Exercice 1 Calculons les limites suites :

1.

. 2 -9
im ——m—
-1+ 22 + 22— 3
On a:
lim, 1+ (2% —9) = —8 et lim,__,;+ (2% + 22 — 3) = 0". Donc :
. x2 -9
lim ——m— = —0.
-1+ 22 422 — 3
lim Va2 +42—9—2
xr—>00

(a) Calculons la limite lorsque & — —oo: En effet, lorsque © — —o0,
x est négative. Donc :

4 9
\/m2+4x—9—x:—x\/1+;—;—x—%ﬁ—oo.

(b) Calculons la limite lorsque x — +oo: En effet, lorsque © — 400,
x est positive. Donc :

lim V22442 —-9=+00 et lim x = +oo.

xr—+00 Tr—>00

On est donc en présence d’une forme indérminée (+o00 — c0). Par
conséquent, il faut d’abord lever I'indétermination avant de procéder
a la recherche de la limite. Dans le cas ou I'expression contient une
racine carrée, souvent on multiplie et on divise par le conjugué de
cette expression. En effet,

/2 —0_ /2 _
Va2 +d4r —9+x
4r — 9
Va2 +dr —9+x

D’ou,



3.

. 2 1
Im z“(1+24+...|—
x—0 |l“
1

1 1
Vo € R*, [] eN*. Dou, 1+2+... [] est la somme des n = []

- - Lel) . ]
premiers termes consécutifs d’une suite arithmétique de raison 1 et de
premier terme 1. D’ot,

1 1
1) ]+
veas 1] 2 L) i
Or, Vz € R*,
1 [ 1 } 1
R 1 < |l—| < PR
|| || ||
1 1 1
— <[}+1< — +1
|| || ||
D’ou,

20 G- () <3

Ce qui est équivalent a :

i< () () 30
i (50 -1e)) = tim (501D = 5

alors, d’apres le théoreme d’encadrement on a :

1 1
lim 22 (1+24+...|—| ) ==.
z—0 |x‘ 2

N

Puisque



Exercice 2 On considéere la fonction f définie par :

ffR — R
3+ 62z +1
T _
9
Soit (uy,) la suite récurrente définie par :
Uo = 07
Uny1 = f(up), ¥YneN.
1. Montrons ge la fonction g définie par :
g:R — R
T — 23 —3z+1

1
est strictement décroissante sur l'intervalle [O, 2}. En effet, g est une

fonction dérivable sur R et

Vo € R, ¢'(x) =322 =3 =3(x —1)(x + 1).
. . . 1
Donc, ¢'(x) < 0 si et seulement si z € |—1,1[. Puisque [O, 2} C ]-1,1],
1
alors Vx € {O, 2] ,g'(z) < 0. On conclut donc que g est strictement

1
décroissante sur l'intervale [0, 2] .

Déduisons de ce qui précede que I’équation g(x) = 0 admet une et une seule

1
solution xg € {0, 2]. En effet, la fonction g est continue et strictement

1 1
monotone sur l'intervalle [0, 2}, d’oll g est une bijection de [O, 2} vers

1 3 3
[g (2> N (0)] = {—8, 1} . Puisque 0 € [—8, 1] , alors il existe un unique

1
antécédent zg € |0, 3| On conclut que I’équation g(x) = 0 adment une

1
solution unique dans [O, 2} ; g(xo) = 0.

1
2. Déduisons que zq est le seul point dans [07 2} tel que f(x) = x.

Un calcul direct donne : f(z) —x = M Donc, f(x) = x si et seulement

si g(x) = 0. Or, la seule solution de ’équation g(x) = 0 dans Uintervalle
1 1

[O, 2} est xg. D’ou, xg est 'unique point de l'intervalle |0, 2] vérifiant

f(Io) = Zo-

Montrons que Vz € [0,20], on a f(x) > z. En effet,



0 <z <2 = g(xo) < g(x) < g(0) car g est décroissante. D’o1,
0 <9(f(x) — ) < 1. Par suite, Vz € [0, z0], f(z) > z.
. Montrons par récurrence que Vn € N, 0 < u,, < xg. En effet, la fonction f

2
2
est dérivable sur R et Vo € R, f/(z) = T

croissante.

> 0. Donc, f est strictement

Pour n =0, on a bien 0 < up =0 < zg.
Supposons que 0 < u,, < zp pour un certain n € N, alors f(0) < f(u,) <

1
f(xo) = zp. Ce qui implique que 0 < ) < Upt1 < zg. CQFD.

. Etudions la monotonie de la suite (up,). En effet, puisque u,, € [0,20],Vn €
N, alors d’apres la question 2, f(z,) > u, ce qui est équivalent & w,4+1 >
u,. Par conséquent, la suite (un) est croissante.

