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Chapitre 1
Rappels et résultats préliminaires

1.1 Extremums d’une fonction dérivable

Soient I un intervalle de R, f : I �! R une fonction et x0 2 I.

i) On dit que x0 est un minimum local de f sur I, s’il existe a > 0, tel que

]x0 �a,x0 +a[✓ I et 8x 2 ]x0 �a,x0 +a[, f (x0) f (x)

ii) On dit que x0 est un maximum local de f sur I, s’il existe a > 0, tel que

]x0 �a,x0 +a[✓ I et 8x 2 ]x0 �a,x0 +a[, f (x0)� f (x)

iii) On dit que x0 est un extremum local de f sur I, si x0 est un minimum local de f ou
si x0 est un maximum local de f sur I.

Définition 1.2.

Remarques
1. Si 8x 2 I, f (x0) f (x), on dit que x0 est un minimum global de f sur I.

2. Si 8x 2 I, f (x0)� f (x), on dit que x0 est un maximum global de f sur I.

3. Si x0 est un minimum global de f ou si x0 est un maximum global de f , on dit que x0 est un
extremum global de f .

4. Si x0 est un extremum global de f , alors x0 est un extremum local de f , tandis que la
réciproque n’est pas toujours vraie.

Exemples
Soit f : R �! R la fonction définie par f (x) =

1
3

x3 � x + 1. Le tableau de variation de cette
fonction est défini par :
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x

f 0(x)

f (x)

�• �1 1 +•

+ 0 � 0 +

�•�•

5
3
5
3

1
3
1
3

+•+•

On voit donc que x0 = 1 est un minimum local de f sur R, mais 1 n’est pas un minimum global
de f sur R. Par ailleurs, 1 est un minimum global de f sur [1,+•].

Soient I un intervalle de R, f : I �! R une fonction et x0 2 I. On suppose que

i) f est dérivable au point x0,

ii) x0 est un extremum local de f sur I.

Alors f 0(x0) = 0.

Théorème 1.3.

Preuve
f est dérivable au point x0, donc

lim
x!x0

f (x)� f (x0)

x� x0
existe

par suite

lim
x!x+0

f (x)� f (x0)

x� x0
et lim

x!x�0

f (x)� f (x0)

x� x0
existent

et on a
lim

x!x+0

f (x)� f (x0)

x� x0
= lim

x!x�0

f (x)� f (x0)

x� x0
= lim

x!x0

f (x)� f (x0)

x� x0
= f 0(x0)

Or, x0 est un extremum local de f , donc on peut supposer, par exemple, que x0 est un minimum
local, donc il existe a > 0, tel que

]x0 �a,x0 +a[✓ I et 8x 2 ]x0 �a,x0 +a[, f (x0) f (x)

Donc, pour tout x 2 ]x0 �a,x0],
f (x)� f (x0)

x� x0
 0, par suite, lim

x!x�0

f (x)� f (x0)

x� x0
 0.

On a aussi, pour tout x 2 [x0,x0 +a[, f (x)� f (x0)

x� x0
� 0, par suite, lim

x!x+0

f (x)� f (x0)

x� x0
� 0.

On en déduit donc que f 0(x0) = 0.

Remarques
1. La condition f 0(x0) = 0 est une condition nécessaire pour que f possède un extremum

local au point x0. Cette condition est en général n’est pas suffisante pour que f possède un
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extremum local au point x0.

Par exemple, soit f : R�!R la fonction définie par f (x) = x3, alors on a f 0(0) = 0, mais 0
n’est pas un extremum local de f .

2. Le théorème précédent concerne seulement les fonction dérivables.

Par exemple, soit f : R �! R définie par f (x) = |x| possède un minimum local au point 0
sans être dérivable au point 0.

1.4 Théorème de Rolle - Formule des accroissements finis

Soient a, b deux nombres réels, avec a < b, et f : [a,b]�! R une fonction continue sur
[a,b] et dérivable sur ]a,b[, telle que f (a) = f (b).
Alors il existe c 2 ]a,b[, tel que f 0(c) = 0.

Théorème 1.5 (Théorème de Rolle).

