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Chapitre 1

Les ensembles de nombres

1.1 L’ensemble N

Naivement, I’ensemble N des entiers positifs est I’ensemble des nombres
{0,1,2,3,...}.

Il est muni d’une relation d’ordre total notée <; cela signifie que, si a, b et ¢ sont trois entiers
quelconques, on a
a<b et b<c = a<c,

a<a
a<b et b<a = a=0b,

et on a toujours a < b ou b < a (Nous reviendrons sur les relations d’ordre dans le chapitre 3).
De fagon plus rigoureuse, on peut démontrer que, a une bijection respectant ’ordre pres, il
existe un seul ensemble vérifiant les quatre axiomes suivants :

Axiome 1 L’ensemble N est totalement ordonné, c’est-a-dire muni d’une relation d’ordre totale.

Axiome 2 Toute partie non vide de N a un plus petit élément.
(Ceci veut dire : Pour tout z,y € N, x < y ou y < x, et : pour toute partie A C N,Jz € A
Vye Az <y.)

Axiome 3 L’ensemble N n’a pas de plus grand élément.
Axiome 4 Tout élément N distinct du plus petit élément de N possede un “prédécesseur”.

Rappelons qu’un prédécesseur de x est un entier y < x tel que Vz € N, tel que y < 2z < z,
onaz=xouz = y;on lenotera x — 1 (on montrera en exercice quun prédécesseur est
nécessairement unique).

1.1.1 Le Principe de récurrence

Soit f(n) une propriété dépendant de n.

Théoréme 1.1.1 S’il existe un entier ng tel que f(ng) est vraie et si pour tout entier n, n > ny,
f(n) entraine f(n+ 1) alors pour tout entier n, n > ng, f(n) est vraie.
Soit en utilisant les quantificateurs :

[Anp €N, f(no)] et [Vn €N, n>ng, (f(n) = f(n+1))] = [VneN, n>ng, f(n)].
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Preuve : On va effectuer un raisonnement par I’absurde : notons
A={n>ng: f(n) estfaux},

et supposons A non vide.

D’apres 'axiome 2, A a un plus petit élément que nous noterons n;. On adoncn;—1 ¢ A et,
de plus, n1 > ng car, par hypothese, f(ng) est vrai; on a donc ny —1 > ng. Maisn;—1¢ A
signifie f(ny — 1) vrai, donc, par hypotheése sur f, f(n;) vrai; d’ott une contradiction avec
le fait que n1 € A. Donc A est vide. [ |

Exemple : On va montrer que Vn € N* Y70 | p* = w '

On note f(n): Y. p?= w'

1. Pour n =1, W =1=12 d’ou f(1) est vraie.

2. On suppose f(n) vrai. Alors

Z;LZI p2 + (n+ 1)2 — n(n+1)6(2n+1) + (n+ 1)2
nTH(2n2 +Tn+ 6) _ (n+1)(n+1+é)(2(n+1)+1) ‘

Soit (Vn € N*, f(n) = f(n+ 1)) d’ou le résultat.
Nous utiliserons aussi Z, ’ensemble des entiers relatifs (positifs ou négatifs).

1.1.2 Nombres rationnels

Q est I'ensemble des nombres fractionaires, ou rationnels ; ils s’écrivent sous la forme r = g

avec p € Z et ¢ € N\ {0} .

. \ / . . . . . .
On convient de la regle ¢ = % si ab’ = a'b , et on identifie un entier relatif n avec la fraction

. L’addition et la multiplication sont définies par 7 + § = “dbtlbc et ¢ x ¢ =37 .Q est muni

n
1
d’une relation d’ordre < définie apr § < ‘;—,, si ab’ < ba'.

Au paragraphe 1.2, nous définirons et établirons les principales propriétés de I’ensemble des
nombres complexes C.

1.1.3 La division euclidienne

Théoréme 1.1.2 Soient a € Z,b € Z \ {0}. Alors il existe un unique couple (q,7) € Z x N tel
que
a=bg+rou0<r<|b -1

q s’appelle le quotient de la division euclidienne de a par b, r s’appelle le reste de la division
euclidienne de a par b. Cette opération s’appelle la division euclidienne de a par b.

Preuve : 1. Nous montrons d’abord 'existence du couple (g, r).

e Supposons b > 1 et définissons A := {a — bk, k € Z} NN, alors A # () (on peut prendre
par exemple £k = —|a|). On note donc r := min A et ¢ tel que a — bg = r. Montrons que
r <b.

Raisonnons par labsurde : Sir > b, alors 0 <r—b=a—bg—b=a— (q+ 1)b, donc
r—be Aetr—>b<r, contradiction avec la minimalité de r. On a par ailleurs » > 0 par
hypothese car A C N.

e Sib < —1, nous appliquons le résultat précédent a a et |b| : a = |b|g+r, donc a = b(—q)+r.

2. Pour l'unicité, supposons que a = bg+1r = bg’ + 1" et 0 < r,7/ < |b| — 1. Alors
b(qg—¢)=r—1r', donc |bllg—¢| = | —r| Or, ' —r| <|b| — 1, donc |g — ¢'| =0, donc
g=¢ et r=1r". [ ]
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1.2 Les nombres complexes

L’idée des nombres complexes est due aux mathématiciens italiens de I'université de Bologne :
Dal Ferro, Tartaglia, Cardan. Il sont imaginé, vers 1550, une ”racine carrée de —1” pour résoudre
les équations du 3¢ degré.

En 1777, Euler note i le nombre vérifiant 2 = —1.

Définition 1.2.1 On appelle ensemble des nombres complexes et on note C I’ensemble R?
muni des deuz lois internes, notées + et X (souvent on omet X ) définies par :

Y,y € R, V@) € RS, () + (&9 = (z+ 2y + )
V(z,y) € R?, V(') € R, (z,y) x (¢,¢)) = (z2' — yy/, 2y + 2'y)

Les éléments de C sont appelés les nombres complezes ou les complexes.

r,2') € R?, (x,0) + (2/,0) = (z +2',0)

r,2') € R?, (2,0) x (2/,0) = (z2’,0)

On peut identifier le compleze (x,0) au réel x, ce qui revient a considérer R comme une partie
de C. Le nombre compleze (x,0) sera donc noté x.

Une fois cette identification effectuée, ces deux lois prolongent a C laddition et la multiplication
définies sur R.

Remarque 1.2.2 On a : { :E

Notations :

Le nombre complexe (0, 1) est tel que (0,1)? = (—1,0) ; nous le noterons 4. Le calcul précédent
montre que i2 = —1. (De cette propriété ”déconcertante” est issue le nom de nombre imaginaire
donné a ).

On utilise souvent la lettre z pour désigner un nombre complexe. On a : (z,y) = (z,0)+ (0,y) =
(z,0) +(0,1)(y,0).
L’écriture z = (x,y) devient donc z = = + 1y.

Remarque 1.2.3

1. Grace a lidentification précédente, le calcul dans C est identique a celui dans R avec la

convention i2 = —1. Plus précisément, on a :
(z+iy)+ (@ +i) = (z+2)+ily+y)
(@ +iy) x (@' +iy) = (z2' —yy) +i(a'y + /)
_ /
2. Pour tout (z,2',y,y') ER*, onax+iy=2a +iy & { z B 5,

1.2.1 Conjugaison - partie réelle - partie imaginaire

Définition 1.2.4 Soit z = x + iy. Le nombre réel x est appelé la partie réelle du nombre
complezxe z et on écrit x = Re (z). Si Re(z) =0 on dit que z est un nombre imaginaire pur.
Le nombre réel y est la partie imaginaire du nombre complexe z et on écrit y = Im (z).

On appelle conjugué de z le nombre complere x — iy, noté z.

On dit que les nombres complexes z et 2’ sont conjugués si z' = z.

Proposition 1.2.5 On a les propriétés élémentaires suivantes :
1. ¥(2,2) € C? Re(2+72)=Re(2) + Re(2) et Im(z+2)=Im(z)+Im().
2.VzeC, VAeER, Re(Az) =ARe(z) et Im(Az)=Xm(z).
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rz et Im(z)zz_,z
2 21

Z et zeiRe z=-7Z.

VzeC, Re(z)=
VzeC, zeRs 2
VzeC, z==z.
V(z,2)eC? 2+ =z+7.
V(z,2')€C? 22/ =z-7

VzeC, VAER, Az =)z

9.VzeC, Vi e, <1):1, e (5)=

ZI

S S I

|

On pourra démontrer ces propriétés en exercice.

Remarque 1.2.6 En général Re (z2') # Re(2) - Re(2') et Im(zZ2)#Im(z)-Im (7).

1.2.2 Module-Arguments-Forme trigonométrique

Définition 1.2.7 Soit x + ity la forme algébrique du nombre complexe z.
On appelle module de z le nombre réel positif /22 + y? que l'on note |z|.

Remarque 1.2.8 Le module d’un nombre complexe est un prolongement de la notion de valeur
absolue d’un nombre réel.

Proposition 1.2.9 On a les propriétés suivantes :

1.Vz€C, |z| =0 siet seulement si  z=0.
2.VzeC, |Z| = |z|.
3. ¥z € C, |2|? =2z = Zz. En particulier pour tout z eCn.
Onalzl=1<%z=z2"" et pour tout 2 #0, 2~ :ﬁ.
z
4. V(z,2") € C?, |22/ = |2||].
1 1 z |2
5.Y(z,2)eCxC* |5|=— ===
(2,7) 2! |2/] z! |27
6. VzeC, [Re(2)| <|z|] et |Im(2)] <]z
7. ¥(2,2") € C?, |2+ 2|2 = 2] + |/|* + 2Re (27).
8. V(z,2") € C?, |z 42| <|z| + 7]
9. (2, 2) €2, [J2] = ||| < |2 — &,
Preuve :

- 1., 2., 3. et 6. découlent immédiatement de la définition du module.
— Pour prouver 4., on écrit [22/|2 = 2222 = 22/77 = |2|?|Z/|%.

1
12l

12| et |

— Prouvons 5. Si 2’ # 0, le choix de z = 4 dans 4. donne 1 = |4

1 1] 1 _ |7
7 7 =X g =

— Montrons 7. On a [z + 2|2 = (2 +2)(z + /) = (2 + 2)(Z+7) =22+ 27 + 22+ 27 =
|22 + |2/|? + (27" + 2Z'). Compte tenu de la propriété 1. sur les conjugués, on a :

On a alors |§

—|» x

= |2l x

|z + 2% = |22 + |2)? + 2Re (27)
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— D’apres 7., on a |z + 2|2 < |22 + |2 + 2|27
On obtient |2Z'| = |z| - [Z/| = |z| - |2/] en utilisant successivement (2) et (4).
On a donc |z + 2|2 < |22 + [/|2 + 2|2||2/| ou |z + 2/|2 < (|z| + |2])%
Comme |z + 2| > 0 et |z| 4+ |2/| > 0 on obtient |z + 2| < |z| + |Z/].
— Enfin, montrer 9. revient & montrer que |z| < |2/| + |z — 2/| et [2/| < |z| 4+ |z — 2/|.
Comme z = 2/ + (—2') d’apres 8. on a |z] < || + |z — 2/|.
En permutant dans ce qui préceéde z et 2/, on obtient I'ingalit complmentaire |2/| <
|z| + |2' — 2|
Comme |2/ —z| = | = (2= 2)| =| = 1]|]z = /| = |z — /|, cela donne |2/| < |z] + |z — Z/].
|

Remarque : Le module est une norme sur C, c’est-a -dire vérifie les trois propriétés :

Vz e C, |z| =0=2=0,
Vz e C, VA eR, |Az| = |A||#]
V2,2 € C, 2+ 2| < |z + 7).

Définition 1.2.10 (et Proposition) Soit z un nombre complexe non nul. Il existe un unique
réel 6 € [0,2n[ tel que

(1.1) ﬁ = cos 0 + i sin 0;
z

ce réel s’appelle 'argument principal de z. L’ensemble des réels vérifiant (1.1) est {0+2km, k €
Z}. Un tel 0 s’appelle un argument de z, et est noté arg z.

Preuve : Comme é est un nombre complexe de module 1, on a

z

ﬂ =z + iy avec 22 + 2 = 1.
z
11 existe donc un unique réel 6 de [0, 27| tel que x = cosf et y =sinb.

Soit maintenant 6’ € R tel que cosf’ + isin§ = ﬁ Par identification des parties réelles
et imaginaires, cos 6 + isinf’ = cos 6 + i sin 6 équivaut a cos#’ = cosf et sinf = sinf i.e.
o' — 0 € 2nZ. |

Remarque 1.2.11 Dans certains ouvrages, l'argument principal de z est défini comme 'unique
réel de | — 7, 7| vérifiant 1.1.

On rappelle les formules trigonométriques suivantes (que l'on pourra redémontrer a titre
d’exercice) :

Y(0,0') € R?,  cos(f +60") = cosfcosf — sinfsinb’
V(0,0') € R?,  sin(f +60') = sinfcosf + cosfsin 6’

(la deuxiéme se déduit de la premiere en changeant 6" en 6’ + g)

Pour tout réel 6, on note e = cos @ +isin 6. Cette notation est justifiée pour la raison suivante.

Proposition 1.2.12 On a ¢?e? = 0+



10 CHAPITRE 1. LES ENSEMBLES DE NOMBRES

Preuve : A l'aide des formules trigonométriques on obtient
e = (cosf + isin0)(cosd + isind')
= [(cosfcos# —sinfsin@') +i(cosOsinb’ + sinOsinf')] = (cos(d + ') + isin(6 + 6')).

L’exponentielle d’'un nombre imaginaire pur a donc la méme propriété que ’exponentielle
d’un nombre réel. Ceci permet de définir I’eponentielle d’un nombre complexe quelconque :
Si z = x + iy, alors

e” = e%e = e%(cosy + isiny).

/ /7
On a alors : Vz, 2/, e*T% = e%e” . [

Définition 1.2.13 Soit z un nombre complexe non nul de module r et d’argument 0. On a
z=re?. On dit que re?¥ est la forme trigonométrique de z.

Proposition 1.2.14 1. Pour tout complexe z non nul, on a l’équivalence suivante :
re =re? o (r=r" et ((FkeZ), 0 =0+ 2kn)).

0

2. 0 peut s’écrire re’ avec r = 0 et 0 arbitraire. (I'argument de 0 n’est pas défini).

3. Pour tout 0 € R, ¢0+m) = _¢if ¢y e (0+3) — jeif

Exemples de formes trigonométriques :

1.2.3 Interprétation géométrique

-,

On appelle plan complexe un plan P rapporté a un repeére orthonormé direct (0, i j). L’ap-
pellation

Y C — P
z=x+iy —— M(z,y).

est une bijection. Elle permet d’identifier C et P.
Pour tout z € C, M s’appelle I'image de z dans P; pour tout M € P, z = ¢ (M) s’appelle
I’affixe de M.
On note M(z) pour exprimer que z est l'affixe de M. Les axes (Oj) et (O,f) sont appelés
respectivement axe des réels et axe des imaginaires. On voit alors que :

— |z| représente la distance du point M a l'origine O.

[zl = Va2 +y? = |OM|| = OM
- —
— Si z # 0, Pargument de z est une mesure (en radians) de ’angle orienté (i, OM).
- —
mes(i,OM) = argz +2kmr  avec k€Z

M(z) et M'(Z) sont symétriques par rapport a 'axe des réels.
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Interprétation de I’addition dans C

Soient (z,2') € C%, M(z), M(2'), S(z+2')et D(z' —2). On a:

— — —
0S =0OM + OM’

—
OD =0M'"—-OM =MM
En particulier MM’ = |[MM|| = /(z/ —2)2 + (y —y)? = |2/ — 2|.

La proposition suivante est une application des formules de trigonometrie (elle est fort utilisée
en physique).

Proposition 1.2.15 Soient a et b deuz réels. Il existe un réel ¢ tel que :

(1.2) Vz € R, acosz+bsinz = v/ a2+ b?cos(z — ¢)

Si de plus (a,b) # (0,0) on peut choisir pour ¢ l'unique réel de [0, 27| tel que cos p = \/(;W
et sinp = a2b+b2. (¢ est Uargument principal de a + ib).
Preuve :

— Le cas (a,b) = (0,0) est trivial.

— Supposons (a,b) # (0,0).
Comme cos(x — ) = cos z cos ¢ + sin x sin ¢, on déduit que la formule (1.2) est vérifiée
si et seulement si

a=+a?2+b2cosp et b=+a?+b?singp

Comme a + ib = Va? + b? (\/a2a+b2 + i\/a2b+b2), il existe un unique ¢ € [0, 27| tel que
et

b R
T sine.

a —
JaTE — COs
|

Les formules trigonométriques von également permettre de montrer des propriétés algébriques
de 'argument.

Proposition 1.2.16 1. Soient (6,60") un couple de réels positifs. On a :
(re”)(r'e?) = rp' 0+
2. Si z et 2’ sont deux nombres complexes non nuls alors il existe k € Z tel que
argzz = argz +argz +2km  avec k€ Z.

8. 51 z est un nombre complexe nul alors on a :

argz ' = —argz + 2kmr  avec k€ Z.

n

Si de plus r # 0, on a pour tout n € Z  (re’?)" = rme,

Preuve : Le premier point est une conséquence immédiate de la proposition 1.2.12. Le second
s’en déduit.

Reste le troisieme, que 'on démontre par récurrence sur n : Vn € N, montrons que
L n .
(7‘610) — rnean‘
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Sin =0 oun =1 Iégalité ci-dessus est immédiate.

Soit n > 1 supposons que (re??)! = rnein? ntl — pntlei(nt1)f

= r"e™ et montrons que (re'?)
On a (Teie)n—&-l — (T,eie)n(reie) — (Tneme)mie.

D’aprés ce qui préceéde (r"e™)ret? = prtleint1)0,
On a bien (re®)nt1 = prtlei(nt1)0,

On a montré que Vn € N, (re?)" = rmei?,

Il manque les entiers négatifs. Soit n € N*, on a (re??)™" = ﬁ = Wﬁ
D’apres les propriétés du module et de 'argument de 'inverse d’'un nombre complexe, on
e = r~ e et (re?)? = "™ On a le résultat. [

En donnant a r la valeur 1 dans la derniere égalité de la proposition précédente, on obtient
la formule de Moivre.

