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CHAPITRE 4

Fonctions Dérivables

4.1 Introduction

On montre expérimentalement qu’un objet qui, initialement au repos à une hauteur h du sol, tombe

en chute libre se trouve après t secondes à la distance y(t) = 4.9t2 de sa position initiale. La vitesse

moyenne vm à laquelle cet objet parcours la distance entre les deux points y(t1) et y(t2) est donnée par

vm =
y(t2)− y(t1)

t2 − t1
:=

∆y(t)
∆t

.

Il est connu que la vitesse de chute d’un tel objet augmente avec le temps. Quelle est alors la vitesse de

cet objet à tout instant t ? On l’appelle vitesse instantanée de l’objet et on la note v(t) pour souligner qu’elle

dépend de t. La vitesse instantanée v(t) est définie par lim
∆t→0

∆y(t)
∆t

.

Dans ce chapitre nous étudierons les fonctions pour lesquelles ce genre de limite existe. Ces fonctions

sont dites dérivables. La dérivabilité d’une fonction renseigne sur certaines particularités de son graphe.

Elle permet d’identifier, entre autres :

— les sous-ensembles de R sur lesquelles elle est croissante ou décroissante,

— les points ( quand ils existent) où la fonction est maximale ou minimale,

— les points où le graphe de la fonction est une courbe lisse ...

Nous préciserons ces notions et développerons leurs propriétés aux paragraphes suivants.

4.2 Fonction dérivable

4.2.1 Définitions

Définition 1. Soit f : I −→ R une fonction définie au voisinage de x0 ∈ I.On dit que f est dérivable en x0, si

le taux d’accroissement
f (x)− f (x0)

x− x0
a une limite finie lorsque x tend vers x0. Cette limite, notée f ′(x0), est

appelée la dérivée de f au point x0. On écrit alors

f ′(x0) = lim
x→x0

f (x)− f (x0)

x− x0

On dit que f est dérivable sur I si f est dérivable en tout point x0 ∈ I. La fonction f ′ : x 7→ f ′(x) s’appelle

la fonction dérivée de f .
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Exemple 1. La fonction définie par f (x) = xn est dérivable en tout point x0 ∈ R. En effet :

f (x)− f (x0)

x− x0
=

xn − xn
0

x− x0
=

(x− x0)∑n−1
k=0 xk

0xn−k−1

x− x0
=

n−1

∑
k=0

xk
0xn−k−1 −−−→

x→x0
nxn−1

0 .

Cela montre que est dérivable et que f ′(x) = nxn−1.

Exemple 2. La fonction définie par f (x) =
√

x est dérivable en tout point x0 > 0. En effet :

f (x)− f (x0)

x− x0
=

√
x−√x0

x− x0
=

(
√

x−√x0)(
√

x +
√

x0)

(x− x0)(
√

x +
√

x0)
=

x− x0

(x− x0)(
√

x +
√

x0)
=

1√
x +
√

x0
,

d’où, lim
x→x0

f (x)− f (x0)

x− x0
= lim

x→x0

1√
x +
√

x0
=

1
2
√

x0
= f ′(x0).

Exemple 3. La fonction g : x 7→ sin x est dérivable en 0 et on a g′(0) = 1. En effet :

Par définition de la mesure d’un angle en “radian”, θ = arcAB. On a

aussi |BC| = |OB| sin θ = sin θ et |BC| < |AB| <arcAB. D’où

sin θ < θ et donc
sin θ

θ
< 1.

En considérant le triangle OAD, on voit que

θ = arcAB < |AE|+ |EB| < |AE|+ |ED| = |OA| tan θ = tan θ.

Ainsi on a θ <
sin θ

cos θ
, d’où cos θ <

sin θ

θ
< 1. Comme lim

θ→0
cos θ = 1, on a lim

θ→0

sin θ

θ
= 1 = g′(0).

