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CHAPITRE 4

Fonctions Dérivables

4.1 Introduction

On montre expérimentalement qu'un objet qui, initialement au repos a une hauteur & du sol, tombe
en chute libre se trouve apres t secondes a la distance y(t) = 4.9t de sa position initiale. La vitesse

moyenne v, a laquelle cet objet parcours la distance entre les deux points y(t;) et y(t2) est donnée par
_yl) —y(t) _ Ay(t)
" th—t; At
Il est connu que la vitesse de chute d'un tel objet augmente avec le temps. Quelle est alors la vitesse de

cet objet a tout instant ¢ ? On 'appelle vitesse instantanée de 1'objet et on la note v(t) pour souligner qu’elle
dépend de t. La vitesse instantanée v(t) est définie par Al}glo A]Zi(:)

Dans ce chapitre nous étudierons les fonctions pour lesquelles ce genre de limite existe. Ces fonctions
sont dites dérivables. La dérivabilité d’une fonction renseigne sur certaines particularités de son graphe.
Elle permet d’identifier, entre autres :

— les sous-ensembles de R sur lesquelles elle est croissante ou décroissante,

— les points ( quand ils existent) ot1 la fonction est maximale ou minimale,

— les points o1 le graphe de la fonction est une courbe lisse ...

Nous préciserons ces notions et développerons leurs propriétés aux paragraphes suivants.

4.2 Fonction dérivable

4.2.1 Définitions

Définition 1. Soit f: I — R une fonction définie au voisinage de xg € I1.On dit que f est dérivable en x, si
f(x) — f(xo)
X — X0
appelée la dérivée de f au point xg. On écrit alors

le taux d’accroissement a une limite finie lorsque x tend vers x(. Cette limite, notée f'(xg), est

) — fim £ F(0)

X—r X X — xO

On dit que f est dérivable sur I si f est dérivable en tout point xy € I. La fonction f’: x — f’(x) s'appelle

la fonction dérivée de f.
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Exemple 1. La fonction définie par f(x) = x" est dérivable en tout point xy € R. En effet :

-1 k,n—k—1 _
flx) = flxo) _ x"—xg _ (x—x0) Xy—y xpx" _ nzl k1 -1
X — X X — X X — XQ = 0 '

— nxo
X—XQ

Cela montre que est dérivable et que f’(x) = nx"~1.

Exemple 2. La fonction définie par f(x) = /x est dérivable en tout point xy > 0. En effet :

F) - f0)  VE-VE (o yWEEVE) | xex
X —Xp X —Xo (x=x0)(Vx+ %)  (x—x0)(Vx+yx) Vr+xo
d’ot, lim fx) = flxo) _ lim L _ 1 = f'(xo).

X=X X — Xp X—Xx( \/E«F /X0 2. /X0

Exemple 3. La fonction ¢ : x — sin x est dérivable en 0 et on a ¢’(0) = 1. En effet :
Par définition de la mesure d’un angle en “radian”, § = arcAB. On a

aussi |[BC| = |OB|sin® = sinf et |BC| < |AB| <arcAB. D’ou

D

sinf < 6 etdonc ¥<1.

En considérant le triangle OAD, on voit que

6 = arcAB < |AE| + |EB| < |AE| + |ED| = |OA|tan6 = tan#.

L. sinf | sin 6
Ainsiona < ——,d’oticosf < ——
cos 6 0

< 1. Comme lim cos® =1, on a lim sinf _ 1=¢'(0).
6—0 6—0

Exemple 4. La fonction ¢ : x +— sin x est dérivable en tout x € R eton a ¢’(x) = cos x. En effet :

