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Rabat 

Série n°4 de Mécanique 

Exercice 1 : 

On considère le repère fixe )z,y,x,O(  de base )k,j,i(


 (repère absolu), (xOy) étant le plan horizontal. 

Soit une tige homogène (O1A) de longueur  , en mouvement autour de l’axe 


Oz  avec une vitesse angulaire 

constante ω. On désigne par )z,y,x,O( 11111  un repère lié à la tige de base )k,j,i( 111



 (repère relatif) tel 

que le plan (x1O1y1) reste constamment parallèle au plan (xOy) et 


 kk1 . L’origine O1 de 1  se déplace le 

long de l’axe 


Oz tel que 


 kat
2

1
OO 2

1 . Soit un point M, de masse m, se déplaçant sans frottement sur la 

tige (O1A) et repéré dans 1  par 


 111 i)t(xMO . 

(a et ω étant des constantes positives). 

1. Exprimer dans la base )k,j,i( 111



: 

a. la vitesse du point M par rapport au repère  . 

b. la vitesse du point M par rapport au repère 1 . 

c. le moment cinétique )/M( 1O1




. 

d. le poids de M et les forces d’inertie d’entraînement et de Coriolis. 

2. Le repère 1  est-il Galiléen ou non Galiléen ? Justifier votre réponse. 

3. En écrivant le principe fondamental de la dynamique appliqué au point M dans le repère 1 , déterminer 

une équation différentielle du second ordre en t vérifiée par x1 et les composantes de la réaction 


R , 

exercée sur M par la tige, dans la base )k,j,i( 111



. 

4. En appliquant le théorème du moment cinétique du point M, par rapport au point O1, dans le repère 1 , 

retrouver les composantes de la réaction 


R , exercée sur M par la tige, dans la base )k,j,i( 111



. 

5. Calculer l’énergie potentielle de M par rapport au repère  . 

6. Calculer l’énergie potentielle de M par rapport au repère 1 . 

7. Calculer l’énergie cinétique de M par rapport au repère 1 . 

8. En appliquant le théorème de l’énergie cinétique dans le repère 1 , retrouver l’équation différentielle du 

second ordre en t vérifiée par x1 . 

 

 Exercice 2 . 

On considère le repère fixe )z,y,x,O(  de base )k,j,i(


 (repère absolu), (xOy) étant le plan horizontal. 

Soit une tige horizontale (OA), en mouvement autour de l’axe 


Oz avec une vitesse angulaire constante ω. On 

désigne par )e,e,e,O( z1







  le repère lié à la tige (repère relatif). Soit un anneau assimilé à un point 

matériel M, de masse m, se déplaçant sans frottement sur la tige (OA) et repéré dans   par ses 

coordonnées polaires  et φ . On suppose que 0)0t(   et 0)0t(
.

 . 

1. En appliquant le théorème de l’énergie cinétique dans le repère  , déterminer l’équation différentielle du 

mouvement de M. 
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Donner la solution de cette équation en fonction de 0  et ω . 

2. Maintenant l’anneau est soumis à une force de rappel par l’intermédiaire d’un ressort de raideur k, de 

masse négligeable et de longueur à vide 0  . Le ressort est enfilé sur la tige, une extrémité est fixée en O et 

l’autre est attachée au point M. En appliquant le principe fondamental de la dynamique dans  , établir la 

nouvelle équation différentielle du mouvement de l’anneau lors de la rotation de la tige en fonction de 
..

  , 

, 0 ,  k, m et ω. 

 

Exercice 3 . 

Un point matériel M se déplace dans le champ de forces de la forme : F (x ay)i (3y 2x)j     

. 

1) Calculer, en fonction du paramètre a, le travail de F  : 

a) Si M se déplace en ligne droite à partir du point O(0,0) jusqu’au point A(2,4). 

b) Si M se déplace de O en A suivant le trajet OA’A sachant que A’ est la projection orthogonale de A 

sur l’axe Ox.  

