
UNIVERSITE MOHAMMED V de RABAT

FACULTE DES SCIENCES

Cours d’Analyse I

Par

Pr. A. ZOGLAT

SMIA, S1

Automne 2020



Ces notes de cours sont destinées aux étudiants de S1 de la filière SMIA. Elles ont été rédigées, confor-

mément au nouveau programme accrédité, dans le but d’aider les étudiants à consolider leurs acquis ma-

thématiques et à maîtriser les nouvelles notions introduites dans ce cours.

Je serai reconnaissant à tout lecteur qui aura l’amabilité de me signaler des erreurs que peut comporter

ce manuscrit ou de me suggérer une idée pour le parfaire.

A. Zoglat.



Table des matières

1 Nombres Réels 1

1.1 Propriétés élémentaires du corps des réels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Valeur Absolue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Bornes supérieure et inférieure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Propriété d’Aarchimède . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Approximations décimales d’un réel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Q est dense dans R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.1 Approximations rationnelles d’un réel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

iii



CHAPITRE 1

Nombres Réels

1.1 Propriétés élémentaires du corps des réels

Pour les besoins de comptage et de mesure nous disposons, depuis très longtemps, des trois ensembles

suivants :

1- L’ensemble des entiers naturels N = {0, 1, 2, . . . , n, . . .}.

2- L’ensemble des entiers relatifs Z = {. . . ,−n, . . . ,−2,−1, 0, 1, 2, . . . , n, . . .}.

3- L’ensemble des rationnels Q =
{ p

q
: p, q ∈ Z, q 6= 0

}
.

Il est clair que N ⊂ Z ⊂ Q. Ces ensembles répondent à la plupart de nos besoins pour faire des calculs.

Toutefois les mathématiciens savent depuis l’époque de Pythagore qu’il existe des entités qui restent en

dehors de ces ensembles. La longueur x de la diagonale d’un carré de côté 1 en est un exemple. En effet,

d’après le théorème de Pythagore on a 12 + 12 = x2 mais, d’après la proposition ci-après, x /∈ Q.

Proposition 1. Si x est solution de l’équation x2 = 2 alors x 6∈ Q.

Démonstration. Nous démontrons ce résultat en utilisant la méthode du “raisonnement par l’absurde”.

On suppose que x =
p
q

où p ∈ Z et q ∈ Z∗ sont premiers entre eux (cela veut dire que 1 est le seul

diviseur commun à p et q). Si x2 = 2 alors p2 = 2q2et p2 est pair donc p est aussi pair. Ainsi p = 2k donc

p2 = 4k2 = 2q2.

Donc 2k2 = q2. Donc q est pair. Ce qui est impossible car p et q sont premiers entre eux.

La proposition suivante est une caractérisation de l’ensemble des rationnels Q.

Proposition 2. x ∈ Q ⇐⇒ x admet une écriture décimale finie ou périodique.

Nous admettons ce résultat, et nous montrons par un exemple comment l’écriture décimale (finie ou

périodique) de x conduit à son écriture comme rapport de deux entiers relatifs.

Exemple 1.

(a) 3
5 = 0, 6 1

3 = 0, 3333 . . . sont des rationnels.

(b) x = 12, 34 2021←−→ 2021←−→ . . . admet une écriture décimale infinie et périodique.

1



A. ZOGLATA. ZOGLAT FSR, SMIA-ANALYSE I CHAPITRE 1

1. 100x = 1234, 2021←−→ 2021←−→ . . .

2. 10 000× 100x = 1234 2021, 2021←−→ . . .

3. 10 000× 100x− 100x = 1234 2021− 1234

4. donc 999 900x = 12 340 787 et donc x =
12 340 787

999 900
∈ Q

L’existence d’entités (telles que la longueur de la diagonale d’un carré de coté 1) qui ne correspondent

à aucun nombre rationnel a mis en évidence la nécessité de construire un ensemble plus riche que Q.

