
Chapitre 1
Intégrale de Riemann

1.1 Introduction

1.1.1 Motivation

Pour calculer l’aire d’un rectangle, on multiplie la largeur par la longueur. L’aire d’une autre forme

géométrique telle qu’un trapèze ou un triangle est obtenue par des transformations géométriques qui

ramènent le problème à un calcul d’aire de rectangle. Si l’on souhaite calculer l’aire de la région A

sous le graphe d’une fonction f : x 7→ ex, il ne serait pas facile de diviser cette région et de la ré-

assembler pour former un rectangle. Il est toutefois possible d’approcher l’aire de A par des sommes

d’aires de rectangles. La figure ci-dessous montre qu’il est possible d’approcher l’aire A par défaut (par

A− =
∑4

k=1 R−) ou par excès (par A+ =
∑4

k=1 R+). La différence entre la valeur approchée par

défaut et la valeur approchée par excès peut être réduite en augmentant le nombre de rectangles qui

forment A− ou de ceux qui forment A+ ou les deux à la fois.
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Aux paragraphes qui suivent nous allons donner plus de précisions sur cette approche.
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1.2. INTÉGRALE D’UNE FONCTION EN ESCALIER

1.1.2 Prérequis

Le contenu de ce chapitre fait appel aux notions et résultats sur les fonctions d’une variable réelles

développés dans le cours d’analyse I.

1.1.3 Objectifs

À l’issue de ce chapitre, l’étudiant est sensé :

– Connaître la définition rigoureuse de l’intégrale sur un segment au sens de Riemann .

– Connaître les propriétés de cette intégrale (positivité, linéarité . . . )

– Maîtriser l’utilisation des sommes de Riemann des fonctions continues dans le calcul de certaines

intégrales et des limites de certaines suites.

– Connaître le “théorème fondamental de l’analyse” (lien entre l’intégrale et primitive d’une

fonction continue).

1.2 Intégrale d’une fonction en escalier

Définition 1. Soit [a, b] un intervalle dans R.

On dit que S = (x0, x1, . . . , xn) ∈ Rn+1 est une subdivision de [a, b] si

a = x0 < x1 < . . . < xn = b.

On dit que Φ : [a, b] → R est une fonction en escalier s’il existe une subdivision SΦ =

(x0, x1, . . . , xn) et des réels c1, . . . , cn tels que Φ(x) = ci pour tout x ∈]xi−1, xi[.

On dit que SΦ est une ‘subdivision adaptée” à Φ.

La quantité
n∑
i=1

ci(xi − xi−1) s’appelle l’intégrale de la fonction Φ et on note :

∫ b

a
Φ(x) dx =

n∑
i=1

ci(xi − xi−1)

Proposition 1.

– L’intégrale d’une fonction en escalier ne dépend pas du choix de la subdivision adaptée.

– Soient Φ et Ψ deux fonctions en escalier définies sur un intervalle [a, b], alors :

i) Pour tout nombre réel λ, λΦ + Ψ est une fonction en escalier sur [a, b] et∫ b

a
λ(Φ + Ψ)(x) dx = λ

∫ b

a
Φ(x) dx+

∫ b

a
Ψ(x) dx.

ii) Si Φ ≤ Ψ, alors
∫ b

a
Φ(x) dx ≤

∫ b

a
Ψ(x) dx.
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CHAPITRE 1. INTÉGRALE DE RIEMANN

iii) Pour tout c ∈]a, b[, les restrictions de Φ à [a, c] et à [c, b] sont des fonctions en escalier et on a∫ b

a
Φ(x) dx =

∫ c

a
Φ(x) dx+

∫ b

c
Φ(x) dx.

Démonstration. (voir TD)

Idée de la preuve : si a = x0 < x1 < ... < xn = b et a = y0 < y1 < ... < ym = b sont deux

subdivisions du segment [a, b], l’ensemble E := {xi : 1 ≤ i ≤ n} ∪ {yj : 1 ≤ j ≤ m} est fini donc on

a E = {z1, z2, ..., zp} avec z1 < z2 < ... < zp. Donc (z1, z2, ..., zp) une subdivision de [a, b] ”plus fine”

que les deux autres subdivisions...