Exemple 4. La fonction g : x 7→ sin x est dérivable en tout x ∈ R et on a g′(x) = cos x. En effet :

lim
x→x0

g(x)− g(x0)

x− x0
= lim

θ→0

sin(x0 + θ)− sin x0

θ
= lim

θ→0

sin x0 cos θ + sin θ cos x0 − sin x0

θ

= lim
θ→0

[ sin x0 cos θ − sin x0

θ
+

cos x0 sin θ

θ

]
= lim

θ→0

[
sin x0

cos θ − 1
θ

+ cos x0
sin θ

θ

]
D’autre part on a,

lim
θ→0

cos θ − 1
θ

= lim
θ→0

[cos θ − 1
θ

cos θ + 1
cos θ + 1

]
= lim

θ→0

[ cos2 θ − 1
θ(cos θ + 1)

]
= − lim

θ→0

[ sin2 θ

θ(cos θ + 1)

]
= − lim

θ→0

[ sin θ

θ

sin θ

cos θ + 1

]
= − lim

θ→0

sin θ

θ
lim
θ→0

sin θ

cos θ + 1
= 1× lim

θ→0

sin θ

cos θ + 1
= 0

D’où lim
x→x0

g(x)− g(x0)

x− x0
= sin x0 lim

θ→0

cos θ − 1
θ

+ cos x0 lim
θ→0

sin θ

θ
= cos x0.

Proposition 1. Soit f : I −→ R une fonction définie au voisinage de x0 ∈ I =]a, b[.

a) Si f est dérivable en x0 alors f est continue en x0.

b) Si f est dérivable sur I alors f est continue sur I.
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Démonstration. Soit x0 ∈ I un point donné. Supposons que f soit dérivable en x0 et montrons qu’elle est

continue en x0. Pour tout x 6= x0, on a f (x) = (x− x0)
f (x)− f (x0)

x− x0
+ f (x0). D’où, lim

x→x0
f (x) = f (x0).

L’exemple suivant montre que la réciproque de ce résultat est fausse.

Exemple 5. La fonction f (x) = |x| =

−x si x < 0

x si x ≥ 0
est-elle dérivable en x0 ?

Les limite à droite et à gauche de x0 du taux d’accroissement existent et on a lim
x→0+

f (x)− f (0)
x− 0

=

lim
x→0+

x
x

= 1 et lim
x→0−

f (x)− f (0)
x− 0

= lim
x→0−

−x
x

= −1. Mais f n’est pas dérivable en 0 car ces limites sont

différentes ce qui implique que lim
x→0

f (x)− f (0)
x− 0

n’existe pas.

4.2.2 Dérivée à droite et à gauche en un point

Définition 2. Soit f une fonction définie sur un intervalle ouvert I =]a, b[ contenant x0. on dit que f est dérivable

à droite (resp. à gauche) de x0 si le rapport
f (x)− f (x0)

x− x0
admet une limite à droite (resp. une limite à gauche)

en x0 et sera notée f ′d(x0) (resp. f ′g(x0))

Proposition 2. Une fonction f définie sur I =]a, b[ contenant x0 est dérivable en x0 si, et seulement si, f est

dérivable à droite et à gauche de x0 et f ′d(x0) = f ′g(x0).

Lorsqu’une fonction f est dérivable en x0, il est possible d’approcher la valeur de f dans un voisinage

de x0 par celle d’une droite. Plus exactement, nous avons le résultat suivant :

Proposition 3. Soit f : I −→ R une fonction définie au voisinage de x0 ∈ I. La fonction f est dérivable en x0

si et seulement s’il existe ` ∈ R et une fonction ε : I → R telle que ε(x) −−−→
x→x0

0 avec

f (x) = f (x0) + (x− x0)`+ (x− x0)ε(x).

Démonstration. =⇒ Si f est dérivable en x0 alors lim
x→x0

f (x)− f (x0)

x− x0
= f ′(x0) ∈ R. Posons ` = f ′(x0). La

fonction ε définie sur I \ {x0} par ε(x) =
f (x)− f (x0)

x− x0
− ` vérifie les conditions de la proposition.

⇐= Évident.

En d’autres termes on a f (x) ' f (x0) + (x− x0) f ′(x0 lorsque x est très proche de x0. Nous illustrons cela

par l’exemple suivant.

Exemple 6. Supposons que l’on cherche une valeur approchée de
√

1, 01. Comme 1, 01 est proche de 1 et

que
√

1 = 1 on doit s’attendre à ce que
√

1, 01 sera proche de 1.

Notons f la fonction définie par f (x) =
√

x. La fonction f est continue en x0 = 1 et donc que pour x

suffisamment proche de x0, f (x) est proche de f (x0).
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x

y

1

0 1

y = 1

y =
√

x

y = (x− 1) 1
2 + 1

Nous pouvons faire mieux qu’approcher notre fonction par une droite horizontale ! Essayons avec une

droite quelconque. Quelle droite se rapproche le plus du graphe de f autour de x0 ? Elle doit passer par le

point (x0, f (x0)) et doit «coller» le plus possible au graphe : c’est la tangente au graphe en x0. Une équation

de la tangente est

y = (x− x0) f ′(x0) + f (x0)

où f ′(x0) désigne le nombre dérivé de f en x0.