Les éléments de ce nouvel ensemble sont appelés les nombres réels. Une partie des nombres réels sont des

rationnels les autres sont appelés les nombres irrationnels.

La construction de l’ensemble des nombres réels a été un sujet de recherche active pour plusieurs décen-

nies. Elle repose uniquement sur quelques axiomes simples qui prolongent naturellement les propriétés de

Q. Cette construction, certainement très instructive, ne fait pas partie des objectifs de ce cours. Nous allons

nous contenter d’admettre l’existence de l’ensemble des réels R qui vérifie les axiomes suivants :

Stabilité : ∀x, y ∈ R, x + y ∈ R et x× y ∈ R

Commutativité : ∀x, y ∈ R, x + y = y + x et x× y = y× x.

Associativité : ∀x, y, z ∈ R, (x + y) + z = x + (y + z) et (x× y)× z = x× (y× z).

Distributivité : ∀x, y, z ∈ R, x× (y + z) = x× y + x× z.

Éléments neutres : ∃ 0, 1 ∈ R, ∀x ∈ R, x + 0 = x et x× 1 = x.

Opposés/Inverses : ∀x ∈ R, ∃(−x) ∈ R, (−x) + x = 0 et ∀x ∈ R \ {0}, ∃x−1 ∈ R \ {0}, x× x−1 = 1.

On dit que (R,+,×) est un corps commutatif. Pour alléger les notations, on écrit pour tout x, y ∈ R, x− y

au lieu x + (−y) et x y au lieu de x× y.

À partir des axiomes ci-dessus, on montre les résultats suivants :

Proposition 3.

1- Pour tout x, y ∈ R on a : x = y⇐⇒ x− y = 0. En particulier, on a : −(x + y) = −x− y.

2- Pour tout x ∈ R on a :0× x = 0.

3- Pour tout x, y ∈ R on a : (−x) y = −(x y) = x (−y).

4- Pour tout x, y ∈ R on a : x y = 0⇐⇒ x = 0 ou y = 0.

5- Pour tout x, y ∈ R∗ on a :(x y)−1 = x−1 y−1.

Démonstration.

1- Supposons que x = y. En rajoutant −y aux deux membres de l’égalité on obtient x + (−y) = y +

(−y) = 0. Réciproquement, en rajoutant y aux deux membres de l’égalité x− y = 0 on obtient x = y.

2- xx = xx + 0 = x(x + 0) = xx + x0, d’où x0 = 0.

3- (−x)y + xy = (−x + x)y = 0, d’où (−x)y = −xy.

4- Supposons que xy = 0 et que x 6= 0. En multipliant par x−1 les deux membres de l’égalité xy = 0 on

obtient x−1(xy) = x−10 ou encore 1y = y = 0.

2
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Sur le corps commutatif des réels, R, on définit la relation “≤” (inférieur ou égal à) qui vérifie les propriétés

suivantes :

a- ∀x, y ∈ R, on a soit x ≤ y soit y ≤ x. En particulier x ≤ x (réflexivité).

b- ∀x, y ∈ R, si x ≤ y et y ≤ x alors x = y (antisymétrie).

c- ∀x, y ∈ R, si x ≤ y et y ≤ z alors x ≤ z (transitivité).

Cette relation est compatible avec l’addition :

∀x, y, z ∈ R, si x ≤ y alors x + z ≤ y + z.

Pour la multiplication, on a seulement une compatibilité partielle :

∀x, y, z ∈ R, si 0 ≤ z et x ≤ y alors zx ≤ zy.

Les notations suivantes sont très commodes :

Pour tout x, y ∈ R, on notera x < y si x ≤ y et x 6= y. Lorsque x < y, on dit que x est strictement

inférieur à y. Ainsi, pour tout x, y ∈ R, il n’y a que trois possibilités : x < y, x = y ou y < x.

L’expression x ≥ y, qui se lit x supérieur ou égal à y, désigne y ≤ x. On utilise également la notation

x > y lorsque y < x et on dit que x est strictement supérieur à y.