Formule de Moivre :
VneZ, VOcR (cosf+isind)" = cosnf+ isinnf.

En écrivant e = cos@ + isinf, e = cosf — isinf et en faisant la demi-somme et la

demi-différence de ces expressions, on obtient les formules d’Euler.

Formule d’Euler :

0 —i6 0 —i6
VO € R, cosf= % et sinf =

Applications :
La formule de Moivre permet de calculer cosnz, sin nz avec n € N* en fonction de cosz et sin x.
Les formules d’Euler permettent de linéariser des expressions du type cos™ x sin” x avec (m,n) €
N? i.e. de les transformer en sommes de termes e la forme acoskxz et bsinkz avec k € N et
(a,b) € R2.

Interprétation géométrique :

— Pour tout réel r non nul, 'image de rz se déduit de M par ’homothétie de centre O de
rapport r.

— Soit M’ I'image de 2’ = €¥¥z avec ¢ réel donné.
Comme z = |z|e? on a 2/ = |2[e?0+¢),
0+ est une mesure (en radians) de ’angle orienté (7, OM' ). D’apres la relation de Chasles
6 + ¢ — 0 est une mesure de 1’angle orienté (O—]\/[, O—]\/[’) Par ailleurs OM’ = OM. Donc,
par définition, M’ est 'image de M par la rotation de centre O et d’angle (.



Chapitre 2

Groupes, corps, anneaux

2.1 Introduction

La formalisation des structures algébriques (groupes, anneaux, corps, espaces vectoriels) est
relativement récente ; elle n’apparait qu’en début du XIX siecle, mais I’idée est présente partout
dans les sciences, en particulier les mathématiques.

Il s’agit grosso modo d’extraire des regles opératoires, valables indépendamment de la nature
des objets considérés. Par exemple la somme de deux nombres, la somme de deux vecteurs du
plan ou la composition de deux relations ont des propriétés similaires.

2.1.1 Groupes, exemples

Définition 2.1.1 Une loi de composition interne (fci) sur un ensemble E est une application
de E x E dans E.

Exemple : La plupart des opérations usuelles sont des lci.
L’addition ou la multiplication sont des lci sur N, Z, Q, R ou C.
La soustraction définit une Ilci sur Z, Q, R ou C mais pas sur N.

Exemple : Le produit scalaire de deux vecteurs de R? n’est pas une lci si d > 2.

Exemple : On note F(F, E) ’ensemble des applications de E dans E, 'application de

F(E,E)x F(E,E) — F(E,E)
(f:9) — foyg

(f o g est défini par Vo € E fog(z) = f(g(x))) est une lci.

Définition 2.1.2 Un groupe est la donnée d’un ensemble G et d’une lci notée *

GxG — G
(r,y) — wxy

telle que (G, x) vérifie les trois propriétés suivantes :
1. (Elément neutre) Il existe e € G tel que Ve € G, exx =z % e = .
2. (Associativité) Pour tout x, y, z € G, (x xy) *x z = x * (y * 2).

3. (Elément inverse) Vo € G, 32’ € G tel que xx 2/ =2/ xx =e.
Si de plusVz,y € G, zxy = yxx, on dit que * est commutative et que (G,*) est un groupe
commutatif ou abelien.

Remarque : On emploie aussi parfois le terme de symétrique au lieu de inverse.

13
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Exemple :

1. Z, Q, R et C munis de I'addition sont des groupes abeliens : 0 est I’élément neutre, 'inverse
de = est —x. Notons que (N, +) n’est pas un groupe car 3. n’est pas vérifié.

2. On note Q* = Q \ {0},R* = R\ {0}, C* = C\ {0}. Alors Q*, R* et C* munis de la
multiplication sont des groupes : 1 est ’élément neutre. Il en est de méme de 7', 'ensemble
des nombres complexes de module 1. Si x est réel, alors 'inverse de x est 1/x.

Tout élément de C* possede un inverse pour X :

VzeC* 3/ e€C z2xd=2xz2=1

(si z=x+1y alors 2 = ;2132 = % = z_1>.

Tous ces groupes sont des groupes commutatifs.

Attention : Z* = Z \ {0} muni de la multiplication x n’est pas un groupe : #in € Z* tel
que n X 5 =1, donc 3. n’est pas vérifié. On voit que seuls 1 et -1 ont un inverse.

3. Soit E un ensemble et soit S(F) ’ensemble des bijections de E sur E, soit o la lci définie
par la composition de deux bijections.
Montrer a titre d’exercice que (S(E), o) est un groupe, et qu’il est non-abélien si F a au
moins trois elements.
En particulier pour n € N*, soit £ = {1,2,--- ,n}. Alors S(E) est noté S,. S, est un
groupe de cardinal n!. On Uappelle le groupe des permutations sur n éléments (voir Sec-
tion 2.2).

Proposition 2.1.3
1. L’élément neutre est unique.
2. Dans un groupe linverse ' d’un élément x est unique.

3. L’inverse de linverse de x est x, i.e. (2') = x.

4. (xxy) =y =2

Preuve : 1. Soit ¢/ € G un élément neutre. Puisque e est un élément neutre , on a € x e =
ex e = €. De méme, puisque €’ est un élément neutre , on a ex e’ = €’ x e = e et par conséquent
e =e.
2. Soit 2" € G tel que 2" * x = e. On a alors 2”7 * x * 2’ = 2’ Donc 2" = «'.
3.0naxx*z' =2 *xx =e donc x est 'inverse de 2/, d’apres 2. on a z = (/).
4. Omn a

(zry)* (Y xa') =axyxy 2’ =azxexa’=e
donc (zxy) =y *a'.

Notation : Si (G,x*) est un groupe, on note souvent xy au lieu de z * y, 1 I’élément neutre,

x =2

Remarque 2.1.4 Soit G un groupe. Alors xy = 1 implique y = x~*. En effet,
1

zy=1=2""(2y) = (= '2)y=1y.

Attention, en général, nous avons dans un groupe xy # y.
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Notation : L’associativité donne un sens & 2" pour z € G et n € N* : 22 = zz, 23 =
22x,..., " = 2" 'z avec convention z° = 1.
Proposition 2.1.5 Soit G un groupe, soient x,y,z € G.

1. xzy=xz=y==2.

2. yr=zx =y ==z
C’est a dire dans un groupe on peut simplifier par x.

Preuve : On a
vy =2z =2 (zy) =2 Hz2) = (27 n)y = (27 n)z =y = 2.
Idem pour 2. [ |

2.1.2 Sous-groupes

Définition 2.1.6 On dit que H est un sous-groupe de (G,x) si H est un sous-ensemble de G
tel que la loi x restreint a H x H définisse une loi lci qui donne une loi de groupe sur H.

Ainsi un sous-groupe est stable par la loi %, i.e. si x, y € H alors x xy € H, ’élément neutre
ec H,etsize Halorsz™ ! € H.
Remarquons qu'il est inutile de vérifier I'associativité car on a Vz,y,z € G, (z*xy)*xz = xx(y*2)
donc Vx,y,z € H.
En fait, on peut méme raccourcir ces vérifications.

Proposition 2.1.7 Soit H un sous-ensemble d’un groupe G. Alors H est un sous-groupe de G
5t

1. e€ H.
2. Ve,ye H zy ' e H.

Preuve : 1l est facile de voir que ces conditions sont nécessaires. Réciproquement, supposons
que 1 et 2 sont vérifiées et montrons que H est sous-groupe. Siy € H, ey ' =y~ € H,
donc tout élément de H admet un inverse. Soient maintenant x € H, y € H alors xy =
r(y~1) ™1 € H d’aprés 2., donc la multiplication est lci. [ ]

Exemple :

1. Si G est un groupe, G, {e} sont deux sous-groupes de G. On les appelle les sous-groupes
"triviaux”.

2. L’ensemble u,, n € N*, des racines complexes de I’équation £ = 1 muni de la multiplication

est un sous-groupe de C* : En effet 1" = 1 et si 2z € py, 2’ € pp (2(2))"H" = 2"(2)™" =

i j;n =1 =1donc 2(2')~" € pn. On notera que y, a exactement n éléments qui sont les

e2imk/n. k=0,1,..,n—1.

3. T ={z € C tel que |z| =1} est un sous-groupe de (C*, x).

4. Les inclusions Z C Q C R C C sont des inclusions de sous-groupes pour ’addition et
{-1,1} Cc Q* C R* € C* sont des sous-groupes pour la multiplication.

5. (R%, x) est un sous-groupe de (R*, x) car 1 e R} et siz € R}, y € R}, x x % e Ry.
Attention, R* n’est pas un sous-groupe de R* car (—2) x (—3) ¢ R*.



16 CHAPITRE 2. GROUPES, CORPS, ANNEAUX

6. Soit n € N*, posons nZ := {0,£n,+2n,---} = {kn,k € Z}. Alors (nZ,+) est un sous-
groupe de (Z,+).

Réciproquement, on peut montrer que ce sont les seuls sous-grouprs de (Z, +)
Théoréeme 2.1.8 Tous les sous-groupes de (Z,+) sont de la forme (nZ,+) pour unn € Z.

Preuve : Soit donc H un sous-groupe de (Z,+). Si H = {0}, alors H = 0Z. Sinon,
H N N* est non vide et admet donc un plus petit élément, que nous allons noter n.
D’ou nZ C H. Montrons que H C nZ. Soit a € H. Effectuons la division euclidienne
deaparn:a=qgn+7ravec0 <7 <n. Alorsa—qgn =r € H donc r = 0 par
minimalité de n. Donc a = gn.

2.1.3 Sous-groupes engendrés

Proposition 2.1.9 Soit {H;}ic; une famille quelconque (c’est-a-dire I quelconque) de sous-
groupes d’un groupe G. Alors leur intersection est encore un sous-groupe de G.

Preuve : On vérifie sans problemes les deux assertions de la proposition 2.1.7. [ |

Proposition 2.1.10 Soit A une partiec de G. On note Ha l'ensemble des sous-groupes de G
contenant A et on pose

Gr(A)=({H, HeHa}

Alors Gr(A) est un sous-groupe de G contenant A et c’est le plus petit possédant cette propriété.
On dit que c’est le sous-groupe engendré par A.

Preuve : La propriété 2.1.9 montre que Gr(A) est un sous-groupe de G. Il contient A puisque
VH € Ha, AC H, et donc A C Ngen ,H = Gr(A).
Réciproquement, soit Hy un sous-groupe de G contenant A, i.e. Hy est un élément de

I’ensemble H 4. Donc Nyeyn,H C Hp, puisque 'intersection est incluse dans l'une des
parties qui est Hy. Or Ngep, H est par définition égal & Gr(A), d’ou la conclusion. [ |

La proposition suivante nous apporte quelques précisions sur Gr(A) :

Proposition 2.1.11 Soit A une partie d’un groupe G. Alors Gr(A) s’écrit comme

Preuve : On désigne par K le membre de droite de la proposition 2.1.11. On a successivement

— K est un sous-groupe de G contenant A, donc il contient Gr(A).

— Soit H un sous-groupe de G contenant A. Contenant A, il contient les inverses des
éléments de A, leurs produits (puisque c’est un groupe), donc contient K. Donc K est
inclus dans tout sous-groupe H contenant A, il est donc inclus dans leur intersection,
qui est Gr(A).

|

Remarque : Il y a en général deux fagons de voir un sous-groupe de G engendré par une partie
de G : par I"”extérieur”, c’est le choix de la définition 2.1.10 ou par I””intérieur”, c¢’est la propo-
sition précédente. Sa démonstration permet nous permet d’affirmer qu’elles sont équivalentes.
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2.1.4 Morphismes

Définition 2.1.12 Soient (A,.) et (B, %) deuz ensembles munis d’une lci. Une application
f: A — B est appelé morphisme de (A,.) dans (B,x*) si

fla.b) = f(a) * f(b).

Si (A,.) et (B,x*) sont des groupes, on dit que f est un morphisme de groupe.
Si f est bijective, on dit que f est un isomorphisme.

Proposition 2.1.13 Soient (A,.) et (B,*) deux groupes et f un morphisme de (A,.) dans
(B, *). Alors

1. f(ea) =en

2.V e A, fz7!) = f(x)~L.

3. V(x,y) € A%, f(z-y™') = f(z)* fly)~".
4. Nn€eZ,Vx € A, f(a™) = f(x)".

(Démonstration en exercice)
La proposition suivante montre qu’'un morphisme est associé a des sous-groupes importants
en pratique.

Définition 2.1.14 Soit f : (A,-) — (B, *) un morphisme de groupe. On note par

Im(f) = f(A) ={f(z), =€ A},

limage directe de A par f et par
Ker(f) = f"'({ep}) ={a € A, [f(z) =ep},
l’image réciproque de I’élément neutre ep par f, encore appelé noyau de f.

On a la proposition suivante

Proposition 2.1.15 Soit f : (A,-) — (B, *) un morphisme de groupe. Alors
1. Tm(f) est un sous-groupe de B(, x).
2. Ker(f) est un sous-groupe de (A,-).
3. f est injective si et seulement si Ker(f) = {ea}.

(Démonstration en exercice)

Exemples de morphismes

Le lecteur vérifiera que les applications f ci-dessous sont des morphismes de groupe :

1. Soient (G,*) un groupe, et a € G. On note f l'application de (Z,+) — (G, ) définie par
f(n) = a™ ('image de f s’appelle le sous-groupe engendré par a).

2. L’application ”exponentielle imaginaire pure” : (R,+) — (T, x) : ¢ — € (on rappelle
que le tore T est ’ensemble des nombres complexes de module 1).

3. L’application ”exponentielle complexe” : (C,+) — (C*, x) : z — €*.

4. Soient (G, *) un groupe commutatif, et n € Z. On note f 'application de (G, *) — (G, *)
définie par f(a) = a™ (ce morphisme est différent de celui du point 1.).

5. L’application z — |z| de (C*, x) dans (R*, x).
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2.2 Permutations d’un ensemble fini

2.2.1 Définitions

Définition 2.2.1 Soit E,, ’ensemble fini a n éléments {1, 2, ..., n}. On appelle permutation
de E,, (ou aussi "substitution”) une application ¢ bijective de E, dans lui-méme. On note
GP(n) l’ensemble des permutations de E,,.

On sait que GP(n) form un groupe pour la composition. Pour caractériser entiérement une
permutation ¢ € GP(n), il faut et il suffit de se donner les valeurs de ¢ sur les éléments de E,,,
c’est-a-dire

(i) =a; 1=1,2,...,n

les «v; étant tous distincts et égaux, a 'ordre pres, a 1, 2, ..., n.

La permutation ¢ peut alors s’écrire conventionnellement sous la forme

_ 1 2...n
Y= a1 Qg ... oy )

qui signifie que chaque i € E,, est envoyé par ¢ sur «o; € E,.
La permutation la plus élémentaire est la permutation identité (ou ”"neutre”) définie par
(i) =14, ¥V 7 : on la désigne par e :

o — 1 2...4...n
1 2...i...n
Rappelons qu’il y a n ! permutations de F,, (& démontrer en exercice).

Proposition 2.2.2 Le groupe des permutations de E, muni de la loi de composition (GP(n),o)
forme un groupe dont ’élément neutre est e, et ot linverse de p € GP(n) est la permutation

-1 _ a1 Q2 ... Qp
Tl 1 2..n
2.2.2 Transpositions

On suppose dans ce qui suit n > 2. On suppose dans ce qui suit n > 2.

Définition 2.2.3 Une transposition de E, est une permutation qui échange deux éléments i et
J distincts de E,, en laissant invariants les autres éléments de E,. On peut le noter Tj;, avec
la convention T;; = e.

On a donc
Tij(i) =4, Ti(j) =14, Tylp)=p si p#i et p#j

Exemple.
Dans E5 = {1, 2, 3, 4, 5}
1 2 3 4 5
T3’5_<1 2 5 4 3)
On pourra vérifier qu’une permutation est sa propre inverse, c’est-a-dire que T;; = Tj; =
(T;;)~! ou de maniere équivalente TijoT;,;=e.

Le théoreéme suivant est fondamental :
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Théoréme 2.2.4 Toute permutation ¢ € GP(n) de l'ensemble fini E, peut se décomposer
comme un produit de transpositions, c’est-a-dire qu’il existe un nombre fini M de transpositions

11, Ts,..., Ty tels que

(21) QOZTMOTMflo...OTl.

Preuve : Démontrons ce théoreme par récurrence sur n, qui est le cardinal de E,,.

Si n = 2 : alors il est clair que toute permutation de FE5 est soit I'identité, soit une
transposition.

Supposons ’assertion vraie a 'ordre n — 1. Soit ¢ € GP(n). Distinguons alors deux cas :
1. Si p(n) = n : le point n est laissé invariant par . Donc la restriction de ¢ a F,,_1 est en
fait une permutation de ’ensemble F,,_;. Par hypothese de récurrence, cette restriction se
décompose en produit de transpositions, et il en est donc de méme pour .

2. Si p(n) = p ou p est différent de n : Considérons ¢ la permutation définie comme le
produit de ¢ avec la transposition T' = T},,, qui inverse n et p. Plus précisément, on pose
Y ="Typo .

Par construction 1 vérifie 1(n) = n. On peut donc appliquer le point 1. précédent a .
Grace a la formule (2.1) on trouve qu’il existe un nombre fini M de transpositions 77,

Ts,..., Ty tels que
1/; =TyoTy_10..0T].

En utilisant que T},, o T}, = e, on voit alors que
p=Thyotp=TypoTyoTh_10..0T7.
Donc ¢ est bien un produit de transpositions. Le théoreme est démontré.
Remarquons qu’il n’y pas d’unicité dans la décomposition on transposition précciente.

2.2.3 Inversion d’une permutation. Parité. Signature

Définition 2.2.5 Etant donné la permutation

(1 2 3..m
Y= a1 Qy a3 ...op )]

on dit que oy et o présentent une inversion dans ¢ sii < j et a; > .