Preuve
Soient m = infx2I f (x) et M = supx2I f (x), où I = [a,b], alors deux cas sont possible :
Si m = M, alors f est constante, donc 8x 2 ]a,b[, f 0(x) = 0.
Si m 6=M, alors ou bien f (a) 6=m ou f (a) 6=M, donc on peut supposer, par exemple, que f (a) 6=m.
Comme f est continue sur [a,b], alors d’après le théorème du maximum, il existe c 2 ]a,b[, tel que
f (c) = m. Donc c est un minimum local de f , par suite, d’après le théorème précédent, f 0(c) = 0.

Remarques
1. Le c du théorème précédent, peut ne pas être unique. Par exemple, si on considère la fonction

f définie par f (x) = x4 � 4x3 � 2x2 + 12x+ 1, alors f est continue sur l’intervalle [�3,5],
dérivable sur ]�3,5[ et on a f (�3) = f (5) = 136, donc d’après Rolle, il existe c 2 ]�3,5[,
tel que f 0(c) = 0. On vérifie que c =±1.

2. La continuité de la fonction f aux bornes de l’intervalle [a,b] est nécessaire. Par exemple, si

on considère la fonction définie sur [0,1] par f (x)= x� [x], alors on aura f (x)=

8
>>><

>>>:

0 si x = 0

x si 0 < x < 1

0 si x = 1

,

on voit donc que f est continue partout sur [0,1] sauf en 1, que f est dérivable sur ]0,1[ et
on a 8x 2 ]0,1[, f 0(x) = 1 et que f (0) = f (1). Cependant il n’existe aucun c 2 ]0,1[, tel que
f 0(c) = 0.

3. La dérivabilité de la fonction f sur ]a,b[ est nécessaire. Par exemple,si on considère la
fonction f définie sur l’intervalle [�1,1] par f (x) = |x|, alors f est continue sur [�1,1],
t(�1) = f (1) = 1, f est dérivable sur ]�1,1[\{0}, cependant il n’existe aucun c 2 ]�1,1[,
tel que f 0(c) = 0.

4. La fonction f doit-être à valeurs réelles. Par exemple, si on considère la fonction définie sur
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[0,1] par f (x) = e2ipx, alors f est continue sur [0,1], dérivable sur ]0,1[, avec f 0x) = 2ipe2ipx

et on a f (0) = f (1), par contre, pour tout x 2 ]0,1[, on a f 0(x) 6= 0.

Exercice (Quelques extensions du théorème de Rolle)
1. Soit a2R et soit f : [a,+•[�!R une fonction continue sur [a,+•[ et dérivable sur ]a,+•[,

telle que lim
x!+•

f (x) = f (a). Montrer qu’il existe

c 2 ]a,+•[, tel que f 0(c) = 0.

2. Soit f : R�! R une fonction dérivable sur R, telle que
lim

x!+•
f (x) = lim

x!�•
f (x) = l, avec l 2 R. Montrer qu’il existe c 2 R,

tel que f 0(c) = 0.

3. Soit f : R�! R une fonction dérivable sur R, telle que
lim

x!�•
f (x) = lim

x!+•
f (x) =+• ou lim

x!�•
f (x) = lim

x!+•
f (x) =�•. Montrer qu’il existe c2R,

tel que f 0(c) = 0.

Solution
1. Soit g : [0, p

2 ]�! R la fonction définie par g(x) =

8
<

:
f (a+ tanx) si x 2 [0, p

2 [

f (a) si x = p
2

.

Comme lim
x! p

2

tanx =+• et lim
x!+•

f (x) = f (a), alors, on a lim
x! p

2

g(x) = f (a) = g(p
2 ), par suite

g est continue sur [0, p
2 ] et on a g(0) = g(p

2 ). On voit aussi que g est dérivable sur ]a,+•[ et
que g0(x) = (1+ tan2 x) f 0(a+ tanx). Ainsi, d’après le théorème de Rolle, il existe d 2 ]0, p

2 [,
tel que g0(d) = 0. Il suffit donc de prendre c = a+ tand, alors c 2 ]a,+•[, car tand > 0 et
f 0(c) = 0, car 1+ tan2 d 6= 0.