lim g(x) — g(xp) ~ lim sin(xg + 0) — sin xg _ iy SI0%0 cos 0 + sin 0 cos xg — sin xg
x—=xg X — X 6—0 0 6—0 0
~ lim {Sin Xpcosf —sinxy = cosxg sinG} _ lim [sinx cosf —1 4 cosx sinﬂ}
950 0 0 650 0 0 0
D’autre part on a,
lim cosf—1 lim{0059—1c059+1} B 1m{ cos?f — 1 } _ 1m{ sin? 6 }
6—0 6 050 0 cosf-+1) o-0lf(cos@+1))  9—0lO(cosd+1)
_ _hm[sinﬂ sin } ~ lim sin 6 im sin 0 ~ 1« lim sin 6 —0
90l O cosO@+1) 650 O e—0cos@+1 e—0cosf+1
— 0—1 in 6
D’ou lim M = sin xg lim cosv T2 + cos xg lim sy COS X(.
=X X — X 0—0 0 6—0 0

Proposition 1. Soit f : I — IR une fonction définie au voisinage de xy € I =]a, b].
a) Si f est dérivable en xg alors f est continue en xj.

b) Si f est dérivable sur I alors f est continue sur I.
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Démonstration. Soit xo € I un point donné. Supposons que f soit dérivable en x( et montrons qu’elle est

L = F(30) | f4). Do, lim f(x) = f(x). O

continue en xp. Pour tout x # xp, ona f(x) = (x — xp o
— Xo

L’exemple suivant montre que la réciproque de ce résultat est fausse.

—x six <0
Exemple 5. La fonction f(x) = |x| = est-elle dérivable en x(?

X six >0

f(x) = f(0)

Les limite a droite et a gauche de xp du taux d’accroissement existent et on a lim ———————~ =

x—0F x—0
— 0 —
lim = = 1et lim fx) = f(0) = lim — = —1. Mais f n’est pas dérivable en O car ces limites sont
x—0+ X x—=0- x—0 x—0- X

f(x) = £(0)

s ol li
différentes ce qui implique que lim —==—5

n’existe pas.

4.2.2 Dérivée a droite et a gauche en un point

Définition 2. Soit f une fonction définie sur un intervalle ouvert I =]a, b[ contenant x. on dit que f est dérivable
f(x) = f(x0)

admet une limite a droite (resp. une limite a gauche)
X — X0

a droite (resp. a gauche) de xq si le rapport

en xp et sera notée f;(xo) (resp. f¢(x0))

Proposition 2. Une fonction f définie sur I =]a, b contenant x( est dérivable en x si, et seulement si, f est

dérivable a droite et a gauche de xq et f;(x0) = fg(xo).

Lorsqu’une fonction f est dérivable en x, il est possible d’approcher la valeur de f dans un voisinage

de xq par celle d'une droite. Plus exactement, nous avons le résultat suivant :

Proposition 3. Soit f : I — R une fonction définie au voisinage de xy € I. La fonction f est dérivable en xg

si et seulement s'il existe £ € R et une fonction € : I — R telle que e(x) — 0 avec
X— X

f(x) = f(x0) + (x = x0)£ + (x — x0)e(x).

Démonstration. Si f est dérivable en xg alors lim f(x) = f(xo) = f'(x0) € R. Posons ¢ = f'(xp). La

X—X0 X — Xg
f(x) = f(x0)
X —Xp

Evident. O

fonction € définie sur I \ {xo} par e(x) = — { vérifie les conditions de la proposition.

En d’autres termes on a f(x) ~ f(xo) + (x — xg) f'(x lorsque x est trés proche de xy. Nous illustrons cela

par l’exemple suivant.

Exemple 6. Supposons que I'on cherche une valeur approchée de 1/1,01. Comme 1,01 est proche de 1 et
que v/1 = 1 on doit s’attendre a ce que /1,01 sera proche de 1.
Notons f la fonction définie par f(x) = y/x. La fonction f est continue en xy = 1 et donc que pour x

suffisamment proche de x, f(x) est proche de f(xp).
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N
y=(x-1)}+1
y=x
=1
N y
I
0 1 X

Nous pouvons faire mieux qu’approcher notre fonction par une droite horizontale! Essayons avec une
droite quelconque. Quelle droite se rapproche le plus du graphe de f autour de x( ? Elle doit passer par le
point (xg, f (xp)) et doit «coller» le plus possible au graphe : c’est la tangente au graphe en xj. Une équation

de la tangente est
y = (x = x0)f'(x0) + f(x0)

ou f’(x) désigne le nombre dérivé de f en x.