Définition 2.2.6 Une permutation ¢ est dite paire si le nombre total des inversions qu’elle

présente est pair, elle est dite impaire si ce nombre est impair.
Si 1(p) est ce nombre d’inversions, le nombre o(p) = (—1)1(9) est appelé signature de .
La signature de ¢ vaut 1 ou —1 suivant que @ est respectivement paire ou impaire.

Exemple.

oito (123456
MP={25 4361

I(p) =8, @ estpaire, o(p) =1
Dans le cas des transpositions, on a le résultat suivant :

Proposition 2.2.7 Toute transposition est impaire.



20 CHAPITRE 2. GROUPES, CORPS, ANNEAUX

Preuve : Soit i # j et T; ; la transposition associée. On peut supposer sans perte de généralité
que i < j. On considere d’abord le cas ou ¢ et j sont consécutifs, soit j =i+ 1. On a

oo (1o i-l i ikl @42 om
T\ e =1 il i i42 o)

I est immédiat de constater qu’il n’y a qu'une seule inversion (¢,7 + 1) et donc que Tj ;41
est impaire.

Pour le cas ou j > i + 2, on représente T; ; ci-dessous :

T T B TP B A S BT

W1 s i—1 G i+l e =1 G j41 - om
Les couples (i,7+ 1), (,7+2), ..., (i,7) (soit j — i couples) présentent une inversion. De
meéme, pour (i +1,7), (i +2,7), ..., (j —1,7) (soit j —i — 1 couples). Au total, on a
2(j — i) — 1 inversions, soit un nombre impair, 7T; ; est donc dans ce cas également impaire.

On peut démontrer les propriétés suivantes

Proposition 2.2.8 Quand on compose une permutation quelconque par une transposition, on
obtient une nouvelle permutation, de parité différente.

Preuve : Commencons par le cas ou la transposition 7' inverse deux éléments successifs, i.e.
il existe un entier i € {1,...,n} tel que T' = Tj ;1.
Soit ¢ € GP(n), qui s’écrit

2R TR B A A S R (PP
Alors ¢ o T; j11 s'écrit
1 e G A N )
poTiy1 = J J
B T S A RN DA TR (PP
“ ol o dh e al aly ol o al )

ou l'on a noté a]’D I'image de p par ¢ o T; ;1. On a donc a; =58l j <1, o = g,
/ _ !/ -/ .

Qi = o, et a = ag pour j' >0+ 1.

Comparons les éventuelles inversions de ¢ et de ¢ o Tj ;11.

1. Commencons par les inversions possibles entre les éléments 7 et 7 + 1 :

(a) Supposons que ¢ présente une inversion entre i et i + 1, alors o; > a;41. Dans ce
. ). . . ;o ;o
cas, poT; ;11 ne présente pas d’inversion entre ¢ et i+1, car a; = 41 < o = 0.

(b) Supposons que ¢ ne présente pas d’inversion entre i et i+1, alors a; < 4. Dans
ce cas, poT; ;1 présente une inversion entre i et i+1, car o = a1 > o) = ;.

2. Etudions ensuite tous les autres cas possibles d’inversion :

(a) Supposons que ¢ présente une inversion entre j < i et ¢, alors a; > «;. Alors

@ o T; ;11 présente une inversion entre j et i + 1, car a;- =a; > o) = a; De
méme, s’il n’y avait pas d’inversion dans ¢ pour ces indices j et ¢, il n’y en aura
pas dans @oT; ;41 pour les indices j et i+ 1. Cette remarque s’applique également
aux points b., c., d. et e. suivants.
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(b) Supposons que ¢ présente une inversion entre j < i et ¢ + 1, alors a; > t1.

Alors ¢ o Tj ;11 présente une inversion entre j et 4, car o = aj > aj = Q1.

(c) Supposons que ¢ présente une inversion entre i et j' > i+ 1, alors ajy < . Alors

, . . . . ;o o
@o Tz‘,z’+1 présente une inversion entre i + 1 et j', car g = Qi <oy =y

(d) Supposons que ¢ présente une inversion entre i +1 et j' > i+ 1, alors oy < vp1.
Alors ¢ o T; ;41 présente une inversion entre i et j, car a;-, =y < 0 = g1

e) Enfin, supposons que ¢ présente une inversion entre j < i et j/ > i+1, alors a; >
¥ J J J

ajr. Alors ¢ o T; ;1 présente une inversion entre j et j', car a;- =

Le lecteur vérifiera que l'on a bien étudié tous les cas possibles. Ainsi on a prouvé que
le nombre d’inversions diminuait de 1 dans le cas 1.(a), et augmentait de 1 dans les cas
1.(b), tous les autres cas ne modifiant pas le nombre d’inversions entre ¢ et p o Tj ;1. Or
on est nécessairement dans le cas 1.(a) ou dans le cas 1.(b). Donc on a changé la parité de
la signature de ¢ en la composant par T; ;1.

. / —_— .
O[] > Oéj/ = CV]/.

Soit T' = T; ; une inversion, avec ¢ < j. Alors on remarque

Tij= Tjj-1°Tj-15-20 0 Tiyaip1
o Tiy150Tivoip1 0 0Ty 15207551,

c’est-a-dire que Tj ; est le produit de 2(j—14)—1 transpositions qui échangent deux éléments
voisins. Comme la composition par une transposition qui échangent deux éléments voisins
modifie la signature (c’est ce que 'on a démontré précédemment), lorsque I'on compose
par T, on modifie 2(j — i) — 1 fois la signature. Etant donné que 2(j —i) — 1 est un nombre
impair, ¢ et ¢ o T; ; n’ont pas la méme signature. ]

Par conséquent, le résultat précédent permet avec la décomposition (2.1) de montrer :

Proposition 2.2.9 Pour qu’une permutation soit paire (respectivement, impaire), il faut et il
suffit qu’elle soit le produit d’un nombre pair (respectivement, impair) de transpositions.

Proposition 2.2.10 - Si ¢ et pg sont deur permutations de méme parité, o1 o pa est paire;
si elles sont de parités différentes, o1 0 po est impaire. Ainsi

o(p10p2) =0o(e1) o(p2).
Donc Uapplication signature o : ¢ € GP(n) — o(p) est un morphisme du groupe (GP(n), o) vers

le groupe ({—1,1}, X) (muni de la multiplication classique). On en déduit que deux permutations
inverses l'une de l'autre ont méme parité puisque o(@)o(p™!) =o(pop™t)=0c(e) = 1.

Autre expression de la signature d’une permutation.

Proposition 2.2.11 Soit ¢ € GP(n) avec n > 2. Alors on a

(2.2) o) = H ©(j) — 90(1').

i
1<i<j<n J

(Noter que le produit précédent comprend tous les couples (i, j) tels que 1 < i < j < n, soit C2
facteurs.)
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Preuve : Soit ¢ < j deux entiers de F,,. On pose

{h—w@ et{h—wﬁ

k=(j) sie(i)<e() k=) sip(j)<e(i)

Pour des raisons de clarté, on omet de spécifier la dépendance en ¢ et j de h et k. Le
produit du membre de droite de (2.2) se décompose alors en

1<g<”<w) ) 1§i1<_[j§n, <§:ZL> 1§z‘1<_Ij§n, Cj:f)

(4,7) pas d’inversion (i,4) inversion

Le deuxiéme facteur du membre de droite comporte exactement I(p) facteurs. On retrouve

donc
IT &-n

eU) =@ _ _jye)lsicisn
1Sg§n( J—i > = H (i —J)
1<i<j<n

On conclut en remarquant que (i, 7) — (h, k) est une bijection et donc que les deux produits
du membre de droite sont identiques. [ |

Remarquons que 'on peut montrer facilement avec cette autre expression, la propriété de
morphisme énoncée dans la proposition 2.2.10.

2.3 Structure d’anneau

2.3.1 Anneaux, exemples

Définition 2.3.1 Un anneau est la donnée d’un ensemble A et de lois de composition + (ad-
dition) et x (multiplication) telles que :

1. (A, +) est un groupe commutatif (dont on note l’élément neutre 0 = 04)).
2. La loi * est associative.
3. La loi x posséde un élément neutre (qu’on notera 1 =14).

4. La loi x est distributive par rapport a l’addition :

Ve,y,z € A, xx(y+2) = (z*xy)+(r*2) et (y+2)xx=(yxx)+ (z2*x)

Si de plus la loi x est commutative, on dit que l'anneau A est commutatif.

Remarquons que l'on a toujours x «0 = 0% x = 0 dans un anneau ; en effet x %0 =z * (04 0) =
x*x0+2x*0 et donc (la loi + est une loi de groupe) x * 0 = 0.

Vocabulaire : Afin de ne pas introduire de confusion en ce qui concerne les “inverses”
pour les deux lois, nous adoptons le vocabulaire hérité du cas de (Z, +, X), et nous appellerons
“opposé” de x I’dlément —z et “inverse” de x (sil existe) I’élément 1.

Attention : Dans un anneau (A, 4, %), un élément x € A possede un opposé, mais pas
forcément pour la loi . En effet, en général, (A, ) ne forme pas un groupe!!

Le théoreme suivant définit les regles de calcul dans les anneaux.
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Théoréme 2.3.2 Soit (A, +, %) un anneau.
Pour tout triplet (x,y,y') de A3, on a | Pour tout triplet (z,x',y) de A3, on a

33*020, O*yzo’

zx(—y) = —(r*y), (—z) xy = —(zxy),
rx(y—y)=wry—z*y, (x—a2)xy=xz*xy—2a *xy,
Vn € Z, x x (ny) = n(z *xy). Vn € Z, (nx) xy = n(z*xy).

Preuve : Considérons pour x € A donné, l'application f, : A — A, y — x xy. f, est un
morphisme du groupe (A, +) vers lui-méme. On peut donc lui appliquer le formulaire de
la proposition 2.1.13. ]

Un anneau est donc un triplet (A, +,#), I’ensemble A s’appelle 'ensemble sous-jacent a
I’anneau ; toutefois on parle souvent de ’anneau A en sous-entendant les lois + et * quand il est
clair dans le contexte de quelles lois il s’agit.

Exemple :

1. Nous étudierons tout spécialement 'anneau des entiers relatifs (Z, +, x) muni de ses lois
usuelles.

2. C muni de I'addition et de la multiplication est un anneau commutatif (on pourra vérifier a
titre d’exercice la distributivité de la multiplication des complexes par rapport a ’addition).

3. On note R[X] lensemble des polynémes & une variable, et & coefficients réels. Alors
(R[X],+, x) est un anneau.

4. L’anneau nul. On munit A = {a} des lois + et * définies par a + a = a et a x a = a. Alors
(A, +,*) est un anneau commutatif dans lequel 04 = 14 = a. C’est l'anneau nul.

Attention : dans un anneau, il n’est pas vrai en général que lorsque =z € A\ {0} on ait
TYy=x2=9y=2.
Si Panneau est commutatif : (zy)" = z"y".

Définition 2.3.3 On appelle diviseurs de zéros des éléments a et b d’un anneau (A, 4+, *) tels
que

a#04, b#04 etaxb=04.

Définition 2.3.4 On appelle anneau integre tout anneau distinct de l’anneau nul et qui n’a pas
de diviseurs de zéros.

Dans un anneau integre (A, +,*), on a
Y(a,b) € A%, axb=04=a=0y oub=04.

Z et C sont des anneaux integres.
L’expression de la puissance n-ieme d’une somme est souvent utile.

Théoréme 2.3.5 (Formule du binéme de Newton) Soient a,b deux éléments d’un anneau com-
mutatif et soit n un entier > 1, on a la formule :

(a+b)"=>_ ChaPb" P
p=0

ou, Ch = m est le nombre de parties a p elements dans un ensemble a n éléments.

A cause de cette formule, les coefficients Ch sont aussi appelés coefficients binomiaux.
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Les premiers exemples de cette formules s’écrivent :

(a+bt = a+b

( )2 = 4?4+ 2ab+ b?

(a+0)® = a®+3ad%b+ 3ab® + b

(a+0)* = a*+4a®b + 6420 + 4ab® + b*

(a+b)° = a®+5a*b+ 10a3 + 10a%0> + 5ab? + b°

Preuve : La démonstration se fait par récurrence sur le nombre n : la formule est évidente
pour n =0 ou n = 1, on la suppose donc vraie pour ’entier n, pour tout a, b et on cherche

a en déduire la formule pour 'entier n + 1.
On a: (a+b)""! = (a+b)(a+ b)" qui d’apres I'’hypotheése de récurrence vaut :

n n n
(a+b)> CRaPb" P =" CRaPTHo" P 4+ " Clalb" P,
p=0 p=0 p=0
Cette derniere expression est égale a :
n
an-i—l + Z(Ch + Ch—l)ahbn-i-l—h + bn+1
n n
h=1
et, si on rappelle que C" + C'—1 = C" i1 celle-ci vaut :
n+1
Z Cg+1ahbn+1fh
h=0

ce qui est bien la formule de Newton pour 'entier n + 1. [ |

Remarque 2.3.6 L’hypothese de commutativité ne peut pas étre enlevée.

2.3.2 Morphisme d’anneaux

Définition 2.3.7 On appelle morphisme de l'anneau (A, +, x) vers Uanneau (B, +,*) toute ap-
plication f de A vers B telle que

1. Y(a,a') € A%, f(a+d') = f(a) + f(a').
2 V( a)€A2 flaxa’) = f(a) = f(d).
f(1a)

Conséquence de la définition : Un morphisme d’anneau est en particulier un morphisme de
groupe (assertion 1), il s’en suit les propriétés habituelles (cf. propositions 2.1.13 et 2.1.15).

Proposition 2.3.8 Soit f un morphisme de l'anneau (A, +, x) vers 'anneau (B, +, %), et a un
élément inversible de A. Alors

fla™") = (f(a)™".

(Démonstration en exercice)
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2.3.3 Sous-anneaux

Définition 2.3.9 On appelle sous-anneau de l'anneau (A, +, ) toute partie A’ de A :
— stable pour les lois d’anneaux de A,
— qui, munie de ces lois est un anneau,
— et qui contient l’élément unité 14 de l'anneau A.

Une définition équivalente est de dire que A’ est un sous-anneau de A ssi A’ est un sous-
groupe du groupe (A, +) contenant I'unité 14 et stable par la loi x. On en déduit facilement la
caractérisation pratique suivante (cf. proposition 2.1.7).

Proposition 2.3.10 Soit (A, +,*) un anneau. Les assertions suivantes sont équivalentes

1. A’ sous-anneau de A,
ACA etlye A,

2. V(x,y) € (A)?, z—-yeA,
V(z,y) € (A2, xxyec A

La proposition suivante s’intéresse aux images directes et réciproques d’un sous-anneau par
un morphisme d’anneaux.

Proposition 2.3.11 Soit f: (A, +,%) — (B, +, *) un morphisme d’anneauz. Alors,
— Pour tout sous-anneauzr A’ de A, f(A’) est un sous-anneau de B ;
~ Pour tout sous-anneau B' de B, f~1(B') est un sous-anneau de A.

(Démonstration en exercice)

En particulier, Im(f) est un sous-anneau de B. Attention, on ne peut rien dire en général
sur Ker(f), car, si 14 # 04, alors {0} n’est pas un sous-anneau de B.

Le lecteur vérifiera que le seul sous-anneau de Z est Z lui-méme. La notion de sous-anneau
peut donc sembler trop restrictive dans certains cas. On introduit une notion plus faible de
sous-structures dans le paragraphe suivant.

2.3.4 1Idéaux d’un anneau

Définition 2.3.12 On appelle idéal de l’anneau (A, +, ) toute partie I de A tel que
1. I sous-groupe de (A,+),
2.Vac A Viel, axiel etixacl.

La proposition 2.1.7 nous fournit encore une caractérisation pratique des idéaux :

Proposition 2.3.13 Soit (A, +,*) un anneau. Les assertions suivantes sont équivalentes
1. I idéal de 'anneau A
ICA etl#0,
2. V(z,y) € I?, z—-ye€l,
Vaoe AViel,axieletixaecl
Exemple :
1. Soit A un anneau. Il admet deux idéaux dits triviauz : A et {04}.
2. Les seuls idéaux de 'anneau (Z, +, -) sont les ensembles de la forme nZ pour n € N.

On a le résultat simple mais important suivant

Proposition 2.3.14 Soit I un idéal de l'anneau (A,+,%). Si 14 € I, alors [ = A.
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(Démonstration en exercice)
Les liens entre morphismes d’anneaux et idéaux sont établis dans la proposition suivante.

Proposition 2.3.15 Soit f: (A, +,%) — (B, +,*) un morphisme d’anneau. Alors
1. I idéal de A implique f(I) idéal de Im(f),
2. J idéal de B implique f~1(J) idéal de A.

(Démonstration en exercice)
En particulier, Ker(f) est un idéal de 'anneau A.

2.3.5 Idéal engendré par une partie. Idéal principal. Anneau principal

La fin de ce paragraphe consacré aux anneaux introduit la notion d’idéaux engendré par une
partie d’'un anneau et a la notion, centrale en arithmétique, d’anneau principal.

Proposition 2.3.16 Soit {I;}jc; une famille quelconque (c’est-a-dire J quelconque) d’idéaux
d’un anneau A. Alors leur intersection est encore un idéal de A.

Preuve : On vérifie sans problemes les deux assertions de la proposition 2.3.13. [ |

La derniere proposition légitime la définition suivante.

Définition 2.3.17 Soit X une partie de A. On note Tx l’ensemble des idéaux de A contenant
X et on pose

(X)=({I, Telx}

Alors (X) est un idéal de A contenant X et c’est le plus petit possédant cette propriété. On dit
que c’est [idéal engendré par X.

On se place dans le cas d’un anneau commutatif A. Soit a € A. On pose M = {axx, =z € A}.
On vérifie facilement que M est un idéal de A contenant a et que de plus c’est le plus petit idéal
de A contenant a. Soit en effet J un idéal de A contenant {a} et m un élément de M. L’élément
m est donc de la forme a *x ou z € A. Alors, par définition de I'idéal, a *x € J car a € J. Donc
McCJ.

C’est donc 'idéal engendré par {a}. On le note souvent (a) (plutét que ({a})). On a prouvé

(2.3) () ={axz, xe€A}.