2) Pour quelle valeur de a, le travail de F  devient-il indépendant du chemin suivi entre O et A ? 

Déterminer alors l’énergie potentielle Ep dont dérive F . 

 

Exercice 4. 

Soit R(O,xyz) un référentiel orthonormé direct et galiléen, muni de la base )k,j,i(


. Soit M un point 

matériel de masse m. Le point M glisse sans frottements le long d’une tige (T) qui tourne dans le plan 

horizontal (xOy) autour de l’axe 


Oz  avec une vitesse angulaire constante ( t  et 0 ). M est 

soumis, en plus de son poids 


P  et de la réaction de la tige 


R , à une force 






 eFF . Dans ces conditions, 

le mouvement de M le long de la tige suit la loi 






 eatOM  (t étant le temps et a une constante positive). 

)k,e,e(






  est la base cylindrique liée à la tige. 

Toutes les expressions vectorielles doivent être exprimées dans la base )k,e,e(






 . 

1) Calculer la vitesse )R/M(V


et l’accélération )R/M(


  de M dans R en fonction de a, t et  . 

2) Déterminer  )R/M(O



   le moment cinétique en  𝑂  du point M  ainsi que sa dérivée par rapport au temps 

dans R. 

3) Déterminer les moments dynamiques de chacune des forces agissant sur le point M. 

4)  En appliquant le théorème du moment cinétique, trouvez les expressions des composantes de  𝑅. 

5)  Déterminer l’énergie  cinétique )R/M(Ec   du  point  M  dans  R  ainsi  que  sa  dérivée  par rapport au 

temps dans  R. 

6) Déterminer les puissances de chacune des forces agissant sur le point  M. 

7) En appliquant le théorème de l’énergie cinétique, trouver l’expression de F. 

Exercice 5 : 

Un point matériel est soumis à une force F  telle que : 
3F (x 2x )i yj zk    . 

Montrer que F  dérive d’une énergie potentielle pE  que l’on déterminera. Déterminer les positions 

d’équilibre et leurs stabilités. 
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Corrigé 

 

Exercice 1. 

 

 


 j)tsin(i)tcos(i1  



 j)tcos(i)tsin(j1  

 







 1
1 j

dt

id
 ; 







 1
1 i

dt

jd
, 







 0
dt

kd 1  

 

 


 1/1 kk(  

 


 11
2

11 i)t(xkat
2

1
MOOOOM  (a=cte>0) 

1) On exprime dans la base )k,j,i( 111



 : 

a)  La vitesse du point M par rapport au repère   : 





























 1111

.

1

111
2

j)t(xi)t(xkat
dt

i)t(xkat
2

1
d

dt

OMd
)/M(v  



 11111

.

katj)t(xi)t(x)/M(v  

 

b) La vitesse du point M para rapport au repère 1  : 

 




























 11

.
11

1

1
1 i)t(x

dt

i)t(xd

dt

MOd
)/M(v  

c) Le moment cinétique :)/M( 1O1




 


 0i)t(xi)t(mx)/M(VmM0)/M( 11

.

11111O1
 

 

d)  Le poids de M et les forces d’inertie d’entraînement et de Coriolis : 

- 


 1kmggmP  : poids de M. 

- )M(mF ee



  : Force d’inertie d’entraînement. 

- )M(mF cc



  : Force d’inertie de Coriolis. 



j  



k  



i  

x1 

y 

z    z1 

x 

O 

M 



1i  



1j  



1k  

ωt 

O1 

ωt 

y1 
A 



i  


1i  



j  



1j  
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







 )MO)/(()/(MO
dt

)/(d
)/O()M( 1111

1
1e

 





























 12

22

2

11
2

1 kaka
dt

kat
2

1
d

dt

)/(OOd
)/O(  

 

 







0MO0MO
dt

)/(d
11

1  

 


 11
2

1111111 ix)ixk(k)MO)/(()/(  

 


 11
2

1e ixka)M( ,         


 111
2

e kmaixmF  

 


 11

.