Remarque 1. Une fonction f est dérivable en x si son graphe est “lisse” autour du point (xg, f(xp)).

(a) | )

FIGURE 4.1 — (a) Graphe “lisse” en (xg, f(x0))- (b) Graphe pas “lisse” en (xo, f(xp)).

4.2.3 Tangente en un point

La droite qui coupe le graphe Gy d’une fonction f en My de coordonnées (xo, f(xo) et M de coordonnées

(x, f(x) a pour coefficient directeur w.
— A0
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Si la fonction f est dérivable en xo, la droite tangente a G '+ en Xg (qui ne touche Gy qu’au point M) a

pour coefficient directeur lim f(x) = f(x0) = f'(x0).
X— X X — xO

L’équation de la tangente a G en (xo, f(xo)

est donnée par : y = f’(xq)(x — x0) + f(x0)-

Tangente 4 Gy en Mo

4.3 Calcul des dérivées

4.3.1 Somme et produit

Proposition 4. Soient f,g: I — IR deux fonctions dérivables sur I. Alors pour tout x € I :

— (f+8)(x) = f'(x) +&'(x), - (Af)’gx) = Af’(yf) ol A est un réel fixe,
— (F %)) = F(W3() + fF (), () w=-L5 s #o.
(Y - P800 - )

<g> (x) g(x)? (si g(x) #0).

Remarque 2. Il est plus facile de mémoriser les égalités de fonctions :

ey =frg O =af, xgl =rgrsgs (3) =-h (L) =L

Démonstration. Prouvons par exemple (f x ) = f'g¢+ fg'.

Fixons xg € [.Pour x € [etx #xpona:

fEg() = flro)glan) _ f) = Fx0) oy 800 = 8(00) £,

X — Xo X — X0 X — X0

Donc en passant a la limite on obtient lim f()3(x) = f(x0)8(x0) = f'(
X—X0 X — X

x0)g(x0) + &' (x0) f(x0)- O
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4.3.2 Dérivée d’'une composition

Proposition 5. Si f est dérivable en x et ¢ est dérivable en f(x) alors g o f est dérivable en x de dérivée :

(g0f) (x) =g (f(x) - f(x)

Démonstration. La preuve est similaire & celle ci-dessus pour le produit en écrivant cette fois :

gof(x) —gof(x) _ 8(f(x) —g(f(x0)) f(x)— f(xo)

h f(xo) X — X x—xp

X — Xg f(x)

' (f(x0)) x f'(x0)-
O

Exemple 7. Calculons la dérivée de In(1 + x2). Nous avons g(x) = In(x) avec ¢'(x) = 1; et f(x) = 1+ x?

X

avec f'(x) = 2x. Alors la dérivée de In(1 + x?) = g o f(x) est

2x

(80)() =8 (f(x) - f'(x) =g/ (1+7) - 2x= 7.

Corollaire 1. Soit I un intervalle ouvert. Soit f : I — ] dérivable et bijective dont on note f_1 ] —1Ila

bijection réciproque. Si f’ ne s'annule pas sur I alors f_1 est dérivable et on a pour tout x € | :

Démonstration. Notons ¢ = f~! la bijection réciproque de f. Soit yo € J et xo € I tel que yo = f(xg). Le

taux d’accroissement de g en g est :

8W) —8o) _  8(y) —xo
y=y  f(8y) - f(xo)
Lorsque y — yp alors g(y) — g(yo) = xo et donc ce taux d’accroissement tend vers m Ainsi ¢'(yo) =

1
f'(x0)" O

Remarque 3. Il peut étre plus simple de retrouver la formule a chaque fois en dérivant 1’égalité

fglx)) =x

ot ¢ = f~! est la bijection réciproque de f.
En effet a droite la dérivée de x est 1; & gauche la dérivée de f(g(x)) = fog(x) est f/(g(x)) - ¢'(x).