Remarque 1.

– En faite l’ensemble des fonction en escalier sur un ségment [a, b], qu’on peut noté E([a, b]), est

également stable pour le produit des fonctions. C’est donc une algèbre. La proposition précédente

assure que l’application Φ 7→
∫ b

a
Φ est une forme linéaire positive sur E([a, b]).

– En général
∫ b

a
(ΦΨ)(x) dx 6=

∫ b

a
Φ(x) dx

∫ b

a
Ψ(x) dx.

Exemple 1. Soit la fonction f : x 7→ ex, les aires A− et A+ sont respectivement les intégrales des

fonctions en escaliers Φ− et Φ+ définies par :

∀k ∈ {1, . . . , 4}, ∀x ∈
]k − 1

4
,
k

4

[
, Φ−(x) = exp

k − 1

4
et Φ+(x) = exp

k

4
.

1.3 Fonction intégrable

Soit f : [a, b]→ R est une fonction bornée, c-à-d il existe une constante M ≥ 0 telle que :

∀x ∈ [a, b] −M ≤ f(x) ≤M.

On pose

I−(f) = sup

{∫ b

a
φ−(x) dx | φ−est une fonction en escalier telle que φ− ≤ f

}
I+(f) = inf

{∫ b

a
φ+(x) dx | φ+ est une fonction en escalier telle que φ+ ≥ f

}

x

y

φ+ ≥ f
φ− ≤ f

a b

y = f(x)
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1.3. FONCTION INTÉGRABLE

Proposition 2. On a I−(f) et I+(f) existent dans R et I−(f) ≤ I+(f).

Démonstration. L’ensemble
{∫ b

a
φ−(x) dx | φ−est une fonction en escalier telle que φ− ≤ f

}
(resp.{∫ b

a
φ+(x) dx | φ+ est une fonction en escalier telle que φ+ ≥ f

}
) est non vide car il contient

∫ b

a
−M dx

(resp.
∫ b

a
M dx).

Soit Φ+ une fonction en escalier sur [a, b] telle que f ≤ Φ+. Pour toute fonction en escalier Φ− ≤ f ,

on a Φ− ≤ Φ+, donc
∫ b
a Φ−(x) dx ≤

∫ b
a Φ+(x) dx. D’où I−(f) existe dans R et I−(f) ≤

∫ b
a Φ+(x) dx,

pour tout fonction en escalier Φ+ ≥ f . Ainsi I+(f) existe et I+(f) ≥ I−(f).

Définition 2. Une fonction bornée f : [a, b] → R est dite intégrable (au sens de Riemann) si

I−(f) = I+(f). Ce nombre s’appelle l’intégrale de Riemann de f sur [a, b]. On le note

∫ b

a
f(x) dx

Proposition 3. Une fonction f : [a, b] → R est intégrable si et seulement si pour tout ε > 0, il existe

deux fonction en escalier Φ et Ψ définies sur [a, b] telles que Φ ≤ f ≤ Ψ et
∫ b

a
(Ψ− Φ)(x) dx ≤ ε.

Exemple 2.

– Les fonctions en escalier sont intégrables.

– Il existe des fonctions non intégrables.

f : [0, 1] → R

x 7→


1 si x ∈ Q

0 sinon
x

y

1

0 1

Il est clair que montrer que I−(f) ≤ 0 et que I+(f) ≥ 1 et par conséquent f n’est pas intégrable.

