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Série N 2 - Corrigé
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Exercice 1. Pour tout k ∈ {1, · · · , n}, on a :

1 ≤
√
k ≤
√
n,

alors
n + 1 ≤ n +

√
k ≤ n +

√
n,

ce qui donne
1

n +
√
n

≤ 1

n +
√
k
≤ 1

n + 1
,

donc
n∑

k=1

1

n +
√
n

≤
n∑

k=1

1

n +
√
k
≤

n∑
k=1

1

n + 1
,

ceci implique

1

1 + 1√
n

≤
n∑

k=1

1

n +
√
k
≤ n

n + 1
.

Puisque

lim
n→+∞

1

1 + 1√
n

= lim
n→+∞

n

n + 1
= 1

Alors (un)n est convergente et sa limite égale à 1.
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Exercixe 2 (calcul approché de
√
a, où a ∈ R∗+).

On considère la suite

u0 ∈ R∗+, un+1 =
1

2
(un +

a

un
).

Soit (vn) la suite réelle de terme général vn =
un −

√
a

un +
√
a

.

1. Montrons que ∀n ∈ N, vn+1 = v2n. En effet,

vn+1 =
un+1 −

√
a

un+1 +
√
a
.

Un calcul direct conduit à :

un+1 −
√
a =

(un −
√
a)2

2un

un+1 +
√
a =

(un +
√
a)2

2un
.

D’où,

vn+1 =

(un −
√
a)2

2un

(un +
√
a)2

2un

=
(un −

√
a)2

(un +
√
a)2

= v2n.

2. Puisque un−
√
a < un+

√
a, alors vn < 1. D’où, vn+1 = v2n =⇒ vn+1 < vn.

D’après la question précédente, ∀n ∈ N∗, vn ≥ 0. Donc, ∀n ∈ N, vn ≥
min(v0, 0). Par conséquent, (vn) converge vers l ∈ R.

Or, ∀n ∈ N, vn+1 = v2n, d’où l = l2 ⇐⇒ l = 0 ou bien l = 1.

Puisque ∀n ∈ N, vn < 1 et (vn) est strictement décroissante, alors l = 0.

3. On sait que

vn =
un −

√
a

un +
√
a
⇐⇒ un =

√
a(1 + vn)

1− vn
.

Puisque vn converge vers 0, alors un converge vers
√
a.

4. Pour u0 = 1 et a = 2, on trouve :

u1 =
3

2
, u2 =

17

12
, u3 =

577

408
= 1.4142 · · · ≈

√
2.
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Exercice 3
1. Montrons que (un)n est une suite croissante. Puisque la suite est à termes positifs, afin de comparer un et
un+1, on va comparer leur carré. On a : u2

n+1 = u2
n + 1

2n , pour tout entier n ≥ 0. Par suite, on a u2
n+1 ≥ u2

n

et donc un+1 ≥ un et la suite est croissante.

2. Remarquons d’abord que, puisque la suite est croissante, on a : un ≥ 1 = u0, pour tout n ≥ 0. Pour
établir l’inégalité demandée, on élève au carré.

u2
n+1 = u2

n + 1
2n , et on doit donc justifier que u2

n + 1
2n ≤ (un + 1

2n )2.
Après simplification, il reste : 12 −

1
2n+1 ≤ un, ce qui est réalisé, compte tenu de la remarque précédente et

du fait qu’on a : 1
2 −

1
2n+1 ≤ 1, pour tout entier n.

3. Pour montrer que la suite est convergente, il suffit de montrer qu’elle est majorée.
On somme les inégalités : un+1 ≤ un + 1

2n à partir de n = 0. Il reste alors : un+1 ≤ 1
20 + ... + 1

2n , et on a

donc un+1 ≤
1− 1

2n+1

1− 1
2

≤ 2.

Par conséquent, la suite est convergente. Il reste à calculer sa limite. Il est plus facile de chercher la limite de
la suite (u2

n)n.
On a u2

n+1 = u2
n + 1

2n à partir de n = 0. On somme toutes ces égalités et on obtient : u2
n+1 = u2

0 + 1
20 + ...+ 1

2n .
En remplaçant u0 par sa valeur et par passage à la limite, on obtient : limn→+∞u2

n = 1 + 2 = 3 et donc
limn→+∞un =

√
3.