Définition 2.3.18 (Eléments associés) Soit (A, +,%) un anneau. Soit a, b deuz éléments de
A. On dit que a et b sont associés ssi

Dans un anneau intégre, il est possible de caractériser les éléments associés. Auparavant, notons
U(A) 'ensemble des éléments inversibles de 'anneau A (pour la loi *). On sait (cf. exercice) que
munit de la loi %, ¢’est un groupe. On 'appelle le groupe des unités de ’anneau.

Proposition 2.3.19 Soit A un anneau commutatif et integre. Soit a et b deux éléments de A.
Alors
aetb associés <= Fu e U(A) tel que b= ua

Preuve : L’implication de droite a gauche est évidente. Soit maintenant a et b tels que
(a) = (b). 1l existe alors q; et g2 dans A tels que a =bqy et b = agz. On a alors

a=aqq ouencore a(lg—qaq)=04.

Soit a = 04. Auquel cas, b = 04. Soit a # 04 et alors, comme A est integre, gog1 = 14. B
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Définition 2.3.20 On appelle idéal principal tout idéal engendré par un singleton X = {a}.

Définition 2.3.21 On appelle anneau principal tout anneau A tel que
1. A est intégre,
2. tout idéal de A est principal.

L’arithmétique abordée dans le chapitre 4 se fonde en partie sur le théoréme suivant :

Théoréme 2.3.22 L’anneau (Z,+,-) des entiers relatifs munis des lois usuelles est un anneau
principal.

Preuve : Les seuls sous-groupes de (Z,+) sont nZ pour n entier. On vérifie sans peine que
nZ est bien un idéal de Z et qu'il est engendré par n (cf. (2.3)). ]

2.4 Structure de corps

2.4.1 Corps, exemples
Définition 2.4.1 Un corps (K, +,-) (commutatif) est un anneau tel que :

1. K distinct de l'anneau nul,
2. la loi - est commutative,

3. tout élément x € K \ {Ox} posséde un inverse.

Exemple :
1. (Q,+,-), (R,+,), (C,+,-) sont des corps.

2. L’anneau (Z, +, x) n’est donc pas un corps car les seuls éléments de Z possédant un inverse
pour la multiplication sont +1 et —1.

Les corps les plus importants que nous étudierons sont le corps des nombres rationnels Q,
le corps des nombres réels R et le corps des nombres complexes C. Nous verrons aussi que, si
K désigne Q, R ou C, I'ensemble des polynomes a coefficients dans K, que 1'on note K[X],
muni de ’addition et de la multiplication naturelles, forme un anneau qui possede beaucoup de
propriétés communes avec Z. Tous ces anneaux sont commutatifs.

Les propriétés suivantes sont immédiates.

Proposition 2.4.2 Soit (K,+,-) un corps.
1. K posséde au moins deux éléments.

2. K est integre, c’est-a-dire
Y(a,b) € K?, a-b=0g = a=0g oub=0k.

Preuve :
1. Il s’agit de O et 1x puisque O # 1x (K distinct de 'anneau nul).

2. Un corps K ne possede pas de diviseurs de zéros. En effet,
a#0g, b#0xg =a-b# 0k,

car K\{Ox} est stable pour - (en fait, K'\{Ox} est un groupe). Pour le voir, il suffit de
constater que K\{Ox } = U(K), 'ensemble des éléments inversibles de K. L’inclusion
directe est une conséquence de la définition de corps. Quant & I'inclusion réciproque,
si x est inversible pour - alors x # O car O -y = Og # 1x pour tout y € K.
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2.4.2 Sous-corps

Définition 2.4.3 On appelle sous-corps d’un corps, tout anneau de ce corps qui est un corps
pour les lois induites.

De méme que précédemment, on a les caractérisations pratiques suivantes :
Proposition 2.4.4 Soit (K,+,-) un corps.
K’ sous-corps de K <= K’ sous-anneau de K et Vx € K'\{0x}, 27! € K’

K' CcKetlge K,
— V(z,y) e K', x—ye K etx-ye K’
Vo € K'\{0k}, z=! € K’

< K’ est un sous-groupe de (K,+) et
K"\{0k} sous-groupe de (K\{Ox},").

Si K’ est un sous-corps de K, alors K est appelé sur-corps de K’ ou encore extension de K.

2.4.3 Idéaux d’un corps

Théoreme 2.4.5 Tout corps n’a que des idéaux triviaux.

Preuve : D’abord, K et {Ox} sont bien des idéaux (triviaux) de K. Il n’y en a pas d’autre.
Car si I est un idéal de K distinct de I'idéal nul {Ox}, montrons que I = K. Comme [
n’est pas Iidéal nul, il existe un élément i de I distinct de O . Soit i~! son inverse dans
K. Alors i-i~! = 1) € I par définition d’un idéal. On conclut par la proposition 2.3.14. m

2.4.4 Morphisme de corps

Définition 2.4.6 On appelle morphisme du corps (K, +,-) vers le corps (L,+,-) toute applica-
tion f de K wvers L telle que

1. ¥(z,y) € K2, f(z+y) = f(z) + f(y).
2. ¥(z,y) € K2, f(z-y) = f(x)- fly).
3. f(lK) =1p.

Les conséquences immédiates sont que tout morphisme de corps f est un morphisme du
groupe (K, +) vers le groupe (L, +). De plus, f est également un morphisme du groupe (K\{0x},-)
vers le groupe (L\{01},-). On remarquera qu'il s’agit bien d’une application ici car si x est in-
versible pour - dans K alors f(x) est inversible pour - dans L (propriété d’anneau).

Les corps sont finalement des objets assez contraints comme le souligne le résultat suivant.

Théoréme 2.4.7 Tout morphisme de corps est injectif.

Preuve : Soit f: K — L un morphisme de corps. Alors Ker(f) est un idéal du corps K. Donc
Ker(f) ne peut-étre que 'idéal nul ou I'idéal plein (cf. le théoreme 2.4.5). Or Ker(f) = K
est absurde car f(1x) =1y # 0r. Donc 1x ¢ Ker(f). Donc Ker(f) = {0k}, c’est-a-dire f
injectif. [ |

Concernant 'image directe d’un corps par un morphisme de corps, on a le résultat suivant.
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Proposition 2.4.8 Soit f : K — L un morphisme de corps. Alors Im(f) est un sous-corps du
corps L.

Preuve : Tout d’abord, Im(f) est déja un sous-anneau de ’anneau L (cf. proposition 2.3.11).
Ensuite, grace a la caractérisation 2.4.4, il suffit de montrer que pour tout y € Im(f),
y # 0, y~! appartient & Im(f). Or, il existe € K tel que y = f(x) avec x # 0. Mais
alors y~! = (f(z))~! = f(z~!) (propriété de morphisme d’anneaux pour les éléments

inversibles). Donc y~* € Im(f). ]

En conclusion, tout morphisme de corps f : K — L induit un isomorphisme de corps de K
sur Im(f).

2.5 Compléments sur les nombres complexes

2.5.1 Racines n-iemes de 'unité

Définition 2.5.1 Soient n € N*, (z,z) € C2.

On dit que z est racine n-ieme de Z si 2" = Z.

On dit que z est racine n-iéme de l'unité si 2™ = 1. Lorsque n = 2 on parle de racine carrée de
7 si 22 = 7 et de racine carrée de l'unité si 2> = 1.

Proposition 2.5.2 Soit n € N*. Il y a exactement n racines n'*™ de l'unité (2 a 2 distinctes),
a savoir les nombres complezes wy, = e n = cos 2’“7” + 7 sin 2]“7“ avec k € {0,1,...,n— 1}

Preuve : Soit z une racine n-eme de I'unité que nous écrivons sous la forme trigonométrique

z = |z|e®.
; v . 2" =1
Z|"em? = 16" gécrit |
1] nd = 2km avec keZ
<o+ ]z]+1) et |z] >0, on a |z|™ =1 si et seulement si |z| = 1.
. . 2ikm

Les racines n'*™® de 1 sont les nombres complexes w, = e » avec k € N.

2ikn 2ik'n . ok
e n =e n sietseulement si %T’T — %T’T = 2pw avec p € Z.

wy, = wyg, si et seulement si &’ = k + np avec p € Z.
On obtient donc toutes les racines n'®™ de 1 en donnant & k, n valeurs consécutives par
exemple k € {0,1,...,n — 1} (et elles sont bien distinctes). ]

Comme |2|"—1 = (|z|-1)(|z|* 1+

Interprétation géométrique

Les points M}, d’affixe wy, = e n sont les points du cercle unité tels que 227 soit une mesure

- — n
(en radians) de I’angle orienté (i, OMy).
M1 est 'image de My, par la rotation de centre O et d’angle %” On a MgMy; = M{1My =--- =

2im

M, _ 1My = ‘eT - 1‘ = 2sin 7.

2in im || im _im -
on remarque que |en — 1 =|en|len —e n|=2sin ).
Exemples :
. : o . 2im . 5 = _zix :
1. Les racines cubiques de I'unité sont 1, j = e 3 = —% —}—z@, j2 =7 =e "3 . Leurs images

forment un triangle équilatéral.

—1

(VB

. o\ e, s . ] ; . .
2. Les racines quatriemes de I'unité sont 1, i = e€'2, —1 = '™, —i = e ‘2. Leurs images

forment un carré.

Proposition 2.5.3 La somme des racines n'**™ de l'unité est nulle.
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Preuve : D’apres la formule donnant la somme des n premiers termes d’une suite géométrique,

on a :
n—1 jnm
sike 1 — €%
en =——73 =0
k=0 1—e'n

2.5.2 Racines n'*™ d’un nombre complexe

Si Z =0, 0 est la seule racine n*™¢ de Z.

Proposition 2.5.4 Tout nombre complere non nul Z d’argument o posséde exactement n
racines n'*™®, & savoir les nombres complezes z, = {/|z[e ou O = 2 + %Tﬂ avec k €
{0,1,...,n—1}.

Preuve : Soit z une racine n'*™® de Z sous sa forme trigonométrique z = |z|e?®. On a I’écriture
2" = |Z]

nd = a+2kr avec k€eZ
En S2 dans le cours ”Fonction de la variable réelle”, on montrera que pour tout n € N et
pour tout r € RY il existe un unique réel positif appelé racine nme de 7 et noté {/r ou

trigonométrique Z = | Z|e'®. |z|"e™? = |Z|e!™ s’écrit

(r)% tel que (r)" =r.
Ainsi, comme |z| >0, |2 = Z équivaut a |z| = ¥/|Z|. Les racines n'*™* de Z sont les

sy 2ikw
nombres complexes zp = V/|Z|e'n T n avec k € Z.

On a 2z, = zywy, avec zp = Wei% et wy = eZn" . Comme 20 # 0, 21 = zp si et seulement
si Wg = W/

D’apres la démonstration précédente z, = 2j si et seulement si k' = k + np avec p € Z.
On obtient toutes les racines n'®° de z en donnant & k, n valeurs consécutives par exemple
ke{0,1,...,n—1}. [

Corollaire 2.5.5 Sia est une racine n™™¢ de Z avec z # 0 alors les racines n™™¢ de Z sont

- 2im
les nombres complezes a, awy, aw?, ..., aw] U avec wy = e .

Corollaire 2.5.6 La somme des racines n*“"* d’un nombre complexe non nul est nulle.

2.5.3 Racines carrées d’'un nombre complexe

D’apres ce qui précede, tout nombre complexe non nul Z possede deux racines carrées op-
posées. (L’une se déduit de I'autre en multipliant par ™). Leur calcul effectif & 1'aide de la
méthode précédente n’est possible que si I'on peut écrire facilement z sous la forme trigo-
nomeétrique, ce qui est rare. La méthode suivante a I’avantage d’étre plus systématique.

Posons Z = X +iY, avec (X,Y) € R? et cherchons z = = + iy, avec (x,y) € R? tel que 22 = Z.

2,2
2 2 . o . s s . r~ —vy = X (1)
x* —y 4+ 2ixy = X +1Y  s’écrit { 2y )
De plus, |22 = |Z| s’écrit 2?2 =VX2+Y2  (3).
Les relations (1) et (3) donnent x et y au signe pres. La relation (2) permet d’apparier les signes
de x et de y.
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2.5.4 Equation du second degré

On cherche & résoudre (F) az?+bz+c =0 avec a # 0 et (a,b,c) € C3. On note A le nombre
complexe b? — 4ac.
A est appelé le discriminant complexe du trinéme 7'(2) = az? + bz + c.

Proposition 2.5.7 Si A =0 alors (E) admet une unique solution z = —%.

Si A # 0 alors (E) admet deux solutions distinctes z1 et za qui sont données par les formules :

b o b

_ 4 = avec § racine carrée de A.
2a  2a 2a  2a

Z1 =

Preuve : On peut écrire le trindome sous sa forme canonique.

b\2 2

2 _

az +bz+ca(z+> ——+4c
2a

, . N b2 _ bv2—4 A
(E) équivaut a (z + %) =T = ©a)z

Si A = 0, équation a une seule solution z = —:2

-2,

Si A # 0, le nombre complexe A a deux racines carrées ¢ et —¢§. L’équation a deux solutions
—b+0 —b—0

21 = 27:{ et 22 = —55 - |

Remarque 2.5.8 Les formules sont les mémes que celles donnant les solutions d’une équation
du second degré a coefficients réels ; mais le calcul des racines carrées du discriminant complexe
constitue une €étape supplémentaire.

Proposition 2.5.9 L’application 6 — € est un morphisme du groupe (R,+) dans le groupe
des nombres complexes de module 1 muni de la multiplication.

On démontrera ce résultat en exercice.
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Chapitre 3

Relations

Définition 3.0.10 Soient E et F' deux ensembles. Une relation R correspond & une propriété
caractéristique des éléments d’une partie G C E X F. G est appelé le graphe de la relation R.
Autrement dit : Dire que (x,y) € G correspond a “x et y vérifient la relation R” ce qui sera

noté xRy. Donc
G ={(z,y) € Ex F: zRy}.

Exemple : E = F = {1,2,3}, R =< . Nous avons que 1 < 2, 1 < 3,2 < 3 donc G =
{(1,2),(1,3),(2,3)}.

Définition 3.0.11 Si E = F, on dit que l’on a une relation R sur ’ensemble E.

Définition 3.0.12 Une relation R sur un ensemble E est dite

— reflexive si pour tout x € E, xRx.

— symétrique st pour tous x,y € FE, xRy implique yRx.
antisymétrique si pour tous x,y € B, xRy et yRx implique x = y.
transitive si pour tous x,y,z € E, (rRy et yRz) implique xRz.

3.1 Relations d’ordre

Définition 3.1.1 On dit qu’une relation R sur E est une relation d’ordre si R est reflexive,
antisymétrique et transitive.

Exemple : La relation xRy définie sur R par xRy <= x < y est une relation d’ordre sur R.
Définition 3.1.2 On dit qu’une relation d’ordre R est totale si pour tous x,y € E xRy ou yRx.

Exemple : x <y est une relation d’ordre totale sur R.

Exemple : Sur R? I'on introduit 1’ordre lexicographique
(z,y)R(2',y) <= (z < 2’ ou (z = 2" et y < ¥)).

Il s’agit bien d’une relation d’ordre sur R2.

Preuve : 1l est évident que R est reflexive. Montrons que R est antisymétrique : Supposons
que (z,y)R(z',y') et (¢/,y)R(x,y). Alors x < 2’ et 2/ < z, donc x = 2/. Par définition
de R, nous avons alors y < ¢/ et v/ < y, donc y = y/. Montrons finalement que R est
transitive : Supposons que (x,y)R(z',y’) et (', )R(z",y"). Alors z < 2’ et 2/ < 2’|
donc z < 2. Siz < 2’ et 2/ < 2’ alors x < 2" et c’est terminé. Si z = 2’ = 2", alors
y <y <4y” doncy < y”, et nous avons encore (z,y)R(z”,y"). Sinon, z = 2’ et 2/ < 2",
donc x < x”, donc c’est bon. Pareil pour z < 2’ et 2’ = 2”. [
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Exemple : Soit P(F) I'ensemble des parties (c’est-a-dire des sous-ensembles) d’un ensemble
E. On considere la relation R sur P(E) définie par ARB si et seulement si A C B.

On vérifie qu’il s’agit d’une relation d’ordre qui n’est pas totale si F possede au moins deux
éléments. En effet, si a # b € E, alors A = {a} et B = {b} ne sont pas en relation.

3.2 Relations d’équivalence

Définition 3.2.1 On dit qu’une relation R sur E est une relation d’équivalence si R est re-
flezive, symétrique et transitive. Dans ce cas, on notera aussi bien xRy ou x = y(modR).

Exemple :

1. Soit F =R et xRy <= x = y. Il s’agit bien d’une relation d’équivalence.

2. Soit E =R et zRy <= |z| = |y|. Il s’agit bien d’une relation d’équivalence.
Exemple :

1. Soit F = Z. La relation définie par xRy si et seulement si z — y est un multiple de 2 est
une relation d’équivalence.

2. Sur Z, xRy ssi x — y est impair n’est pas une relation d’équivalence (pas de reflexivité).

3. Soit k € N fixé. La relation R définie sur Z par xRy ssi x — y est un multiple de k est une
relation d’équivalence que 'on note z = y[ mod k. On dira aussi = est congru a y modulo
k.

3.3 Classes d’équivalence

Définition 3.3.1 Soit R une relation d’équivalence sur E et a € E. On note a := {y € E :
yRa}. On dit que a est la classe d’équivalence de a.

Proposition 3.3.2 Sib € a, alors b = a.

Preuve : Soit ¢ € a. Alors cRa. Or bRa, donc par transitivité ¢cRb donc ¢ € b. Dol @ C b.
On montre de la méme maniere que b C a. [ |

3.4 Partitions

Soit I un ensemble non vide, appelé ensemble d’indices, et E un ensemble. Une famille
d’ensembles inclus dans E indexée par I est une application ® de I dans P(F). Sii € I, on note
A; = ®(i) 'image de i. Alors A; C E.

Exemple : Si I ={1,...,n}, nous avons donc Ay, ..., A,.

