x) =

f (x)� f (b)
x�b

Alors, on a f 0(a) = lim
x!a

ja(x).

Or d’après le lemme précédent, ja est croissante et on a a < b, donc f 0(a) ja(b).

On a aussi f 0(b) = lim
x!b

jb(x), donc jb(a) f 0(b), car jb est croissante.

Comme ja(b) = jb(a), alors f 0(a) f 0(b) et par suite, 0 f est croissante.

((=) Supposons que f 0 est croissante et montrons que f est convexe.

Pour cela, d’après le lemme1, il suffit de montrer que si a 2 I, b 2 I et c 2 I, avec a < b < c,
alors on a

f (b)� f (a)
b�a

 f (c)� f (b)
c�b

En appliquant le théorème des accroissements finis à f sur ]a,b[ puis sur ]b,c[, on voit qu’il
existe a 2 ]a,b[ et il existe b 2 ]b,c[, tels que

f (b)� f (a) = f 0(a)(b�a) et f (c)� f (b) = f 0(b)(c�b)

Ainsi, on aura
f (b)� f (a)

b�a
= f 0(a) et

f (c)� f (b)
c�b

= f 0(b)

Or f 0 est croissante et on a a < b, donc
f (b)� f (a)

b�a
 f (c)� f (b)

c�b
.

Soit f une fonction deux fois dérivable sur un intervalle I de R. Alors f est convexe sur
I, si et seulement si, pour tout x 2 I, on a f 00(x)� 0.

Corollaire 3.6.

Preuve
La démonstration de ce corollaire est une conséquence directe du théorème précédent, car on
sait qu’une fonction dérivable sur un intervalle I est croissante, si et seulement si, sa dérivée est
positive sur I.
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3.6.1 Extremums d’une fonction convexe

Soit f une fonction convexe sur un intervalle ouvert I de R et soit x0 2 I.

i) Si x0 est un minimum local de f , alors x0 est un minimum global de f sur I.

ii) Si f est dérivable en x0 et si f 0(x0) = 0, alors x0 est un minimum global de f sur I.

Théorème 3.7.

Preuve
i) x0 est un minimum local de f , donc il existe a > 0, tel que ]x0 �a,x0 +a[✓ I et tel que

8x 2 I, x 2 ]x0 �a,x0 +a[=) f (x)� f (x0)

Soit x 2 I, avec x 6= x0.
Nous allons choisir l 2 ]0,1[, tel que (1�l)x0 +lx 2 ]x0 �a,x0 +a[.
Pour cela, il suffit de choisir l, tel que 0 < l <

a
|x� x0|

, alors on aura

l 2 ]0,1[ et x0 �a < (1�l)x0 +lx < x0 +a

Donc f ((1�l)x0 +lx)� f (x0) et comme f est convexe, alors on aura
(1�l) f (x0)+l f (x)� f (x0), par suite, on a l( f (x)� f (x0))� 0.
Donc pour tout x 2 I, on a f (x)� f (x0).

ii) On considère la fonction jx0 définie sur I \ {x0} par jx0(x) =
f (x)� f (x0)

x� x0
. Comme f est

convexe sur I, alors on sait que jx0 est croissante et comme lim
x!x0

jx0(x) = f 0(x0) = 0, alors

pour x < x0, on a jx0(x) 0 et pour x > x0, on a jx0(x)� 0.
Donc, dans les deux cas, on voit que f (x)� f (x0), ainsi on a établi que pour tout x 2 I,
on a f (x)� f (x0), donc x0 est un minimum global de f sur I.

Soit f une fonction convexe sur un intervalle ouvert I de R.
Si f possède un maximum global x0 sur I, alors f est constante sur I.

Théorème 3.8.

Preuve
Supposons, par absurde, que f n’est pas constante sur I.
Comme x0 est un maximum global de f sur I, alors il existe x 2 I, tel que f (x)< f (x0).
On a donc x 6= x0, par suite, on a ou bien x < x0 ou bien x > x0.
On suppose, par exemple, que x < x0.
Comme I est un intervalle ouvert et comme x0 2 I, alors il existe y 2 I, tel que y 2 I, tel que y > x0,
donc x0 2 ]x,y[, donc il existe l 2 ]0,1[, tel que x0 = (1�l)x+ly.
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Comme f est convexe, alors on aura

f (x0) (1�l) f (x)+l f (y)< (1�l) f (x0)+l f (x0) = f (x0)

Ce qui est absurde.