2. Soit g : [�p
2 ,

p
2 ]�! R la fonction définie par g(x) =

8
<

:
f (tanx) si x 2 ]� p

2 ,
p
2 [

l si x 2 {�p
2 ,

p
2}

.

Alors on a lim
x!� p

2

= lim
x! p

2

= l, donc la fonction g est continue sur [�p
2 ,

p
2 ], dérivable sur ]�

p
2 ,

p
2 [, avec g0(x) = (1+ tan2 x) f 0(tanx)), et f (�p

2 ) = f (p
2 ), donc d’après le théorème de

Rolle, il existe d 2 ]� p
2 ,

p
2 [, tel que g0(d) = 0.

Il suffit donc de prendre c = tand.

3. On suppose, par exemple, que lim
x!+•

f (x) = lim
x!�•

f (x) = +• et on considère la fonction g

définie sur R par g(x) = f (arctanx).
Alors on a lim

x!+•
g(x) = lim

x!�•
g(x) = f (p

2 ), avec f (p
2 ) 2 R, donc d’après la question précé-

dente, il existe c 2 R, tel que f 0(c) = 0.

Soient a, b deux nombres réels, avec a < b, et f : [a,b]�! R une fonction continue sur
[a,b] et dérivable sur ]a,b[. Alors il existe c 2 ]a,b[, tel que

f (b)� f (a)
b�a

= f 0(c)

Théorème 1.6 (Théorème des accroissements finis).
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Preuve
On considère la fonction g : [a,b]�! R la fonction définie par

g(x) = f (x)� f (b)� f (a)
b�a

x

Alors il est clair que g est continue sur [a,b] et dérivable sur ]a,b[ et on a

g0(x) = f 0(x)� f (b)� f (a)
b�a

De plus, on a

g(a) = g(b) =
b f (a)�a f (b)

b�a

Donc, d’après le théorème de Rolle, il existe c 2 ]a,b], tel que g0(c) = 0. On en déduit donc que

f 0(c) =
f (b)� f (a)

b�a

Soient a, b deux nombres réels, avec a < b, et f : [a,b]�! R une fonction continue sur
[a,b] et dérivable sur ]a,b[.
On suppose qu’il existe deux réels m et M, tel que 8x 2 ]a,b], m  f 0(x) M. Alors on
a

m(b�a) f (b)� f (a) M(b�a)

Corollaire 1.7 (Inégalité des accroissements finis).

Preuve
D’après le théorème des accroissements finis, il existe c 2 ]a,b[, tel que

f 0(c) =
f (b)� f (a)

b�a

Comme m  f 0(c) M, alors on aura

m  f (b)� f (a)
b�a

 M

1.8 Comparaison locale des fonctions - Notations de Landau

Rappelons d’abord que si a 2 R, on appelle voisinage de a tout intervalle ouvert sous la forme
]a� e,a+ e[, avec e > 0. On appelle voisinage de +• tout intervalle ouvert sous la forme ]A,+•[

et on appelle voisinage de �•, tout intervalle ouvert sous la forme ]�•,�A[, avec A > 0.
Enfin, rappelons aussi que R= R[{�•,+•}.
Ainsi, lorsque on it qu’une fonction f est définie au voisinage de a, cela signifie que qu’il existe
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un voisinage V de a, tel que f soit définie sur V , sauf peut-être au point a.

1.8.1 Fonction dominée par une autre fonction

Soient f et g deux fonctions définies sur un voisinage de a, avec a 2 R.
On dit que f (x) est dominée par g(x) au voisinage de a, s’il existe une fonction b définie
et bornée dans un voisinage de a, telle que f (x) = b(x)g(x) dans un voisinage de a.

Définition 1.9.

Remarques
1. Si f est dominée par g au voisinage de a, alors il existe M > 0 et il existe un voisinage V de

a, tel que
8x 2V, | f (x)| M|g(x)|

2. Si g est non nulle au voisinage de a, alors f est dominée par g, si et seulement si, la fonction
f
g

est bornée dans un voisinage de a.

3. Soient (un)n�0 et (vn)n�0 deux suites. On dit que (un)n�0 est dominée par (vn)n�0, s’il existe
une suite bornée (bn)n�0, telle que à partir d’un certain rang n0, on a 8n � n0, un = bnvn.
Si de plus (vn)n�0 est non nulle à partir d’un certain rang, alors (un)n�0 est dominée par
(vn)n�0, si et seulement si, la suite de terme général

un

vn
est bornée.