Notation : Nous notons

UAi::{xGE:EIiEI:xEAi},
el

ﬂAi::{er:Vz’eI, z e A}
el

Définition 3.4.1 On appelle partition de E toute famille (A;)icr de sous-ensembles de E in-
dexée par I vérifiant que pour tout i #j A;NA; =0 et | J;c; Ai = E.
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Théoreme 3.4.2 Soit R une relation d’équivalence sur E. Alors les classes d’équivalence de R
forment une partition de E.

Preuve : Montrons d’abord que a N b=0oubien a=b:Sizeanbalors xRa et zRb donc
aRb donc a = b. De plus, pour tout z € E, x € &, donc F est bien la réunion de toutes les
classes d’équivalence. ]

Exemple : Considérons sur Z la relation d’équivalence définie par xRy ssi x — y est multiple
de 2. Alors on a deux classes d’équivalence 0 = {2n:n € Z} et 1 = {2n+1:n € Z}.

Théoréme 3.4.3 Soit (4;)icr une partition de E. Alors il existe une relation d’équivalence R
sur E dont les A; sont les classes d’équivalence.

Preuve : Définissons R par
xRy ssiJi: (x € A; ety € A;).

Les deux théoremes précédents signifient donc que se donner une relation d’équivalence sur
un ensemble F est la méme chose que se donner une partition de cet ensemble.

Définition 3.4.4 L’ensemble des classes d’équivalence de E pour la relation R est noté E/R
et appelé ensemble quotient de E par R.

Exemple : Soit R la relation d’équivalence sur Z définie par xRy ssi x — y est un multiple de
k. On note kZ := {kn : n € Z}. L’ensemble quotient de Z par R est noté Z/kZ.

Proposition 3.4.5 Soit k € N. Z/kZ posséde k éléments :
Z/kZ ={0,1,..., (k= 1)} = {kZ, 1+ kZ,...,(k — 1) + kZ}.

Preuve : Soit n € Z. On effectue la division euclidienne de n par k : n = gk + 7 ou 0 <
r < k—1. Alors n € 7. Par ailleurs, 0,1,...,(k — 1) définissent des classes distinctes;
en effet, supposons que n = m avec 0 < n < k—1et 0 < m < k—1; on a donc
—(k—1) <n—-—m < k—1. Comme n —m est multiple de k, la seule possibilité est
n—m=0. ]

3.5 Compatibilité d’une relation d’équivalence avec une loi in-
terne * sur F

Définition 3.5.1 Soit x une loi interne sur E. On dit que R est compatible avec * si pour tout
a,b aRb implique que pour tout x € E, (a*x)R(b*x) et (x *a)R(z *b).

Définition 3.5.2 (et Proposition) Si R est compatible avec *, on peut définir sur E/R la loi
 de la fagon suivante : Soient ¢ et ¢ € E/R. Choisissons a € ¢ et a' € /. Posons

& = (a «a).

Preuve : Pour définir correctement la loi #, il faut vérifier que cette définition ne dépend pas
du choix de a et a’ : Soient b € ¢ et b’ € ¢. Alors (bx V) = (bxa') car b'Ra’ implique que
(bxb')R(b*a'). Ensuite (b*a’) = (a xa’) car bRa implique (b* a')R(a * da’).

La classe d’équivalence ékd ne dépend donc pas du représentant choisi dans les classes de
¢etc. [ |
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Exemple : Considérons Z que 'on munit de 'addition classique et de la relation 2Ry <
(z — y est un multiple de 3). Alors on sait que Z/37Z = {0, 1,2}. Vérifions que cette relation est
compatible avec ’addition :

Soient (a,b) € Z? tels que aRb, et soit z € Z. On a (a + x) — (b+ x) = a — b, dont on sait
qu’il est multiple de 3. Donc (a 4+ 2)R(b + ). _

Dans ce cas, cela donne la loi 4 suivante : 0+1 = (0+1) = 1.
IHi=01+1)=2.
+2=(1+2)=3=0.
2+2=4=1.

Proposition 3.5.3 Si (E,x*) est un groupe et si R est compatible avec *, alors (E/R, %) est un
groupe. De plus, si x est commutative, alors % [’est.

Preuve : s est clairement une loi de composition interne associative (car * est associative).

Soit e I’élément neutre pour *, et montrons que é est I’élément neutre pour * sur E/R.
Soit 4 une classe d’équivalence, dont un représentant est z. Alors i é = (z x ) = 1, et de
méme on a éki = (e * x) = &, donc é est élément neutre.

Soit # une classe d’équivalence, dont un représentant est z. Considérons 2’, I'inverse de x
pour . Alors @2/ = (z % x') = ¢é, et /% = (2 * z) = é. Donc &' est la classe d’équivalence
inverse de & pour . Tout élément de E/R a donc un inverse. [

De méme on a le résultat suivant concernant les anneaux :

Proposition 3.5.4 Si (A, +,*) est un anneau et si R est compatible avec + et x, alors (A/R, +, %)
est un anneau. De plus, si x est commutative, alors * ’est également.

Preuve : La preuve est la méme que dans la proposition précédente. [ |

3.6 Application aux groupes : le théoreme de Lagrange

La notion de relation d’équivalence permet de démontrer un assez joli résultat qui met en
lumiere les relations entre théorie des groupes (finis) et arithmétique, a savoir que le cardinal
d’un sous-groupe divise le cardinal du groupe. Nous allons le montrer ci-dessous. Auparavant,
rappelons que I'on appelle groupe fini tout groupe ne comportant qu’un nombre fini d’éléments.
On notera Card(E) le nombre d’éléments d’un ensemble fini E.

Théoréme 3.6.1 (Théoréme de Lagrange) Soit (G,-) un groupe fini et H un sous-groupe
de G. Alors Card(H) est un diviseur de Card(G).
Preuve : On note e ’élément neutre de G. Pour x et y dans G, on note xRy la relation “il

existe un élément a de H tel que y = ax”.
On montre facilement qu’il s’agit d’une relation d’équivalence sur G. En effet, d’une part,
pour tout z € G, xRx car il suffit de prendre a = e € H dans la définition de R car H est
un sous-groupe donc contient e. La relation R est donc réflexive.
D’autre part, si 2Ry, il existe a € H tel que y = ax. Il existe donc b = o~ € H car H s.g.,
donc contient les inverses de ses éléments, tel que z = a~'y = by. Donc R est symétrique.
Enfin, si xRy, il existe a € H tel que y = ax. Si yRz, il existe b € H tel que z = by. On
pose alors ¢ = ba. On a z = by = bax = cx avec ¢ € H car H s.g.. Donc R est transitive.
La relation R est donc une relation d’équivalence. On sait donc grace au théoreme 3.4.2
que ’ensemble des classes d’équivalence modulo R forment une partition de G.
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Soit & une telle classe pour un représentant x € G et soit f, I'application de H dans &
définie par f,(a) = ax. L’application f, est clairement & valeurs dans @. D’autre part, f,
est injective. En effet,

fz(a) = fo(d) = ax =d'z = a=d.

De plus, Card(H ) est fini. Donc f; est injective ssi elle est bijective. En définitive, Card (%) =
Card(H). Toutes les classes d’équivalences ont donc le méme nombre d’éléments : le nombre
d’éléments de H. Si on désigne par n leur nombre, on a donc

Card(G) = nCard(H).
|

Corollaire 3.6.2 Soit G un groupe dont le cardinal est un nombre premier. Alors G ne posséde
pas d’autres SOus-groupes que Ses Sous-groupes triviaul.
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Chapitre 4

Nombres premiers, PPCM, PGCD

4.1 Nombres premiers, Décomposition en facteurs premiers

Définition 4.1.1 Soient n,m € Z*. On dit que n divise m (et on note n|m) si le reste de la
division euclidienne de m par n est nul.

Remarque 4.1.2 PLus généralement, on peut dire que n divise m ssi il existe ¢ € Z tel que
m = qn. Dans ce cas, on peut prendre en compte les cas ou m oun sont nuls : on a m divise 0
pour tout m € Z. et 0 divise n sst n = 0.

Remarque 4.1.3 On écrira parfois la phrase m est un multiple de n pour signifier que n divise
m.

Définition 4.1.4 Soit n € Z*. On note D, l’ensemble des diviseurs de n. On a toujours
{-1,1,—n,n} C D,,. On dit que n # 0,1, est premier ssi D, = {—1,1, —n, n}.

Exemple : 2,3,5,7,11,13,17,... sont des nombres premiers.

Proposition 4.1.5 Tout entier naturel n > 2 admet au moins un diviseur premier. Tout entier
naturel n > 2 non premier admet au moins un diviseur premier p tel que p*> < n. Il en est de
méme pour les entiers < —2.

Preuve : Notons D; les diviseurs de n plus grands que 2. Nous avons n € D, donc D, # 0,
D C N. Par les axiomes de N (voir chapitre 1), D;l" possede donc un plus petit élément
m. Montrons que m est premier.
Raisonnons par I'absurde : Si d divise m, et si d > 2, alors d divise n. Donc d € A,,, donc
d > m, contradiction.

Soit maintenant n > 2, n non premier. Soit p le plus petit diviseur de n. Donc n = pd et
d divise n, donc d > p, donc n > p?. [ ]

Proposition 4.1.6 L’ensemble des nombres premiers est infini.
Preuve : Raisonnons par I’absurde et notons {p1,...,pn} 'ensemble des nombres premiers.

Alors n :=p1-...-py + 1 doit admettre un diviseur premier p. Mais le reste de la division
euclidienne de n par p; est toujours égal a 1. Contradiction. [ |
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Théoréme 4.1.7 (Décomposition en facteurs premiers) Tout entier natureln # 0,1 peut
s’écrire comme produit fini de nombres premiers. Il en est de méme pour les entiers < —2.
De plus, cette décomposition est unique, a l'ordre des facteurs pres.

Preuve : Récurrence sur n. Pour n = 2, nous avons 2 = 2, donc 'affirmation est vraie. On
suppose le résultat vrai pour tout entier appartenant a {1,...,n}. Considérons n + 1.
Si n + 1 est premier, il n’y a rien a montrer. Sinon, on sait qu’il existe p premier qui
divise n 4+ 1. Mais p > 2, donc (n + 1)/p < n. L’hypothese de récurrence s’applique. Donc
(n—i—l)/p:pl-...-pk, d’ofln+1:p-p1~...-pk.

L’unicité de la décomposition sera démontrée dans la section 4.5. [ ]

4.2 Etude de Z/nZ

Rappelons la relation d’équivalence suivante sur Z : Soit n € N fixé, alors
xRy si et seulement si x — y est un multiple de n.

L’ensemble quotient de Z par R est noté Z/nZ.
De plus, (Z,+, x) est un anneau muni des opérations + et x usuelles.

Proposition 4.2.1 Les lois + et x sont compatibles avec R sur Z.

Preuve : Soient (a,b) € Z? tels que aRb, et soit z € Z.

Ona (a+z)— (b+x) =a—b, dont on sait qu’il est multiple de n. Donc (a + )R (b + x),
et + est compatible avec R.

Onaaussia Xz —bxz = (a—>b) x z. Comme a — b est un multiple de n, a x z —b x z
est encore un multiple de n. Par suite, (a x z)R(b X x), et X est compatible avec R. =

Rappelons alors que sur Z/nZ, on peut définir deux lois internes + et x par
bk = (k + k)

et . . .
fesck! = (k % k).

Ces définitions ne dépendent pas des représentants choisis.

On obtient donc, comme application de la proposition 3.5.4 :

Proposition 4.2.2 (Z/nZ,+, x) est un anneau commutatif unitaire.

Remarque 4.2.3 Le lecteur vérifiera que (Z/nZ,+) est isomorphe au groupe des racines n-
iemes de l'unité muni de la multiplication.

Remarque 4.2.4 Nous omettrons a partir de maintenant d’indiquer les’ et noterons + au lieu
de +, x ou - au lieu de x. Remarquons que 1 est un élément neutre pour la multiplication dans
Z/nZ.

Nous rappellons qu'un anneau A est dit intégre si (Va,b € A:ab=0) < (a=0oub=0).

Proposition 4.2.5 (Z/nZ,+,-), n # 0,1 est un anneau intégre ssi n est premier.

Preuve :
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— Si n n’est pas premier, alors n = pg avec p #n, g # n. Alorsn =pj=0et p # 0, ¢ # 0.
— Choisissons p le plus petit entier strictement positif vérifiant p¢ = 0 pour un certain
q, avec 0 < p,q < n. Effectuons la division euclidienne de n par p; on a n = ap + b,

0 < b < p. En multipliant cette égalité par ¢, et en prenant les classes d’équivalence, on
obtient

(qn) = (apq) + (bq),
or (qn) = (aj?q) = O,_donc (bq) =b-¢=0. Grace & la minimalité de p, on en déduit que

nécessairement b = 0. Comme b < n, on a b = 0, ce qui implique que n = ap, donc n
n’est pas premier.

|

Corollaire 4.2.6 Un nombre premier p divise n-m ssi p divise n ou p divise m.
Preuve : Supposons que p divise le produit n - m. Alors 7 = 0 dans Z/pZ ce qui est
équivalent a n = 0 ou i = 0 dans Z/pZ. ]

Proposition 4.2.7 (Z/pZ,+,-) est un corps ssi p est premier.

Preuve : Si c’est un corps, alors il est intégre, et la proposition 4.2.5 nous dit que p est
premier.

Il reste & montrer que si p premier, alors Z/pZ est un un corps. Soit n tel que n # 0. Il
faut trouver un élément inverse pour la multiplication dans Z/pZ. Considérons la fonction
® : Z/pZ — 7/pZ définie par ®(1n) = nr. Alors ® est injective : ®(mm) = D(m/) ssi
n(m—m!) = 0 ssi th = m/, car Z/pZ intdégre. ® est donc nécessairement bijective. En
particulier, il existe i tel que ®(rn) = 1 donc rn = 1. [ ]

Dorénavant, on notera m = n [p] pour dire que deux nombres entiers n et m sont dans la
méme classe d’équivalence dans Z/pZ.

Théoréme 4.2.8 (Petit théoréme de Fermat) Soit p premier et a € Z non multiple de p.
Alors a1 =1 [p].

Preuve : a non multiple de p, donc @ # 0 dans Z/pZ. Or a?~! = 1 [p] est équivalent a a?~' = 1
dans Z/pZ. Comme a # 0, la fonction définie par

O (1) := an
est bijective. Nous avons donc que
O(A)-...-((p—1))=al-...calp—1)=a 1A -...-(p—1)).
Or, comme ® bijective et ®(0) = 0, alors
d(i)-...-®((p—1)=1-...-(p=1)

d’ou aP~! = 1. m
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4.3 Le PPCM : plus petit commun multiple

Remarque 4.3.1 Rappels sur les groupes : Soit (G,+) un groupe.

1. Si Hy et Hy sont des sous-groupes de (G,+), alors Hy + Hy = {x € G : il existe v € Hy
et w € Hy tels que x = v+ w} forme un sous-groupe de (G,+).

2. Si Hy et Hy sont des sous-groupes de (G,+), alors HHNHy ={x € G:x € Hy etz € Hy}
forme un sous-groupe de (G,+).

Remarque 4.3.2 Rappel sur (Z,+) :
1. Tous les sous-groupes de (Z,+) sont de la forme aZ, avec a € N.

2. a divise b ssi bZ C aZ.

Définition 4.3.3 Soient (a1, as) € Z2, alors a17Z M asZ est un sous-groupe de 7Z, il est donc de
la forme aZ, avec a € N.
a est appelé le PPCM de ay et de as. On note a = a1 V as.

Attention, on définit le PPCM de deux nombres entiers comme un nombre positif, méme si
ces deux nombres sont négatifs.

Exemple : Pour a; = —4, as = 6, nous avons
a’Z=A{...,—16,—12,-8,-4,0,4,8,12,16, ...}

et
agZ =A...,—18,-12,-6,0,6,12,18, ...},

donc a = 12. Remarquons que 6 =2-3 et -4 =—-2-2, eta=2-2-3.

Proposition 4.3.4 On a les propriétés suivantes pour tout triplet (a,b,c) € 73 :
1. aVa=lal,av0=0,aV1=lal,aVb=bVaetaV (bVc)=(aVb)Vec.
2. a Vb est un multiple de a et de b.
3. a divise b ssi a Vb= |b|.

4. c(aVb)=caV ch.

5

. m multiple de a et b ssi m multiple de a \V b.

Preuve : 1. découlent de la définition du ppcm.
2. Remarquons que aZ N bZ C aZ donc a divise a V b. De méme, b divise a V b.
3. Si a divise b alors bZ C aZ. Donc aZ N bZ = bZ. Donc a V b = |b|.
4. L’affirmation est évidente pour ¢ = 0.

Soit ¢ # 0. Alors n € caZ N ¢bZ est équivalent & n = cak = ¢bk’ donc n/c € aZ NbZ ce qui
revient a dire que n € c(aZ N bZ).

5. a et b divisent m ssi mZ C aZ et mZ C bZ donc mZ C aZ NbZ = (a V b)Z. [ ]

Remarque 4.3.5 Les assertions 2 et 5 de la proposition précédente caractérise bien le PPCM
de deuz entiers, a savoir, qu’il s’agit d’un multiple commun auz deuz entiers (2.) et que parmi
tous les multiples, c’est le “plus petit” (5.).
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4.4 Le PGCD : plus grand commun diviseur

Définition 4.4.1 Soient (a1, az) € Z2. On remarque que (a17Z + asZ,+) est un sous-groupe de
(Z,+). 1l est donc de la forme dZ, pour un certain d € N.

On note d = a1 N as, et d est appelé le PGCD de a1 et de as.

On a donc a1Z + asZ = dZ.

Attention, on définit le PGCD de deux nombres entiers comme un nombre positif, méme si
ces deux nombres sont négatifs.

Exemple : a1 =4, ag = 6. Alors 2 =6 — 4 € a1Z + asZ, donc 27Z C a1Z + aoZ. D’autre part,
tous les éléments de a1Z et de asZ sont divisibles par 2, donc a1Z + asZ C 27.