On peut combiner les deux expressions x ≤ y et y ≤ z en écrivant x ≤ y ≤ z.

Avant de donner les propriétés qui définissent les règles de calcul dans R, voici quelques notations utiles :

— ∀n ∈N∗, x ∈ R : xn = x× x× . . .× x︸ ︷︷ ︸
n fois

— ∀n ∈N∗, x ∈ R∗ : x−n =
1
xn

— ∀n ∈N∗, x ≥ 0 : On note x
1
n ou n

√
x la racine nème de x. Elle est telle que

(
n
√

x
)n

= x.

— ∀x 6= 0 : x0 = 1

Voici à présents quelques règles élémentaires de calcul :

(1) x ≥ 0⇐⇒ −x ≤ 0

(2) x ≤ y⇐⇒ −y ≤ −x

(3) x ≤ y⇐⇒ x− y ≤ 0

(4) y ≥ 0 =⇒ x− y ≤ x ≤ x + y, ∀x ∈ R.

(5) ∀x ∈ R, x2 = xx ≥ 0

(6)
(

x < 0 et y > 0
)
=⇒ xy < 0

(7) x ≤ y et z > 0 =⇒ xz ≤ yz

(8) x > 0 =⇒ x−1 =
1
x
> 0

(9) Si x, y ≥ 0 alors x ≤ y⇐⇒ x2 ≤ y2

(10) 0 < x < y =⇒ 0 <
1
y
<

1
x

(11)
(

x ≤ y et s ≤ t
)
=⇒ x + s ≤ y + t

(12)
(
(x ≥ y > s) ou (x > y ≥ s

)
=⇒ x > s.

Exemple 2. En utilisant les propriétés ci-dessus on peut montrer que ∀n ∈N, n ≥ 0.

On sait que 1 = 12 ≥ 0. On en déduit que 2 = 1 + 1 ≥ 1 ≥ 0. Ainsi on peut montrer (par récurrence) que

∀n ∈ N, n ≥ 0.

3
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Les notations suivantes désignent des intervalles :

� [a, b] = {x ∈ R : a ≤ x ≤ b}

� ]a, b] = {x ∈ R : a < x ≤ b}

� [a, b[ = {x ∈ R : a ≤ x < b}

� ]a, b[ = {x ∈ R : a < x < b}

� [a, ∞[= {x ∈ R : a ≤ x}

� ]a, ∞[= {x ∈ R : a < x}

� ]−∞, b] = {x ∈ R : x ≤ b}

� ]−∞, b[= {x ∈ R : x < b}

� ]−∞, ∞[= R

� [−∞, ∞] = R

� [0, ∞[= R+

� ]0, ∞[= R∗+

� ]−∞, 0] = R−

� ]−∞, 0[= R∗−

1.2 Valeur Absolue

On définit sur R l’application “valeur absolue” par : ∀x ∈ R, |x| =

x si x ≥ 0

−x sinon
.

Remarque. D’après la définition de l’application valeur absolue on a, pour tout x ∈ R,

|x| = | − x| = max(x,−x).

Les résultats suivants sont très importants pour la manipulation de l’application valeur absolue d’un pro-

duit, une somme ou une différence de réels.

Proposition 4. L’application valeur absolue vérifie les propriétés suivantes :

1- x ∈ R, |x| = 0⇐⇒ x = 0

2- ∀x, y ∈ R, |xy| = |x||y|.

3- ∀x ∈ R, |x|2 = |x2| = x2.

4- ∀x ∈ R, ∀y > 0, |x| ≤ y⇐⇒ −y ≤ x ≤ y.

5- ∀x, y ∈ R, |x + y| ≤ |x|+ |y|

6- ∀x, y ∈ R,
∣∣∣|x| − |y|∣∣∣ ≤ |x− y|

7- |x| = 0⇐⇒
(
|x| ≤ ε, ∀ε > 0

)
.

8- x ≤ y⇐⇒
(

x ≤ y + ε, ∀ε > 0
)

.

