
Exercice 1 Calculons les limites suites :

1. lim
x−→1+

x2 − 9

x2 + 2x− 3

On a :

limx−→1+ (x2 − 9) = −8 et limx−→1+ (x2 + 2x− 3) = 0+. Donc :

lim
x−→1+

x2 − 9

x2 + 2x− 3
= −∞.

2. lim
x−→∞

√
x2 + 4x− 9− x

(a) Calculons la limite lorsque x −→ −∞: En effet, lorsque x −→ −∞,
x est négative. Donc :

√
x2 + 4x− 9− x = −x

√
1 +

4

x
− 9

x2
− x −→ +∞.

(b) Calculons la limite lorsque x −→ +∞: En effet, lorsque x −→ +∞,
x est positive. Donc :

lim
x−→+∞

√
x2 + 4x− 9 = +∞ et lim

x−→∞
x = +∞.

On est donc en présence d’une forme indérminée (+∞ − ∞). Par
conséquent, il faut d’abord lever l’indétermination avant de procéder
à la recherche de la limite. Dans le cas où l’expression contient une
racine carrée, souvent on multiplie et on divise par le conjugué de
cette expression. En effet,

√
x2 + 4x− 9− x =

(√
x2 + 4x− 9− x

) (√
x2 + 4x− 9 + x

)
√
x2 + 4x− 9 + x

=
4x− 9√

x2 + 4x− 9 + x

=

x

(
4− 9

x

)
x

(√
1 +

4

x
− 9

x2
+ 1

)

=
4− 9

x√
1 +

4

x
− 9

x2
+ 1

.

D’où,

lim
x−→+∞

√
x2 + 4x− 9− x = 2.
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3. lim
x−→0

x2

(
1 + 2 + . . .

[
1

|x|

])
∀x ∈ R∗,

[
1

|x|

]
∈ N∗. D’où, 1 + 2 + . . .

[
1

|x|

]
est la somme des n =

[
1

|x|

]
premiers termes consécutifs d’une suite arithmétique de raison 1 et de
premier terme 1. D’où,

1 + 2 + . . .

[
1

|x|

]
=

[
1

|x|

]
(

[
1

|x|

]
+ 1)

2
.

Or, ∀x ∈ R∗, 
1

|x|
− 1 <

[
1

|x|

]
≤ 1

|x|

1

|x|
<

[
1

|x|

]
+ 1 ≤ 1

|x|
+ 1.

D’où,

x2

2

(
1

|x|

)(
1

|x|
− 1

)
<

x2

2

([
1

|x|

])([
1

|x|

]
+ 1

)
≤ x2

2

(
1

|x|

)(
1

|x|
+ 1

)
.

Ce qui est équivalent à :

1

2
(1− |x|) < x2

2

([
1

|x|

])([
1

|x|

]
+ 1

)
≤ 1

2
(1 + |x|) .

Puisque

lim
x−→0

(
1

2
(1− |x|)

)
= lim

x−→0

(
1

2
(1 + |x|)

)
=

1

2
,

alors, d’après le théorème d’encadrement on a :

lim
x−→0

x2

(
1 + 2 + . . .

[
1

|x|

])
=

1

2
.
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Exercice 2 On considère la fonction f définie par :

f : R −→ R

x 7−→ x3 + 6x + 1

9
.

Soit (un) la suite récurrente définie par : u0 = 0,

un+1 = f(un), ∀n ∈ N.

1. Montrons qe la fonction g définie par :

g : R −→ R
x 7−→ x3 − 3x + 1

est strictement décroissante sur l’intervalle

[
0,

1

2

]
. En effet, g est une

fonction dérivable sur R et

∀x ∈ R, g′(x) = 3x2 − 3 = 3(x− 1)(x + 1).

Donc, g′(x) < 0 si et seulement si x ∈ ]−1, 1[. Puisque

[
0,

1

2

]
⊂ ]−1, 1[,

alors ∀x ∈
[
0,

1

2

]
, g′(x) < 0. On conclut donc que g est strictement

décroissante sur l’intervale

[
0,

1

2

]
.