L'égalité f(g(x)) = x conduit donc a I'égalité des dérivées :

Mais ¢ = f~! donc
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4.3.3 Exemples

La fonction sin : [, 7] — [—1, 1] est une fonction dérivable dont la dérivée est positive. Elle est donc

bijective et admet une fonction réciproque notée arcsin. Comme la dérivée de la fonction sin ne s’annule
pas sur | 5%, 7|, la fonction réciproque arcsin est donc dérivable sur | —1,1[ et on a

- 1
arcsin'y = ——
1—y?

De méme, la fonction cos : [0, 7] — [—1,1] est une bijection dérivable dont la dérivée ne s’annule pas sur

10, 7t[. Sa fonction réciproque arccos est donc dérivable sur | —1,1[ eton a

-1

!/

arccos' () = ——
) = —— 7

1
sin x

Exercice 1. On considére la fonction f définie sur [F, [ par f(x) =
1) Montrer que f posséde une fonction réciproque f~! et trouver son domaine de définition.
2) Démontrer que, Vx €D, 1, 0ona fHx)+arcsinl =7x

3) Trouver 'ensemble ot f~! est dérivable et calculer (f~1)’

4.3.4 Dérivée de fonctions usuelles

Le tableau de gauche est un résumé des principales formules a connaitre, x est une variable. Le tableau

de droite est celui des compositions (voir paragraphe suivant), u représente une fonction x — u(x).

Fonction Dérivée Fonction Dérivée
x" nx" 1 (n€2z) u” n'u*~1  (ne€Z)
1 _1 1 _u
X 2 u u2
11 1
Vx oGS Vi i
x® ax®* 1 (x € R) u® au'u®1 (v € R)
ex e.x ell u/eu
1 u'
11'1 X x ln u m
Cos X —sinx cos u —u'sinu
sin x cos x sinu u' cosu
2. 1 / 2 _
tan x 1+tan®x = tanu u'(1+tan”u) = 5

Remarque 4.
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— Notez que les formules pour x”, 1 \/x et x* sont aussi des conséquences de la dérivée de 'exponen-

tielle. Par exemple x* = ¢*!"* et donc
d o d aln x 1 alnx 1 o a—1
—(x*) = —(e =ua—e =a—x" =ax"" .
dx (%) dx( ) x x
— Si vous devez dériver une fonction avec un exposant dépendant de x il faut absolument repasser a

la forme exponentielle. Par exemple si f(x) = 2¥ alors on réécrit d’abord f(x) = e*In2

calculer f'(x) =In2-¢*"2 =1n2.2%,

pour pouvoir

4.3.5 Dérivées successives

Soit f : I — R une fonction dérivable et soit f’ sa dérivée. Si la fonction f' : I — R est aussi dérivable on

note " = (f') la dérivée seconde de f. Plus généralement on note :
f(()) =¥, f(l) _ f/r f(2) _ f// et f(nJrl) _ (f(n))/
Si la dérivée n®™e (") existe on dit que f est 1 fois dérivable.

Théoréme 1. [Formule de Leibniz]

Autrement dit :

(79)" =3 () £ g

k=0
La démonstration est similaire a celle de la formule du bindme de Newton et les coefficients que 1’on

obtient sont les mémes.

Exemple 8.
— Pourn = 1onretrouve (f-g) = f'g+ f¢'.
— Pourn =2,0ona (f.g)// _ f//g+2f/g/ +fg”-

Exemple 9. Calculons les dérivées n-ieme de exp(x) - (x> + 1) pour tout n > 0. Notons f(x) = exp(x) alors
f'(x) = exp(x), f(x) = exp(x),....f®) (x) = exp(x). Notons g(x) = x2 + 1 alors ¢’ (x) = 2x, ¢""(x) = 2 et
pour k >3, ¢®)(x) = 0.