Remarque 1. Une fonction f est dérivable en x0 si son graphe est “lisse” autour du point (x0, f (x0)).

FIGURE 4.1 – (a) Graphe “lisse” en (x0, f (x0)). (b) Graphe pas “lisse” en (x0, f (x0)).

4.2.3 Tangente en un point

La droite qui coupe le graphe G f d’une fonction f en M0 de coordonnées (x0, f (x0) et M de coordonnées

(x, f (x) a pour coefficient directeur
f (x)− f (x0)

x− x0
.
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Si la fonction f est dérivable en x0, la droite tangente à G f en x0 (qui ne touche G f qu’au point M0) a

pour coefficient directeur lim
x→x0

f (x)− f (x0)

x− x0
= f ′(x0).

L’équation de la tangente à G f en (x0, f (x0)

est donnée par : y = f ′(x0)(x− x0) + f (x0).

4.3 Calcul des dérivées

4.3.1 Somme et produit

Proposition 4. Soient f , g : I → R deux fonctions dérivables sur I. Alors pour tout x ∈ I :

— ( f + g)′(x) = f ′(x) + g′(x), − (λ f )′(x) = λ f ′(x) où λ est un réel fixé,

— ( f × g)′(x) = f ′(x)g(x) + f (x)g′(x), −
(

1
f

)′
(x) = − f ′(x)

f (x)2 (si f (x) 6= 0),

—
(

f
g

)′
(x) =

f ′(x)g(x)− f (x)g′(x)
g(x)2 (si g(x) 6= 0).

Remarque 2. Il est plus facile de mémoriser les égalités de fonctions :

( f + g)′ = f ′ + g′, (λ f )′ = λ f ′, ( f × g)′ = f ′g + f g′,
(

1
f

)′
= − f ′

f 2 ,
(

f
g

)′
=

f ′g− f g′

g2 .

Démonstration. Prouvons par exemple ( f × g)′ = f ′g + f g′.

Fixons x0 ∈ I. Pour x ∈ I et x 6= x0 on a :

f (x)g(x)− f (x0)g(x0)

x− x0
=

f (x)− f (x0)

x− x0
g(x) +

g(x)− g(x0)

x− x0
f (x0).

Donc en passant à la limite on obtient lim
x→x0

f (x)g(x)− f (x0)g(x0)

x− x0
= f ′(x0)g(x0) + g′(x0) f (x0).
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4.3.2 Dérivée d’une composition

Proposition 5. Si f est dérivable en x et g est dérivable en f (x) alors g ◦ f est dérivable en x de dérivée :

(
g ◦ f

)′
(x) = g′

(
f (x)

)
· f ′(x)

Démonstration. La preuve est similaire à celle ci-dessus pour le produit en écrivant cette fois :

g ◦ f (x)− g ◦ f (x0)

x− x0
=

g
(

f (x)
)
− g
(

f (x0)
)

f (x)− f (x0)
× f (x)− f (x0)

x− x0
−−−→
x→x0

g′
(

f (x0)
)
× f ′(x0).

Exemple 7. Calculons la dérivée de ln(1 + x2). Nous avons g(x) = ln(x) avec g′(x) = 1
x ; et f (x) = 1 + x2

avec f ′(x) = 2x. Alors la dérivée de ln(1 + x2) = g ◦ f (x) est(
g ◦ f

)′
(x) = g′

(
f (x)

)
· f ′(x) = g′

(
1 + x2) · 2x =

2x
1 + x2 .

Corollaire 1. Soit I un intervalle ouvert. Soit f : I → J dérivable et bijective dont on note f−1 : J → I la

bijection réciproque. Si f ′ ne s’annule pas sur I alors f−1 est dérivable et on a pour tout x ∈ J :

(
f−1)′(x) =

1
f ′
(

f−1(x)
)

Démonstration. Notons g = f−1 la bijection réciproque de f . Soit y0 ∈ J et x0 ∈ I tel que y0 = f (x0). Le

taux d’accroissement de g en y0 est :

g(y)− g(y0)

y− y0
=

g(y)− x0

f
(

g(y)
)
− f (x0)

Lorsque y → y0 alors g(y) → g(y0) = x0 et donc ce taux d’accroissement tend vers 1
f ′(x0)

. Ainsi g′(y0) =

1
f ′(x0)

.