Puisque la suite (u,,) est croissante et marorée (par xo par exemple), alors
elle est convergente vers I € R tel que : f(I) = I. De plus, | € [0,z0] C

1
[07 2}. D’ou, | = xyg.



Exercice 3 Soit f une fonction définie de [0, 1] vers [0, 1] continue. Montrons
qu'il existe zg € [0, 1] tel que : f(xo) = xo.

En effet, on pose la fonction :

g:R — R
x —  f(z) —z.

La fonction g est continue sur [0,1]. De plus,
9(0) = f(0)=0>0, car f(0)€[0,1]
g(1) = FO)-1<0 car f(1)€[0,1].
D’apres le théoreme des valeurs intermédiaires,

dzo € [0,1] tel que g(xo) =0 <= f(zo) = wp.



2

Exercice 4 Soit f la fonction défnie sur [0, 1] par : f(z) = % On considere
-z

la suite récurrente (u,,) définie par :

1
Up = 57
Un+1 = f(un)a n € N.
1. Montrons que f est une bijection de [0, 1] vers [0, 1]. En effet, la fonction f
4
est définie et dérivable sur [0, 1] et Vo € ]0,1], ona: f'(z) = ﬁ > 0.
—x

Dot f est strictement croissante sur [0,1]. De plus, f est continue sur
[0,1]. Donc, f est une bijection de [0, 1] vers f([0, 1]) = [f(0), f(1)] = [0,1]

2. Etudions la monotonie de la suite (un).

Puisque la fonction qui définit la suite est croissante, il suffit de comparer

1
ug et u; pour conclure en la monotonie de la suite. Or, u; = f(ug) = = <

1
Uuo = 5 On conclut donc que la suite (u,) est décroissante.
3. Vérifions si la suite (u,) est convergente et si oui, déterminons sa limite.

Puisque (uy,) est décroissante, alors elle sera convergente si et seulement
si elle est minorée.

Montrons par récurrence que la suite (u,) C [0,1]. En effet,

Pour n=0,0na: uy = % € [0,1].

Supposons que u,, € [0, 1] pour un certain n € N. Puisque f([0,1]) = [0, 1],
alors up4+1 = f(uy,) € [0,1]. Par conséquent, ¥n € N,0 < u,, < 1. D’ou la
suite (uy) elle est minorée (par exemple par 0). (uy) est décroissante
et minorée, alors elle converge vers [ € R tel que : f(I) = I. Or,
f)=1l<=1P¥+12-21=0. Do, l = —2,l =0 ou |l = 1. Puisque (u,,)
positive et décroissante, alors [ = 0.



Exercice 5. Soit f : R — R une fonction dérivable. On suppose qu’il existe
zo € R tel que f(zo) =0 et que Vx € R, f'(z) > f(x).

Montrons que Va > xq, f(z) > 0.

On pose : g(x) = e " f(z). La fonction g est dérivable sur R et
Vz €R, g (z) = e " (f'(x) — f(x)) > 0.
Dong, la fonction g est strictement croissante sur R. D’ot,
Ve e R,z > x9g = g(x) > g(xo) = e " f(zg) = 0.

Par conséquent, Vo > xzg,g(x) = e *f(x) > 0. Ce qui est équivalent a :
Vo > xg, f(x) > 0.

2
x
Déduction. Soit a € R**. Montrons que I’équation : ae® = 1 + 2 + —
admet une et une seule solution dans R. En effet, en s’inspirant de ce qui
précede, on pose :

IQ
h<x>=aer—(1+m+2).

La fonction h est dérivable sur R et Vo € R,/ (x) = ae® — 1 — . Do, Vz €
R,h (x) > h(z). De plus, lim,_, o h(z) = —0c0 et lim,_, o h(z) = +o0.
D’apres le théoréme des valeurs intermédiaires, il existe zy € R tel que h(zg) = 0.

D’apres ce qui précede : Vo > xg, h(z) > 0. Alors, la fonction h est stricte-
ment croisante sur R. Supposons qu’il existe un point z; € R, z; # z( tel que
h(z1) = 0. Supposons sans perte de généralité que z1 < zg. Puisque h est
ctrictement croissante, alors h(z1) = 0 < h(zg) = 0 ce qui est absurde. Donc,
ce qu’on a supposé est faut. Par conséquent, xg est I'unique point de R tel que

aexozl—l—xo—l—%.



Exercice 6. Soient a € R* et f la fonction définie par :

f(m):a—&-ﬁ,xeﬂk.

On considere la fonction ¢ définie sur R par : o(x) =z — f(z).