Appliquons la formule de Leibniz :
(9" ) =05+ () 1000 50w+ () £ 2020+ (5) 1005w

On remplace f¥)(x) = exp(x) et on sait que g® (x), g (x) = 0,...Donc cette somme ne contient que
les trois premiers termes :
n

(f‘g)(n)(x) =exp(x)  (x¥*+1)+ (?) exp(x) - 2x + <2> exp(x) - 2.
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Que l'on peut aussi écrire :

Exercice 2.
1. Calculer les dérivées des fonctions suivantes : fi(x) = xInx, fo(x) = sinl, f(x) = VI+Vi+22,
fa(x) = (ln(%f—i))%,fdx) = x%, fg(x) = arctan x + arctan 1.
2. Onnote A(f) = f% Calculer A(f x g).
3. Soit f :]1, +oo[—] — 1, 00| définie par f(x) = xIn(x) — x. Montrer que f est une bijection. Notons
¢ = f~L Calculer g(0) et ¢'(0).
4. Calculer les dérivées successives de f(x) = In(1 + x).

5. Calculer les dérivées successives de f(x) = In(x) - x>.

4.4 Extremum local, théoréeme de Rolle

44.1 Extremum local
Soit f : I = R une fonction définie sur un intervalle I.
Définition 3.
— On dit que xg est un point critique de f si f'(xy) = 0.
— On dit que f admet un maximum local en xy (resp. un minimum local en x) s'il existe un intervalle

ouvert | contenant xq tel que

pourtout x € INJ f(x) < f(xp)

(resp. f(x) > f(x0)).
— On dit que f admet un extremum local en x; si f admet un maximum local ou un minimum local en ce

point.
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Yy /\
maximum global

T

minimum local maximum local

Dire que f a un maximum local en x, signifie que f(xo) est la plus grande des valeurs f(x) pour les x
proches de xg. On dit que f : I — R admet un maximum global en x, si pour toutes les autres valeurs
f(x),x € Iona f(x) < f(xp) (on ne regarde donc pas seulement les f(x) pour x proche de x). Bien str

un maximum global est aussi un maximum local, mais la réciproque est fausse.

Théoréme 2. Soit I un intervalle ouvert et f : I — R une fonction dérivable. Si f admet un maximum local

(ou un minimum local) en xq alors f'(xg) = 0.

En d’autres termes, un maximum local (ou un minimum local) x( est toujours un point critique. Géomé-

triquement, au point (xo, f(xo)) la tangente au graphe est horizontale.

y

Exemple 10. Etudions les extremums de la fonction f) définie par f;(x) = x3 4+ Ax en fonction du para-
metre A € R. La dérivée est f} (x) = 3x% + A. Si xg est un extremum local alors f} (x) = 0.
— Si A > Oalors f}(x) > 0 et ne s’annule jamais il n’y a pas de points critiques donc pas non plus

d’extremums. En anticipant sur la suite : f) est strictement croissante sur R.
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— SiA = Oalors f}(x) = 3x2 Le seul point critique est xg = 0. Mais ce n’est ni un maximum local, ni
un minimum local. En effet si x < 0, fo(x) < 0= fp(0) etsix > 0, fo(x) > 0= f,(0).

— SiA < Oalors f;(x) = 3x* — [A| =3(x+ ‘g—‘) (x— \/‘BE) Il y a deux points critiques x; = f\/‘g\jet
Xy = +\/@. En anticipant sur la suite : ] (x) > 0 sur ] — 0o, x;[ et Jxp, +-co[ et f](x) < 0 sur ]xq, x2[.
Maintenant f, est croissante sur | — oo, x1[, puis décroissante sur |x1, x2[, donc x; est un maximum
local. D’autre part f) est décroissante sur |x3, x| puis croissante sur |xy, +oo[ donc x; est un minimum

local.