11

.

1r1c jx2ixk2)M(v)/(2)M( ,      


 11

.

c jx2mF . 

2) Le repère 1  est en mouvement de rotation par rapport au repère fixe  (galiléen), donc 1  est non 

galiléen. 

3) Principe fondamental de la dynamique (P.F.D.) appliqué au point M dans 1  : 

1  est non galiléen donc : 


  ceext1 FFF)/M(m  



  131211ext kRjRiRRoùRPF  

 

N. B. : On exprime la réaction 


R  dans la base )k,j,i( 111



 pour faire apparaître sa composante tangentielle 

(tangente à la trajectoire). 

Mouvement sans frottement   la composante tangentielle de la réaction est nulle c’est-à-dire R1=0.  


 1312 kRjRR  

Le P.F.D. dans 1  s’écrit : 


 11

.

11
2

11312111

..

jxm2kmaimxkRjRkmgixm . 



 0j)xm2R(k)maRmg(i)mxxm( 11

.

2131
2

11

..

 

















































 

111

.

3

1

.

2

1
2

11

..

3

1

.

2

2
11

..

k)ag(mjxm2R

mamgR

xm2R

xparvérifiéeordred2duéquation0mxxm

0maRmg

0xm2R

0mxxm

 

4. Théorème du moment cinétique dans le repère 1  : 

N. B. : Pour appliquer le théorème du moment cinétique dans le référentiel 1 , il est préférable de choisir un 

point fixe dans 1 : 

 

1  est non galiléen et O1 est fixe dans 1 , donc :  
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








0)F(m)F(m)F(m
dt

)/M(d
cOeOextO

1O

111

1

1  



 RMOPMO)R(m)P(m)F(m 11OOextO 111
 



 111111O jmgx)kmg(ixPMO)P(m
1

 



 13112111131112111O jRxkRxjmgxkRixjRixRMO)R(m
1

 



 1111
2

111e1eO jmax)kmaimx(ixFMO)F(m
1

 



 11

..

111

..

11c1cO kxxm2jxm2(ixFMO)F(m
1

 



 0kxxm2jmaxjRxkRxjmgx 11

.

11113112111  



 0k)xxm2Rx(j)maxRxmgx( 11

.

12111311  



























 111

.

1

.

2

3

1

.

121

1311
k)ag(mjxm2R

xm2R

)ag(mR

0xxm2Rx

0maxRxmgx

 

5. Energie potentielle de M par rapport à   : 

Dans le repère  , la seule force dérivant d’une énergie potentielle (force conservative) est le poids de M 

(


P ). Ainsi l’énergie potentielle du poids de M par rapport au repère  est :  )/P(E)/M(E pp 


. 

)kdzjdyidx.(kmgOMd.P)/P(dW)/P(dE)/M(dE pp



  

ctemgz)/M(Emgdz)/M(dE pp  . 

Ou bien :  















 k

z

E
j

y

E
i

x

E
kmg)E(gradP

ppp
p  

)3(0
z

E
,)2(0

y

E
),1(mg

x

E ppp















  

CtemgzECte)z,y(C

0
y

)z,y(C

y

E
)2(,)z,y(CmgzE)1(

p1

1p
1p














 

 

6. Energie potentielle de M par rapport à 1  : 



 111
2

e kmaixmF ,    

1e

1
2

ee dansveconservatiestF0

ma
z

0
y

xm
x

F)F(rot 


















 

)/P(E)/F(E)/M(E 1p1ep1p 

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Energie potentielle dérivée par 


cF  par rapport à 1  : 

)kdzjdyidx).(kmaimx(OMd.F)/F(dW)/F(dE 11111111
2

1e1e1ep



  



 1111
2

11ep111111 idx)kmaimx()/F(dE0zydzdyt)xO(M  

ctemx
2

1
)/F(Edxmx)/F(dE 22

11ep1
2

11ep 


 