Proposition 4.4.2 On a les propriétés suivantes pour tout triplet (a,b,c) € Z3 :
I.aNa=lal,aN0=lal,aNl=1,(aANb)Ac=aA(bAc),aNb=DAa.
2. aAb divise a et divise b.
3. a divise b ssi a Nb = |al.
4. c(a Nb) = caA ch.
5

. (c divise a AN'b) ssi (c divise a et ¢ divise D).

Preuve : 1. découle directement de la définition de PGCD.
2. Remarquons que aZ est toujours un sous-groupe de aZ + bZ = dZ, donc d divise a. De
méme, d divise b.
3. Si a divise b, alors bZ C aZ donc aZ + bZ = aZ. Inversement, si a A b = |al, alors
aZ + bZ = aZ, donc bZ C aZ, donc a divise b.
4. est facile.

5. On sait que ¢ divise a A b ssi (a A b)Z C c¢Z. Donc aZ C ¢Z et bZ C cZ. ¢ divise donc a
et aussi b. Inversement, si aZ C ¢Z et bZ C cZ, alors aZ + bZ C c¢Z. Donc ¢ divise a A b. B

Remarque 4.4.3 On retrouve la caractérisation du PGCD de deux entiers a travers les asser-
tions 2. et 5. de la proposition précédente : il s’agit d’un diviseur commun aux deuz entiers (2.)
et parmi tous ces diviseurs communs, c’est le “plus grand” (5.).

4.5 Nombres premiers entre eux, Théoreme de Bezout, Théoreme
chinois

Proposition 4.5.1 On sait que d = a \'b ssi dZ = aZ + bZ. En particulier, comme d € dZ, on
peut donc trouver k,l € Z tels que
d = ak + bl.

Ceci est I'identité de Bezout.
Réciproquement : Si (3k,1 € Z : ak + bl divise a et b) alors a Ab = |ak + bl|.

Preuve : Le sens direct est évident.
Pour la réciproque : Notons f := ak + bl. Quitte a changer le signe de k et [, on peut
supposer f € N. Donc f € aZ + bZ. D’ou fZ C aZ + bZ = (a A b)Z. Par conséquent, a A b
divise f. D’autre part, comme f divise a et b, f divise aussi a A b (5. dans la Proposition
4.4.2).
Comme la relation "est divisible par” est une relation d’ordre sur N, f divise aAbet a AD
divise f implique que f =a Ab. [ |
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Définition 4.5.2 Soit a,b deuz entiers relatifs et {a;}1<i<n une famille d’entiers relatifs. On
dit que a et b sont premiers entre eux ssi a Ab = 1. On dit que aq,...,a, sont premiers entre
eux ou premiers dans leur ensemble si a3 A ... Aay, = 1. On dit finalement que aq,...,a, sont
premiers entre eux deux a deux ssi a; A aj = 1 pour tout ¢ # j.

Remarque 4.5.3 On remarque que [’associativité du PGCD énoncée dans la Proposition 4.4.2
(1.) permet bien de définir de maniére unique le PGCD d’une famille d’entiers.

Remarque 4.5.4 Attitention, on distinguera les propriétés “étre premiers dans leur ensemble”
et “étre premiers deuxr a deux”. Exemple, 3, 5 et 6 sont premiers dans leur ensemble mais pas
premiers deux a deur.

Le théoreme suivant est une conséquence immédiate de I'identité de Bezout.
Théoréme 4.5.5 (Théoréme de Bezout)
aANb=1«= 3k, 1 €Z?:1=ak+bl
Remarque 4.5.6 Il n’y a pas unicité de k,l car a(k + ub) + b(l — ua) = 1 pour tout u € Z.
Théoréme 4.5.7 (Théoréme de Gauss) SiaAb=1 et sia divise be, alors a divise c.

Preuve : D’apres 1’égalité de Bezout, a Ab = 1 est équivalent a Ju, v € Z tels que au+bv = 1.
Donc ¢ = cau + cbv. Or, a divise bc et a divise cau, donc a divise c. [ ]

Théoréme 4.5.8 (Application du Théoréme de Gauss) La décomposition d’un nombre en-
tier n > 2 en facteurs premiers est unique (a l’ordre des facteurs pres).

Ce théoreme signifie que tout entier n supérieur ou égal a 2 s’écrit sous la forme
— (875
n=p"...p"

avec pi, ..., P Suite strictement croissante de nombres premiers et chaque «; étant supérieur ou
égal a 1.

Théoréme 4.5.9 (Théoréme chinois) Soit n et m deuz nombres premiers entre euzx. Alors
Z)nZ x Z]/mZ est isomorphe a Z/nmZ par un isomorphisme d’anneauz.

Preuve : Considérons I'application

f:Z)/nmZ — Z/nZ x7Z/mZ
¢ = (g [n],q [m]).

On peut définir sur Z/nZ x Z/mZ des lois + et x en faisant agir les lois sur chaque
coordonnée.

Alors f est clairement un morphisme d’anneaux entre (Z/nmZ, +, x) et (Z/nZxZ/mZ,+, x).
Remarquons que le cardinal de Z/nmZ est le méme que celui de Z/nZ x Z/mZ, c’est-a-dire
nm. Pour obtenir le résultat, il reste a montrer que f est injectif.

Supposons que f(q) = (0,0). Alors ¢ est un multiple de n et de m. Comme n et m sont

premiers entre eux, par le théoreme de Gauss, ¢ est un multiple de nm, donc ¢ = 0 [nm).
|
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4.6 Formules explicites pour les PPCM et PGCD

Retrouvons maintenant la formule connue depuis le lycée pour le PPCM de deux nombres
entiers.

Proposition 4.6.1 Sia =p{*-...-pi", a; >0, et b= p?l . -pg", B; > 0, p; premiers, alors

(4.1) aVb= prlnax(al’ﬂl) - -p?ax(a”’ﬁ”).
Preuve : Notons c := prlnax(al’ﬁl) o -pglax(a"’ﬂ”)

b, donc de a V b.

Notons a Vb = p]' - ... py. Alors a divise a V b. Comme p{* A (pg> - ... py") =1, le

théoreme de Gauss implique que p{"* divise p]*. Donc 71 > 1. De méme : 7; > «; Vi. On

montre de la méme maniére que 7; > f; pour tout i. Donc ~; > max(a;, ;). a V b est donc

un multiple de c. ¢ étant le plus petit multiple de a et de b, on a égalité. [ |

. Il est clair que ¢ est un multiple de a et de

Faisons le méme travail que pour le PPCM, et retrouvons la formule donnant le PGCD a
partir des décompositions en facteurs premiers de a et b :

Proposition 4.6.2 Sia =p{*-...-pi", a; >0, et b= p?l S -pﬁ”, Bi > 0, p; premiers, alors
(4.2) anb=pmnlenf L pminton,fa),
Preuve : On note ¢ := prlnin(al’ﬁl) . -pﬁin(a”’ﬁ"). c divise a et b donc aussi a A b. Ecrivons

aANb=pl"-...-pi. Alors p]* divise a. Comme p]* A (p5? - ... p¥") = 1, le théoreme
de Gauss implique que p]* divise p{*. Donc v1 < 3. Pareil : 9; < ; Vi. On montre de
la méme manieére que v; < (; pour tout i. Donc v; < min(ay, ;). a A b divise donc c.
Conclusion : a A b = c. ]

Comme application des propositions 4.6.1 et 4.6.2, on voit :

Proposition 4.6.3 Pour tous nombres entiers (a,b) supérieurs a 1, on a (a V b)(a A b) = ab.
Si a et b sont de signe quelconque, on a (aV b)(a Ab) = |ab|.

Preuve : Cela découle du fait que pour tous nombres réels p et ¢, min(p, ¢) + max(p, q) = p+q.
|

4.7 L’algorithme d’Euclide

On suppose a > b > 0. Nous effectuons des divisions euclidiennes successives.

de a par b : a = bqy + 71, avec 0 <r; <0,
de b par rq : b=riqgy+ ro, avec 0 < 7o < 11,
de ri par rg : r1 = T2q3 + 73, avec 0 < r3 < ra,

etc jusqu’a
derp, 3parm,_2: Tn3=Tp 2qn-1+7Tpn-1, avecO <r, 3 <7y 2,
de rp_g par rp—1:  Tp_2 =Tp-1qn + Tn, avec 0 < rp_g <rp_1,

de r,_1 par ry : Tn—1 = TnGn+1 + 0, avec Tp41 = 0.

Proposition 4.7.1 On aa ANb = ry, i.e. le PGCD de a et b et le dernier reste non nul dans
cette série de divisions euclidiennes.
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Preuve : Montrons tout d’abord qu’il existe bien un rang n tel que r,, 1 = 0. Par construction,
Vp>1,0 < rpiq1 <rp. Lasuite (rp)p>1 est donc positive, et strictement décroissante tant
qu’elle n’est pas égale a 0. Il existe donc bien un rang a partir n tel que Vp > n+1, r, = 0.
On a que aZ + bZ = bZ + r17Z, car a s’écrit comme un multiple de b et un multiple de r;.
De méme, bZ + r1Z = r1Z + ro7Z, car b s’écrit comme un multiple de r; + 7o.

En itérant ce raisonnement, on trouve que aZ + bZ = bZ + M7 = "ML + 1ol = ... =
rn-1Z + rpnZ. = rp 2, car 1 = 0.
Par définition, aZ + bZ = r,7Z signifie que r,, = a A b. [ |

Exemple : Prenons a = 125 et b = 35. Alors

125 =35-3+ 20,

35=20-1+ 15,
20=15-1+5,
15=5-3+0.

Donc a Ab=>5.



Chapitre 5

Polynomes

5.1 L’ensemble des polynomes a une indéterminée

5.1.1 Définitions

Définition 5.1.1 On appelle polynéme a une indéterminée et coefficients dans K ou
plus simplement polynome, toute expression algébrique de la forme

apX? +ap 1 XP 4+ a1 X + ao,

avec a; € K pour tout i € {0,--- ,p}.
e Les scalaires a; sont appelés coefficients du polynome.
o S’il existe, le plus grand indice i tel que a; # 0 s’appelle degré de P et est noté deg P.
o Si tous les coefficients a; sont nuls, P est appelé polyndéme nul et est noté 0. Par conven-
tion, deg) = —oo.
e Un polynome de la forme P = ag avec ag € K est appelé polynéme constant. Si ag # 0,
son degré est 0.
L’ensemble des polynome a une indéterminée et coefficients dans K est noté K[ X].

Exemples :
e X3 — 71X +3/2 est un polynome de degré 3.
e Sin e N* X" —1 est un polynéome de degré n
e 1 est un polynome de degré 0.

Remarque 5.1.2 Nous serons amenés par la suite ¢ additionner des degrés de polynomes.
Comme Uapplication deg est a valeurs dans NU{—o0}, il faut étendre la définition de l’addition.
On adopte la convention suivante pour n € NU {—oo} :

—0o0 + 1 = —00.

Définition 5.1.3 Les polynomes ne comportant qu’un seul terme non nul (i.e du type P =
apX?) sont appelés monémes.

Remarque : Tout polyndéme est donc une somme finie de monomes.

Définition 5.1.4 Soit P = a,X?P + --- 4+ ap avec a, # 0 un polynome. On appelle terme
dominant de P le monéme a,XP?. Si le coefficient a, du terme dominant est 1, on dit que P
est un polynéme unitaire.

Remarque 5.1.5 On adopte la convention que l’'on ne change pas un polynéme P en lui ajou-
tant un ou plusieurs mondémes a coefficients nuls. Par exemple, on ne fera pas la distinction
entre

X*'—X+1 et 0X°+X*+0X? - X +1.

47
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5.1.2 Opérations sur K[X]

Nous allons munir K[ X] de deux lois internes “+” et “x”, et d’une loi externe

“»

a) Addition de deux polynémes :
Définition 5.1.6 Soit P=a, X"+ ---+ag et Q = b, X" +---+bg avec n € N. On définit alors
le polynéme P + Q) par

P+ Q= (an +by) X" + -+ + (a1 + b)) X + (ag + bo).

Remarque : Dans la définition ci-dessus, il n’est pas restrictif de faire commencer les expressions

des polynomes P et () par un monéme de méme degré n (voir la remarque 5.1.5 ci-dessus)

Proposition 5.1.7 Soit P et Q deuz polynomes de K[X]. Alors on a
deg(P + Q) < max(deg P, deg Q).
De plus, si deg P # deg @ alors deg(P + Q) = max(deg P,deg Q).

Preuve : Notons p=deg P et ¢ = deg Q.
— Si p > g, le coefficient du terme dominant de P + @ est a, donc deg(P + @) = deg P.
— Sip < g, le coefficient du terme dominant de P + @ est b, donc deg(P + Q) = deg Q.
~ Si p = ¢, le monéme de plus haut degré dans l'expression de P + Q est (a, + b,) XP.
Donc deg(P + Q) < p. Si b, = —a,, ce mondme est nul et 'on a donc deg(P + Q) < p.
|

b) Multiplication de deux polynémes :

Considérons deux monoémes P = a,X? et Q = b, X?. Si I'on interprete ces deux monomes

comme des fonctions de la variable réelle ou complexe X, il est naturel de définir le produit de
P par Q comme étant le monoéme P x ) « apby XPT.

Plus généralement, on définit le produit de deux polynoémes de la fagon suivante :

Définition 5.1.8 Etant donnés deuz polynomes P = apXP + --- +ag et Q = by X7+ --- + bo,
on définit le polynome PxQ par PxQ = ¢, X"+ -+ ¢y avecr = p+q et, pour k € {0,--- ,r},

k k
Cl — Z aibj = Zaibk_i = Zak_jbj.
=0 7=0

it+j=k

Remarque : Si P ou @ est nul, on a donc P x Q) = 0.

La proposition suivante est une conséquence immédiate de la définition de “x” :

Proposition 5.1.9 Soit P et Q) deuz polynomes de K[X]. Alors on a
deg(P x Q) = deg P + deg Q.

c) Multiplication d’un polynéme par un scalaire :

Définition 5.1.10 Soit P = a,XP + --- + ag un polynome de K[X], et A € K. On définit alors
le polynome A - P par

p
A PED Aa X
i=0
Le lecteur prouvera sans difficulté le résultat suivant :

Proposition 5.1.11 Soit P un polynéme et A\ un scalaire non nul. Alors deg(X - P) = deg P.



5.1. L’ENSEMBLE DES POLYNOMES A UNE INDETERMINEE 49

5.1.3 Propriétés algébriques de K[X]

Proposition 5.1.12 (K[X], +,*) est un anneau commutatif.

Preuve : Montrons déja que (K[X],+) est un groupe commutatif.

— Le polynome nul est clairement 1’élément neutre pour ’addition.
— S5i P = a,XP+---+ap, le polynome — P e —apXP + - — a1 X — ag vérifie P+(—P) = 0.
— L’associativité et la commutativité résultent de celles de ’addition sur K.

Wy

Reste a étudier les propriétés de la multiplication “x”.
— De la définition de la multiplication sur K[X], on déduit facilement que le polynoéme

P =1 est ’élément neutre pour “x”.

— Commutativité : considérons P = a,X?P 4 --- +ag et Q = by X? + --- + by. Notons

r=p+q, PxQ=¢X"+--4+cpet QxP=d. X"+ ---+dy. Alors on a

Vk € {0,-~- ,7'}, Cr = Z aibj = Z bjaz- de
i+j=k j+i=k
Donc PxQ = Q * P.
Associativité : Soit P = a, X? 4+ -+ a9, Q = b, X?+---+bypet R=¢c, X"+ -+ cop.
Soit U & (PxQ)*xRetV L P« (Q * R). Notons dy les coefficients de U, et e, ceux de
V. Enfin, notons f; les coefficients de P x Q, et g; ceux de @ * R. Alors on a

dy = Zs.Hg:z fsck € = Zi—&-tzé a;gt
= D stk=t (Zi+j=s aibj) Ck = Ditt—r @i (Zj-i-k:t bj Ck)
= Zi+j+k=€ aibjcy. = Zi+j+k=f aibjcy.

Donc dy =¢p, dou U = V.
Distributivité de la multiplication sur I’addition : Définissons P, (), R comme ci-dessus

et posons U = (P+Q)*RetV YU pPpsRrR+ Q@ * R. Notons encore dy les coefficients de
U, et e, ceux de V. Alors on a

dy = Z (a; +bi)cj = Z (aicj + bicj) = Z aic; + Z bic; = eq.
=t i+j=t A, =t

Donc U =V.

A titre d’exercice, le lecteur pourra établir la

Proposition 5.1.13 L’anneau (K[X], +, %) vérifie les propriétés supplémentaires suivantes pour
tout (\, 1) € K2 et (P,Q) € K[X]? :

1

2
3
4.
5

. (A4+p)-P=X-P+pu-P,

A (P+Q)=X-P+)-Q,

A (p-P)= (M) P,

1.P=P,

A (PxQ)=(\-P)xQ=Px (A Q).

On dit que (K[X],+, *,-) est une algébre.

Ainsi, multiplier un polynéme P par un scalaire \ est équivalent & le multiplier par le polynéme
constant A - 1. On peut donc sans danger noter la multiplication interne * et la multiplication
externe - par le méme symbole.

Enfin, (K[X], 4+, *,-) jouit de la propriété suivante qui est primordiale :
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Proposition 5.1.14 Soit (P,Q) un couple de polynomes tel que P x @ = 0. Alors P = 0 ou
Q = 0. On dit que (K[X],+, *,-) est une algébre intégre.

Preuve : Soit donc (P, Q) tel que P xQ = 0. Alors on a deg P+ deg @ = deg(P % Q) = —o0.
Donc deg P ou deg Q vaut —oo, ce qui est exactement la propriété demandée. [ |

Notations : Dorénavant, on omettra les symboles “x” et “”. Ainsi PQ désignera P x Q, et AP
désignera \ - P.

5.2 Division des polynémes

Définition 5.2.1 On dit que le polynéme A est divisible par le polynéme B s’il existe un
polynéome Q tel que A = BQ. Dans ce cas, on note B | A (voir remarque ) et lon dit que A est
multiple de B (ou que B est diviseur de A). Le polynéome Q est parfois noté % ou A/B.

Remarques :

1. Le polynome nul est divisible par tous les polynomes. En revanche seul le polynome nul
est divisible par le polynome nul.

