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Département de Mathématiques Première partie du corrigé de la série 3.

Exercice 1 :

1. Pour étudier la convergence de l’intégrale généralisée
∫ +∞
0

ln(t)
1+t2

dt, on doit étudier sa nature

en 0 et aussi sa nature en +∞. Notons que les autres points ne posent pas de problème puique

la fonction t 7→ ln(t)
1+t2

est continue donc elle est localament inégrable sur ]0,+∞[.

Au voisinage de 0, la fonction dans l’intégrale garde un signe constant (il est négatif), par

conséquent on peut utiliser les équivalents. Au voisinage de 0, la fonction considérée (t 7→
ln(t)
1+t2

) est équivalente à la fonction ”t 7→ ln(t)”. En effet

ln(t)

1 + t2
= ln(t)[1 + ε(t)], avec ε(t) =

−t2

1 + t2
qui tend vers 0 lorsque t tend vers 0.

D’après la méthode basée sur les équivalents (Proposition page 26, Chapitre 3), les deux

intégrales ∫ 1

0

ln(t)

1 + t2
dt et

∫ 1

0

ln(t)dt

sont de même nature. Or pour δ ∈]0, 1[,
∫ 1

δ
ln(t)dt = [t ln(t)− t]1δ qui tend vers −1 quand δ

tend vers 0. L’intégrale que nous étudions est donc convergente en 0.

Nous étudions à présent sa nature au voisinage de +∞. Pour cela nous considérons l’intégrale∫ +∞

1

ln(t)

1 + t2
dt

et nous utilisons la règle de Riemann (page 29, Chapitre 3).

Dans notre cas, on peut vérifier que pour α = 3
2

on a :

lim
t→+∞

t
3
2

ln(t)

1 + t2
= lim

t→+∞

ln(t)

t
1
2

= 0.

On a donc la convergence en +∞ et puisque l’intégrale est aussi convergente en 0, elle est

donc convergente.

2. L’intégrale proposée s’appelle l’intégrale de Bertrand. Bien entendu, pour bien comprendre

cet exercice, il faut d’abord maitriser les intégrales généralisées de Riemann vues en cours.

Remarquons que la fonction

x 7→ 1

xα(ln(x))β
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est continue, donc localement intégrable, sur ]1,+∞[. Donc, nous avons deux études à faire,

une au voisinage de 1 et une au voisinage de +∞.

Etude en 1 : On étudie donc
∫ 2

1
1

xα(ln(x))β
dx pour α > 0 et β > 0.

Puisque les fonctions x 7→ 1
xα(ln(x))β

et x 7→ 1
(ln(x))β

sont équivalentes au voisinage de 1 et

qu’elles gardent un signe constant (qui est positif), les deux intégrales généralisées∫ 2

1

1

xα(ln(x))β
dx et

∫ 2

1

1

(ln(x))β
dx

sont de même nature. Nous allons donc étudier la nature de l’intégrale généralisée∫ 2

1
1

(ln(x))β
dx.

On a
1

(ln(x))β
=

(x− 1)β

(ln(x))β
1

(x− 1)β
.

Puisque (x−1)β
(ln(x))β

tend vers 1 lorsque x tend vers 1, il suffit d’étudier la nature de l’intégrale∫ 2

1
1

(x−1)β dx qui converge si et seulement si β < 1 (c’est une variante de l’intégrale de

Riemann
∫ 1

0
1
xβ
dx (Proposition page 12, Chapitre 3) ; on peut voir ceci par un simple

changement de variable).

Première conclusion :
∫ 2

1
1

xα(ln(x))β
dx converge si et seulement si β < 1.

Etude en +∞ :

Pour plus de clarté, nous allons distinguer trois cas selon que α > 1, α = 1 ou α < 1.

Cas α > 1. Nous allons utiliser un autre critère de convergence (règle de Riemann).

Soit γ un nombre réel vérifiant 1 < γ < α, on a xγ 1
xα(ln(x))β

tend vers 0 quand x tend vers

+∞ ( puisque α − γ > 0, les puissances l’emportent sur les logarithmes et donc 1
xα−γ(ln(x))β

tend vers 0 lorsque x tend vers +∞, même si β < 0). D’après la règle de Riemann pour la

convergence des intégrales, on déduit que
∫ +∞
2

1
xα(ln(x))β

dx converge si α > 1.

Cas α < 1. Nous allons utiliser cette fois-ci, le même résultat du cours pour mon-

trer la divergence.