Déduisons de ce qui précède que l’équation g(x) = 0 admet une et une seule

solution x0 ∈
[
0,

1

2

]
. En effet, la fonction g est continue et strictement

monotone sur l’intervalle

[
0,

1

2

]
, d’où g est une bijection de

[
0,

1

2

]
vers[

g

(
1

2

)
, g (0)

]
=

[
−3

8
, 1

]
. Puisque 0 ∈

[
−3

8
, 1

]
, alors il existe un unique

antécédent x0 ∈
[
0,

1

2

]
. On conclut que l’équation g(x) = 0 adment une

solution unique dans

[
0,

1

2

]
; g(x0) = 0.

2. Déduisons que x0 est le seul point dans

[
0,

1

2

]
tel que f(x) = x.

Un calcul direct donne : f(x)−x =
g(x)

9
. Donc, f(x) = x si et seulement

si g(x) = 0. Or, la seule solution de l’équation g(x) = 0 dans l’intervalle[
0,

1

2

]
est x0. D’où, x0 est l’unique point de l’intervalle

[
0,

1

2

]
vérifiant

f(x0) = x0.

Montrons que ∀x ∈ [0, x0], on a f(x) ≥ x. En effet,
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0 ≤ x ≤ x0 =⇒ g(x0) ≤ g(x) ≤ g(0) car g est décroissante. D’où,
0 ≤ 9(f(x)− x) ≤ 1. Par suite, ∀x ∈ [0, x0] , f(x) ≥ x.

3. Montrons par récurrence que ∀n ∈ N, 0 ≤ un ≤ x0. En effet, la fonction f

est dérivable sur R et ∀x ∈ R, f ′(x) =
x2 + 2

3
> 0. Donc, f est strictement

croissante.

Pour n = 0, on a bien 0 ≤ u0 = 0 ≤ x0.
Supposons que 0 ≤ un ≤ x0 pour un certain n ∈ N, alors f(0) ≤ f(un) ≤
f(x0) = x0. Ce qui implique que 0 <

1

9
≤ un+1 ≤ x0. CQFD.

4. Étudions la monotonie de la suite (un). En effet, puisque un ∈ [0, x0] ,∀n ∈
N, alors d’après la question 2, f(xn) ≥ un ce qui est équivalent à un+1 ≥
un. Par conséquent, la suite (un) est croissante.

Puisque la suite (un) est croissante et marorée (par x0 par exemple), alors
elle est convergente vers l ∈ R tel que : f(l) = l. De plus, l ∈ [0, x0] ⊂[
0,

1

2

]
. D’où, l = x0.
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Exercice 3 Soit f une fonction définie de [0, 1] vers [0, 1] continue. Montrons
qu’il existe x0 ∈ [0, 1] tel que : f(x0) = x0.

En effet, on pose la fonction :

g : R −→ R
x 7−→ f(x)− x.

La fonction g est continue sur [0, 1]. De plus,

g(0) = f(0)− 0 ≥ 0, car f(0) ∈ [0, 1]

g(1) = f(1)− 1 ≤ 0 car f(1) ∈ [0, 1] .

D’après le théorème des valeurs intermédiaires,

∃x0 ∈ [0, 1] tel que g(x0) = 0⇐⇒ f(x0) = x0.
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Exercice 4 Soit f la fonction défnie sur [0, 1] par : f(x) =
x2

2− x2
. On considère

la suite récurrente (un) définie par :
u0 =

1

2
,

un+1 = f(un), n ∈ N.

1. Montrons que f est une bijection de [0, 1] vers [0, 1]. En effet, la fonction f

est définie et dérivable sur [0, 1] et ∀x ∈ ]0, 1], on a : f ′(x) =
4x

(2− x2)2
> 0.

D’où, f est strictement croissante sur [0, 1]. De plus, f est continue sur
[0, 1]. Donc, f est une bijection de [0, 1] vers f([0, 1]) = [f(0), f(1)] = [0, 1]

2. Étudions la monotonie de la suite (un).

Puisque la fonction qui définit la suite est croissante, il suffit de comparer

u0 et u1 pour conclure en la monotonie de la suite. Or, u1 = f(u0) =
1

7
<

u0 =
1

2
. On conclut donc que la suite (un) est décroissante.

3. Vérifions si la suite (un) est convergente et si oui, déterminons sa limite.

Puisque (un) est décroissante, alors elle sera convergente si et seulement
si elle est minorée.

Montrons par récurrence que la suite (un) ⊂ [0, 1]. En effet,

Pour n = 0, on a : u0 =
1

2
∈ [0, 1].