X2

X1

A>0 A=0 A<O

Remarque 5.

3

1. La réciproque du théoréme 2 est fausse. Par exemple la fonction f : R — R, définie par f(x) = x

vérifie f/(0) = 0 mais xo = 0 n’est ni maximum local ni un minimum local.

2. L'intervalle du théoréme 2 est ouvert. Pour le cas d’un intervalle fermé, il faut faire attention aux
extrémités. Par exemple si f : [2,b] — R est une fonction dérivable qui admet un extremum en xj,
alors on est dans 'une des situations suivantes :

— xp =4,

— x0 =D,

— o €]a, b| et dans ce cas on a bien f’(xy) = 0 par le théoréme 2.

Aux extrémités on ne peut rien dire pour f'(a) et f'(b), comme le montre les différents maximums

sur les dessins suivants.

o

X0 I a I I

b - — - - - - = 2

3. Pour déterminer max(, ;) f et minj, ;) f (ol f : [a,b] — R est une fonction dérivable) il faut comparer

les valeurs de f aux différents points critiques et en a et en b.

62



A.ZOGLAT FSIR, SMIA-ANALYSE I CHAPITRE 4

Preuve du théoréme. Supposons que x( soit un maximum local de f, soit donc | l'intervalle ouvert de la

définition contenant xg tel que pour toutx € INJona f(x) < f(xp).

— Pourx € INJtel que x < xpona f(x) — f(xg) < 0etx—xp <0donc%§§x°) > 0etdoncala

limite lim,__, - [5=00) >,

— Pourx € INJtel que x > xgona f(x) — f(xg) < 0etx—xy > Odonc%iéxo) < 0Oetdoncala
limite lim,__, . =10 <,

X—Xp

Or f est dérivable en xy donc

o O F0) ) f0)
X=Xy X = Xo x—xg X=X
La premiere limite est positive, la seconde est négative, la seule possibilité est que f'(xg) = 0. O

4.4.2 Théoréme de Rolle

Théoreéme 3. [Théoréme de Rolle] Soit f : [a,b] — R telle que
— f est continue sur [a, b],
— f est dérivable sur ]a, b],
— f(a) = f(b).

Alors il existe ¢ €]a, b[ tel que f'(c) = 0.

@
o - - - -
@

Interprétation géométrique : il existe au moins un point du graphe de f ot la tangente est horizontale.

Démonstration. Tout d’abord, si f est constante sur [4, b] alors n'importe quel ¢ €]a, b[ convient. Sinon il
existe xg € [a,b] tel que f(xp) # f(a). Supposons par exemple f(xp) > f(a). Alors f est continue sur
l'intervalle fermé et borné [a, b], donc elle admet un maximum en un point ¢ € [a, b]. Mais f(c) > f(xg) >

f(a) donc ¢ # a. De méme comme f(a) = f(b) alors ¢ # b. Ainsi ¢ €]a,b[. En ¢, f est donc dérivable et

admet un maximum (local) donc f/(c¢) = 0. O

Exemple 11. Soit P(X) = (X —a1)(X — a2) ... (X — &) un polyndme ayant n racines réelles différentes :

o <ty <...<duy.
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1.

Montrons que P’ a n — 1 racines distinctes.

On considere P comme une fonction polynomiale x — P(x). P est une fonction continue et dérivable
sur R. Comme P(a;) = 0 = P(ay) alors par le théoréme de Rolle il existe ¢; €]ay, ay][ tel que P’'(c1) =
0. Plus généralement, pour 1 < k < n — 1, comme P(a;) = 0 = P(ag,1) alors le théoréme de Rolle
implique l'existence de ¢, €]ay, ax1[ tel que P'(cx) = 0. Nous avons bien trouvé n — 1 racines de P’ :
c1 < <...< cy_1. Comme P’ est un polynome de degré n — 1, toutes ses racines sont réelles et

distinctes.