Exemple 3.
Soit f : [0, 1] → R, f(x) = x2. Est-elle intégrable ? Et si oui, que vaut∫ 1

0
f(x) dx ?

y = x2

x

y

Soit n ≥ 2 un entier. Considérons la subdivision régulière de [0, 1], S =
(
0, 1

n ,
2
n , . . . ,

i
n , . . . ,

n−1
n , 1

)
Pour tout x ∈

[ i− 1

n
,
i

n

]
on a

(
i−1
n

)2 ≤ x2 ≤
(
i
n

)2.
Soit les fonctions en escalier φ−n et φ+

n définies par

∀x ∈
[ i− 1

n
,
i

n

[
, φ−n (x) =

(i− 1)2

n2
et φ+

n (x) =
i2

n2
.

y = x2

x

y

1

0 1n = 5
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CHAPITRE 1. INTÉGRALE DE RIEMANN

Remarquons que (φ−n )n est une suite croissante et que (φ+
n )n est une suite décroissante. D’autre

part on a

lim
n

∫ 1

0
φ−n (x) dx = lim

n

n∑
k=1

(k − 1

n

)2
× 1

n
= lim

n

(n− 1)(2n− 1)

6n2
=

1

3
, et

lim
n

∫ 1

0
φ+
n (x) dx = lim

n

n∑
k=1

(k
n

)2
× 1

n
= lim

n

n(2n+ 1)

6n2
=

1

3
.

Nous en déduisons que I−(f) = I+(f) =
1

3
.

1.4 Propriétés de l’intégrale

1.4.1 Positivité

Proposition 4. Soient f et g sont deux fonctions intégrables sur [a, b], alors on a

f ≤ g =⇒
∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

Démonstration. Il suffit de remarquer que si Φ− : [a, b]→ R est une fonction étagée telle que Φ− ≤ f

alors Φ− ≤ g et que si Φ+ : [a, b] → R est une fonction étagée telle que Φ+ ≥ g alors Φ+ ≥ f et par

conséquent on a :

I−(f) ≤ I−(g) ≤ I+(g) ≤ I+(f).

1.4.2 Relation de Chasles

Proposition 5. Soient a < c < b et f : [a, b] → R une fonction bornée. Alors f est intégrable sur [a, b]

si, et seulement si, ses restrictions à [a, c] et [c, b] sont intégrables. De plus, dans ce cas, on a∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

Remarque 2. Il est clair que pour tout a ∈ R et toute fonction f définie en a, on a
∫ a

a
f(x) dx = 0.

Si f : [a, b]→ R intégrable, alors on note par définition
∫ a

b
f(x) dx = −

∫ b

a
f(x) dx.

1.4.3 Linéarité de l’intégrale

Proposition 6. Soient f et g deux fonctions intégrables sur un intevalle [a, b]. Alors on a :

1. f + g est intégrable et
∫ b
a (f + g)(x) dx =

∫ b
a f(x) dx+

∫ b
a g(x) dx

2. Pour tout réel λ, λf est intégrable et
∫ b
a λf(x) dx = λ

∫ b
a f(x) dx
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1.5. FONCTIONS CONTINUES ET INTÉGRALE

Exercice 1. [Inégalité de Cauchy Schwarz] Montrer que si f et g deux fonctions intégrables sur [a, b],

alors fg est intégrable et

∣∣∣∫ b

a
f(x)g(x) dx

∣∣∣ ≤ (∫ b

a
f2(x) dx

)1/2(∫ b

a
g2(x) dx

)1/2
.

1.5 Fonctions continues et intégrale

Nous avons vue que les fonctions étagées sont intégrables au sens de Riemann. Il existe également

d’autres fonctions intégrables.

Théorème 1. Si f : [a, b]→ R est continue alors f est intégrable.

Démonstration. Comme f est continue sur un intervalle fermé et borné [a, b], elle est, d’après le

théorème de Heine, uniformément continue sur [a, b] c-à-d : ∀ε > 0, ∃ηε > 0 : |x − x′| < ηε =⇒

|f(x)− f(x′)| < ε.