Supposons que un ∈ [0, 1] pour un certain n ∈ N. Puisque f([0, 1]) = [0, 1],
alors un+1 = f(un) ∈ [0, 1]. Par conséquent, ∀n ∈ N, 0 ≤ un ≤ 1. D’où la
suite (un) elle est minorée (par exemple par 0). (un) est décroissante
et minorée, alors elle converge vers l ∈ R tel que : f(l) = l. Or,
f(l) = l ⇐⇒ l3 + l2 − 2l = 0. D’où, l = −2, l = 0 ou l = 1. Puisque (un)
positive et décroissante, alors l = 0.

1



Exercice 5. Soit f : R −→ R une fonction dérivable. On suppose qu’il existe
x0 ∈ R tel que f(x0) = 0 et que ∀x ∈ R, f ′(x) > f(x).

Montrons que ∀x > x0, f(x) > 0.

On pose : g(x) = e−xf(x). La fonction g est dérivable sur R et

∀x ∈ R, g′(x) = e−x (f ′(x)− f(x)) > 0.

Donc, la fonction g est strictement croissante sur R. D’où,

∀x ∈ R, x > x0 =⇒ g(x) > g(x0) = e−x0f(x0) = 0.

Par conséquent, ∀x > x0, g(x) = e−xf(x) > 0. Ce qui est équivalent à :
∀x > x0, f(x) > 0.

Déduction. Soit a ∈ R∗+. Montrons que l’équation : aex = 1 + x +
x2

2
admet une et une seule solution dans R. En effet, en s’inspirant de ce qui
précède, on pose :

h(x) = aex −
(

1 + x +
x2

2

)
.

La fonction h est dérivable sur R et ∀x ∈ R, h′(x) = aex − 1 − x. D’où, ∀x ∈
R, h′(x) > h(x). De plus, limx−→−∞ h(x) = −∞ et limx−→+∞ h(x) = +∞.
D’après le théorème des valeurs intermédiaires, il existe x0 ∈ R tel que h(x0) = 0.

D’après ce qui précède : ∀x > x0, h(x) > 0. Alors, la fonction h est stricte-
ment croisante sur R. Supposons qu’il existe un point x1 ∈ R, x1 6= x0 tel que
h(x1) = 0. Supposons sans perte de généralité que x1 < x0. Puisque h est
ctrictement croissante, alors h(x1) = 0 < h(x0) = 0 ce qui est absurde. Donc,
ce qu’on a supposé est faut. Par conséquent, x0 est l’unique point de R tel que

aex0 = 1 + x0 +
x2
0

2
.
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Exercice 6. Soient a ∈ R∗+ et f la fonction définie par :

f(x) = a +
x

2(1 + x2)
, x ∈ R.

On considère la fonction ϕ définie sur R par : ϕ(x) = x− f(x).

1. Montrons que f est dérivable sur R. En effet, si x0, x ∈ R, on a :

f(x)− f(x0)

x− x0
=

1− xx0

2(1 + x2)(1 + x2
0)
.

D’où,

lim
x−→x0

f(x)− f(x0)

x− x0
=

1− x2
0

2(1 + x2
0)2
∈ R.

D’où, f est dérivable sur R et ∀x ∈ R, f ′(x) =
1− x2

2(1 + x2)2
.

Montrons que f ′(x) ≤ 1

2
. En effet, ∀x ∈ R, 1− x2 ≤ 1,

2(1 + x2)2 ≥ 2.

Alors, f ′(x) =
1− x2

2(1 + x2)2
≤ 1

2
.

2. Montrons que la fonction ϕ définie par ϕ(x) = x − f(x) est strictement
croissante.

La fonction ϕ est dérivable sur R et ∀x ∈ R, ϕ′(x) = 1 − f ′(x) > 0

car f ′(x) ≤ 1

2
. Donc, ϕ est strictement croissante sur R.

Calculons les limites de ϕ en ±∞.

Puisque limx−→±∞ f(x) = a, limx−→−∞ x = −∞ et limx−→+∞ x = +∞,
alors

lim
x−→−∞

ϕ(x) = −∞ et lim
x−→+∞

ϕ(x) = +∞.

La fonction ϕ est continue et strictement monotone sur R. D’après le
théorème de la bijection, ϕ est bijective de R vers ϕ(R) = R. Donc, il
existe un unique antécédent xa de 0 par la fonction ϕ;

∃xa! ∈ R, ϕ(xa) = 0⇐⇒ ∃xa! ∈ R/f(xa) = xa.