2. Montrons que P+ P" a n — 1 racines distinctes.

L’astuce consiste a considérer la fonction auxiliaire f(x) = P(x) exp x. f est une fonction continue et
dérivable sur R. f s’annule comme Penay,...,ay.

La dérivée de f est f/(x) = (P(x) + P’(x)) exp x. Donc par le théoreme de Rolle, pour chaque 1 <
k <n—1,comme f(ay) =0 = f(ar,1) alors il existe v €]ag, ax 1] tel que f'(yx) = 0. Mais comme
la fonction exponentielle ne s’annule jamais alors (P + P')(-yx) = 0. Nous avons bien trouvé n — 1
racines distinctesde P+ P’ : v < 72 < ... < Yp_1.

Déduisons-en que P + P’ a toutes ses racines réelles.

P + P’ est un polyndme a coefficients réels qui admet n — 1 racines réelles. Donc (P + P')(X) =
(X—=71) .- (X = 92-1)Q(X) ot Q(x) = X — ¥, est un polyndme de degré 1. Comme P + P’ est a
coefficients réels et que les 7; sont aussi réels, ainsi v, € IR. Ainsi on a obtenu une n-iéme racine réelle

Tn (pas nécessairement distincte des autres ;).

Exercice 3.

1.

Dessiner le graphe de fonctions vérifiant : fi admet deux minimums locaux et un maximum local;
f» admet un minimum local qui n’est pas global et un maximum local qui est global; f3 admet une

infinité d’extremum locaux; f; n’admet aucun extremum local.

. Calculer en quel point la fonction f(x) = ax? + bx + c admet un extremum local.

. Soit f : [0,2] — R une fonction deux fois dérivable telle que f(0) = f(1) = f(2) = 0. Montrer qu'il

existe c1, ¢; tels que f'(c1) = 0 et f'(c) = 0. Montrer qu’il existe c3 tel que f”(c3) = 0.

. Montrer que chacune des trois hypotheses du théoreme de Rolle est nécessaire.

4.5 Théoréme des accroissements finis

4.5.1 Théoréme des accroissements finis

Théoreéme 4. [Théoréme des accroissements finis] Soit f : [a,b] — R une fonction continue sur [a, b] et dérivable

sur ]a, b|. Il existe ¢ €]a, b| tel que
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f(b) = f(a) = f'(c) (b—a)

=@
o - -
¢

Interprétation géométrique : il existe au moins un point du graphe de f oi1 la tangente est parallele a la

droite (AB) ou A = (a, f(a)) et B= (b, f(b)).

Démonstration. Posons { = f(bl),:g(“) etg(x) = f(x)—£-(x—a). Alors g(a) = f(a), g(b) = f(b) — La(a)

(b —a) = f(a). Par le théoreme de Rolle, il existe ¢ €]a, b tel que ¢’(c) = 0. Or ¢'(x) = f'(x) — ¢. Ce qui
donne f'(c) = W O

4.5.2 Inégalité des accroissements finis

Corollaire 2. [Inégalité des accroissements finis] Soit f : I — R une fonction dérivable sur un intervalle I ouvert.

S'il existe une constante M tel que pour tout x € I, |f'(x)| < M alors

veyel  [f(x) = f(y)] < Mlx—y]
Démonstration. Fixons x,y € I, il existe alors ¢ €]x,y[ ou |y, x[ tel que f(x) — f(y) = f'(c)(x — y) et comme

|f'(0)] < Malors |f(x) = f(y)| < M|x —yl. m

Exemple 12. Soit f(x) = sinx. Comme f’(x) = cosx alors |f'(x)| < 1 pour tout x € R. L'inégalité des

accroissements finis s’écrit alors :
pour tous x,y € R |sinx —siny| < |x —y|.

En particulier sil’on fixe y = 0 alors on obtient

|sinx| < |x|

ce qui est particulierement intéressant pour x proche de 0.
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4.5.3 Fonction croissante et dérivée

Corollaire 3. Soit f : [2,b] — R une fonction continue sur [a,b] et dérivable sur ]a, b[. Vx €]a, b],
1. f'/(x) >0 <= f estcroissante (f'(x) <0 <= f est décroissante.)
2. f/(x) =0 <= f est constante;
3. f/(x) >0 = f est strictement croissante (f'(x) <0 == f est strictement décroissante.)