Démonstration.

1- On a |x| > 0⇐⇒
(

x > 0 ou − x > 0
)
⇐⇒ x 6= 0.

2- Soient x, y ∈ R, il existe trois possibilités :

x ≥ 0 et y ≥ 0 =⇒ xy ≥ 0 =⇒ |xy| = xy = |x||y|, ou bien

x ≤ 0 et y ≥ 0 =⇒ xy ≤ 0 =⇒ |xy| = −xy = (−x)y = |x||y|, ou bien

x ≤ 0 et y ≤ 0 =⇒ xy ≥ 0 =⇒ |xy| = | − xy| = −(−xy) = (−x)(−y) = |x||y|.

4- Si x ≥ 0 alors x = |x| ≤ y. D’où −y ≤ 0 ≤ x = |x| ≤ y et en particulier −y ≤ x ≤ y. Si x ≤ 0 alors

−x ≥ 0 et comme | − x| = |x| ≤ y, on déduit de ce qui précède que −y ≤ −x ≤ y. En multipliant par

−1 on a −y ≤ x ≤ y.

4
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5- On a −|x| ≤ x ≤ |x| et −|y| ≤ y ≤ |y| d’où en additionnant les termes de ces inégalités on obtient

−|x| − |y| ≤ x + y ≤ |x|+ |y|. Le résultat découle de la propriété précédente.

6- D’après l’inégalité précédente, on a |x| = |y + (x − y)| ≤ |y| + |x − y|, d’où |x| − |y| ≤ |x − y|.

En échangeant les rôles de x et y, on a aussi |y| − |x| ≤ |y − x| = |x − y|. Comme
∣∣∣|x| − |y|∣∣∣ =

max(|y| − |x|, |x| − |y|), on déduit de ce qui précède que
∣∣∣|x| − |y|∣∣∣ ≤ |x− y|.

7- Il est évident que si |x| = 0 alors pour tout ε > 0, |x| ≤ ε.

Supposons que pour tout ε > 0,|x| < ε mais |x| 6= 0. En prenant ε′ =
|x|
2

on obtient une contradic-

tion.

8- Pour tout ε > 0 et tout y ∈ R on a y ≤ y + ε et donc si x ≤ y alors x ≤ y + ε par transitivité.

Si x > y, prenons ε0 =
x− y

2
on a y + ε0 =

x + y
2

< x.

Exercice 1. Montrer que ∀x, y ∈ R on a :

max(x, y) =
|x− y|+ (x + y)

2
et min(x, y) =

x + y− |x− y|
2

.

1.3 Bornes supérieure et inférieure

Définition 1. Soit E un sous-ensembe non-vide de R et soient m et M deux réels.

On dit dit que E est une partie minorée par m (ou que m est un minorant de E) si m ≤ x, ∀x ∈ E. Le plus

grand minorant de E, noté inf E, est appelé “borne inférieure” de E.

On dit que E est une partie majorée par M (ou que M est un majorant de E) si x ≤ M, ∀x ∈ E. Le plus

petit majorant de E, noté sup E, est appelé “borne supérieure” de E.

On dit que E est une partie bornée si elle est à la fois minorée et majorée.

Exemple 3.

E = {−3, 0, 4, 10} est minoré par -3 et majoré par
√

101.

E =] − 1, ∞[ est minoré par -4 mais n’est pas majoré. L’ensemble des minorants de E est l’intervalle

]−∞,−1], donc -1 est la borne inférieure de E.

E = {x ∈ Q : x2 < 2} est majoré par
√

2. Nous avons déjà vu que
√

2 /∈ E, nous montrerons plus tard

que
√

2 = sup E.

Proposition 5. Soit E une partie non-vide et minorée dans R, alors

a = inf E⇐⇒
(
(∀x ∈ E, a ≤ x) et (∀ε > 0, ∃xε ∈ E : a ≤ xε < a + ε)

)
.

5
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Démonstration.

