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Chapitre 1

Rappels et résultats préliminaires

1.1 Extremums d’une fonction dérivable

Définition 1.2.

Soient / un intervalle de R, f : I — R une fonction et xy € 1.

i) On dit que x¢ est un minimum local de f sur /, s’il existe o > 0, tel que
Jxo—o,xo+a[C I et Vx €lxg—a,xo+af, f(x0) < f(x)

ii) On dit que x¢ est un maximum local de f sur /, s’il existe a > 0, tel que
Jxo —0,xo+a[C I et Vx €]xg— o, x0+af, f(x0) > f(x)

iii) On dit que x( est un extremum local de f sur /, si x¢ est un minimum local de f ou

si xg est un maximum local de f sur /.

Remarques

1. Si Vxel, f(xo) < f(x), on dit que x¢ est un minimum global de f sur /.
2. Si Vxel, f(xo) > f(x), on dit que xo est un maximum global de f sur /.

3. Si xp est un minimum global de f ou si xg est un maximum global de f, on dit que x¢ est un
extremum global de f.

4. Si xg est un extremum global de f, alors xp est un extremum local de f, tandis que la

réciproque n’est pas toujours vraie.
Exemples

1
Soit f : R — R la fonction définie par f(x) = §x3 —x+ 1. Le tableau de variation de cette

fonction est défini par :




Analyse III SMIA-S2

X —oo -1 1 o0
(%) + 0 — 0 +
5 +oo
f(x) / 3 \ 1 /
—oo 3

On voit donc que xg = 1 est un minimum local de f sur R, mais 1 n’est pas un minimum global

de f sur R. Par ailleurs, 1 est un minimum global de f sur [1,+oo].

Théoreme 1.3.

Soient / un intervalle de R, f : I — R une fonction et xy € /. On suppose que
i) f est dérivable au point xy,
ii) xp est un extremum local de f sur /.

Alors f'(xp) = 0.

Preuve

f est dérivable au point xg, donc

lim M existe

X—X0 X —X0
par suite

lim f1x) — f(x0) et lim f1x) — f(x0) existent
x%xg X —X0 X=Xy X —X0
etona
i T = fo) ) = flo) L f() — fxo) _ £(x0)
x—xg X —X0 X=Xy X —X0 X—=Xo X —X0

Or, xp est un extremum local de f, donc on peut supposer, par exemple, que xp est un minimum
local, donc il existe o > 0, tel que

Jxo —o,xo+a[C I et Vx €lxg—a,xo+ 0, f(xo0) < f(x)

Donc, pour tout x G]Xo — (X,x()], M < 0’ par Suite, lim f( ) _f(XO) < 0
X —Xo x—ox; X=X
On a aussi, pour tout x € [xq,xo+ 0], fx) = f(x0) > 0, par suite, lim f1x) = f(x0) > 0.
X = X0 Xy X — X0

On en déduit donc que f/(xp) = 0.
Remarques
1. La condition f’(xo) = O est une condition nécessaire pour que f posséde un extremum

local au point xj. Cette condition est en général n’est pas suffisante pour que f posséde un
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extremum local au point xp.
Par exemple, soit f : R — R la fonction définie par f(x) = x>, alors on a f/(0) = 0, mais 0
n’est pas un extremum local de f.

2. Le théoreme précédent concerne seulement les fonction dérivables.

Par exemple, soit f : R — R définie par f(x) = |x| posseéde un minimum local au point 0

sans étre dérivable au point 0.

1.4 Théoreme de Rolle - Formule des accroissements finis

[Théoréme 1.5 (Théoreme de Roue).j

Soient a, b deux nombres réels, avec a < b, et f : [a,b] — R une fonction continue sur
[a,D] et dérivable sur |a, b], telle que f(a) = f(b).
Alors il existe ¢ €]a, b|, tel que f'(c) = 0.