2. Dans le cas ou A et B sont tous les deux non nuls, B|A entraine deg B < deg A.

Proposition 5.2.2 Soit A et B, deux polynémes non nuls. Si A | B et B | A alors A et B
sont proportionnels, c’est-a-dire qu’il existe A € K* tel que A = AB. On dit que A et B sont
associés.

Preuve : D’apres la remarque ci-dessus, on a a la fois deg A < deg B et deg B < deg A. Donc
A et B sont de méme degré. Comme B | A, on en déduit que A = BQ avec deg@ = 0.
Autrement dit @ est un polynéme constant (et non nul car A n’est pas nul). [ |

Remarque 5.2.3 Deux polynomes unitaires associés sont forcément égaux.

Exercice : Prouver la remarque ci-dessus.

Proposition 5.2.4 Soit B un polynéme non nul, et A un multiple de B de méme degré que B.
Alors A et B sont associés.

Preuve : Elle reprend la derniere partie de celle de la proposition 5.2.2. [ ]

Théoréeme 5.2.5 (Division euclidienne) Soit A et B deux polynémes avec B _non nul. Alors
il existe un unique couple (Q, R) de polyndomes tel que

A=BQ+ R et degR < degB.

Le polynome @ est appelé quotient de la division de A par B, R est le reste, B, le diviseur,
et A, le dividende.

Preuve : On va d’abord prouver 'unicité du couple (@, R), puis son existence.
Unicité : Supposons que A = BQ+ R = BQ'+ R avec deg R < deg B et deg R’ < deg B.
Alorson a R— R' = B(Q' — Q). Donc deg(R — R') = deg B + deg(Q' — Q).
Si Q # @', alors on en déduit que deg(R — R’) > deg B.
Donc d’apres la proposition 5.1.7, max(deg R, deg R') > deg B, ce qui contredit la définition
de Roude R'. Donc Q = @', puis R = R'.

'Lire “B divise A” et non pas le contraire !
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Existence : Fixons un polynéme B = b, X™ 4 --- + by de degré m > 1 (le cas B
constant non nul étant évident). L’existence du couple (@, R) vérifiant les propriétés vou-
lues se montre par récurrence sur le degré de A. Pour n € N, on note (P,,) 'hypothese de
récurrence suivante :

(Pn) (VAEK[X],deg A <n) = (3QeK[X],IRK[X] | A = BQ+R et deg R<degB).

Il est clair que (P,,—1) est vraie. En effet, il suffit de choisir @ = 0 et R = A.

Soit maintenant n > m. Supposons (P,_1) vraie et démontrons (P,). Le polynome A est
de la forme A = a, X" + -+ - + ag avec a, # 0. Comme n > m et b,, # 0, 'expression
Ay I xnomp
bm

est bien un polynome, et son degré est au plus n — 1. D’apres (P,—1), il existe donc deux
polynémes Q' et R’ tels que A’ = Q'B + R’ et deg R’ < deg B. On en déduit que

A= <Z”X”‘m+Q’> B+ R,
i ~—

déf

R

déf
=Q

ce qui démontre (P,). ]

La démonstration ci-dessus suggere un procédé de construction itératif permettant de calculer
Q@ et R. En effet, au cours de la récurrence, on a vu comment ramener la division d’un polynéme
de degré n a celle d'un polynéme de degré moins élevé (au plus n — 1). En pratique, on peut
donc calculer le couple (@, R) en “posant” la division comme dans N, les puissances de X jouant
le réle des puissances de 10.

Illustrons nos propos par un exemple.

Exemple : Division de 4X° — 7X3 +8X2 —1 par X3 —4X? 42X +3.

4X54+ 0X*— 7X3+ 8X%?4+ 0X - 1| X3?— 4X?4+ 2X+ 3
16X%— 15X3—  4X2+ 0X - 1
49X3 —  36X2%2— 48X — 1[4X%24+ 16X+ 49 = Q

R = 160X? — 146X — 148
Donc 4X°—-7X348X%2—-1 = (X3-4X242X+3)(4X2+16X +49) + 160X~ 146X —148.

Définition 5.2.6 On rappelle qu’un sous-ensemble I de K[X] est un idéal de (K[X], +,*) si
1. I est un sous-groupe de (K[X],+),

2. I est stable par multiplication par n’importe quel polynéme de K[X].

Exemple : Pour B € K[X], on note BK[X] ’ensemble des multiples de B. Il est facile de vérifier
que BK[X] est un idéal de K[X]. En particulier, le singleton {0} est un idéal.
Nous laissons au lecteur le soin de montrer la proposition suivante :

Proposition 5.2.7 Soit A et B deux polynémes. Alors A | B si et seulement si BK[X] C
AK[X].

Théoréme 5.2.8 Soit I un idéal de (K[X],+,*) non réduit a {0}. Alors il existe un unique
polynome P unitaire tel que I = PK[X]. Le polynome P est appelé générateur unitaire de I.
On dit que (K[X],+, x) est un idéal principal .
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Preuve : Soit I un idéal de (K[X], +, *) non réduit a {0}. On note
E ={degA| AecI\{0}}.

L’ensemble E est une partie non vide de N, donc admet un plus petit élément. On en déduit
que I admet un polynéome P non nul et de degré minimal. Comme pour tout A € K, le
polynéme AP appartient aussi a I, on peut toujours choisir P unitaire. La stabilité de I
par multiplication par les éléments de K[X] assure que PK[X]| C I.
Reste & montrer que I € PK[X]. Soit donc A € I. Ecrivons la division euclidienne de A
par P :

A=PQ+ R avec degR < degP.

Comme A et P(Q) appartiennent & I, on a aussi R € I. Mais par ailleurs deg R < deg P.
Vu la définition de P, on conclut que R = 0. ]

5.3 PGCD et PPCM

La division euclidienne va nous permettre de définir les notions de PGCD et de PPCM dans
I’ensemble des polynomes.

5.3.1 PGCD

Proposition 5.3.1 Soit A et B deux polynomes non tous les deux nuls. L’ensemble

AK[X] + BK[X] = {AP + BQ | P € K[X], Q € K[X]}

est un idéal de K[X]| non réduit a {0}. Son générateur unitaire> D est appelé Plus Grand
Commun Diviseur (ou plus simplement PGCD) de A et de B, et est noté PGCD (A, B).

Preuve : Notons J & AK[X] 4+ BK[X]. Remarquons que J n’est pas réduit a {0} car contient
A et B, et que 'un de ces deux polyndémes n’est pas nul par hypothese. Reste & montrer
que J est un idéal.

1. Montrons que J est un sous-groupe de (K[X],+) :
— Il est évident que 0 € J.

— Soit C et €’ deux polynomes de J. Alors il existe quatre polynomes P, P’, Q et
Q' tels que C = AP + BQ et C' = AP’ + BQ'. Donc

C+C' =AP+P)+BQ+Q) e J

— Enfin, si C = AP + BQ, il est clair que —C' = A(—P) + B(—(Q), donc —C € J.
2. Stabilité de J par produit :

Soit C' = AP + BQ un élément de J, et R un polynéme quelconque. Alors RC =
A(PR) + B(QR) donc RC € J.

On conclut que J est un idéal non réduit & {0}. Le théoreme 5.2.8 assure 'existence d’un

unique polynéme unitaire D tel que AK[X]+ BK[X] = DK[X]. ]
Remarque : On convient que PGCD (0,0) = 0. Pour tout couple de polynémes (4, B), on a
done AK[X] + BK[X] = PGCD (4, B) K[X].

La proposition suivante justifie I'appellation “PGCD” donnée au générateur unitaire de
AK[X] + BK[X].

2Dans certains ouvrages, le caractére unitaire n’est pas imposé au PGCD.
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Proposition 5.3.2 Soit (A, B) un couple de polynomes distinct de (0,0). Alors PGCD (A, B)
est lunique polynome unitaire vérifiant

(51) PGCD(A,B)|A, PGCD(A,B)|B et (P|AetP|B)= P|PGCD(4,B).

Preuve : Notons D = PGCD (A, B) et montrons que D vérifie (5.1).

Par définition, DK[X] = AK[X] + BK[X]. Comme A et B appartiennent tous les deux
a lensemble de droite, A et B sont bien des multiples de D. Enfin, si P divise A et B
alors, d’apres la proposition 5.2.7, AK[X] C PK[X] et BK[X] C PK[X]. Donc DK[X] =
AK[X] + BK[X] ¢ PK[X]. Donc P divise D.

Pour montrer 'unicité, considérons un polynéme D’ unitaire vérifiant (5.1). On a donc
en particulier D | D’. Mais bien sir D’ | D donc D et D’ sont associés (cf prop. 5.2.2).
Comme D et D’ sont unitaires, on a D = D’. [

Proposition 5.3.3 Si A et B ne sont pas simultanément nuls et si C' est unitaire alors on a
PGCD (AC, BC) = CPGCD (A, B).

Preuve : Notons D = PGCD (A4, B) et A = PGCD (AC, BC). 11 suffit alors de remarquer
que
AK[X] = ACK[X] + BCK[X] = C (AK[X] + BK[X]) = CDK[X].

Définition 5.3.4 On dit que deux polynémes A et B sont premiers entre eux si leur PGCD
vaut 1.

Théoréme 5.3.5 (de Bezout) Deux polynomes A et B sont premiers entre euz si et seulement
si il existe deux polynomes U et V tels que AU + BV = 1.

Preuve : = Si PGCD (4, B) = 1 alors par définition du PGCD, on a AK[X] + BK[X] =
K[X]. Donc 1 € AK[X ]+ BK[X], ce qui signifie qu’il existe U et V tels que AU + BV = 1.

<= Si AU+ BV =1 alors 1 € AK[X|+ BK[X]. Le générateur unitaire de AK[X]|+ BK[X]
est donc un diviseur de 1, donc 1 lui-méme. On a donc bien 1 = PGCD (A4, B). [ ]

Proposition 5.3.6 Pour que le polynéme unitaire D soit le PGCD de A et de B, il faut et il
suffit que

A B

(5.2) D|A, D|B et PGCD(5.5)

= 1.

Preuve : Si D = PGCD (A, B), on a bien sir D | A et D | B. Notons P = 4 et Q =
D’apres la proposition 5.3.3, on a

Sl

D = PGCD (4, B) = PGCD (DP, DQ) = DPGCD (P, Q).

Comme D n’est pas nul, on conclut que PGCD (P, Q) = 1.

Réciproquement, supposons que (5.2) soit satisfaite. Alors, la proposition 5.3.3 entraine

PGCD (A, B) = PGCD (D2, By = ppacD (%, g)

=D.
D D
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Théoréme 5.3.7 (de Bezout généralisé) Supposons que D unitaire divise A et B avec A et
B non tous les deux nuls. Alors on a

D =PGCD (A, B) <= 3JU € K[X], 3V € K[X], AU + BV = D.

Preuve : En appliquant la proposition 5.3.6, on a

A B
D =PGCD (A, B 1=PGCD (=, =).
GCD (4, B) GCD (5, 1)
Or d’apres le théoreme de Bezout, on a
A B A B
PGCD(=,—=)=1 3 K[X], K[X], = V=1
GC (D’D) < 3JU € K[X], IV € K[X], DU+DV ,
ce qui acheve la preuve du théoreme. [ ]

Théoréme 5.3.8 (de Gauss) Si P divise AB et est premier avec A alors P divise B.

Preuve : Soit B’ le polynome unitaire associé a B. On a
PGCD (PB,AB) = B'PGCD (P, A) = B'.

Par hypothese, P divise AB, et il est clair que P divise aussi PB. Donc P divise B’ et,
partant, B. [ ]

Proposition 5.3.9 Un polynome P est premier avec un produit AB si et seulement si P est
premier avec A et avec B.

Preuve : = Supposons P premier avec AB. Soit P’ divisant P et A. Alors P’ divise aussi
AB. Donc P’ | PGCD (AB, P), i.e P'|1. On en déduit que P’ est un polynéme constant.
Donc P est premier avec A. On établit de méme que P est premier avec B.

< On prouve la réciproque par contraposition. Supposons que P ne soit pas premier avec
AB. Alors il existe P’ divisant P et AB, et tel que deg P’ > 1. Si P est premier avec A
alors P’ également. D’apres le théoreme de Gauss, P’ divise donc B. On a donc montré
que P’ divise & la fois P et B. Comme deg P’ > 1, cela signifie que P et B ne sont pas
premiers entre eux. ]

Remarque 5.3.10 Une récurrence élémentaire permet de montrer plus généralement qu’un
polyndéme P est premier avec un produit de polynome Ay --- Ay si et seulement si il est premier
avec chacun des facteurs A;. Les détails sont laissés en exercice.

5.3.2 L’algorithme d’Euclide

L’algorithme d’Euclide est un moyen systématique permettant de calculer le PGCD de deux
polynomes. L’outil de base est la division euclidienne. I.’algorithme repose sur le lemme suivant :

Lemme 5.3.11 Soit B un polynéme non nul, et A un polynéme quelconque. Notons Q et R le
quotient et le reste de la division euclidienne de A par B. Alors on a

PGCD (A, B) = PGCD (B, R).
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Preuve : Soit D divisant A et B. Comme R = A — BQ), le polynéme D divise aussi R. Donc
D divise PGCD (B, R). En choisissant D = PGCD (A4, B), on conclut que PGCD (A, B) |
PGCD (B, R).

Soit maintenant D un polynoéme divisant B et R. Comme A = BQ + R, on a aussi D | A.
Donc D | PGCD (A4, B). On a donc finalement PGCD (B, R) | PGCD (4, B).

Les deux polynomes PGCD (B, R) et PGCD (A, B) sont unitaires et associés. Ils sont donc
égaux. [ |

Ce lemme indique clairement la stratégie & suivre pour calculer PGCD (A, B). Quitte & permuter
A et B, on peut toujours supposer que deg A > deg B. On procede alors comme suit :

e Si B=0,il n’y arien a faire : PGCD (A, B) est égal au polynéme unitaire associé a A.

e Si B n’est pas nul, on effectue la division euclidienne de A par B, ce qui donne deux

polynomes (g et Ry tels que A = BQg + R; et deg Ry < deg B.

Le lemme 5.3.11 montre que PGCD (A, B) = PGCD (B, R;). On reprend le calcul ci-dessus en
remplagant A par B, et B par R;. En itérant le procédé, on construit deux suites Ry, Ro, ---
et Qp, Q1, - -- telles que :

A = BQo+ R; avec deg R; < deg B,
B = R1Q1+ Ro avec deg Ry < deg Ry,
Ry = RoQs + R3 avec deg R3 < deg Ra,

Le procédé s’arréte nécessairement au bout d’au plus deg P étapes car chaque itération diminue
d’au moins 1 le degré du reste de la division euclidienne. On a donc finalement

|PGCD (4, B) = PGCD (B, Ry) = --- = PGCD (Ry, Rgy1) = -+ = PGCD (R, 0) = Ry |

Exemple : Calculer PGCD (X% — 1, X3 — 1).
Posons la division euclidienne de X% — 1 par X3 — 1.

X4+ 0X3+ 0X%2+ 0X — 1\X3+ 0X2+ 0X — 1
X- 1] X

Donc PGCD (X* —1,X3 —1) =PGCD (X? -1, X — 1).
On remarque ensuite que X3 — 1 est divisible par X — 1 donc finalement

PGCD (X*-1,X%-1)=PCGCD(X®-1,X —1) =PGCD (X —1,0) = X — 1.

5.3.3 PPCM

Nous laissons au lecteur le soin de prouver le résultat suivant :

Proposition 5.3.12 Considérons deuz polynomes non nuls A et B. Alors l’ensemble AK[X] N
BK[X] est un idéal non réduit a {0}. Son générateur unitaire’ est appelé Plus Petit Commun
Multiple (ou plus simplement PPCM) de A et B. On le note PPCM (A, B).

Remarque : Si A ou B est nul, on a AK[X]| N BK[X] = {0}. On adopte alors la convention
que PPCM (A4, B) = 0. Ainsi, on aura toujours AK[X]| N BK[X] = PPCM (4, B) K[X].

3Dans certains ouvrages, on n’impose pas au PPCM d’étre unitaire
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En s’inspirant de la preuve de la proposition 5.1, on obtient le résultat suivant qui explique
I'appellation “Plus Petit Commun Multiple” donnée au générateur unitaire de AK[X]N BK[X].

Proposition 5.3.13 Soit A et B deux polynomes non nuls. Le PPCM de A et de B est ['unique
polynome unitaire vérifiant la propriété suivante :

A|PPCM (A,B), B|PPCM(A,B) e (A|M etB|M)=PPCM(A,B)| M.
A certains égards, le PPCM et le PGCD ont des propriétés tres similaires. On a par exemple :
Proposition 5.3.14 Soit C' un polynéme unitaire et A, B deux polynéomes. Alors on a
PPCM (AC, BC) = CPPCM (A, B).
Preuve : 1l suffit de remarquer que
ACK[X] N BCK[X] = C (AK[X] n BK[X]).
|

Proposition 5.3.15 Soit A et B deux polynomes non nuls. Pour que M unitaire soit le PPCM
de A et de B, il faut et il suffit que

M M
A|M, B|M e PGCD|—,— | =1
| ) | € <A7 B>
Preuve : = Notons M le PPCM de A et de B. Alors MK[X] est inclus dans AK[X]
et dans BK[X]. Donc M divise bien A et B. Soit D unitaire divisant M/A et M/B.
Alors AD|M et BD|M. Donc PPCM (AD, BD)|M. Mais d’apres la proposition 5.3.14,
PPCM (AD, BD) = DPPCM (A, B) = DM. Donc D = 1.
< Soit M un multiple commun unitaire de A et de B vérifiant de plus PGCD (%, 45) = 1.
D’apres le théoreme de Bezout, il existe deux polynomes U et V tels que

M M
U+ —=V=1
1 U+ 5 V
Multiplions les deux membres de cette égalité par PPCM (A, B). On trouve
PPCM (A, B PPCM (A, B
MU CM (4, )—i-V CM(4, B) = PPCM (4, B).
A B
Donc M divise PPCM (A, B). Comme M est unitaire et est multiple de A et de B, on
conclut que M = PPCM (4, B). ]

Proposition 5.3.16 Soit A et B deux polynémes. 1l existe une constante A non nulle telle que
MB = PGCD (A, B) PPCM (A, B).
— Si de plus A et B sont unitaires, alors A = 1.
— Si A et B sont premiers entre eux alors AB et PPCM (A, B) sont associés.
Preuve : Ecartons le cas évident ou I'un des deux polynémes A et B est nul. On peut alors
appliquer la proposition 5.3.15. On en déduit que
PPCM (A, B) PPCM (A, B)>

A ’ B B
Notons A I'inverse du coefficient du terme dominant de AB. Alors AAB est unitaire, et la
proposition 5.3.14 combinée avec (5.3) montre que

pacp (san(PPOLAY) g (PPOUADYY

En appliquant la proposition 5.3.3, on constate que le membre de gauche de cette égalité
vaut PPCM (A, B) PGCD (A4, B). [ |

(5.3) PGCD (
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5.3.4 Polynoémes irréductibles

Au cours des sections qui précedent, le lecteur a pu constater que I'ensemble K[X] avait
beaucoup de similarités avec I’ensemble Z des entiers relatifs : les deux ensembles sont des
anneaux principaux integres sur lesquels on peut définir la division euclidienne, le PGCD et le
PPCM. Dans cette section, nous allons introduire une classe de polynémes qui jouent dans K[X]
le méme role que les nombres premiers dans Z : les polynomes irréductibles.