Soit f : [a,b] �! R une fonction convexe et continue sur [a,b]. Alors f atteint son
maximum en a ou en b.

Corollaire 3.9.

Preuve
La démonstration est une conséquence du théorème du maximum et du théorème précédent.

3.9.1 Quelques inégalités de convexité

3.9.1.1 Inégalité de la tangente

Soit f une fonction convexe et dérivable sur un intervalle I. Alors on a

8a 2 I, 8x 2 I, f (x)� f (a)+(x�a) f 0(a)

Théorème 3.10.

Preuve
Si x = a, alors l’inégalité est trivial.

Si x 6= a, on considère la fonction ja définie sur I \{a} par

ja(x) =
f (x)� f (a)

x�a

Comme f est convexe, alors on sait que ja est croissante.
Or on a f 0(a) = lim

x!a
ja(x).

Donc si x > a, alors f 0(a) ja(x), par suite, on obtient le résultat.

Ei si x < a, alors f 0(x)� ja(x), et comme x�a < 0, alors on a le résultat.

Exercice
Soit f une fonction dérivable sur un intervalle I, telle que

8a 2 I, 8x 2 I, f (x)� f (a)+(x�a) f 0(a)

Montrer que f est convexe.
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Solution
Soient x 2 I, y 2 I et l 2 [0,1], alors, par hypothèse, on a

f (x)� f ((1�l)x+ly))�l(y� x) f 0((1�l)x+ly))

On a aussi
f (y)� f ((1�l)x+ly))+(1�l)(y� x) f 0((1�l)x+ly))

On en déduit donc que
(1�l) f (x)+l f (y)� f ((1�l)x+ly))

Donc f est convexe.

3.10.0.1 Inégalité de Jensen

Soient f une fonction convexe sur un intervalle I et n un enteir � 2. Alors pour tout
x1,x2, . . . ,xn éléments de I et pour tout l1,l2, . . . ,ln des nombres réels positifs vérifiant

n
Â

k=1
lk = 1, on a

f (l1x1 +l2x2 + . . .+lnxn) l1 f (x1)+l2 f (x2)+ . . .+ln f (xn)

Et en particulier, on a

f
✓

x1 + x2 + . . .+ xn

n

◆
 f (x1)+ f (x2)+ . . .+ f (xn)

n

Théorème 3.11.

Preuve
On procède par récurrence sur n, avec n � 2.
Pour n = 2, le résultat est vrai d’après la définition de la convexité.
Supposons que la proprièté est vraire pour n et montrons qu’elle est aussi vraie pour n+1.
Soit x1,x2, . . . ,xn,xn+1 des éléments de I et soit l1,l2, . . . ,ln,ln+1 des nombres réels positifs tels

que
n+1
Â

i=1
li = 1. Montrons que

f (l1x1 +l2x2 + . . .+lnxn +ln+1xn+1) l1 f (x1)+l2 f (x2)+ . . .+ln f (xn)+ln+1 f (xn+1)

pour cela, posons l =
n
Â

i=1
li, alors deux cas sont possibles :

Si l = 0, alors pour tout i 2 {1,2, . . . ,n}, on a li = 0, donc dans ce cas le résultat est trivial, car
ln+1 = 1, donc f (ln+1xn+1) ln+1 f (xn+1).

Si l 6= 0, pour chaque i 2 {1,2, . . . ,n}, posons ai =
li

l
, donc on aura

n
Â

i=1
ai = 1.
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Comme I est un intervalle, alors
n
Â

i=1
aixi 2 I. Ainsi on aura

f

 
n+1

Â
i=1

lixi

!
= f

 
n

Â
i=1

lixi +ln+1xn+1

!

= f

 
l

n

Â
i=1

aixi +ln+1xn+1

!