1.9.1 Fonction négligeable devant une autre fonction

Soient f et g deux fonctions définies sur un voisinage de a, avec a 2 R.
On dit que f (x) est négligeable devant g(x) au voisinage de a, s’il existe une fonction a
définie au voisinage de a, telle que

i) lim
x!a

a(x) = 0.

ii) f (x) = a(x)g(x) dans un voisinage de a.

Définition 1.10.

Remarque
1. Si g ne s’annule pas au voisinage de a, alors f (x) est négligeable devant g(x), si et seulement

si, lim
x!a

f (x)
g(x)

= 0.

2. Soient (un)n�0 et (vn)n�0 deux suites. On dit que (un)n�0 est négligeable devant (vn)n�0,
s’il existe une suite (an)n�0, telle que

i) lim
n!+•

an = 0,
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ii) Il existe n0 2 N, tel que pour tout n � n0, on a un = anvn.

Si de plus (vn)n�0 est non nulle à partir d’un certain rang, alors (un)n�0 est négligeable
devant (vn)n�0, si et seulement si, lim

n!+•
un

vn
= 0.

1.10.1 Notation de Landau

Soient f et g deux fonctions définies sur un voisinage de a, avec a 2 R.
Si f (x) est dominée par g(x) au voisinage de a, on écrit f (x) = O(g(x)) au voisinage de a ou
encore f (x) = Oa(g(x)) et on dit que f (x) est un grand O de g(x) au voisinage de a.
Si f (x) est dominée par g(x) au voisinage de a, on écrit f (x) = o(g(x)) au voisinage de a ou
encore f (x) = oa(g(x)) et on dit que f (x) est un petit o de g(x) au voisinage de a.

Remarques
1. f (x) = Oa(1)() f est bornée au voisinage de a.

2. f (x) = oa(1)() lim
x!a

f (x) = 0.

3. Si f (x) = oa(g(x)) alors f (x) = Oa(1).

4. Si g est non nulle sur un voisinage de a et si lim
x!a

f (x)
g(x)

= l, avec l 2R, alors f (x) = Oa(g(x)).

5. Si g est non nulle sur un voisinage de a, alors on a

i) f (x) = oa(g(x))() lim
x!a

f (x)
g(x)

= 0.

ii) f (x) = Oa(g(x))() f (x)
g(x)

est bornée au voisinage de a.

Exemples
1. 8a 2 R,8b 2 R, a > b =) xa = o(xb) au voisinage de 0.

2. 8a 2 R,8b 2 R, b > 0 =) | lnx|a = o
✓

1
xb

◆
au voisinage de 0.

3. 8a 2 R,8b 2 R, a < b =) xa = o(xb) au voisinage de +•.

4. 8a 2 R,8b 2 R, (a > 0 et b > 0) =) (lnx)a = o(xb) au voisinage de +•.

Opérations sur les petits o]

i) ( f (x) = oa(g(x)) et g(x) = oa(h(x))) =) f (x) = oa(h(x)).

ii) ( f (x) = oa(g(x))) =)8l 2 R⇤, f = oa(lg(x)).

iii) ( f1 = oa(g) et f2(x) = oa(g)) =)8(l1,l2) 2 R2, l1 f1 +l2 f2 = oa(g)

iv) ( f1(x) = oa(g1(x)) et f2(x) = oa(g2(x))) =) f1(x) f2(x) = oa(g1(x)g2(x)).

Proposition 1.11.

Preuve
Exercice
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Remarque
Nous avons vu que si f1(x) = o(g(x)) et f2(x) = o(g(x), alors pour tout l1,l2 2 R, on a

l f1(x)+l2 f2(x) = o(g(x))

Autrement dit, pour toute fonction g définie au voisinage de a, on a

8l1 2 R,8l2 2 R, l1o(g(x))+l2o(g(x)) = o(g(x))

On a aussi pour tout l 2 R⇤, o(lg(x)) = o(g(x)).