 

Energie potentielle dérivée par 


P  par rapport au repère 1  : 

)kdzjdyidx.(kmgMOd.P)/P(dW)/P(dE 1111111111p



  

0idx.kmg)/P(dE0zydzdyt)xO(M 1111p111111 


 

cte)/P(E 1p 


 

ctemx
2

1
)/M(E 22

11p   

 

7) Energie cinétique de M par rapport au repère 1  : 

       
2

1

.
2

11
2

1c xm
2

1
)/M(vm

2

1
)/M(mv

2

1
)/M(E   

8) Théorème de l’énergie cinétique dans le repère 1  : 

1   est non Galiléen    


)/F(dW)/F(dW)/M(dE 1e1ext1c  

 

 









 



0)/F(dW 1c  



  13121ext kRjRRavecRP)/F  

)/F(dW)/R(dW)/P(dW)/M(dE 1e111c 


 

dt

)/F(dW

dt

)/R(dW

dt

)/P(dW

dt

)/M(dE 1e111c 













 

)puissanceP()/F(P)/R(P)/P(P
dt

)/M(dE
1e11

1c 





 

1

..

1

.
1c xxmx

dt

)/M(dE



  

 

0ix.kmg)/M(v.P)/P(P 11

.

111 


 

0ix).kRjR()/M(v.R)/R(P 11

.

131211 


 

1

.
2

111

.

11
2

11e1e xmxix).kmaimx()/M(v.F)/F(P 


 

0xx:elledifférentiéquation'lretrouveonxmxxxm 1
2

1

..

1

.
2

11

..

1

.

  



7 

 

 

  

Exercice 2 : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Application du théorème de l’énergie cinétique dans le repère   : 

Vecteurs vitesse et accélération du point M par rapport au repère   : 

 

- 

.
.

ee
/dt

)e(d

/dt

OMd
)/M(v























  

- 

.
.

2
..

.

e2e)(
/dt

)ee(d

/dt

)/M(vd
)/M(





























  

Energie mécanique de M par rapport au repère   : 

- 22
2.

2
c m

2

1
m

2

1
)/M(vm

2

1
)/M(E 



 

- cte)/M(E0dz,mgdz)edzeded(emgOMd.P)/P(dE pzzp 










ctem
2

1
m

2

1
)/M(E)/M(E)/M(E 22

2.

pcm   

Application du théorème de l’énergie cinétiqueque dans le repère   : 

 




















R)ee).(eReR()/M(v.R)/R(P)/P(P)/F(P
dt

)/M(dE ..

zzncon
c  

0)ee.(emg)/P(P
..

z 










 


















vesconservatinonforcesF ncon  



















 zzzz eReRR0Rsfrottementsansmouvement,eReReRR  

Théorème du moment cinétique ou P. F. D. : 

.

m2R et mgRz 
2

.

ncon m2)/F(P 


 

x 

y 

z 

O 

M 



i  

j  



k  

φ=ωt 

φ 



e  



e  

A 



ze  
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.
2

...

22
2.

c mm
dt

ctem
2

1
m

2

1
d

dt

)/M(dE




















 

02m2mm 2
..

22
..

2
..

2
...

  

La solution de cette équation est sous la forme : tt BeAe)t(    

0)0t(   et 0BAetBA0)0t( 0

.

  

)t(ch
2

)ee(
2

)t(
2

BA 0tt00 








   

2) Application du principe fondamental de le dynamique dans le repère   : 

)MdePoids(emgP),MsurtigeladeRéaction(eReRR

,)/M(mFRP

zzz












 

0
2

..
2

..

0zzz

0

m

k
)

m

k
()(me)(keReRemg

)Msurressortleparappliquéerappeldeforce(:e)(kF





















 

C’est la nouvelle équation différentielle du mouvement de l’anneau lors de la rotation de la tige lorsque M 

soumis à une force de rappel du ressort. 