Preuve
Soient m = infyc; f(x) et M = sup,; f(x), ou I = [a,b], alors deux cas sont possible :
Sim = M, alors f est constante, donc Vx €]a,b[, f'(x) =0.
Sim # M, alors ou bien f(a) # mou f(a) # M, donc on peut supposer, par exemple, que f(a) # m.
Comme f est continue sur [a, b], alors d’apres le théoréme du maximum, il existe ¢ € |a, b[, tel que
f(c) = m. Donc c est un minimum local de f, par suite, d’aprés le théoréme précédent, f/(c) = 0.
Remarques
1. Le ¢ du théoreme précédent, peut ne pas €tre unique. Par exemple, si on considere la fonction
f définie par f(x) = x* —4x> — 2x2 4 12x + 1, alors f est continue sur I’intervalle [—3, 5],
dérivable sur | —3,5[ eton a f(—3) = f(5) = 136, donc d’apres Rolle, il existe ¢ €] — 3, 5],
tel que f'(c) = 0. On vérifie que ¢ = +1.

2. La continuité de la fonction f aux bornes de I'intervalle [a,b] est nécessaire. Par exemple, si

0 six=0
on considere la fonction définie sur [0, 1] par f(x) =x—[x], alorsonaura f(x) = ¢ x si0<x< 1,
0 six=1

on voit donc que f est continue partout sur [0, 1] sauf en 1, que f est dérivable sur ]0, 1] et
onaVx €]0,1[, f'(x) =1etque f(0) = f(1). Cependant il n’existe aucun ¢ €]0, 1], tel que
f(c)=0.

3. La dérivabilité de la fonction f sur ]a,b[ est nécessaire. Par exemple,si on considere la
fonction f définie sur I'intervalle [—1,1] par f(x) = |x|, alors f est continue sur [—1,1],
t(—1)=f(1) =1, f est dérivable sur | — 1,1[\{0}, cependant il n’existe aucun c €| — 1, 1],
tel que f'(c) = 0.

4. La fonction f doit-&tre a valeurs réelles. Par exemple, si on considere la fonction définie sur
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[0,1] par f(x) = e*™, alors f est continue sur [0, 1], dérivable sur |0, 1], avec f'x) = 2ime?™
etona f(0) = f(1), par contre, pour tout x €0, 1[, on a f’(x) # 0.
Exercice (Quelques extensions du théoréme de Rolle)
1. Soita € R etsoit f : [a, +oo[— R une fonction continue sur [a, +oo[ et dérivable sur |a, 4o,
telle que XEIEM f(x) = f(a). Montrer qu’il existe
¢ €a,+oo], tel que f'(c) =0.

2. Soit f: R — R une fonction dérivable sur R, telle que
lim f(x) = 1_i>m f(x) =1, avec I € R. Montrer qu’il existe ¢ € R,
X—>—o0

X—r+o0

tel que f'(c) =0

3. Soit f : R — R une fonction dérivable sur R, telle que

XEIEL, flx)= xgrfoo f(x) =+eo0u XEIPOO flx)= XETW f(x) = —oo. Montrer qu’il existe ¢ € R,
tel que f(c) =
Solution

fla+tanx) sixe [0,5]

f(a) six=73

Comme lim tanx = +eo et lim f(x) = f(a), alors, on a lim g(x) = f(a) = g(%), par suite
x—>2 X—>+oo x—>2

g est continue sur [0, 5] et on a g(0) = g(5). On voit aussi que g est dérivable sur |a, +oof et

1. Soit g : [0,5] — R la fonction définie par g(x) =

que g'(x) = (1+ tan? x)f'(a+tanx). Ainsi, d’apres le théoreme de Rolle, il existe d €0, %[,
tel que g’(d) = 0. 1l suffit donc de prendre ¢ = a + tand, alors ¢ € |a,+oo|, car tand > 0 et
f'(c) =0, car 1 +tan?d # 0.

tanx) sixe]—Z%Z
2. Soit g : [-F,%] — R la fonction définie par g(x) = fltanx) J=3.3l
l sixe {—7, %}
Alors on a hrn = hm = [, donc la fonction g est continue sur [ 5 %] dérivable sur | —

X—— 2 X—)Z
2%, avee g'(x) = (1 —|—tan2x)f’(tanx)) et f(—%) = f(%), donc d’apres le théoreme de
Rolle, il existe d €] — F, %], tel que g'(d) = 0.
11 suffit donc de prendre ¢ = tand.