Remarque 3. Il peut être plus simple de retrouver la formule à chaque fois en dérivant l’égalité

f
(

g(x)
)
= x

où g = f−1 est la bijection réciproque de f .

En effet à droite la dérivée de x est 1 ; à gauche la dérivée de f
(

g(x)
)
= f ◦ g(x) est f ′

(
g(x)

)
· g′(x).

L’égalité f
(

g(x)
)
= x conduit donc à l’égalité des dérivées :

f ′
(

g(x)
)
· g′(x) = 1.

Mais g = f−1 donc (
f−1)′(x) =

1
f ′
(

f−1(x)
) .
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4.3.3 Exemples

La fonction sin : [−π
2 , π

2 ] → [−1, 1] est une fonction dérivable dont la dérivée est positive. Elle est donc

bijective et admet une fonction réciproque notée arcsin. Comme la dérivée de la fonction sin ne s’annule

pas sur ]−π
2 , π

2 [, la fonction réciproque arcsin est donc dérivable sur ]− 1, 1[ et on a

arcsin′ y =
1√

1− y2

De même, la fonction cos : [0, π] → [−1, 1] est une bijection dérivable dont la dérivée ne s’annule pas sur

]0, π[. Sa fonction réciproque arccos est donc dérivable sur ]− 1, 1[ et on a

arccos′(y) =
−1√
1− y2

Exercice 1. On considère la fonction f définie sur [π
2 , π[ par f (x) = 1

sin x

1) Montrer que f possède une fonction réciproque f−1 et trouver son domaine de définition.

2) Démontrer que, ∀x ∈D f−1 , on a f−1(x) + arcsin 1
x = π

3) Trouver l’ensemble où f−1 est dérivable et calculer ( f−1)′

4.3.4 Dérivée de fonctions usuelles

Le tableau de gauche est un résumé des principales formules à connaître, x est une variable. Le tableau

de droite est celui des compositions (voir paragraphe suivant), u représente une fonction x 7→ u(x).

Fonction Dérivée

xn nxn−1 (n ∈ Z)

1
x − 1

x2

√
x 1

2
1√
x

xα αxα−1 (α ∈ R)

ex ex

ln x 1
x

cos x − sin x

sin x cos x

tan x 1 + tan2 x = 1
cos2 x

Fonction Dérivée

un nu′un−1 (n ∈ Z)

1
u − u′

u2

√
u 1

2
u′√

u

uα αu′uα−1 (α ∈ R)

eu u′eu

ln u u′
u

cos u −u′ sin u

sin u u′ cos u

tan u u′(1 + tan2 u) = u′
cos2 u

Remarque 4.
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— Notez que les formules pour xn, 1
x
√

x et xα sont aussi des conséquences de la dérivée de l’exponen-

tielle. Par exemple xα = eα ln x et donc

d
dx

(xα) =
d

dx
(eα ln x) = α

1
x

eα ln x = α
1
x

xα = αxα−1.

— Si vous devez dériver une fonction avec un exposant dépendant de x il faut absolument repasser à

la forme exponentielle. Par exemple si f (x) = 2x alors on réécrit d’abord f (x) = ex ln 2 pour pouvoir

calculer f ′(x) = ln 2 · ex ln 2 = ln 2 · 2x.

4.3.5 Dérivées successives

Soit f : I → R une fonction dérivable et soit f ′ sa dérivée. Si la fonction f ′ : I → R est aussi dérivable on

note f ′′ = ( f ′)′ la dérivée seconde de f . Plus généralement on note :

f (0) = f , f (1) = f ′, f (2) = f ′′ et f (n+1) =
(

f (n)
)′

Si la dérivée nème f (n) existe on dit que f est n fois dérivable.

Théorème 1. [Formule de Leibniz]

(
f · g

)(n)
= f (n) · g +

(
n
1

)
f (n−1) · g(1) + . . . +

(
n
k

)
f (n−k) · g(k) + . . . + f · g(n)

Autrement dit : (
f · g

)(n)
=

n

∑
k=0

(
n
k

)
f (n−k) · g(k).

La démonstration est similaire à celle de la formule du binôme de Newton et les coefficients que l’on

obtient sont les mêmes.

Exemple 8.

— Pour n = 1 on retrouve ( f · g)′ = f ′g + f g′.

— Pour n = 2, on a ( f · g)′′ = f ′′g + 2 f ′g′ + f g′′.