 

Exercice 3: 

F (x ay) i (3y 2x) j
  

     ;     dOM dx i dy j
  

   

 

dW (x ay)dx (3y 2x)dy     

 

a) y=2x  dy 2dx   

 

dW (x 2ax)dx (6x 2x)2dx (9x 2ax)dx       

2
2

2
0

0

x
W (9x 2ax)dx (9 2a) (18 4a)

2

 
      

  

 

b) OA OA' A'AW W W   

 

OA'W  :        

2
22

OA'
0 0

x
0 x 2 ; y 0 , dy 0 W xdx 2J

2

 
        

  

 

 

A'AW  :        

4
24

A 'A
0 0

y
x 2 ; dx 0 , 0 y 4 W (3y 4)dy 3 4y 8J

2

 
          

  

 

 

OA OA' A'AW W W 10J    

 

2°) 18-4a=10     donc    a=2. 

 

F (x ay) i (3y 2x) j ; rot F 0 .
     

      

y=2x 

O A 

M 

x 

y 

i


 

j

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2
p p p

p 1

E (x, y) E (x, y) E (x, y) x
F i j ; x 2y E (x, y) 2xy C (y).

x y x 2

    
           

  
 

2
p 1

1

E (x, y) dC (y) y
2x 2x 3y C (y) 3 K.

y dy 2


       


 

D’où : 
2 2

p
x 3y

E (x, y) 2xy K.
2 2

      

 

Exercice 4 : 

 

1°) 











 eatea
dt

OMd
)R/M(V

R

 












 ea2eat
dt

OMd
)R/M( 2

R

2

2

 

2°) 










 ktma)eatea(meat)R/M(VmOM)R/M( 22
O  







ktma2
dt

)R/M(d 2

R

O  

 

3°) Moments dynamiques : 

0eFeatFmOM)F(O 










 











 eatmgk)mg(eatPOM)P(O  

)kReR(ateatRkatR)kReR(eatROM)R( zzzO



























  

 

4° Théorème du moment cinétique : 

)R()P()F(
dt

)R/M(d
OOO

R

O







 

.mgRetma2R)kRe)Rmg((atktma2 zz
2  











 

 

5°) tma
dt

)R/M(Ed
et)taa(m

2

1
)R/M(Vm

2

1
)R/M(E 22c2222

2

c 




. 

 

6°) Puissances : 

Fa)eatea.(eF)R/M(V.F)F( 














 

O)eatea.(kmgF)R/M(V.P)P( 










 

.tma2atR)eatea).(kReR()R/M(V.R)R( 22
z  














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7°) Théorème de l’énergie cinétique : 

)R()P()F(
dt

)R/M(dEc


  

.tmaFatma2Fa.tam 22222   

 

Exercice 5 : 

 

pEgradUgradF


  

z
x

U
F;y

y

U
F;x2x

x

U
F zy

3
x 














  

)z,y(f
2

x

2

x
)z,y,x(Ux2x

x

U 42
3 




 

cte
2

z
)z(g

dz

)z(dg
z

x

U
et)z(g

2

y
)z,y(fy

y

U 22










 

D’où       cte
2

z

2

y

2

x

2

x
)z,y,x(U

2242

 .   

Postions d’équilibre :   Fx=Fy=Fz=0 

Donc   .0z;0y;

2

2
x

0x














 

Nous avons alors 3 positions d’équilibre : )0,0,
2

2
(;)0,0,

2

2
(;)0,0,0(   

Stabilité d’équilibre: 

 

 

Variation de 3x2x
x

U





 

 

  }0xU},
2

2
xU minmax   

 

Variation de .z
z

U
ety

y

U










 

 

U n’est jamais maximal (EP minimale) pour les trois  

Coordonnées à la fois, donc l’équilibre est instable. 

x 

x

U




 

U 

0 

O O O + + - - 

2

2
  

2

2
  

+ 

y 

y

U




 

U 

0 

O - 

z 

z

U




 

U 

0 

O - + 