3. On suppose, par exemple, que ET flx)= 1_i>m f(x) = oo et on considere la fonction g
X o X —o0
définie sur R par g(x) = f(arctanx).
Alorsona lim g(x) = lim g(x) = f(%), avec f(5) € R, donc d’apres la question précé-
X—>+oo X——oo

dente, il existe ¢ € R, tel que f'(c) =0.

[Théoréme 1.6 (Théoreme des accroissements ﬁnis).]

Soient a, b deux nombres réels, avec a < b, et f : [a,b] — R une fonction continue sur

[a, D] et dérivable sur |a, b[. Alors il existe ¢ €]a, b], tel que

f(b) — f(a)
b—a
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Preuve

On considere la fonction g : [a,b] — R la fonction définie par

X

) = ) - O =10

Alors il est clair que g est continue sur [a, b] et dérivable sur a,b[ et on a

g/(x) :f'(x) _ f(b) :f(a)

b—a

De plus, on a
bf(a)—af(b)
b—a

Donc, d’apres le théoreme de Rolle, il existe ¢ € a, b], tel que g’(c) = 0. On en déduit donc que

gla) =g(b) =

=101

[Corollaire 1.7 (Inégalité des accroissements ﬁnis).]

Soient a, b deux nombres réels, avec a < b, et f : [a,b] — R une fonction continue sur
[a,b] et dérivable sur |a, b].
On suppose qu’il existe deux réels m et M, tel que Vx €]a,b], m < f'(x) < M. Alors on

m(b—a) < f(b) — f(a) <M(b—a)

Preuve

D’aprés le théoréme des accroissements finis, il existe ¢ €]a, b|, tel que

1oy f(b)—fla)
o=
Comme m < f'(c) < M, alors on aura
I —f@)
- b—a

1.8 Comparaison locale des fonctions - Notations de Landau

Rappelons d’abord que si a € R, on appelle voisinage de a tout intervalle ouvert sous la forme
la—¢€,a+¢€|, avec € > 0. On appelle voisinage de +oo tout intervalle ouvert sous la forme |A, 40|
et on appelle voisinage de —oo, tout intervalle ouvert sous la forme | — oo, —A[, avec A > 0.

Enfin, rappelons aussi que R = RU {—oo, 40}

Ainsi, lorsque on it qu’une fonction f est définie au voisinage de a, cela signifie que qu’il existe
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un voisinage V de a, tel que f soit définie sur V, sauf peut-€tre au point a.

1.8.1 Fonction dominée par une autre fonction

Définition 1.9.

Soient f et g deux fonctions définies sur un voisinage de a, avec a € R.
On dit que f(x) est dominée par g(x) au voisinage de a, s’il existe une fonction b définie

et bornée dans un voisinage de a, telle que f(x) = b(x)g(x) dans un voisinage de a.

Remarques
1. Si f est dominée par g au voisinage de a, alors il existe M > 0 et il existe un voisinage V de
a, tel que
VxeV, [f(x)| < Mlg(x)|

2. Si g est non nulle au voisinage de a, alors f est dominée par g, si et seulement si, la fonction

= est bornée dans un voisinage de a.
8

3. Soient (up)n>0 €t (vn)n>0 deux suites. On dit que (uy),>0 est dominée par (v, ),>0, s’il existe
une suite bornée (b, ),>0, telle que a partir d’un certain rang ng, on a Vn > ng, u, = b,vy.
Si de plus (v,)n>0 est non nulle a partir d’un certain rang, alors (u,),>0 est dominée par

. . . L Un .
(vn)n>0, si et seulement si, la suite de terme général — est bornée.
> v

1.9.1 Fonction négligeable devant une autre fonction

( Définition 1.10.