Exercice 4
1. Pour n ≥ 2, on a | un+1 − un |=| un−1−un

(1+un)(1+un−1)
|.

Nous devons donc majorer | 1
(1+un)(1+un−1)

| et pour cela, il faudra minorer un.

On a un+1 = 2+un

1+un
= 1 + 1

1+un
≥ 1. Ainsi, on a 1 + un ≥ 2 pour tout n ≥ 1.

On déduit donc : | un+1 − un |≤ 1
4 | un−1 − un | pour tout n ≥ 2.

2. Nous allons déduire du résultat précédent que la suite (un)n est de Cauchy.
On doit majorer le terme | un − um | et on suppose par exemple qu’on a n > m. On peut décomposer :

un − um = un − un−1 + un−1 − un−2 + ..... + um+1 − um puis on passe aux valeurs absolues :
| un − um |≤| un − un−1 | + | un−1 − un−2 | +.....+ | um+1 − um |.
D’autre part, puisque | un+1 − un |≤ 1

4 | un−1 − un | pour tout n ≥ 2, on peut établir (par exemple par
récurrence) qu’on a :

| un+1 − un |≤
1

4n−1
| u2 − u1 |, pour tout n ≥ 2.

On déduit que si n > m ≥ 2, on a :

| un − um |≤
1

4n−2
| u2 − u1 | +

1

4n−3
| u2 − u1 | +..... +

1

4m−1
| u2 − u1 |, d’où

| un − um |≤| u2 − u1 | [
1

4m−1
+ ... +

1

4n−2
] ≤ 1

4m−1
1

1− 1/4
| u2 − u1 |=

1

4m−1
4

3
| u2 − u1 | .

Puisque le terme 1
4m−1

4
3 | u2 − u1 | tend vers 0 lorsque m tend vers +∞, pour tout réel ε > 0, il existe un

entier Nε tel que si m ≥ Nε, on a : 1
4m−1

4
3 | u2 − u1 |≤ ε.

Nous avons donc bien établi que si n > m ≥ Nε, on a | un − um |< ε et la suite est donc bien de Cauchy.
La suite est donc convergente et sa limite l vérifie : l = l+2

l+1 , ce qui donne l =
√

2.

Remarque (un)n est une suite à termes positifs. De plus, c’est une suite récurrente où la fonction as-
sociée est f : x 7→ x+2

x+1 . On peut établir sans trop de difficultés que la fonction f est strictement décroissante
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sur R+ et que f([0,+∞[) ⊂]1, 2]. Il est possible de montrer la convergence de la suite en considérant les deux
suites extraites (u2n)n et (u2n+1)n. Cette méthode sera utilisée dans l’exercice suivant.

Exercice 5
Dans cet exercice, on a une suite récurrente de la forme : un+1 = f(un) pour n ≥ 0 avec, cette fois-ci, une
fonction décroissante sur R+. Il est clair que le suite est à termes positifs. La méthode de résolution consiste
à considérer les deux suites extraites (u2n)n et (u2n+1)n ainsi que la fonction f ◦ f qui est croissante.
En procédant comme pour le cas où on avait une fonction croissante, puisque u0 = 0 < u2, la suite (u2n)n
est croissante (récurrence facile) et puisque u1 > u3, la suite (u2n+1)n est décroissante. Cette dernière sera
convergente car elle est minorée par 0. Pour l’autre sous suite, on peut remarquer qu’elle est majorée par n’im-
porte quel terme u2p+1 d’indice impair. On peut aussi anticiper et résoudre l’équation f(x) = x, ce qui donne
x = −1 +

√
a + 1 (on oublie la solution négative), puis on démontre par récurrence que u2n ≤ −1 +

√
1 + a

pour tout n ≥ 0.
Montrons par récurrence que pour tout n ≥ 0, on a u2n ≤ −1 +

√
1 + a.