1. Montrons que f est dérivable sur R. En effet, si g,z € R, on a :

fl@) = flxo) _ 1 —zao
x — X 2014+ 22)(1 +a3)
D’o,
_ 2
lim flx) = flzo) _ 1 xg cR.
T—mzo T — T 2(1+ z5)?
D’ol, f est dérivable sur R et Vo € R, f/(z) = L—a?
1, riv: ur i —_
2(1+x2)?"
Montrons que f'(z En effet, Vo € R,
< 1

1
2
{ 1+x > 2.

1—
Alors, f'(x) = Z(Tz)QSQ

2. Montrons que la fonction ¢ définie par p(z) = = — f(x) est strictement
croissante.

La fonction ¢ est dérivable sur R et Vo € R, ¢'(z) = 1 — f'(z) > 0

1
car f'(x) < 3 Donc, ¢ est strictement croissante sur R.
Calculons les limites de ¢ en £oo.

Puisque lim, 1+ f(2) = @, lim,— ooz = —00 et lim, o x = +00,
alors
lim @(z) =-0c0 et lim ¢(x)=+o0.

T—>—00 T —>+00

La fonction ¢ est continue et strictement monotone sur R. D’apres le
théoreme de la bijection, ¢ est bijective de R vers o(R) = R. Dong, il
existe un unique antécédent x, de 0 par la fonction (;

Jz,! € R, p(xy) =0 <= Jz,! € R/ f(x4) = 24-

3. Déterminons le signe de ¢(a). En effet, par un calcul direct, on obtient
a
= — = - O.
Pl) =~ (o) = 5oy <

Déduction. Puisque la fonction ¢ est bijective et strictement croissante,
alors ! existe et elle est strictement croissante aussi. D’ou,

p(a) < 0=p(zs) = ¢ (p(a)) < ¢ (p(xa)) < a < Tq.



Exercice 7. On considere la fonction f définie comme suit :

f: —
r — 22

1
Pour tout n e N*, x,, =n+ — et y, =n.
n

Par un calcul direct et simple, on trouve que :

1
Supposons que la fonction f est uniformément continue sur [1, +oo[. Alors,

Soit € > 0,36 > 0,Vx € [1,400[,Vy € [1,+oo, |z—y| < d = |f(z)—f(y)] < e.

1

Or, ¥n € N*, |x,, — y,| = —. D’apres la propriété d’Archimede, In € N* tel que
n

1

— < 4. Doy, il existe n € N* tel que |z, — yn| < §. Ceci implique que

n

|f(zn) — flyn)| <e <=2+ % <e.

Or, si on prend 0 < € < 2, cette inégalité n’est pas satisfaite (contradiction avec
ce qu’on a supposé). On conclut que f n’est pas uniformément continue.



Exercice 8. Soit f : [a,b] —> R une fonction continue. Soient x1,...,x, des
réels dans intervalle ouvert ]a, b|.

On pose :
m = min(f(x;))i1<i<n et M = max(f(x;))1<i<n-

On a:

e FE) +t fa)
n

Or, Jig, 41 € [|1,n|] tel que : m = f(x;,) et M = f(z;,). Donc, la valeur

fle) + .. fwn)

n
sur 'intervale fermé d’extrémités x;, et x;,, alors par le théoreme des valeurs in-

est comprise entre f(x;,) et f(x;). Puisque f est continue

fa)+ - o)

termédiares, il existe xo compris entre x;, et z;, tel que f(xg) =
n

Puisque z;,,z;, €|a,b[, alors zq €]a, b[.
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Exercice 9.
La fonction g définie pour x # 0 par

f(@)
xTr) =
g(x) =~
admet une limite lorsque z tend vers 0. En effet, si n € N*, alors 222 — nsmé;m) tend vers n lorsque x
tend vers 0.
On a donc

limg_09(x) = a1 + 2a + ... + na,.

D’autre part, puisque |f(z)| < |sin(x)| pour tout x € R, on a

sin(x)

lg(z)| < | |

T

pour tout réel x # 0. Comme conséquence, on a limg_olg(x)| = a1 + 2a2 + ... + na,| < limm_,0|smT(r)\ =1.
Remarque. Une autre méthode consiste & remarquer que la fonction f est dérivable avec f/(0) = ay +
2as + ... + na,. Or, f/(0) est la limite du rapport

f(z)

——=, lorsque « trend vers 0.
x

D’apres les hypotheses, on a la majoration suivante :
fl@), _ sin(z)

TN < |
T2 < 2

Par passage a la limite, on obtient : |a; + 2as + ... + na,| < 1.

Exercice 10.