Soient f et g deux fonctions définies sur un voisinage de a, avec a € R.

On dit que f(x) est négligeable devant g(x) au voisinage de a, s’il existe une fonction o
définie au voisinage de a, telle que

i) lima(x)=0.
xX—a

ii) f(x) = o(x)g(x) dans un voisinage de a.

Remarque
1. Si g ne s’annule pas au voisinage de a, alors f(x) est négligeable devant g(x), si et seulement
si, lim @ =0
x—a g(x)

2. Soient (uy),>0 et (vy)n>0 deux suites. On dit que (u,),>0 est négligeable devant (v,),>0,
s’il existe une suite (at,),>0, telle que

i) lim o, =0,
n—r—+oo
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ii) Il existe ng € N, tel que pour tout n > ng, on a u, = 0, V,.

Si de plus (v,)n>0 est non nulle a partir d’un certain rang, alors (u,),>0 est négligeable

. . . Un
devant (v,),>0, si et seulement si, lim — =0.
= n—+o0 vy,

1.10.1 Notation de Landau

Soient f et g deux fonctions définies sur un voisinage de a, avec a € R.
Si f(x) est dominée par g(x) au voisinage de a, on écrit f(x) = O(g(x)) au voisinage de a ou
encore f(x) = O,(g(x)) et on dit que f(x) est un grand O de g(x) au voisinage de a.
Si f(x) est dominée par g(x) au voisinage de a, on écrit f(x) = o(g(x)) au voisinage de a ou
encore f(x) =0,(g(x)) et on dit que f(x) est un petit o de g(x) au voisinage de a.
Remarques

1. f(x) =04(1) <= f est bornée au voisinage de a.

2. f(x) = 04(1) <= lim f(x) =0.
3. Si f(x) = 04(g(x)) alors f(x) =0,(1).

4. Si g est non nulle sur un voisinage de a et si 1i_1>n fEX)) =1l,avecl € R, alors f(x) = O,4(g(x)).
x—a g(x
5. Si g est non nulle sur un voisinage de a, alors on a
. . X
b () = o (s(2)) = lim £ o
. _ f(x) . .
i) f(x) =04(g(x)) <= ) est bornée au voisinage de a.
g(x

Exemples
1. Yo e R,V € R, o > P = x* = o(xP) au voisinage de 0.

1
2. VaeR,VBER, B>0= |Inx|*=0 (B) au voisinage de 0.
x

3. Vo€ R, VB € R, a0 < p = x* = o(xP) au voisinage de +co.

4. Yo e R,VBeR, (> 0etP > 0) = (Inx)* = o(xP) au voisinage de +oo.

[Proposition 1.11.}

Operationsisur 1o9 petits o]

D) (f(x) =04(g(x)) et g(x) = 04(h(x))) = f(x) = 0a(h(x)).

i) (f(x) =o04(g(x))) = VA ER", f=o04(Ag(x)).

iii) (fi = o0a(g) et f2(x) = 0a(g)) = V(A1,h2) € R?, A1 fi +R2f2 = 04(g)

iv) (f1(x) = 0a(g1(x)) et f2(x) = 0a(g2(x))) = f1(x) f2(x) = 0a(81(x)82(x)).

Preuve

Exercice
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Remarque
Nous avons vu que si fi(x) = o(g(x)) et f2(x) = o(g(x), alors pour tout A;,A» € R, on a

Af1(x) +Aafa(x) = o(g(x))
Autrement dit, pour toute fonction g définie au voisinage de a, on a
VA1 € R,VA; € R, Ajo(g(x)) +Az20(g(x)) = o(g(x))

On a aussi pour tout A € R*, o(Ag(x)) = o(g(x)).