=⇒ : Supposons que a = inf E. Soit ε > 0, a + ε n’est pas un minorant pour E (d’après la définition de

a). Donc il existe xε ∈ E qui vérifie a ≤ xε < a + ε.

⇐= : Soient E une partie non-vide et minorée dans R et a un réel tels que (∀x ∈ E, a ≤ x) et (∀ε >

0, ∃xε ∈ E : a ≤ xε < a + ε). Il est clair que a est un minorant de E. Supposons qu’il existe un minorant de

E, noté a′, qui soit strictement plus grand que a. Pour ε =
a′ − a

2
> 0, il existe xε ∈ E tel que xε < a + ε =

a′ + a
2

< a′. Ceci est impossible car a′ est un minorant de E.

Nous avons une caractérisation similaire pour la borne supérieure. La démonstration est laissée comme

exercice.

Proposition 6. Soit E une partie non-vide et majorée dans R, alors

b = sup E⇐⇒
(
(∀x ∈ E, x ≤ b) et (∀ε > 0, ∃xε ∈ E : b− ε < xε ≤ b)

)
.

Proposition 7. Lorsque la borne inférieure (ou supérieure) existe, elle est unique.

Démonstration. Supposons qu’il existe E, une partie de R non-vide et majorée qui admet deux bornes in-

férieures b et b′ ∈ R avec b ≤ b′. Supposons que b < b′ et soit ε = b′ − b. D’après la caractérisation de

la borne inférieure, il existe x ∈ E tel que b′ = b + ε < x ≤ b. Ceci contredit le fait que b′ est une borne

inférieure de E.

Les deux propriétés suivantes caractérisent l’ensemble des réels R.

Propriété de la borne inférieure :

Toute partie E non-vide et minorée admet une borne inférieure dans R.

Propriété de la borne supérieure :

Toute partie E non-vide et majorée admet une borne supérieure dans R.

Remarque.

Les deux propriétés ci-dessus sont équivalentes. En effet, supposons que toute partie non-vide et minorée

admet une borne inférieure dans R et soit E une partie de R non-vide et majorée. Notons ME l’ensemble

des majorants de E. C’est un ensemble non-vide et minoré dans R (pourquoi ?), donc admet une borne

inférieure. Montrons que inf ME = sup E.

Supposons qu’il existe x0 ∈ E tel que inf ME < x0. Pour ε =
x0 − inf ME

2
il existe bε ∈ ME tel que

inf ME ≤ bε < inf ME + ε =
x0 + inf ME

2
< x0. Ce qui contredit le fait que bε est un majorant de E.

Donc inf ME est un majorant de E.

Montrons que ∀ε > 0, ∃xε ∈ E : inf ME − ε < xε ≤ inf ME.

Soit ε > 0, il existe xε ∈ E tel que inf ME − ε < xε (sinon inf ME − ε serait un majorant de E).

Comme inf ME est un majorant, on a aussi xε ≤ inf ME.

6
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La preuve de la réciproque est laissée en exercice. �

Si E est une partie de R non-vide et non majorée (respectivement non minorée) on pose sup E = ∞ (respec-

tivement inf E = −∞).

Exercice 2. Montrer que si E ⊂ R est une partie non-vide et minorée, alors F = {−x : x ∈ E} est une partie

de R non-vide et majorée. En déduire que F admet une borne inférieure donnée par inf F = − sup E.

Exercice 3. Montrer que pour tout ε > 0, il existe un entier n ∈N tel que
1
n
< ε.

1.4 Propriété d’Aarchimède

Archimède fût le premier à constater qu’un voyageur partant à pieds d’un point A peut atteindre un

point C, après un nombre fini de pas. Ce constat, appelé Propriété d’Archimède, peut-être formulé comme

suit :

Proposition 8. Si x et y sont deux réels tels que 0 < y < x, alors il existe n ∈N tel que x < n y.