On choisit un réel δ positif vérifiant 0 < α < δ < 1. On a xδ 1
xα(ln(x))β

tend vers +∞ quand x

tend vers +∞, selon la régle de Riemann, on peut affirmer que
∫ +∞
2

1
xα(ln(x))β

dx diverge si

α < 1.
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Cas α = 1. Dans ce cas, nous pouvons directement déterminer une primitive, en ef-

fet, lorsque β 6= 1, on aura

∫
1

x(ln(x))β
dx =

1

1− β
(ln(x))1−β + constante.

Pour le cas β = 1, on a
∫

1
x(ln(x))

dx = ln(| ln(x)|) + constante. Par suite,
∫ +∞
2

1
x(ln(x))β

dx sera

finie si et seulement si β > 1.

Deuxième conclusion :∫ +∞
2

1
xα(ln(x))β

dx converge si et seulement si (α > 1 et β quelconque) ou (α = 1 et β > 1).

β

α
1

région de convergence

1

Figure 1. région de convergence en rouge selon α > 0 et β > 0 de
+∞∫
2

1

xα(lnx)β
dx.

Conclusion finale :∫ +∞
1

1
xα(ln(x)β

dx converge si et seulement si les deux intégrales
∫ 2

1
1

xα(ln(x))β
dx et∫ +∞

2
1

xα(ln(x))β
dx convergent c’est à dire si seulement si α > 1 et β < 1.

β

α
1

1

région de convergence

Figure 2. région de convergence en rouge selon α > 0 et β > 0 de
+∞∫
1

1

xα(lnx)β
dx.
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Exercice 2 :

On commence par étudier la nature de l’intégrale généralisée

I =

∫ 2

1

(1 + x)β − xβ − 2β + 1

xα(x− 1)
dx, pour α > 0, β > 0.

Le problème se pose seulement en 1 car la fonction est définie et continue donc localement

intégrable sur ]1, 2]. Nous étudions donc la nature de l’intégrale en 1. On peut remarquer

que
(1 + x)β − xβ − 2β + 1

x− 1

représente un taux d’accroissement entre 1 et x de la fonction x 7→ (1 + x)β − xβ. Cette

fonction est dérivable au voisinage de 1 et de dérivée

t 7→ β(1 + x)β−1 − βxβ−1.

Sa dérivée en 1 vaut donc β2β−1 − β. D’où la fonction x 7→ (1+x)β−xβ−2β+1
x−1 est prolongeable

par continuité au point 1. Ainsi l’intégrale I est convergente d’après le cours (Proposition

page 14, Chapitre 3).

Pour l’intégrale J =
∫ +∞
2

(1+x)β−xβ−2β+1
xα(x−1) dx, pour α > 0, β > 0, on doit faire l’étude au

voisinage de +∞ (puisque la fonction x 7→ (1+x)β−xβ−2β+1
xα(x−1) est continue donc localement

intégrable sur [2,+∞[).

On commence par le cas β = 1 où la fonction dans l’intégrale est nulle, par conséquent

l’intégrale est convergente.

Pour β 6= 1, on fait un développement limité généralisé du numérateur (en +∞). On obtient :

(1 + x)β − xβ − 2β−1 + 1 = xβ(1 + β
1

x
+ o(

1

x
))− xβ − 2β−1 + 1

(1 + x)β − xβ − 2β−1 + 1 = βxβ−1 + xβo(
1

x
)− 2β−1 + 1.

Si β > 1, (1 + x)β − xβ − 2β−1 + 1 est équivalent en +∞ à βxβ−1. Par suite (1+x)β−xβ−2β+1
xα(x−1)

est équivalent en +∞ à βxβ−1

xα+1 c’est à dire à β
xα−β+2 . On a donc convergence si et seulement

si α− β + 2 > 1 c’est à dire α− β + 1 > 0.

Si β < 1, (1 + x)β − xβ − 2β−1 + 1 est équivalent en +∞ à −2β−1 + 1 car (1 + x)β − xβ

tend vers 0 lorsque x tend vers +∞. Dans ce cas, la fonction dans l’intégrale est équivalente

en +∞ à −2β−1+1
xα+1 et l’intégrale est convergente si et seulement si α > 0 ce qui est garanti

d’après les hypothèses.
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Conclusion : ”L’intégrale J est convergente” si et seulement si ”β ≤ 1 ou (β > 1

et α− β + 1 > 0)” si et seulemnt si “α− β + 1 > 0”.

β

α

région de convergence

β = α + 1

Figure 3. région de convergence en rouge selon α > 0 et β > 0 de l’intégrale J.
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