1.11.1 Fonctions équivalentes

(Définition 1.12.

Soient f et g deux fonctions définies sur un voisinage de a, avec a € R.
On dit que f est équivalente a g au voisinage de a, et en écrit f(x) ~ g(x) au voisinage

de a ou f(x) ~4 g(x), s’il existe une fonction & définie au voisinage de a, telle que
i) limA(x) = 1.
x—a

ii) f(x) =h(x)g(x) au voisinage de a.

Remarques
1. Si g ne s’annule pas au voisinage de a, alors f(x) ~ g(x) au voisinage de a, si et seulement
si, lim @ =1.
x—a g(x)

2. f(x) ~ g(x) au voisinage de a, si et seulement si, f(x) — g(x) = o(g(x)) au voisinage de a.

3. Si f(x) = 0a(g(x)), alors (f(x) +g(x)) ~a g(x)
f)

4. Si g ne s’annule pas au voisinage de a et si li_1>n e =1, avec [ # 0, alors f(x) ~ Ig(x) au
x—a g(x
voisinage de a.

5. Si liin f(x)=1,avecl #0, alors f(x) ~ [ au voisinage de a.
X—a

6. Soient (uy)n>0 et (vy)n>0 deux suites. On dit que (u,),>0 €t (v4)n>0 sont équivalentes, s’il
existe une suite (wy,),>0, telle que
i) Lim w,=1,
n——+oo

ii) Il existe ng € N, tel que pour tout n > ng, on a u,, = wy,vy,.

Si de plus (v;)n>0 est non nulle a partir d’un certain rang, alors (u,),>0 et (v,),>0 sont

.. . ... Uy
équivalentes, si et seulement si, lim — = 1.
n——+oeo v,
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[Proposition 1.13.}

Soient f et g deux fonctions définies sur un voisinage de a, avec a € R.
i) Si f(x)~,g(x)etsilimg(x) =1, alors lim f(x) = 1.
xX—a xX—a

ii) Si f(x) ~, g(x), alors f(x) et g(x) ont méme signe au voisinage de a.

Preuve
i) Soit & une fonction définie au voisinage de a, tel que li_1>n h(x) =1, et soit V un voisinage de a,
X—a
tel que Vx € V, f(x) = h(x)g(x).
Done on a lim f(x) = lim (hg) (x) = lim A(x) lim g(x) = lim g(x) = 1.

ii) Supposons, par exemple, que g est positive au voisinage de a, donc il existe o > 0, tel que
Vx€la—o,a+af, g(x) >0

Soit & une fonction définie au voisinage de a, tel que 1i_r>n h(x) =1, et soit V un voisinage de
X—a
a, tel que Vx € V, f(x) = h(x)g(x).

Comme lim /(x) = 1, alors il existe B > 0, tel que

xX—a
1
VxeV, [x—a|<B=|h(x)—1| < 3
: . 1 3
Soit € = min(a, B), alors pour x € Ja —€,a+¢€[, on aura g(x) > 0 et 3 <h(x) < 5
3
Donc g(2x) < flx) < gz(x)’ par suite Vx €]a—¢,a+¢[, f(x) >0.

Exemples

Soit « une fonction définie au voisinage de 0, telle que ilg(l) u(x)=0
1. In(1+u(x)) ~o u(x) et (¥ —1) ~g u(x).
2. sinu(x) ~p u(x), tanu(x) ~o u(x), sinhu(x) ~u(x) et ranhu(x) ~ u(x).
3. arcsinu(x) ~q u(x) et arctanu(x) ~q u(x).

u(x)*
2

4. cosu(x) ~o 1, cosu(x)—1~p —

T
, et arccosu(x)— 5 ™0 —u(x).
Exercice
Soit @ € R, F I’ensemble de toutes les fonctions définies sur un voisinage de a et R la relation

définie sur F, par

Montrer que X_est une relation d’équivalence.
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