C’est vrai pour n = 0.
On suppose u2n ≤ −1 +

√
1 + a, puisque f ◦ f est croissante, on obtient : f ◦ f(u2n) ≤ f(−1 +

√
1 + a), c’est

à dire u2n+2 ≤ −1 +
√

1 + a.
La suite extraite (u2n)n est croissante et majorée, elle est doncconvergente vers une limite l1 qui doit vérifier

f ◦ f(l1) = l1. On a f ◦ f(x) = a(2+x)
4+a+2x et la seule solution positive de l’équation considérée est −1 +

√
1 + a.

En faisant de même avec la suite extraite (u2n+1)n, on trouve une limite l2 qui est aussi égale à −1 +
√

1 + a.
Par cons.’equent, la suite proposée est convergente vers −1 +

√
1 + a.

Exercice 6
Cet exercice ne présente aucune difficulté.
La suite est bien géométrique puique un+1 = (e/4)un pour tout n ≥ 0. La raison est donc q = e/4.
Puisque le premier terme est positif (u0 = 1/2) et que la raison q vérifie 0 < q < 1, elle est décroissante et
convergente vers 0.

Exercice 9
1. Nous avons une suite à termes positifs, récurrente où la fonction associée est f : x 7→ 4x+2

x+3 . Cette fonction
est croissante sur R+. Montrons que la suite est croissante, c’est à dire qu’on a un ≤ un+1 pour tout entier
n.
C’est vrai pour n = 0. On suppose qu’on a : un ≤ un+1, on applique f qui est croissante et on obtient
f(un) ≤ f(un+1), c’est à dire un+1 ≤ un+2.
On cherche un majorant pour la suite. Il y a une méthode qui consiste à anticiper pour trouver un candidat.
On résout l’équation f(x) = x et on garde la solution positive, c’est à dire l = 2. Nous avons une suite qui
est croissante, on souhaite montrer qu’elle est majorée auquel cas elle sera convergente nécessairement vers
l = 2, en particulier, 2 doit être un majorant. Montrons à présent que 2 est bien un majorant, c’est à dire
que : Pour tout entier n, on a un ≤ 2.
Par récurrence, c’est vrai pour u0 ∈]1, 2]. On suppose que un ≤ 2, on applique f qui est croissante et on
obtient f(un) ≤ f(2), c’est à dire un+1 ≤ 2
2. La suite donnée est croissante et majorée, elle converge vers une limite l positive qui vérifie f(l) = l, et
donc l = 2.

Exercice 10
On remarque que la suite donnée est une suite à termes strictement positifs, la suite est décroissante (stric-
tement) car ; un+1

un
= 1

1+unun−1
< 1. D’autre part, elle est minorée par 0 donc elle converge vers une limite

qui vérifie l = l
1+l2 .

Après résolution, on trouve l = 0.
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Exercixe 7 (un)n ⊂ R et (vn)n la suite définie par :

v0 = 0, vn =
1

n

k=1∑
n

uk, ∀n ≥ 1.

1. Montrons que si limn→+∞ un = l ∈ R, alors limn→+∞ vn = l.

En effet,

lim
n→+∞

un = l⇐⇒ ∀ε > 0,∃Nε ∈ N,∀n ∈ N, n ≥ Nε =⇒ |un − l| < ε

2
.

Or,

vn − l =
1

n

k=n∑
k=1

(uk − l) =
1

n

k=Nε−1∑
k=1

(uk − l) +
1

n

k=n∑
k=Nε

(uk − l),

d’où,

|vn − l| ≤ 1

n

k=Nε−1∑
k=1

|uk − l|+ 1

n

k=n∑
k=Nε

|uk − l|.

On a :

lim
n→+∞

1

n

k=Nε−1∑
k=1

|uk − l| = 0.

Donc,

∃N ′ε ∈ N,∀n ∈ N, n ≥ N ′ε =⇒ 1

n

k=Nε−1∑
k=1

|uk − l| < ε

2
.