Exemple 9. Calculons les dérivées n-ième de exp(x) · (x2 + 1) pour tout n ≥ 0. Notons f (x) = exp(x) alors

f ′(x) = exp(x), f ′′(x) = exp(x),..., f (k)(x) = exp(x). Notons g(x) = x2 + 1 alors g′(x) = 2x, g′′(x) = 2 et

pour k ≥ 3, g(k)(x) = 0.

Appliquons la formule de Leibniz :(
f · g
)(n)

(x) = f (n)(x) · g(x)+
(

n
1

)
f (n−1)(x) · g(1)(x)+

(
n
2

)
f (n−2)(x) · g(2)(x)+

(
n
3

)
f (n−3)(x) · g(3)(x)+ . . .

On remplace f (k)(x) = exp(x) et on sait que g(3)(x), g(4)(x) = 0,. . . Donc cette somme ne contient que

les trois premiers termes :(
f · g

)(n)
(x) = exp(x) · (x2 + 1) +

(
n
1

)
exp(x) · 2x +

(
n
2

)
exp(x) · 2.

59



A. ZOGLATA. ZOGLAT FSR, SMIA-ANALYSE I CHAPITRE 4

Que l’on peut aussi écrire :

(
f · g

)(n)
(x) = exp(x) ·

(
x2 + 2nx +

n(n− 1)
2

+ 1
)

.

Exercice 2.

1. Calculer les dérivées des fonctions suivantes : f1(x) = x ln x, f2(x) = sin 1
x , f3(x) =

√
1 +
√

1 + x2,

f4(x) =
(

ln( 1+x
1−x )

) 1
3 , f5(x) = xx, f6(x) = arctan x + arctan 1

x .

2. On note ∆( f ) = f ′
f . Calculer ∆( f × g).

3. Soit f :]1,+∞[→]− 1,+∞[ définie par f (x) = x ln(x)− x. Montrer que f est une bijection. Notons

g = f−1. Calculer g(0) et g′(0).

4. Calculer les dérivées successives de f (x) = ln(1 + x).

5. Calculer les dérivées successives de f (x) = ln(x) · x3.

4.4 Extremum local, théorème de Rolle

4.4.1 Extremum local

Soit f : I → R une fonction définie sur un intervalle I.

Définition 3.

— On dit que x0 est un point critique de f si f ′(x0) = 0.

— On dit que f admet un maximum local en x0 (resp. un minimum local en x0) s’il existe un intervalle

ouvert J contenant x0 tel que

pour tout x ∈ I ∩ J f (x) ≤ f (x0)

(resp. f (x) ≥ f (x0)).

— On dit que f admet un extremum local en x0 si f admet un maximum local ou un minimum local en ce

point.
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x

y

I

maximum localminimum local

maximum global

Dire que f a un maximum local en x0 signifie que f (x0) est la plus grande des valeurs f (x) pour les x

proches de x0. On dit que f : I → R admet un maximum global en x0 si pour toutes les autres valeurs

f (x), x ∈ I on a f (x) ≤ f (x0) (on ne regarde donc pas seulement les f (x) pour x proche de x0). Bien sûr

un maximum global est aussi un maximum local, mais la réciproque est fausse.

Théorème 2. Soit I un intervalle ouvert et f : I → R une fonction dérivable. Si f admet un maximum local

(ou un minimum local) en x0 alors f ′(x0) = 0.

En d’autres termes, un maximum local (ou un minimum local) x0 est toujours un point critique. Géomé-

triquement, au point (x0, f (x0)) la tangente au graphe est horizontale.

x

y

I

Exemple 10. Étudions les extremums de la fonction fλ définie par fλ(x) = x3 + λx en fonction du para-

mètre λ ∈ R. La dérivée est f ′λ(x) = 3x2 + λ. Si x0 est un extremum local alors f ′λ(x0) = 0.

— Si λ > 0 alors f ′λ(x) > 0 et ne s’annule jamais il n’y a pas de points critiques donc pas non plus

d’extremums. En anticipant sur la suite : fλ est strictement croissante sur R.
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— Si λ = 0 alors f ′λ(x) = 3x2. Le seul point critique est x0 = 0. Mais ce n’est ni un maximum local, ni

un minimum local. En effet si x < 0, f0(x) < 0 = f0(0) et si x > 0, f0(x) > 0 = f0(0).