Tout d’abord, f admet un point fixe car si on considere la fonction g définie, pour tout = € [a,b], par
g(x) = f(zx) — x, alors la fonction g est continue sur [a,b]. De plus, elle vérifie g(a) > 0 et g(b) < 0. Par
application du théoréme de la valeur intermédiaire, il existe zg € [a, b] tel que g(xg) = 0. L’élément x( vérifie
f(xo) = Xo.

11 reste & montrer 'unicité de zy. Supposons qu’il existe un autre élément x; de [a, b] tel que f(z1) = 21 et
supposons par exemple qu’on ait : xg < z1. L’application f étant dérivable sur [a,b], on peut appliquer le
théoréme des accroissements finis & f sur [zg, z1]. Il existe alors ¢ €]z, 1] tel que

f(@1) = f(@o)

1 — 2o

~ /(o).

Cela implique f’(c) = 1 ce qui contredit 'hypotheése f'(z) # 1, pour tout = €la, b. Il existe donc un seul
élément x € [a,b] tel que f(xo) = zo.

Exercice 11.

Si on considére la fonction h donnée, elle vérifie f(a) = f(b) = 0. Puisque’elle est continue sur [a,b] et
dérivable sur ]a, b[, on peut appliquer le théoreme de Rolle. 1l existe donc zg €]a, b[ tel que h'(xg) = 0.

Si on calcule la dérivée de h, on obtient :

W (x) = [f'(2) + f(z)g' (2)]e?™.

Par suite, 'égalité h'(zg) = 0 équivaut & f'(zo) + f(z0)g’ (zo) = 0.




Exercice 12.
On consideére la fonction g définie pour tout x € [0, 2] par

g(x) = f(x) — .

Cette fonction est aussi deux fois dérivable sur [0, 2] et elle vérifie

9(0) = g(1) = g(2) = 0.
On peut appliquer le théoréme de Rolle & g sur Uintervalle [0, 1]. 11 existe x; €]0, 1] tel que ¢’(z1) = 0.
On applique aussi le théoreme de Rolle & g sur [1,2]. Il existe donc 24 €]1, 2] tel que ¢'(x2) = 0.

La fonction ¢’ est continue sur [z1, z2] et dérivable sur |x1, zo[. Elle vérifie ¢’(x1) = ¢'(x2) = 0, on peut
lui appliquer le théoreme de Rolle. Il existe zg €]z1, z2] tel que (¢') (zo) = ¢” (x0) = 0.
D’autre part, on a :
g’ (z) = f’(z), pour tout z €]0,2].

Par conséquent, xo vérifie aussi f”(x¢) = 0.

Exercice 13.
Pour montrer que f est uniformément continue, on va montrer que f est lipschitzienne, c’est a dire

Il existe une constante réelle K > 0, telle que V(z,y) €]a,b[, on a |f(z) — f(y)| < K|z —y|.

Pour cela, il suffit de montrer que la dérivée est majorée par une constante K > 0. En effet, si on applique
le théoréme des accroissements finis & f sur [z,y], pour tout a < = < y < b, on aura

[f(x) = f(y)]

< K.
|z -yl

On choisit un élément fixé « €]a, b[, alors pour tout = €la,b], on peut appliquer le théoréme des accroisse-
ments finis & f/ sur [a, z] ou [z, @] selon le cas.

Supposons, par exemple, a < z, alors il existe ¢ €]a, x| tel que

f'(@) = f'(e)

r—«

= f7(c).

On déduit donc \W| < M, ou M est la constante qui vérifie | f” (z)] < M pour tout x €]a, b|.
On a donc la majoration |f/(z)] < M(b— a) + |f/(c)|. La constante K cherchée peut étre choisi en posant
K =M(b—a)+][f(a)]

Exercice 14.

1. Puisque g est dérivable sur [, d] (donc continue sur [¢,d]) et vérifie g(c) = g(d) = 0, on peut lui appliquer
le théoréme de Rolle. 1l existe donc zq €]c, d[C [c, d] tel que ¢'(zo) = 0.

2. La fonction g est deux fois dérivable et vérifie ¢”(z) < 0 pour tout x €]e,d[. On déduit que la fonc-
tion ¢’ est décroissante sur [c, d].

Si on décompose [¢,d] = [e, zo] U [xo,d]. Alors, puisque ¢'(zg) = 0, on a ¢'(x) > 0 pour tout & € [¢,x0]
et donc g est croissante sur [c, zo]. On a donc

g(x) > g(e) =0, pour tout = € [c, xo].
De méme, sur I'intervalle [xg, d], ¢’ est décroissante et donc on a
g (z) < ¢'(z9) =0, pour tout z € [zg,d].
Ainsi, la fonction g est décroissante sur [zg, d] et on a
g(x) > g(d) =0, pour tout = € [zg,d).

On a donc obtenu le résultat souhaité.