Démonstration. Nous allons faire une démonstration par l’absurde. S’il existait deux réels x et y tels que

0 < y < x et que pour tout n ∈ N, n y ≤ x, l’ensemble E = {n ∈ N : n y ≤ x} = N serait alors majoré par
x
y

et admettrait donc une borne supérieure B. Pour tout ε = 1, il existerait nε ∈ E tel que B− 1 < nε ≤ B.

On en déduit que B < nε + 1, ce qui est impossible puisque nε + 1 ∈N.

On dit que “R est archimédien” ou que “R vérifie la propriété d’Archimède”. La propriété d’Archimède

dans R une conséquence de la propriété de la borne supérieure. Remarquons toutefois que Q est archimé-

dien mais ne vérifie pas la propriété de la borne supérieure. Ainsi, c’est la propriété de la borne supérieure

qui caractérise R et non pas la propriété d’Archimède. Comme conséquence de cette propriété, nous avons

le résultat suivant :

Proposition 9. Pour tout x ∈ R\Z, il existe un entier n ∈ Z unique vérifiant la propriété suivante :

nx < x < nx + 1 (∗)

Démonstration. Soit x ∈ R\Z.

Si 0 < x < 1, on a nx = 0.

Si 1 < x, d’après la propriété d’Archimède, ∃n ∈ N tel que x < n × 1 = n. Considérons l’ensemble

Ex = {n ∈ N : n < x}. C’est un sous-ensemble de N fini et non vide. Soit nx le plus grand élément

de Ex. On a alors nx < x < nx + 1.

Si x < 0, on a −x > 0 et d’après l’étape précédente on a n−x < −x < n−x + 1. En multipliant par −1,

on obtient −n−x − 1 < x ≤ −n−x. On prend nx = −n−x − 1.

7
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Définition 2. Pour tout x ∈ R, on appelle partie entière de x, et on note E(x) ou [x], l’entier relatif n ∈ Z qui

vérifie la relation (∗).

Remarque. Si x ∈ Z alors [x] = x. Si x /∈ Z, alors [x] = nx, où nx est le plus grand entier relatif strictement

inférieur à x. Cet entier vérifie nx < x < nx + 1, et son existence est garantie par la proposition précédente.

Exemple 4. On a par exemple [2] = 2 = [2.3], [−2.3] = −3 et [
√

2] = 1.

1.5 Approximations décimales d’un réel

Définition 3. On dit que d ∈ R est un nombre décimal s’il admet une écriture décimale finie. L’ensemble

des nombres décimaux est noté D.

Rappelons que pour tout n ∈ N, le produit 10× 10× . . .× 10︸ ︷︷ ︸
n termes

est noté 10n et se lit “dix à la puissance

n”). Le quotient
1

10n est noté 10−n.

Remarque. Il est facile de voir que D ⊂ Q et que

d ∈ D⇐⇒ ∃n ∈N : 10n × d ∈ Z.

Exemple 5.

1. x = 11.319 est un nombre décimal car 103 × x = 11319 ∈ Z.

2. x = −0.0542 est un nombre décimal car 104 × x = −542 ∈ Z.

3. x =
1
3

n’est pas un nombre décimal. En effet,
1
3

admet une écriture décimale périodique et infinie.

Proposition 10. Pour tout x ∈ R et tout n ∈N il existe xn ∈ D tel que :

xn ≤ x < xn + 10−n (∗∗)

Démonstration. Soient x ∈ R et n ∈ N deux nombres donnés. D’après la définition de la partie entière on

a : [x× 10n] ≤ x× 10n < [x× 10n] + 1. Il suffit alors de prendre xn = [x× 10n]× 10−n.

Définition 4. Soient x ∈ R et n ∈N deux nombres donnés et xn le décimal qui vérifie la relation (∗∗).

Le décimal xn s’appelle l’approximation décimale de x par défaut à 10−n près.

Le décimal xn + 10−n s’appelle l’approximation décimale de x par excès à 10−n près.