— Si λ < 0 alors f ′λ(x) = 3x2− |λ| = 3
(

x +
√
|λ|
3
)(

x−
√
|λ|
3
)
. Il y a deux points critiques x1 = −

√
|λ|
3 et

x2 = +
√
|λ|
3 . En anticipant sur la suite : f ′λ(x) > 0 sur ]−∞, x1[ et ]x2,+∞[ et f ′λ(x) < 0 sur ]x1, x2[.

Maintenant fλ est croissante sur ] −∞, x1[, puis décroissante sur ]x1, x2[, donc x1 est un maximum

local. D’autre part fλ est décroissante sur ]x1, x2[ puis croissante sur ]x2,+∞[ donc x2 est un minimum

local.

λ > 0 λ = 0

x1

x2

λ < 0

Remarque 5.

1. La réciproque du théorème 2 est fausse. Par exemple la fonction f : R → R, définie par f (x) = x3

vérifie f ′(0) = 0 mais x0 = 0 n’est ni maximum local ni un minimum local.

2. L’intervalle du théorème 2 est ouvert. Pour le cas d’un intervalle fermé, il faut faire attention aux

extrémités. Par exemple si f : [a, b] → R est une fonction dérivable qui admet un extremum en x0,

alors on est dans l’une des situations suivantes :

— x0 = a,

— x0 = b,

— x0 ∈]a, b[ et dans ce cas on a bien f ′(x0) = 0 par le théorème 2.

Aux extrémités on ne peut rien dire pour f ′(a) et f ′(b), comme le montre les différents maximums

sur les dessins suivants.

Ix0 Ia I b

3. Pour déterminer max[a,b] f et min[a,b] f (où f : [a, b] → R est une fonction dérivable) il faut comparer

les valeurs de f aux différents points critiques et en a et en b.
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Preuve du théorème. Supposons que x0 soit un maximum local de f , soit donc J l’intervalle ouvert de la

définition contenant x0 tel que pour tout x ∈ I ∩ J on a f (x) ≤ f (x0).

— Pour x ∈ I ∩ J tel que x < x0 on a f (x)− f (x0) ≤ 0 et x − x0 < 0 donc f (x)− f (x0)
x−x0

≥ 0 et donc à la

limite limx→x−0
f (x)− f (x0)

x−x0
≥ 0.

— Pour x ∈ I ∩ J tel que x > x0 on a f (x)− f (x0) ≤ 0 et x − x0 > 0 donc f (x)− f (x0)
x−x0

≤ 0 et donc à la

limite limx→x+0
f (x)− f (x0)

x−x0
≤ 0.

Or f est dérivable en x0 donc

lim
x→x−0

f (x)− f (x0)

x− x0
= lim

x→x+0

f (x)− f (x0)

x− x0
= f ′(x0).

La première limite est positive, la seconde est négative, la seule possibilité est que f ′(x0) = 0.

4.4.2 Théorème de Rolle

Théorème 3. [Théorème de Rolle] Soit f : [a, b]→ R telle que

— f est continue sur [a, b],

— f est dérivable sur ]a, b[,

— f (a) = f (b).

Alors il existe c ∈]a, b[ tel que f ′(c) = 0.

f (a) = f (b)

ca b

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est horizontale.

Démonstration. Tout d’abord, si f est constante sur [a, b] alors n’importe quel c ∈]a, b[ convient. Sinon il

existe x0 ∈ [a, b] tel que f (x0) 6= f (a). Supposons par exemple f (x0) > f (a). Alors f est continue sur

l’intervalle fermé et borné [a, b], donc elle admet un maximum en un point c ∈ [a, b]. Mais f (c) ≥ f (x0) >

f (a) donc c 6= a. De même comme f (a) = f (b) alors c 6= b. Ainsi c ∈]a, b[. En c, f est donc dérivable et

admet un maximum (local) donc f ′(c) = 0.

Exemple 11. Soit P(X) = (X − α1)(X − α2) . . . (X − αn) un polynôme ayant n racines réelles différentes :

α1 < α2 < . . . < αn.
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1. Montrons que P′ a n− 1 racines distinctes.

On considère P comme une fonction polynomiale x 7→ P(x). P est une fonction continue et dérivable

sur R. Comme P(α1) = 0 = P(α2) alors par le théorème de Rolle il existe c1 ∈]α1, α2[ tel que P′(c1) =

0. Plus généralement, pour 1 ≤ k ≤ n− 1, comme P(αk) = 0 = P(αk+1) alors le théorème de Rolle

implique l’existence de ck ∈]αk, αk+1[ tel que P′(ck) = 0. Nous avons bien trouvé n− 1 racines de P′ :

c1 < c2 < . . . < cn−1. Comme P′ est un polynôme de degré n− 1, toutes ses racines sont réelles et

distinctes.