= f

 
l

n

Â
i=1

aixi +(1�l)xn+1

!  
car

n+1

Â
i=1

li = 1

!

 l f

 
n

Â
i=1

aixi

!
+(1�l) f (xn+1) (car f est convexe)

Donc on aura

f

 
n+1

Â
i=1

lixi

!
 l

n

Â
i=1

ai f (xi)+(1�l) f (xn+1) (d’après l’hypothèse de récurrence)


n

Â
i=1

li f (xi)+(1�l) f (xn+1) (car pour tout i 2 {1,2, . . . ,n}, lai = li)


n+1

Â
i=1

li f (xi)

Le cas particulier s’obtient en posant l1 = l2 = . . .= ln =
1
n

.

Exemple
La fonction définit sur R par f (x)= x2 est convexe sur R, donc pour tout entier n� 2, en appliquant

l’inégalité de Jensen pour l1 = l2 = . . .= ln =
1
n

, on aura

8x1,x2, . . . ,xn 2 R,
 

n

Â
i=1

xi

!2

 n
n

Â
i=1

x2
i

3.11.0.1 Inégalité de Hölder

Soient a1,a2, . . . ,an et b1,b2, . . . ,bn des nombres réels strictement positifs, p et q deux

nombres réels strictement positifs, tels que
1
p
+

1
q
= 1, alors on a

n

Â
i=1

aibi 
 

n

Â
i=1

ap
i

! 1
p
 

n

Â
i=1

bp
i

! 1
q

Théorème 3.12.
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Preuve
Soient u et v deux nombres réels strictement positifs, comme

1
p
+

1
q
= 1, alors la concavité de la

fonction ln permet d’écrire

ln
✓

1
p

up +
1
q

vq
◆
� 1

p
ln(up)+

1
q

ln(vq)

avec
1
p

ln(up)+
1
q

ln(vq) = ln(uv), ainsi on obtient

uv  1
p

up +
1
q

vq

Posons A =

✓
n
Â

i=1
ap

i

◆ 1
p

, B =

✓
n
Â

i=1
bq

i

◆ 1
q

et pour chaque i 2 {1,2, . . . ,n}, posons ui =
ai

A
et vi =

bi

B
,

alors on aura
8i 2 {1,2, . . . ,n}, uivi 

1
p

up
i +

1
q

vq
i

avec

n

Â
i=1

uivi =

n
Â

i=1
aibi

AB

n

Â
i=1

up
i =

n
Â

i=1
ap

i

Ap = 1

n

Â
i=1

up
i =

n
Â

i=1
bq

i

Bq = 1

Comme
1
p
+

1
q
= 1, alors on aura le résultat

3.12.0.1 Inégalité de Minkowski

Soient a1,a2, . . . ,an, b1,b2, . . . ,bn des nombres réels strictement positifs et p un réel,
avec p > 1. Alors on a

 
n

Â
i=1

(ai +bi)
p

! 1
p


 

n

Â
i=1

ap
i

! 1
p

+

 
n

Â
i=1

bp
i

! 1
p

Théorème 3.13.
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Preuve
Posons q =

p
p�1

, alors q > 0 et
1
p
+

1
q
= 1, donc d’après l’inégalité de Hölder, on a

n

Â
i=1

ai(ai +bi)
p�1 

 
n

Â
i=1

ap
i

! 1
p
 

n

Â
i=1

(ai +bi)
(p�1)q

! 1
q

On a aussi
n

Â
i=1

bi(ai +bi)
p�1 

 
n

Â
i=1

bp
i

! 1
p
 

n

Â
i=1

(ai +bi)
(p�1)q

! 1
q

En faisant la somme de ces deux inégalités, on obtient,

n

Â
i=1

(ai +bi)
p 

2

4
 

n

Â
i=1

ap
i

! 1
p

+

 
n

Â
i=1

bp
i

! 1
p
3

5
 

n

Â
i=1

(ai +bi)
p

!1� 1
p

Donc en simplifiant, on aura

 
n

Â
i=1

(ai +bi)
p

! 1
p


 

n

Â
i=1

ap
i

! 1
p

+

 
n

Â
i=1

bp
i

! 1
p
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