Soit ε > 0 et une subdivision (x0, x1, . . . , xn) telle que 0 < xi − xi−1 ≤ ηε. Pour x ∈ [xi−1, xi[ on

pose : ci = φ−(x) = inft∈[xi−1,xi[ f(t) et di = φ+(x) = supt∈[xi−1,xi[ f(t)

y = f(x)

x

y

ci

di

xi−1 xi

Il est clair que φ− ≤ f ≤ φ+ et que
∫ b
a φ
−(x) dx ≤ I−(f) ≤ I+(f) ≤

∫ b
a φ

+(x) dx. Comme f

continue sur l’intervalle [xi−1, xi], il existe ai, bi ∈ [xi−1, xi] tels que f(ai) = ci et f(bi) = di et donc

di − ci = f(bi)− f(ai) ≤ ε. Nous en déduisons que

∫ b

a
φ+(x) dx−

∫ b

a
φ−(x) dx ≤

n∑
i=1

ε(xi − xi−1) = ε(b− a).

Ainsi, on a 0 ≤ I+(f)−I−(f) ≤ ε(b−a) et en faisant tendre ε vers 0, on conclut que f est intégrable.

Définition 3. Une fonction f : [a, b] → R est continue par morceaux s’il existe une subdivision

(x0, . . . , xn) telle que sa restriction à ]xi−1, xi[soit continue et lim
x→x+i−1

f(x) et lim
x→x−i+1

f(x) existent, pour

tout i ∈ {1, . . . , n}.
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CHAPITRE 1. INTÉGRALE DE RIEMANN

x

y

Corollaire 1. Les fonctions continues par morceaux sont intégrables.

Proposition 7. Si f est une fonction continue sur [a, b] , alors on a∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a

∣∣f(x)
∣∣ dx

Démonstration. Il suffit de remarquer que −|f | ≤ f ≤ |f | et d’appliquer la Proposition 4.

Exercice 2. On dit qu’une fonction f : [a, b]→ R est réglée si pour tout ε > 0, il existe deux fonctions

en escalier Φ : [a, b]→ R et Ψ : [a, b]→ R telles que Φ ≤ f ≤ Ψ et Ψ− Φ < ε.

1) Montrer que toute fonction réglée est intégrable.

2) Montrer que toute fonction continue ou monotone sur un segment est réglée.

1.6 Primitive d’une fonction continue

Dans ce paragraphe nous introduisons la notion de primitive d’une fonction et montrons comment

elle est liée à la notion d’intégrale.

1.6.1 Définitions

Définition 4. Soit f : I → R une fonction définie sur un intervalle I. On dit que F : I → R est une

primitive de f si F est dérivable et F ′(x) = f(x) pour tout x ∈ I

Exemple 4.

1. – Soit f : R→ R, f(x) = x2

– Alors F : R→ R définie par F (x) = x3

3 est une primitive de f

– Et F (x) = x3

3 + 1 est aussi une primitive de f

2. – Soit g : [0,+∞[→ R, g(x) =
√
x

– G : [0,+∞[→ R définie par G(x) = 2
3x

3
2 est une primitive de g

– Pour tout c ∈ R, la fonction G+ c est aussi une primitive de g
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1.7. THÉORÈME FONDAMENTAL

Proposition 8. Si F est une primitive de f alors toute primitive de f s’écrit

G = F + c où c ∈ R

Démonstration.

– Si G(x) = F (x) + c alors G′(x) = F ′(x), donc G′(x) = f(x).

– Si G est une primitive quelconque de f alors (G − F )′(x) = G′(x) − F ′(x) = f(x) − f(x) = 0.

Donc G− F est une fonction constante, d’où ∃ c ∈ R tel que (G− F )(x) = c. Ainsi G = F + c.

Notations :

– Une primitive d’une fonction f est notée
∫
f(x) dx, ou

∫
f .

– Si F est une primitive de f alors F =

∫
f(t) dt+ c, où c est une constante.