2. Montrons que P + P′ a n− 1 racines distinctes.

L’astuce consiste à considérer la fonction auxiliaire f (x) = P(x) exp x. f est une fonction continue et

dérivable sur R. f s’annule comme P en α1, . . . , αn.

La dérivée de f est f ′(x) =
(

P(x) + P′(x)
)

exp x. Donc par le théorème de Rolle, pour chaque 1 ≤

k ≤ n− 1, comme f (αk) = 0 = f (αk+1) alors il existe γk ∈]αk, αk+1[ tel que f ′(γk) = 0. Mais comme

la fonction exponentielle ne s’annule jamais alors (P + P′)(γk) = 0. Nous avons bien trouvé n − 1

racines distinctes de P + P′ : γ1 < γ2 < . . . < γn−1.

3. Déduisons-en que P + P′ a toutes ses racines réelles.

P + P′ est un polynôme à coefficients réels qui admet n − 1 racines réelles. Donc (P + P′)(X) =

(X − γ1) . . . (X − γn−1)Q(X) où Q(x) = X − γn est un polynôme de degré 1. Comme P + P′ est à

coefficients réels et que les γi sont aussi réels, ainsi γn ∈ R. Ainsi on a obtenu une n-ième racine réelle

γn (pas nécessairement distincte des autres γi).

Exercice 3.

1. Dessiner le graphe de fonctions vérifiant : f1 admet deux minimums locaux et un maximum local ;

f2 admet un minimum local qui n’est pas global et un maximum local qui est global ; f3 admet une

infinité d’extremum locaux ; f4 n’admet aucun extremum local.

2. Calculer en quel point la fonction f (x) = ax2 + bx + c admet un extremum local.

3. Soit f : [0, 2] → R une fonction deux fois dérivable telle que f (0) = f (1) = f (2) = 0. Montrer qu’il

existe c1, c2 tels que f ′(c1) = 0 et f ′(c2) = 0. Montrer qu’il existe c3 tel que f ′′(c3) = 0.

4. Montrer que chacune des trois hypothèses du théorème de Rolle est nécessaire.

4.5 Théorème des accroissements finis

4.5.1 Théorème des accroissements finis

Théorème 4. [Théorème des accroissements finis] Soit f : [a, b]→ R une fonction continue sur [a, b] et dérivable

sur ]a, b[. Il existe c ∈]a, b[ tel que
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f (b)− f (a) = f ′(c) (b− a)

A

B

ca b

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est parallèle à la

droite (AB) où A = (a, f (a)) et B = (b, f (b)).

Démonstration. Posons ` = f (b)− f (a)
b−a et g(x) = f (x)− ` · (x− a). Alors g(a) = f (a), g(b) = f (b)− f (b)− f (a)

b−a ·

(b− a) = f (a). Par le théorème de Rolle, il existe c ∈]a, b[ tel que g′(c) = 0. Or g′(x) = f ′(x)− `. Ce qui

donne f ′(c) = f (b)− f (a)
b−a .

4.5.2 Inégalité des accroissements finis

Corollaire 2. [Inégalité des accroissements finis] Soit f : I → R une fonction dérivable sur un intervalle I ouvert.

S’il existe une constante M tel que pour tout x ∈ I,
∣∣ f ′(x)

∣∣ ≤ M alors

∀x, y ∈ I
∣∣ f (x)− f (y)

∣∣ ≤ M|x− y|

Démonstration. Fixons x, y ∈ I, il existe alors c ∈]x, y[ ou ]y, x[ tel que f (x)− f (y) = f ′(c)(x− y) et comme

| f ′(c)| ≤ M alors
∣∣ f (x)− f (y)

∣∣ ≤ M|x− y|.

Exemple 12. Soit f (x) = sin x. Comme f ′(x) = cos x alors | f ′(x)| ≤ 1 pour tout x ∈ R. L’inégalité des

accroissements finis s’écrit alors :

pour tous x, y ∈ R | sin x− sin y| ≤ |x− y|.

En particulier si l’on fixe y = 0 alors on obtient

| sin x| ≤ |x|

ce qui est particulièrement intéressant pour x proche de 0.
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x

y

y = sin x

y = − sin x

y = x

y = −x

4.5.3 Fonction croissante et dérivée

Corollaire 3. Soit f : [a, b]→ R une fonction continue sur [a, b] et dérivable sur ]a, b[. ∀x ∈]a, b[,

1. f ′(x) ≥ 0 ⇐⇒ f est croissante ( f ′(x) ≤ 0 ⇐⇒ f est décroissante.)