8
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Proposition 11. Pour tout nombre réel positif x, et pour tout n ∈N il existe une suite x0, x1, . . . , xn de nombres

entiers naturels qui vérifient :

∀k ≤ n, 0 ≤ xk ≤ 9, et
n

∑
k=0

xk 10−k ≤ x <
n

∑
k=0

xk 10−k + 10−n.

Démonstration. Soit x un réel strictement positif. Posons x0 = [x] et x1 = [10× (x − x0)]. On a ainsi x1 ≤

10× (x− x0) < x1 + 1 et donc x0 + x1× 10−1 ≤ x < x0 + x1× 10−1 + 10−1. Supposons construits les entiers

x0, x1, . . . , xn−1 tels que
n−1

∑
k=0

xk 10−k ≤ x <
n−1

∑
k=0

xk 10−k + 10−(n−1). L’entier xn = [10n× (x−∑n−1
k=0 xk 10−k)]

vérifie la relation xn ≤ 10n × (x−
n−1

∑
k=0

xk 10−k) < xn + 1, d’où on déduit

n

∑
k=0

xk 10−k ≤ x <
n

∑
k=0

xk 10−k + 10−n. (∗ ∗ ∗)

Remarque. Pour avoir un encadrement analogue pour un x < 0, il suffit de considérer −x > 0 et d’appliquer le

résultat de la proposition.

Exemple 6. Le nombre 3.1415926535897932384626433832795 est la valeur approchée de π par défaut à

10−31 près. En effet il s’écrit 3.1415926535897932384626433832795 = ∑n
k=0 xk 10−k avec x0 = 3, x1 = 1,

x2 = 4, x3 = 1, x4 = 5, . . . , x30 = 9 et x31 = 5.

1.6 Q est dense dans R

Nous avons vu que tout nombre x ∈ R peut être encadré par deux nombres décimaux dont la différence

est aussi petite que l’on veut. Le résultat suivant est en quelque sorte une réciproque de cette propriété.

Théorème 1. Pour tout couple de nombres réels (x, y) avec x < y, il existe un nombre r ∈ Q tel que x < r < y.

Démonstration. Soien x, y ∈ R tels que x < y. Posons t =
x + y

2
, si t ∈ Q alors on prend r = t. Sinon,

on sait que pour tout n ∈ N il existe tn ∈ D tel que tn < t < tn + 10−n. Soit n0 ∈ N tel que 10−n0 <
y− x

2
(pourquoi un tel entier n0 existe?) On a alors x < t < tn0 + 10−n0 < t +

y− x
2

= y, et on prend

r = tn0 + 10−n0 .

Exercice 4. Démontrer le théorème en utilisant les propriétés de la partie entière.

Corollaire 1. Tout intervalle de R qui contient au moins deux réels contient une infinité de rationnels et une

infinité d’irrationnels.
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1.6.1 Approximations rationnelles d’un réel

Nous terminons ce chapitre par une autre méthode d’approximation d’un irrationnel x par des ration-

nels. Pour simplifier, on donne l’approximation pour un irrationnel positif x. L’approximation d’un irra-

tionnel négatif x est l’opposée de l’approximation de −x.

Soit x un irrationnel positif. Posons x1 =
1

x− [x]
. On a alors x = [x] +

1
x1

. Comme x1 est un irrationnel

>1, on a aussi x1 = [x1] +
1
x2

où x2 =
1

x1 − [x1]
> 1. D’où

x = [x] +
1

[x1] +
1
x2

.

Supposons que l’on est construit les irrationnels positifs x1, . . . , xn tels que

∀k ∈ {1, 2, . . . , n}, xk =
1

xk−1 − [xk−1]
> 1, et x = [x] +

1

[x1] +
1

[x2] +
1

. . . +
1

[xn−1] +
1
xn

.

Il est évident que xn+1 =
1

xn − [xn]
> 1 est un irrationnel positif qui vérifie la relation

x = [x] +
1

[x1] +
1

[x2] +
1

. . . +
1

[xn−1] +
1

[xn] +
1

xn+1

.