Définition 5.3.17 On dit qu’un polynome P est irréductible si ses seuls diviseurs sont les
constantes et les polynomes qui lui sont associés.

Remarques :

1. A la différence des nombres premiers, les polyndémes irréductibles ont une infinité de divi-
seurs. Mais on notera que ces diviseurs sont triviaux!

2. Tout polynome de degré 1 est irréductible. En effet, soit P de degré 1, et () un diviseur
de P. Alors deg@ € {0,1}. Si deg@ = 0 alors @ est une constante, si deg@ = 1 alors
deg ) = deg P donc P et () sont associés.

La proposition suivante constitue une “loi du tout ou rien” pour la division par les polynoémes
irréductibles.

Proposition 5.3.18 Soit A un polynome et P un polynome irréductible ne divisant pas A.
Alors P est premier avec A.

Preuve : Soit B un diviseur commun de A et de P. Comme P est irréductible, B doit étre
constant, ou associé a P. Le deuxieme cas est exclus car on a supposé que P ne divisait
pas A. Donc B est constant. On a donc bien PGCD (A4, P) = 1. [ ]

De méme que tout entier possede une décomposition en facteurs premiers, tout polynome a une
décomposition en facteurs irréductibles.

Théoréme 5.3.19 (Décomposition en facteurs irréductibles) Soit P un polynéme non
constant. Alors il existe un entier k > 1, k entiers aq, - - -, ax non nuls, k polynémes irréductibles
unitaires Py, - -+, Py deuz a deux distincts, et X € K\{0} tels que

k
p=x[[ P
i=1

Cette décomposition, appelée décomposition en facteurs irréductibles, est unique a ordre des
facteurs pres.

Preuve : On prouve d’abord 'existence puis 'unicité a ordre des facteurs pres.

Existence : Elle se fait par récurrence sur le degré de P.

— Sideg P =1 alors P est irréductible. On pose k =1, a; = 1 et 'on prend pour P;
le polynéme unitaire associé a P. Il est de degré 1 donc irréductible.

— Supposons maintenant que le théoreme de décomposition soit valable pour tout
polynome de degré compris entre 1 et n. Soit P de degré n+1 et P’ « P/ ) avec
A coefficient du terme dominant de P. Le polynome P’ est unitaire et de degré
n + 1. S’il est irréductible, P = AP’ constitue une décomposition de P en facteurs
premiers. Sinon, il existe un polynéme A unitaire de degré compris entre 1 et n et
divisant P’. On a donc P/ = AB avec A et B unitaires et de degré compris entre 1 et
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n. D’apres 'hypothese de récurrence, A et B admettent chacun une décomposition
en facteurs premiers :

k ¢
A=TJ4¢ e B=]]B]
=1 =1

(i) 1)

Il ne reste plus qu’a renuméroter les facteurs de la décomposition pour obtenir le
résultat voulu.

Donc

Unicité : Supposons que P admette deux décompositions en facteurs irréductibles :

k ¢
P=x[[Pr =n]]@"
=1 =1

Comme tous les facteurs irréductibles sont unitaires, A et p sont égaux au coefficient
du terme dominant de P. Donc A = u. De ce fait, on a

k l

(5.4) [P =1

i=1 i=1

Par ailleurs, P; divise la somme de droite. De la remarque 5.3.10, on déduit que P;
n’est pas premier avec au moins un des @); : il existe j; tel que Q;, et P ne soient pas
premiers entre eux. Comme par ailleurs )5, et Py sont irréductibles et unitaires, cela
signifie que Py = @;,. En vertu du caractere integre de K[X], on peut donc simplifier
Pexpression (5.4) par P;. On iteére ce procédé et en o + - - - + ay étapes, on parvient

a une expression du type 1 = H§:1 ij avec ﬁ;- = f3j — aj. Cela permet de conclure
que tous les 6} sont nuls. Donc les deux décompositions sont identiques & ordre pres
des facteurs.

5.4 Fonctions polynomes

5.4.1 Définition des fonctions polynomes

Jusqu’a présent, nous avons traité les polynémes comme des objets algébriques “abstraits”.
Ce point de vue permet de manipuler de fagcon unifiée des objets mathématiques tres différents
des lors qu’ils peuvent étre interprétés comme des polynomes. Dans cette section, nous allons
nous borner a remplacer la variable muette X par des nombres réels ou complexes. Mais vous
verrez en deuxieme année que l'on peut fort bien remplacer X par une matrice. ..

Définition 5.4.1 Soit P = a, X" + -+ a1X + ap un polynome de K[X], et t € K. On définit
alors ’élément P(t) de K par

P(t) = anpt" +--- 4+ a1t + ap.
On dit que P(t) est obtenu par substitution de t a X.

Proposition 5.4.2 Soit t € K un scalaire fixé. Alors on a pour tous polynomes P et QQ, et pour
tout scalaire X\ :
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P(t)+ Q) = (P+Q)(®),
P1)Q(1) = (PQ)@),
AP(t) = ( P)(#),

1(t)

Preuve : Vérifions la deuxiéme relation. Les autres sont immédiates.
Rappelons que si P = a, XP + -+ a1 X +ag et Q = b, X7+ -+ b1.X + by alors

p+q

(5.5) PQ = Z( > akbg>X]

k+l=j

Donc
(PO = X7 (Srpey arbe) ¥,
= X (S (@t et
— ( izoaktk)<zz:0bgt5>:P(t)Q(t).

Définition 5.4.3 Soit P € K[X]. L’application

f"{?:ﬂﬁ(z&)

est appelée fonction polynéme définie par P sur K.

Remarque : Dans la suite du cours, on ne fera plus la distinction entre le polynéme P qui est

un objet algébrique et la fonction polynéme P qui lui est associée?.

5.4.2 Racines
Définition 5.4.4 Soit a € K et P € K[X]. On dit que a est racine ou zéro de P si P(a) = 0.

Proposition 5.4.5 Soit a € K et P € K[X]|. Pour que a soit une racine de P, il faut et il suffit
que X — a divise P.

Preuve : = Supposons que P(a) = 0. La division euclidienne de P par X — a donne
P=Q(X —a)+ R avec degR <0.

En substituant a a X dans la relation ci-dessus, on trouve R(a) = 0. Comme la fonction
polynome R est constante, on conclut que R = 0.

< Si X —a | P alors il existe @ tel que P = Q(X — a), ce qui donne en particulier
P(a) = Q(a)(a —a) =0. ]

Définition 5.4.6 Soit P € K[X], a € K et k € N*. On dit que a est racine de P de multiplicité
ksi (X —a)*|P.

- St k=1, on parle de racine simple,

- Si k=2, on dit que a est racine double,

- St k=3, on dit que a est racine triple, etc.

4La proposition 5.4.2 nous autorise & faire cet abus de notation.
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Proposition 5.4.7 Soit P un polynéme non nul admettant les racines a1, - -, ap avec multi-
plicité ay, -+ -, ay. Alors Hle(X —a;)% divise P.
Preuve :

e On sait déja que (X — aq)** divise P.

e Supposons que Hf;ll (X —a;)* divise P (avec j < k). Comme les a; sont deux a deux
distincts, les polynémes (X — a;)® sont premiers entre eux deux a deux. La remarque
5.3.10 permet donc d’affirmer que (X —a;) est premier avec Hg;ll (X —a;)*. Comme P
est multiple de (X —a;)® par hypothese, et de H{:—ll (X —a;)*, P est également multiple
du PPCM de ces deux polynomes qui, d’apres la proposition 5.3.16, vaut ngl(X—ai)ai.

Nous venons donc de montrer par récurrence sur j que Hle(X —a;)™ divise P. [

Remarque 5.4.8 En particulier, si P # 0, toutes les racines de P sont de multiplicité inférieure
ou €gale a deg P.

Exercice : Justifier la remarque 5.4.8.

Proposition 5.4.9 Un polynome de degré n € N admet au plus n racines comptées avec leur
ordre de multiplicité : {ay,--- ,ar} est 'ensemble des racines de P, et c; est la multiplicité de
a;, alors on a a1 + -+ ap < n.

Preuve : D’apres la proposition 5.4.8, on a Hle(X —a;)® | P. Donc
k
Z deg(X — a;)* < degP.
i=1

Le membre de gauche vaut Zle «;, d’ou le résultat. [ |

Remarque 5.4.10 Le seul polynéme ayant une infinité de racines est le polynéme nul.

5.4.3 Polynomes dérivés

Définition 5.4.11 Soit P = a;, X*+- - -+a1 X +ag un polynéme de K[X]. On appelle polyndme
dérivé noté P’ le polynome suivant :

k
P =kapXF 't =) ja X
7j=1

Proposition 5.4.12 Soit P et QQ deux polynomes, et A € K.
1. Sideg P >0 alors deg P’ = deg P — 1,
2. Si P est constant alors P' =0,
3. (P+Q) =P +@Q,
4. (AP) =P/,
5. (PQ) =P'Q+ PQ'.
Preuve : Les quatre premiers points sont évidents. Prouvons le cinquieme.

Soit P = apXP+---+a1X +ap et Q =0b,X7+---4+b1X +by. En appliquant la définition
du polynéme dérivé a la relation (5.5), on trouve

p+q

(PQ) = i( Y arbe) X

=1 k+l=j
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Des calculs élémentaires montrent donc que
(PQY = SPHISL (kaka’lnge ap Xk, X1,
= Yot (zk oy kap X5 ng5> + 2§:§<Zk e akwagxffl),
= (hoy ke X (20 beX ) + (hg anX™) (0, X1,
P'Q+ PQ'.
|

Proposition 5.4.13 Soit P un polynéme non nul, et a une racine de P. Alors a est une racine
simple si et seulement si P'(a) # 0.

Preuve : Nous allons prouver la négation de I’équivalence : i.e a est une racine double de P
si et seulement si P(a) = P'(a) = 0.
Supposons donc que a est une racine double de P. Alors (X — a)2 | P. Donc P s’écrit
P = Q(X — a)2 pour un certain polynéme Q. Il est donc immédiat que P(a) = 0. En
dérivant, on trouve P’ = Q'(X —a)2 + 2(X — a)@, donc P'(a) = 0.
Réciproquement, supposons que P(a) = P’(a) = 0. La division euclidienne de P par
(X —a)2sécrit P =Q(X —a)2+ R avec deg R < 1. Comme P(a) =0, on a R(a) =0. En
dérivant la relation P = Q(X —a)2+ R, on obtient R'(a) = 0. Comme R’ est un polynéme
constant, on a R’ = 0, puis, comme R(a) = 0, R est nul aussi. ]

5.5 Polynomes scindés

5.5.1 Le théoréme fondamental de 1’algebre

Définition 5.5.1 On dit qu’un polynome non constant est scindé si la somme des ordres de
multiplicité de ses racines est égal a son degré.

Remarque : Autrement dit, P de degré n est scindé si et seulement si il existe un n-uplet
(A1, -+, Ap) de K™ tel que P soit associé a (X — Ap) -+ (X — Ayp).

Proposition 5.5.2 Soit P un polynéme scindé unitaire d’expression X" +a,_1 X" 14 +ay.
Notons \; ses racines comptées avec leur ordre de multiplicité. Alors on a les relations suivantes
entre les racines et les coefficients :

n

ag — (—l)nH)\i et Ap—1 — —i/\z‘.
=1

i=1

Preuve : On développe 'expression (X — A1)---(X — A,) et on identifie les termes du
développement avec ceux de Iexpression X™ + a,_1 X"~ 4+ - + aq. [ ]

Remarque : Dans le cas ott P = X?+a; X +ag a pour racines \; et A9, on retrouve les relations
apg =M et a1 = —()\1 + )\2).

Le tres important résultat suivant est connu sous le nom de théoréme fondamental de
I’algébre ou théoréme de d’Alembert-Gauss. Il en existe de nombreuses preuves, mais
toutes dépassent le cadre du programme.

Théoréme 5.5.3 Tout polynome de C[X] est scindé®.

50n dit que C est un corps algébriquement clos.
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Remarque : On a vu que toutes les équations de degré 2 avaient deux solutions (éventuellement
confondues) dans C. Le théoréme fondamental exprime que toute équation de degré n admet
n solutions (éventuellement confondues) dans C. Dans le cas n = 3 ou 4, il existe des formules
(assez compliquées) donnant les solutions en fonction des coefficients. Pour une équation de
degré supérieur ou égal a 5, il a été prouvé par un jeune mathématicien du XIX eme siecle, E.
Galois, que de telles formules n’existent pas!

5.5.2 Polynoémes irréductibles de C[X]

Théoréeme 5.5.4 Un polynéme P est irréductible dans C si et seulement si deg P = 1.

Preuve : On a déja vu que tout polynéme de degré 1 était irréductible (que ce soit dans C
ou dans R).
Pour montrer la réciproque, donnons-nous un polynome P de degré au moins 2. Le
théoreme fondamental de ’algebre nous dit que P admet au moins une racine A;. Donc P
est divisible par X — A;. Clairement X — A; n’est pas constant et n’est pas associé a P car
de degré strictement inférieur a 2. Donc P n’est pas irréductible. [ |

En appliquant le théoréeme général de décomposition irréductible, on en déduit :

Corollaire 5.5.5 Tout polynéme P non nul de C[X]| admet une décomposition en facteurs
wrréductibles du type suivant :

k
P =[x = x>,
i=1
ot {1, -+, \i} est ’ensemble des racines de P, «; est la multiplicité de \;, et X est le coefficient

du terme dominant de P.

5.5.3 Polynoémes irréductibles de R[.X]

Dans R[X], la situation est un peu plus compliquée. On sait d’ores et déja que tous les
polynoémes irréductibles ne sont pas de degré 1. Par exemple, X2 + 1 ne saurait étre irréductible
dans R[X] car n’a pas de racine réelle (la fonction polynéme associée est minorée par 1, donc
ne s’annule jamais).

On peut cependant dresser une liste de tous les polynémes irréductibles de R[X] :

Théoréme 5.5.6 Les polynomes irréductibles de R[X] sont :
e Les polynomes de degré 1,
o Les polynomes de degré 2 a discriminant strictement négatif : P = aX? + bX + ¢ avec

a#0 et AL b2 — dac < 0.

La preuve de ce théoréeme repose sur le lemme suivant :

Lemme 5.5.7 Soit P = Y_;_;a; X" un polynome de C[X]. Notons P = Y ;_ az X" le po-
lynéme conjugué. Alors X est racine de P de multiplicité o si et seulement si A est racine de P
de multiplicité o.

Preuve : Soit A une racine de P de multiplicité a. Alors il existe un polynome @ tel que
P =Q(X — M\)®. En prenant le conjugué de cette expression, on obtient P = Q(X — \)“.

Donc )\ est racine de P de multiplicité @ > a.

En échangeant les roles de P et P, A et A\, a et @, on obtient @ < o, d’ot1 le résultat.
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Preuve du théoréme 5.5.6 :

On sait déja que les polynomes de degré 1 sont irréductibles. Soit maintenant P = a.X? +
bX + ¢ a discriminant strictement négatif. La fonction ¢ — P(t) associée ne s’annule pas
sur R (elle est du signe de a), et donc aucun polynéme de degré 1 ne saurait diviser P. Par
ailleurs, on a vu que toute équation de degré 2 a coefficients réels et discriminant positif ou
nul admettait au moins une solution réelle. Donc les polynomes de degré 2 a discriminant
positif ne sont pas irréductibles dans R[X].

Soit maintenant P € R[X] un polynome de degré au moins 3. Supposons que P n’ait pas de
racine réelle (sinon P n’est pas irréductible dans R[X]). D’apres le lemme 5.5.7, les racines
complexes non réelles de P sont deux a deux conjuguées (avec ordres de multiplicité égaux
deux a deux). Le corollaire 5.5.5 assure donc I’existence de nombres complexes (non réels)
M1, -+, Hp, d’entiers aq, -+ -, ap, et d'un réel o, tels que

ﬁ[X i) (X — i)™

Mais un calcul facile montre que
(X = ) (X = )™ = (X? = 2Re iy X + |pi)™

Donc P est divisible par le polynome réel X2 — 2Re p; X + |pi|? (de degré 2) et n’est donc
pas irréductible. m

En reprenant la preuve ci-dessus, on déduit facilement le résultat suivant.

Corollaire 5.5.8 Tout polynome a coefficients réels admet dans R[X] une décomposition en
facteurs irréductibles du type suivant :

P (TT00 00 ) (T - 2o X + o)™ ).

i=1 j=1
ot A est le coefficient du terme dominant de P, {\1,--- , At} est Uensemble des racines réelles
de P, o, multiplicité de \;, et {1, -+, e} est 'ensemble des racines complezes et non réelles

de P et 3, la multiplicité de ;.
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