2. f ′(x) = 0 ⇐⇒ f est constante ;

3. f ′(x) > 0 =⇒ f est strictement croissante ( f ′(x) < 0 =⇒ f est strictement décroissante.)

Remarque 6. La réciproque au point (3) est fausse. Par exemple la fonction x 7→ x3 est strictement crois-

sante et pourtant sa dérivée s’annule en 0.

Démonstration. Prouvons par exemple (1).

Sens =⇒. Supposons d’abord la dérivée positive. Soient x, y ∈]a, b[ avec x ≤ y. Alors par le théorème

des accroissements finis, il existe c ∈]x, y[ tel que f (x)− f (y) = f ′(c)(x− y). Mais f ′(c) ≥ 0 et x− y ≤ 0

donc f (x)− f (y) ≤ 0. Cela implique que f (x) ≤ f (y). Ceci étant vrai pour tout x, y alors f est croissante.

Sens ⇐=. Réciproquement, supposons que f est croissante. Fixons x ∈]a, b[. Pour tout y > x nous

avons y− x > 0 et f (y)− f (x) ≥ 0, ainsi le taux d’accroissement vérifie f (y)− f (x)
y−x ≥ 0. À la limite, quand

y→ x, ce taux d’accroissement tend vers la dérivée de f en x et donc f ′(x) ≥ 0.

4.5.4 Règle de l’Hospital

Corollaire 4. [Règle de l’Hospital] Soient f , g : I → R deux fonctions dérivables et soit x0 ∈ I. On suppose que

f (x0) = g(x0) = 0 et que ∀x ∈ I \ {x0}, g′(x) 6= 0.

Si lim
x→x0

f ′(x)
g′(x)

= ` (∈ R) alors lim
x→x0

f (x)
g(x)

= `.

Démonstration. Fixons a ∈ I \ {x0} avec par exemple a < x0. Soit h : I → R définie par h(x) = g(a) f (x)−

f (a)g(x). Alors
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• h est continue sur [a, x0] ⊂ I, • h est dérivable sur ]a, x0[, • h(x0) = h(a) = 0.

Donc par le théorème de Rolle il existe ca ∈]a, x0[ tel que h′(ca) = 0.

Or h′(x) = g(a) f ′(x) − f (a)g′(x) donc g(a) f ′(ca) − f (a)g′(ca) = 0. Comme g′ ne s’annule pas sur

I \ {x0} cela conduit à f (a)
g(a) = f ′(ca)

g′(ca)
. Comme a < ca < x0 lorsque l’on fait tendre a vers x0 on obtient

ca → x0. Cela implique

lim
a→x0

f (a)
g(a)

= lim
a→x0

f ′(ca)

g′(ca)
= lim

ca→x0

f ′(ca)

g′(ca)
= `.

Exemple 13. Calculer la limite en 1 de ln(x2+x−1)
ln(x) . On vérifie que :

— f (x) = ln(x2 + x− 1), f (1) = 0, f ′(x) = 2x+1
x2+x−1 ,

— g(x) = ln(x), g(1) = 0, g′(x) = 1
x ,

— Prenons I =]0, 1], x0 = 1, alors g′ ne s’annule pas sur I \ {x0}.

f ′(x)
g′(x)

=
2x + 1

x2 + x− 1
× x =

2x2 + x
x2 + x− 1

−−→
x→1

3.

Donc
f (x)
g(x)

−−→
x→1

3.

Exercice 4.

1. Soit f (x) = x3

3 + x2

2 − 2x + 2. Étudier la fonction f . Tracer son graphe. Montrer que f admet un

minimum local et un maximum local.

2. Soit f (x) =
√

x. Appliquer le théorème des accroissements finis sur l’intervalle [100, 101]. En déduire

l’encadrement 10 + 1
22 ≤

√
101 ≤ 10 + 1

20 .

3. Appliquer le théorème des accroissements finis pour montrer que ln(1 + x)− ln(x) < 1
x (pour tout

x > 0).

4. Soit f (x) = ex. Que donne l’inégalité des accroissements finis sur [0, x] ?

5. Appliquer la règle de l’Hospital pour calculer les limites suivantes (quand x → 0) :
x

(1 + x)n − 1
;

ln(x + 1)√
x

;
1− cos x

tan x
;

x− sin x
x3 .
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