Remarque 6. La réciproque au point (3) est fausse. Par exemple la fonction x ~— x3 est strictement crois-

sante et pourtant sa dérivée s’annule en 0.

Démonstration. Prouvons par exemple (1).

Sens =>. Supposons d’abord la dérivée positive. Soient x,y €la, b[ avec x < y. Alors par le théoreme
des accroissements finis, il existe ¢ €]x,y[ tel que f(x) — f(y) = f'(¢)(x —y). Mais f'(c) > 0etx —y <0
donc f(x) — f(y) < 0. Cela implique que f(x) < f(y). Ceci étant vrai pour tout x, y alors f est croissante.

Sens <=. Réciproquement, supposons que f est croissante. Fixons x €|a,b[. Pour tout y > x nous
avonsy —x > O et f(y) — f(x) > 0, ainsi le taux d’accroissement vérifie % > 0. A la limite, quand

Y — x, ce taux d’accroissement tend vers la dérivée de f en x et donc f'(x) > 0. O

4.5.4 Reégle de I'Hospital

Corollaire 4. [Régle de I'Hospital] Soient f, g : I — R deux fonctions dérivables et soit xg € I. On suppose que
f(x0) = g(xo) =0 et que Vx € I'\ {xo}, §&'(x)#0.

i lim f(x) = alors  lim f(x) =
Si xlﬁxo 7(x) ¢ (eR) al xlﬁxo E) L.

Démonstration. Fixons a € I\ {xo} avec par exemple a < xg. Soit 1 : I — R définie par h(x) = g(a)f(x) —
f(a)g(x). Alors
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e h est continue sur [a,xp] C I, e /1 est dérivable sur |a, xo], e hi(xg) = h(a) = 0.
Donc par le théoréme de Rolle il existe ¢, €]a, xo[ tel que h'(c;) = 0.

Or i'(x) = g(a)f'(x) — f(a)g'(x) donc g(a)f'(ca) — f(a)g'(ca) = 0. Comme g’ ne s’annule pas sur

I\ {xo} cela conduit a é% = ggii;

ca — xp. Cela implique
/ /
lim f(a) = lim fea) = lim fea) =
R g(@) o glen) et g(ca)

. Comme a < ¢; < xp lorsque l'on fait tendre a vers xp on obtient

Exemple 13. Calculer la limite en 1 de ln(’fﬂ On vérifie que :
n(x)

— f(x) =In(x*+x 1), f(1) =0, f'(x) = FH5,
— g(x) =In(x), (1) =0,¢'(x) = 1,

— Prenons I =|0,1], xop = 1, alors ¢’ ne s’annule pas sur I \ {xp}.

f'(x) 2x +1 2x%2 4+ x
; == X¥=—F5——"——>—>3
g(x) x24+x-1 24+ x—1 xo1
Donc
o
g(x) x—1
Exercice 4.

1. Soit f(x) = % + x; — 2x + 2. Etudier la fonction f. Tracer son graphe. Montrer que f admet un

minimum local et un maximum local.

2. Soit f(x) = /x. Appliquer le théoréme des accroissements finis sur l'intervalle [100, 101]. En déduire
I’'encadrement 10 + 21—2 <4101 <10+ 21—0.

3. Appliquer le théoreme des accroissements finis pour montrer que In(1 + x) — In(x) < % (pour tout

x > 0).

4. Soit f(x) = e*. Que donne l'inégalité des accroissements finis sur [0, x| ?

X

5. Appliquer la régle de 1'Hospital pour calculer les limites suivantes (quand x — 0) : Aro-1 ;

In(x+1) 1—cosx x—sinx
Vx 7 tanx 7 x3 7
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