Proposition 9. Soient F une primitive de f et G une primitive de g et λ ∈ R

– F +G est une primitive de f + g

– λF est une primitive de λf

∫ (
λf(t) + µg(t)

)
dt = λ

∫
f(t) dt+ µ

∫
g(t) dt

1.6.2 Primitives des fonctions usuelles

Ci-dessous sont les expressions explicites de quelques primitives de fonctions usuelles.∫
ex dx = ex + c

∫
xn dx =

xn+1

n+ 1
+ c, n ∈ Z \ {−1}∫

xα dx =
xα+1

α+ 1
+ c, α ∈ R \ {−1}

∫
1

x
dx = ln |x|+ c∫

cosx dx = sinx+ c

∫
sinx dx = − cosx+ c∫

shx dx = chx+ c

∫
chx dx = shx+ c∫

dx

1 + x2
= arctanx+ c

∫
dx√
x2 + 1

=

 argshx+ c

ln
(
x+

√
x2 + 1

)
+ c∫

dx√
1− x2

=

 arcsinx+ c

π
2 − arccosx+ c

sur ]− 1, 1[

∫
dx√
x2 − 1

=

 argchx+ c

ln
(
x+
√
x2 − 1

)
+ c

sur ]1,+∞[

1.7 Théorème Fondamental

Dans ce paragraphe nous allons établir un théorème fondamental en analyse. Ce théorème permet

de ramener le calcul de l’intégrale d’une fonction à la recherche d’une primitive. La proposition suivante,
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qui est un cas particulier de la première formule de la moyenne, nous sera utile pour prouver le théorème

fondamental.

Proposition 10. Si f est une fonction continue sur [a, b] alors il existe c ∈ [a, b] tel que

f(c) =
1

b− a

∫ b

a
f(t)dt.

Démonstration. On a déjà vu que

min
x∈[a,b]

f(x) ≤ 1

b− a

∫ b

a
f(t)dt ≤ max

x∈[a,b]
f(x),

et comme f est continue sur [a, b], le théorème des valeurs intermédiaires nous permet de conclure.

Théorème 2 (Fondamental). Soient I ⊂ R un intervalle et f : [a, b]→ R une fonction continue. Alors

F : I → R définie par

F (x) =

∫ x

a
f(t) dt

est la primitive de f qui s’annule en a.

Ainsi pour une primitive F quelconque de f :∫ b

a
f(t) dt = F (b)− F (a)

Démonstration. On prouvera le théorème en utilisant la définition, c-à-d en montrant que

lim
h→∞

F (x+ h)− F (x)

h
= f(x).

Par la relation de Chasles et la Proposition 10, il existe un réel ch entre x et x+ h tel que

F (x+ h)− F (x)

h
= f(ch).

Comme f est continue sur [a, b], on a le résultat par passage à la limite.

Notation :
[
F (x)

]b
a

= F (b)− F (a)

1.8 Sommes de Riemann

Théorème 3. Si f est intégrable sur [a, b], alors

Sn = b−a
n

n∑
k=1

f
(
a+ k b−an

)
−−−−−→
n→+∞

∫ b

a
f(x) dx
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1.9. EXERCICES

Cas fréquent : a = 0, b = 1

Sn = 1
n

n∑
k=1

f
(
k
n

)
−−−−−→
n→+∞

∫ 1

0
f(x) dx

x

y

0 1

f( k
n
)

k
n

1.9 Exercices

Exercice 1. Soit f est une fonction positive et continue sur [a, b]. Montrer que si
∫ b

a
f(t) dt = 0 alors

f(x) = 0, ∀x ∈ [a, b]. Aide : On pourra faire un raisonnement par l’absurde.

Exercice 2. Soit f est une fonction continue sur [a, b]. Montrer que la fonction F : [a, b]→ R définie

par x 7→ F (x) =

∫ x

a
f(t) dt est uniformément continue sur [a, b].

Exercice 3. Calculer la limite de un =
1

n

n−1∑
k=0

k√
4n2 − k2

.

Exercice 4. Calculer la limite de vn =
1

n2

n∏
k=1

(
n2 + k2

) 1
n .
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