En remplaçant xn par [xn], on obtient alors une suite de fractions pour approcher x :

u0 = [x], u1 = [x] +
1

[x1]
, . . . , un = [x] +

1

[x1] +
1

[x2] +
1

. . . +
1

[xn−1] +
1

[xn]

.

Exemple 7.

• Approximation de
√

2 : Puisque 1 ≤ 2 < 4, on a 1 ≤
√

2 < 2 et donc [
√

2] = 1. Ainsi on a
√

2 = 1+ x1

où x1 =
1√

2− 1
. En multipliant et divisant par

√
2+ 1, on a x1 =

√
2+ 1. Donc [x1] = 2 et x1 = 2+ x2

avec x2 =
1

x1 − 2
=

1√
2− 1

. Notons que x2 = x1 et qu’en fait, on a x1 = x2 = . . . xn, et [xn] = 2.

Doù :

u0 = 1, u1 = 1 +
1
2

, u2 = 1 +
1

2 +
1

2 +
1
2

, u3 = 1 +
1

2 +
1

2 +
1

2 +
1
2

,

10



A. ZOGLATA. ZOGLAT FSR, SMIA-ANALYSE I CHAPITRE 1

u4 = 1 +
1

2 +
1

2 +
1

2 +
1

2 +
1
2

, . . . , un = 1 +
1

2 +
1

. . . 2 +
1

2 +
1
2

.

Remarquons que, pour tout entier naturel n ≥ 1, un = 1 +
1

1 + un−1
et donc

u1 = 1 +
1

1 + 1
= 1.5, u2 = 1 +

1
1 + 1.5

=
7
5

, u3 = 1 +
1

1 + 7/5
=

17
12

, u4 = 1 +
1

1 + 17/12
=

41
29

.

• Approximation de
√

7 : Puisque 4 < 7 < 9, on a 2 <
√

7 < 3 et donc [
√

7] = 2. Calculons les premiers

termes u0, u1, . . . , un. On a u0 = 2 et u1 = 2 + [x1] avec x1 =
1√

7− 2
. En multipliant et divisant par

√
7+ 2 on a x1 =

√
7 + 2
3

. Et comme 2 ≤
√

7 < 3 on obtient, en ajoutant 2 à tous les membres de cette

inégalité, 4 ≤
√

7 + 2 < 5. Donc, en divisant par 3,
4
3
≤ x1 <

5
3

et [x1] = 1. D’où u1 = 3. De la même

manière on obtient

x2 =
1

x1 − 1
=

√
7 + 1
2

.D’où [x2] = 1. =⇒ u2 = 2 +
1

1 +
1

[x2]

=
5
2

, et u2
2 = 6.25 < 7

x3 =
1

x2 − 1
=

√
7 + 1
3

. D’où [x3] = 1 =⇒ u3 = 2 +
1

1 +
1

1 +
1

[x3]

= 2 +
2
3
=

8
3

x4 =
1

x3 − 1
=
√

7 + 2. D’où [x4] = 4 =⇒ u4 = 2 +
1

1 +
1

1 +
1

1 +
1

[x4]

= 2 +
9

14

x5 =
1

x4 − 4
=

1√
7− 2

= x1. D’où [x5] = 1 et u5 = 2 +
1

1 +
1

1 +
1

1 +
1

4 +
1

[x5]

=
45
17

. u2
5 =

2025
289

=

7.009 > 7.

On déduit donc que x6 = x2, x7 = x3 , x8 = x4 , x9 = x1, . . ., etc. D’où

u6 = 2 +
1

1 +
1

1 +
1

1 +
1

4 +
1

1 +
1

[x6]

=
82
31

. u2
6 =

6724
961

= 6.9968 < 7.
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u7 = 2 +
1

1 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 +
1

[x7]

=
127
48

et u2
7 =

16129
2304

= 7.0004.

Par un calcul similaire on obtient u8 =
590
223

et u2
8 =

348100
49729

= 6.9999.

Exercice 5. Trouver l’approximation u5 pour l’irrationnel
√

17.
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