3. Déterminons le signe de ϕ(a). En effet, par un calcul direct, on obtient

ϕ(a) = a− f(a) = − a

2(1 + a2)
< 0.

Déduction. Puisque la fonction ϕ est bijective et strictement croissante,
alors ϕ−1 existe et elle est strictement croissante aussi. D’où,

ϕ(a) < 0 = ϕ(xa) =⇒ ϕ−1(ϕ(a)) < ϕ−1(ϕ(xa))⇐⇒ a < xa.
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Exercice 7. On considère la fonction f définie comme suit :

f : −→ R
x 7−→ x2.

Pour tout n ∈ N∗, xn = n+
1

n
et yn = n.

Par un calcul direct et simple, on trouve que :

|f(xn)− f(yn)| = 2 +
1

n2
.

Supposons que la fonction f est uniformément continue sur [1,+∞[. Alors,

Soit ε > 0,∃δ > 0,∀x ∈ [1,+∞[ ,∀y ∈ [1,+∞[ , |x−y| < δ =⇒ |f(x)−f(y)| < ε.

Or, ∀n ∈ N∗, |xn − yn| =
1

n
. D’après la propriété d’Archimède, ∃n ∈ N∗ tel que

1

n
< δ. D’où, il existe n ∈ N∗ tel que |xn − yn| < δ. Ceci implique que

|f(xn)− f(yn)| < ε⇐⇒ 2 +
1

n2
< ε.

Or, si on prend 0 < ε < 2, cette inégalité n’est pas satisfaite (contradiction avec
ce qu’on a supposé). On conclut que f n’est pas uniformément continue.
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Exercice 8. Soit f : [a, b] −→ R une fonction continue. Soient x1, . . . , xn des
réels dans l’intervalle ouvert ]a, b[.

On pose :
m = min(f(xi))1≤i≤n et M = max(f(xi))1≤i≤n.

On a :

m ≤ f(x1) + · · ·+ f(xn)

n
≤M.

Or, ∃i0, i1 ∈ [|1, n|] tel que : m = f(xi0) et M = f(xi1). Donc, la valeur

f(x1) + . . . f(xn)

n
est comprise entre f(xi0) et f(xi1). Puisque f est continue

sur l’intervale fermé d’extrémités xi0 et xi1 , alors par le théorème des valeurs in-

termédiares, il existe x0 compris entre xi0 et xi1 tel que f(x0) =
f(x1) + . . . f(xn)

n
.

Puisque xi0 , xi1 ∈]a, b[, alors x0 ∈]a, b[.
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Exercice 9.
La fonction g définie pour x 6= 0 par

g(x) =
f(x)

x

admet une limite lorsque x tend vers 0. En effet, si n ∈ N∗, alors sin(nx)
x = n sin(nx)nx tend vers n lorsque x

tend vers 0.
On a donc

limx→0g(x) = a1 + 2a2 + ...+ nan.

D’autre part, puisque |f(x)| ≤ |sin(x)| pour tout x ∈ R, on a

|g(x)| ≤ |sin(x)

x
|

pour tout réel x 6= 0. Comme conséquence, on a limx→0|g(x)| = |a1 + 2a2 + ...+ nan| ≤ limx→0| sin(x)x | = 1.

Remarque. Une autre méthode consiste à remarquer que la fonction f est dérivable avec f ′(0) = a1 +
2a2 + ...+ nan. Or, f ′(0) est la limite du rapport

f(x)

x
, lorsque x trend vers 0.

D’après les hypothèses, on a la majoration suivante :

|f(x)

x
| ≤ |sin(x)

x
|.

Par passage à la limite, on obtient : |a1 + 2a2 + ...+ nan| ≤ 1.

Exercice 10.
Tout d’abord, f admet un point fixe car si on considère la fonction g définie, pour tout x ∈ [a, b], par
g(x) = f(x) − x, alors la fonction g est continue sur [a, b]. De plus, elle vérifie g(a) ≥ 0 et g(b) ≤ 0. Par
application du théorème de la valeur intermédiaire, il existe x0 ∈ [a, b] tel que g(x0) = 0. L’élément x0 vérifie
f(x0) = x0.
Il reste à montrer l’unicité de x0. Supposons qu’il existe un autre élément x1 de [a, b] tel que f(x1) = x1 et
supposons par exemple qu’on ait : x0 < x1. L’application f étant dérivable sur [a, b], on peut appliquer le
théorème des accroissements finis à f sur [x0, x1]. Il existe alors c ∈]x0, x1[ tel que

f(x1)− f(x0)

x1 − x0
= f ′(c).