De plus,

1

n

k=n∑
k=Nε

|uk − l| <
1

n

k=n∑
k=Nε

ε

2

=
1

n

ε

2
(n−Nε + 1)

=
ε

2
+

ε(1−Nε)

2n

<
ε

2
.

Soit N ′′ε = max(Nε, N
′
ε). Alors,

∀n ∈ N, n ≥ N ′′ε =⇒ |vn − l| < ε.

On conclut que
lim

n→+∞
|vn − l| = 0.

Par suite
lim

n→+∞
vn = l.
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2. Montrons que

lim
n→+∞

(un+1 − un) = l =⇒ lim
n→+∞

un

n
= l

D’après la première question

lim
n→+∞

(un+1 − un) = l =⇒ lim
n→+∞

1

n

n∑
k=1

(uk+1 − uk) = l.

Or,

1

n

n∑
k=1

(uk+1 − uk) =
1

n

n∑
k=1

uk+1 −
1

n

n∑
k=1

uk

=
1

n
[

n+1∑
k=2

uk+1 −
n∑

k=1

uk]

=
1

n
[un+1 − u1].

Donc,

lim
n−→+∞

1

n
[un+1 − u1] = l.

Puisque

lim
n−→+∞

u1

n
= 0,

alors
lim

n−→+∞

un+1

n
= l.

Ce qui est équivalent à

lim
n−→+∞

un

n
= l,

car
un+1

n
=

n + 1

n

un+1

n + 1

et

lim
n−→+∞

n + 1

n
= 1.

3. On suppose que un > 0,∀n ∈ N. Montrons que

lim
n−→+∞

un+1

un
= l =⇒ lim

n−→+∞
n√un = l.

En effet, si

lim
n−→+∞

un+1

un
= l

alors,
lim

n−→+∞
(ln(un+1)− ln(un)) = ln(l).

D’après la deuxième question

lim
n−→+∞

1

n
ln(un) = ln(l).
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Ce qui est équivalent à

lim
n−→+∞

ln(n
√
un) = ln(l).

On conclut que
lim

n−→+∞
n√un = l.
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Exercixe 8 Etudions la monotonie et la convergence des suites suivantes :

1. u0 =
1

2
, un+1 =

√
un.

Il est facile de montrer par récurrence que la suite (un) est strictement
positive. On a : un+1 = f(un), où la fonction f est définie par :

f : x ∈ R+ −→ R+

x 7−→
√
x

La fonction f est strictement croissante sur R∗+. D’où, il suffit de com-
parer u0 et u1. En effet,

u1 − u0 =

√
2

2
− 1

2
=

√
2− 1

2
> 0.

Puisque u0 < u1 et que f est strictement croissante, alors la suite (un)
est strictement croissante. De plus, il est facile de montrer par récurrence
que la suite (un) est majorée par 1. On conclut donc que (un) converge
vers l ∈ R tel que l =

√
l. D’où, l = 0 ou bien l = 1. Puisque la suite (un)

est strictement positive et strictement croissante, alors l = 1.

2. v0 = 2, vn+1 =
√
vn.

Il est facile de montrer par récurrence que la suite (vn) est strictement
positive. De même on a : vn+1 = f(vn), où f est la fonction racine carrée.

La fonction f est strictement croissante sur R∗+. D’où, il suffit de com-
parer v0 et v1. En effet, Puisque v1 =

√
2 < v0 = 2 et que f est strictement

croissante, alors la suite (vn) est strictement décroissante. De plus, (vn)
est minorée (par 0 par exemple). On conclut donc que (vn) converge vers
l ∈ R tel que l =

√
l. D’où, l = 0 ou bien l = 1. Puisque ∀n ∈ N, vn > 1

(on peut le montrer par récurrence), alors l = 1.

3. w0 = 1, wn+1 =
wn

w2
n + 1

.

On a : ∀n ∈ N, wn > 0. De plus,

wn+1

wn
=

1

w2
n + 1

< 1,

d’où, wn+1 < wn.

