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THERMODYNAMIQUE (TD 3)
Gaz parfait - Gaz réel - Coefficients thermoélastiques - Transformations

EXERCICE 1:
L'équation d'état de n moles d'un gaz parfait occupant le volume V est : PV =nRT
1/ Déterminer I'unité du produit PV dans le systéme international d'unités (SI).

2/ Sachant qu'une mole de gaz parfait occupe un volume de 224 litres dans les
conditions normales de pression et de température (P = 1 atm, T = 273,15 K),
Calculer la valeur de R dans le systéme Sl.

3/ Pour un gaz parfait de masse molaire M, déterminer la pression P(z) a l'altitude z
pour une température T uniforme (T = constante). g sera supposée constante et on
prendra P(0) = Py

4/ On admet maintenant que pour I'atmosphére terrestre, la température T décroit
avec l'altitude selon la relation : %{- =-a (a est une constante positive). g est
supposée constante. Pg et To désignent respectivement la pression et la température

au niveau du sol. L’air est considéré comme un gaz parfait de masse molaire M.

Mg
Onnote: @ =

Ra
al Exprimer la pression P(z) de I'air en fonctionde T,Po, Toet @.

b/ Déterminer la masse volumique p(z) de I'air en fonctionde T, To , ® et la masse
volumique po (Po, To)-

EXERCICE 2:
Les coefficients thermoelastiques pour un fluide quelconque sont :
a=L{T)  p=lfP) o ,-. L[V
vier), ° P\OT )y X V \ &P ),
) . x B 1
1/ Montrer la relation générale : S

2/ Déterminer les expressions des coefficients og ; Po et Yo relatifs au gaz
parfait. Donner les valeurs de ces coefficients dans les conditions normales de
pression et de température. On précisera 'unité de chaque coefficient.

3/ Soit une mole de gaz réel qui vérifie 'équation: P. (V -b) = RT ou b estune
constante positive.

al Montrer pour ce gaz que : a = a; (1 -%) et ¥=2 (1 - %j

b/ Sachant que b <V , comparer les propriétés de dilatation et de compressibilité



de ce gaz avec celles correspondant au gaz parfait.
EXERCICE 3 :

On considére maintenant 1 mole d’un gaz réel obéissant a I'équation de Van der

Waqls: P+ —a~—— .(V-b)=RT (aetb sontdeux constantes).
V2 '

1/ Préciser les unités de a et de b dans le systéme SI.

2/ Par différentiation de I'équation d’état, retrouver la relation suivante :

R 2a RT
dP= —— dT + 5 dav

V-b V3 (V—b)2

3/ Déterminer les expressions des coefficients thermoélastiques o , B et y dugaz
en fonction de T et V.

EXERCICE 4 ;

Sachant que b est trés faible devant le volume V, montrer que I'équation de Van der
Waals pour une mole peut s'écrire sous la forme suivante :

B C D
PV=RT (1+ — +— + —+...
. ( Vo y2 3 )
B, C et D (coefficients du viriel) sont des fonctions pouvant dépendre de T, a et b.

(On utilisera 'approximation : (1-x)~ Ly 14x+x2+%3 quand x est petit)

EXERCICE 5: ' .
Trouver I'équation d'état d'un fluide pour lequel :
3k, T? k,
= et = (k4 et k, sont deux constantes)
Y v

a

EXERCICE 6 : .
Un gaz parfait subit le cycle ABCA constitué des trois transformations suivantes :

AB (détente isotherme),
BC (échauffement isochore),
CA (refroidissement isobare).

Le volume du gaz & I'état B est le double du volume & I'état A.

1/ Trouver la relation entre la pression P al'état B et la pression Pa & l'état A.

2/ Représenter l'allure du cycle ABCA dans le diagramme P= P(V) de Ciapeyron.
Dans quel sens est décrit ce cycle ?

3/ Déterminer la température du gaz a I'état C sachant que la température a I'état A
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