1.11.1 Fonctions équivalentes

Soient f et g deux fonctions définies sur un voisinage de a, avec a 2 R.
On dit que f est équivalente à g au voisinage de a, et en écrit f (x) ⇠ g(x) au voisinage
de a ou f (x)⇠a g(x), s’il existe une fonction h définie au voisinage de a, telle que

i) lim
x!a

h(x) = 1.

ii) f (x) = h(x)g(x) au voisinage de a.

Définition 1.12.

Remarques
1. Si g ne s’annule pas au voisinage de a, alors f (x)⇠ g(x) au voisinage de a, si et seulement

si, lim
x!a

f (x)
g(x)

= 1.

2. f (x)⇠ g(x) au voisinage de a, si et seulement si, f (x)�g(x) = o(g(x)) au voisinage de a.

3. Si f (x) = oa(g(x)), alors ( f (x)+g(x))⇠a g(x)

4. Si g ne s’annule pas au voisinage de a et si lim
x!a

f (x)
g(x)

= l, avec l 6= 0, alors f (x) ⇠ lg(x) au

voisinage de a.

5. Si lim
x!a

f (x) = l, avec l 6= 0, alors f (x)⇠ l au voisinage de a.

6. Soient (un)n�0 et (vn)n�0 deux suites. On dit que (un)n�0 et (vn)n�0 sont équivalentes, s’il
existe une suite (wn)n�0, telle que

i) lim
n!+•

wn = 1,

ii) Il existe n0 2 N, tel que pour tout n � n0, on a un = wnvn.

Si de plus (vn)n�0 est non nulle à partir d’un certain rang, alors (un)n�0 et (vn)n�0 sont
équivalentes, si et seulement si, lim

n!+•
un

vn
= 1.

Page 11 sur 98 Pr.Mohamed HOUIMDI



Analyse III SMIA-S2

Soient f et g deux fonctions définies sur un voisinage de a, avec a 2 R.

i) Si f (x)⇠a g(x) et si lim
x!a

g(x) = l, alors lim
x!a

f (x) = l.

ii) Si f (x)⇠a g(x), alors f (x) et g(x) ont même signe au voisinage de a.

Proposition 1.13.

Preuve
i) Soit h une fonction définie au voisinage de a, tel que lim

x!a
h(x) = 1, et soit V un voisinage de a,

tel que 8x 2V, f (x) = h(x)g(x).
Donc on a lim

x!a
f (x) = lim

x!a
(hg)(x) = lim

x!a
h(x) lim

x!a
g(x) = lim

x!a
g(x) = l.

ii) Supposons, par exemple, que g est positive au voisinage de a, donc il existe a > 0, tel que

8x 2 ]a�a,a+a[ , g(x)� 0

Soit h une fonction définie au voisinage de a, tel que lim
x!a

h(x) = 1, et soit V un voisinage de
a, tel que 8x 2V, f (x) = h(x)g(x).
Comme lim

x!a
h(x) = 1, alors il existe b > 0, tel que

8x 2V, |x�a| b =) |h(x)�1| 1
2

Soit e = min(a,b), alors pour x 2 ]a� e,a+ e[, on aura g(x)� 0 et
1
2
 h(x) 3

2
.

Donc
g(x)

2
 f (x) 3g(x)

2
, par suite 8x 2 ]a� e,a+ e[ , f (x)� 0.

Exemples
Soit u une fonction définie au voisinage de 0, telle que lim

x!0
u(x) = 0

1. ln(1+u(x))⇠0 u(x) et (eu(x)�1)⇠0 u(x).

2. sinu(x)⇠0 u(x), tanu(x)⇠0 u(x), sinhu(x)⇠ u(x) et tanhu(x)⇠ u(x).

3. arcsinu(x)⇠0 u(x) et arctanu(x)⇠0 u(x).

4. cosu(x)⇠0 1, cosu(x)�1 ⇠0 �
u(x)2

2
, et arccosu(x)� p

2
⇠0 �u(x).

Exercice
Soit a 2 R, F l’ensemble de toutes les fonctions définies sur un voisinage de a et R la relation
définie sur F , par

8 f 2 F ,8g 2 F , f R g () f ⇠a g

Montrer que R est une relation d’équivalence.
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