Cela implique f ′(c) = 1 ce qui contredit l’hypothèse f ′(x) 6= 1, pour tout x ∈]a, b[. Il existe donc un seul
élément x0 ∈ [a, b] tel que f(x0) = x0.

Exercice 11.
Si on considère la fonction h donnée, elle vérifie f(a) = f(b) = 0. Puisque’elle est continue sur [a, b] et
dérivable sur ]a, b[, on peut appliquer le théorème de Rolle. Il existe donc x0 ∈]a, b[ tel que h′(x0) = 0.
Si on calcule la dérivée de h, on obtient :

h′(x) = [f ′(x) + f(x)g′(x)]eg(x).

Par suite, l’égalité h′(x0) = 0 équivaut à f ′(x0) + f(x0)g′(x0) = 0.
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Exercice 12.
On considère la fonction g définie pour tout x ∈ [0, 2] par

g(x) = f(x)− x.

Cette fonction est aussi deux fois dérivable sur [0, 2] et elle vérifie

g(0) = g(1) = g(2) = 0.

On peut appliquer le théorème de Rolle à g sur l’intervalle [0, 1]. Il existe x1 ∈]0, 1[ tel que g′(x1) = 0.
On applique aussi le théorème de Rolle à g sur [1, 2]. Il existe donc x2 ∈]1, 2[ tel que g′(x2) = 0.

La fonction g′ est continue sur [x1, x2] et dérivable sur ]x1, x2[. Elle vérifie g′(x1) = g′(x2) = 0, on peut
lui appliquer le théorème de Rolle. Il existe x0 ∈]x1, x2[ tel que (g′)′(x0) = g”(x0) = 0.
D’autre part, on a :

g”(x) = f”(x), pour tout x ∈]0, 2[.

Par conséquent, x0 vérifie aussi f”(x0) = 0.

Exercice 13.
Pour montrer que f est uniformément continue, on va montrer que f est lipschitzienne, c’est à dire

Il existe une constante réelle K > 0, telle que ∀(x, y) ∈]a, b[, on a |f(x)− f(y)| ≤ K|x− y|.

Pour cela, il suffit de montrer que la dérivée est majorée par une constante K > 0. En effet, si on applique
le théorème des accroissements finis à f sur [x, y], pour tout a < x < y < b, on aura

|f(x)− f(y)|
|x− y|

≤ K.

On choisit un élément fixé α ∈]a, b[, alors pour tout x ∈]a, b[, on peut appliquer le théorème des accroisse-
ments finis à f ′ sur [α, x] ou [x, α] selon le cas.

Supposons, par exemple, α < x, alors il existe c ∈]α, x[ tel que

f ′(x)− f ′(α)

x− α
= f”(c).

On déduit donc | f
′(x)−f ′(α)
x−α | ≤M, où M est la constante qui vérifie |f”(x)| ≤M pour tout x ∈]a, b[.

On a donc la majoration |f ′(x)| ≤ M(b − a) + |f ′(α)|. La constante K cherchée peut être choisi en posant
K = M(b− a) + |f ′(α)|.

Exercice 14.
1. Puisque g est dérivable sur [c, d] (donc continue sur [c, d]) et vérifie g(c) = g(d) = 0, on peut lui appliquer
le théorème de Rolle. Il existe donc x0 ∈]c, d[⊂ [c, d] tel que g′(x0) = 0.

2. La fonction g est deux fois dérivable et vérifie g”(x) ≤ 0 pour tout x ∈]c, d[. On déduit que la fonc-
tion g′ est décroissante sur [c, d].

Si on décompose [c, d] = [c, x0] ∪ [x0, d]. Alors, puisque g′(x0) = 0, on a g′(x) ≥ 0 pour tout x ∈ [c, x0]
et donc g est croissante sur [c, x0]. On a donc

g(x) ≥ g(c) = 0, pour tout x ∈ [c, x0].

De même, sur l’intervalle [x0, d], g′ est décroissante et donc on a

g′(x) ≤ g′(x0) = 0, pour tout x ∈ [x0, d].

Ainsi, la fonction g est décroissante sur [x0, d] et on a

g(x) ≥ g(d) = 0, pour tout x ∈ [x0, d].

On a donc obtenu le résultat souhaité.
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