Par conséquent, (wn) est décroissante et minorée. On conclut que (wn)
converge vers l ∈ R tel que

l =
l

l2 + 1
⇐⇒ l = 0.
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Solution de l’exercice 12 Série 2 :

On considère la suite définie pour n ≥ 1 par :

un =
2n∑

k=1

k

n2

avec : u0 = 0

1. Calculons un et donnons sa limite :

Puisque la somme des premiers termes, d’une suite arithmétique de raison 1, est don-
née par la formule suivante :

n∑
k=1

k = n(n + 1)
2 ,

alors :

un =
2n∑

k=1

k

n2 = 1
n2

2n∑
k=1

k = 1
n2

2n(2n + 1)
2 = 2n + 1

n

la limite de un est alors :

lim
n→+∞

un = lim
n→+∞

2n + 1
n

= 2

2. Montrons que la suite wn est convergente :

On pose :

wn = un − vn

avec :

vn =
2n∑

k=1

k

k + n2

donc :

wn =
2n∑

k=1
( k

n2 −
k

k + n2 ) =
2n∑

k=1

k2

n2(k + n2) == 1
n2

2n∑
k=1

k2

k + n2

Pour encadrer k2

k+n2 indépendamment de k, On utilise le fait que 1 ≤ k ≤ 2n :

1 ≤ k ≤ 2n⇒ 1 + n2 ≤ k + n2 ≤ 2n + n2 ⇒ 1
2n + n2 ≤

1
k + n2 ≤

1
1 + n2

1



par suite :

1
2n + n2 ≤

k2

k + n2 ≤
4n2

1 + n2

En sommant les termes de k = 1 à k = 2n, on obtient :

2n

n2(2n + n2) ≤
1
n2

2n∑
k=1

k2

k + n2 ≤
8n3

n2(1 + n2)

Puisque :

lim
n→∞

2n

n2(2n + n2) = lim
n→∞

8n3

n2(1 + n2) = 0

D’après le théorème de gendarmes, la suite wn est convergente vers la même limite :

lim
n→∞

wn = 0.

3. La convergence de la suite vn :

Puisque :

vn = un − wn,

En utilisant les propriétés des opérations sur les limites, on en déduit que la suite vn est
convergente et sa limte est donnée par :

lim
n→+∞

vn = 2.
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Solution de l’exercice 13 Série 2 :

On considère les suites réelles à termes positifs un et vn définies par :

u0 = a > 0, v0 = b > 0 et ∀n ∈ N, un+1 =
√

unvn, vn+1 = un + vn

2 avec a < b

1. Montrons que ∀n ≥ 1, un ≤ vn :

En utilisant l’identité remarquable (
√

x−√y)2 = x + y − 2√xy ≥ 0, ∀x ≥ 0 et ∀y ≥ 0
on obtient :

√
unvn ≤

un + vn

2

c.à.d :

un+1 ≤ vn+1, ∀n ∈ N

ou encore :

un ≤ vn, ∀n ≥ 1

Montrons que un ≤ un+1, ∀n ≥ 1 :

Puisque tous les termes sont positifs :

un ≤ vn ⇒ u2
n ≤ unvn ⇒ un ≤

√
unvn ⇒ un ≤ un+1 c.q.f.d

Montrons que vn+1 ≤ vn, ∀n ≥ 1 :

un ≤ vn ⇒ un + vn ≤ 2vn ⇒ vn+1 ≤ vn c.q.f.d

2. Montrons que un et vn convergent vers la même limite :

Puisque :

a = u0 ≤ un ≤ un+ ≤ vn+1 ≤ vn ≤ v0 = b

alors :
la suite un est croissante majorée et la suite vn est décroissante minorée, donc elles
convergent.
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Supposons que :

lim
n→∞

un = l1 et lim
n→∞

vn = l2

En utilisant les opérations sur les limites des suites, on obtient :

lim
n→+∞

un+1 =
√

lim
n→+∞

un lim
n→+∞

vn et lim
n→+∞

vn+1 =
lim

n→+∞
un + lim

n→+∞
vn

2
par suite :

l1 =
√

l1l2 et l2 = l1 + l2
2

On peut conclure alors que :

l1 = l2

c.à.d les deux suites convergent vers la même limite.
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