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CHAPITRE 1

Nombres Réels

1.1 Propriétés élémentaires du corps des réels

Pour les besoins de comptage et de mesure nous disposons, depuis tres longtemps, des trois ensembles
suivants :

1- L'ensemble des entiers naturels N = {0,1,2,...,n,...}.

2- L'ensemble des entiers relatifs Z = {...,—n,...,—2,-1,0,1,2,...,n,...}.

3- L'ensemble des rationnels Q = {B P pqgEZ,qF# 0}.
Il est clair que N C Z C Q. Ces enserzlbles répondent a la plupart de nos besoins pour faire des calculs.
Toutefois les mathématiciens savent depuis 1'époque de Pythagore qu’il existe des entités qui restent en
dehors de ces ensembles. La longueur x de la diagonale d’un carré de c6té 1 en est un exemple. En effet,

2

d’apres le théoréme de Pythagore on a 12 + 12 = x? mais, d’apres la proposition ci-apres, x ¢ Q.

Proposition 1. Si x est solution de I'équation x2 =2 alors x ¢ Q.

Démonstration. Nous démontrons ce résultat en utilisant la méthode du “raisonnement par 1’absurde”.
On suppose que x = P o p € Z et q € Z* sont premiers entre eux (cela veut dire que 1 est le seul
diviseur commun a p et g). Si x?> = 2 alors p?> = 2g%et p? est pair donc p est aussi pair. Ainsi p = 2k donc
p? = 4k* = 24°.

Donc 2k? = 2. Donc q est pair. Ce qui est impossible car p et g sont premiers entre eux.

La proposition suivante est une caractérisation de I'ensemble des rationnels Q.
Proposition 2. x € Q <= x admet une écriture décimale finie ou périodique.

Nous admettons ce résultat, et nous montrons par un exemple comment 1’écriture décimale (finie ou

périodique) de x conduit a son écriture comme rapport de deux entiers relatifs.

Exemple 1.
(a) % =0,6 % = 0,3333... sont des rationnels.

(b) x=12,34 %02! %02! ... admet une écriture décimale infinie et périodique.
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1. 100x = 1234,%02! %02!
2. 10000 x 100x = 1234 2021,%02!
3. 10000 x 100x — 100x = 12342021 — 1234

12340787
999900

4. donc 999900x = 12340787 etdoncx =

L'existence d’entités (telles que la longueur de la diagonale d"un carré de coté 1) qui ne correspondent

a aucun nombre rationnel a mis en évidence la nécessité de construire un ensemble plus riche que Q.

Les éléments de ce nouvel ensemble sont appelés les nombres réels. Une partie des nombres réels sont des
rationnels les autres sont appelés les nombres irrationnels.

La construction de 'ensemble des nombres réels a été un sujet de recherche active pour plusieurs décen-

nies. Elle repose uniquement sur quelques axiomes simples qui prolongent naturellement les propriétés de

Q. Cette construction, certainement tres instructive, ne fait pas partie des objectifs de ce cours. Nous allons

nous contenter d’admettre 1’existence de I'ensemble des réels R qui vérifie les axiomes suivants :

Stabilité : Vx,y€R, x+y€Retxxy € R

Commutativité: Vy,yeR, x+y=y+xetxxy=yxux.

Associativité : Vx,y,z€R, (x+y)+z=x+(y+z)et(x xy) xz=2xXx(y xz).
Distributivité : Vx,y,z€R, xX (y+2z)=xXy+xxz.

Eléments neutres: 30, 1€ R,Vx e R, x+0=xetx x1=x.

Opposés/Inverses: Vx € R, I(—x) € R, (—x) +x =0etVx € R\ {0}, Ix~ 1 € R\ {0}, x x x~ 1 =1.
On dit que (R, +, x) est un corps commutatif. Pour alléger les notations, on écrit pour tout x, y € R, x —y
au lieu x + (—y) et xy au lieu de x x y.

A partir des axiomes ci-dessus, on montre les résultats suivants :

Proposition 3.
1- Pourtout x, y€ Rona:x =y <= x—y=0. En particulier,ona: —(x+y) = —x —y.
2- Pourtout x € Rona:0xx=0.
3- Pourtout x, y€e Rona: (—x)y=—(xy)=x(—y).
4- Pourtout x, y€ERona:xy=0<=x=00uy=0.
5- Pourtout x, y€ R*ona:(xy) t=x"1y L
Démonstration.
1- Supposons que x = y. En rajoutant —y aux deux membres de 1'égalité on obtient x + (—y) = y +
(—y) = 0. Réciproquement, en rajoutant y aux deux membres de 'égalité x — y = 0 on obtient x = y.
2- xx =xx+0=x(x+0) =xx+ x0,d ot x0 = 0.
3- (—x)y+xy=(—x+x)y=0,dou (—x)y = —xy.
4- Supposons que xy = 0 et que x # 0. En multipliant par x ! les deux membres de I'égalité xy = 0 on

obtient x ! (xy) = x~10 ou encore 1y = y = 0.
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O

Sur le corps commutatif des réels, R, on définit la relation <" (inférieur ou égal a) qui vérifie les propriétés
suivantes :

a- Vx,y € R, on a soit x < y soit y < x. En particulier x < x (réflexivité).

b- Vx,y € R, si x <yety<xalors x =y (antisymétrie).

¢ Vx,y e R, six <yety<zalors x < z (transitivité).

Cette relation est compatible avec |'addition :
Vx,y,z€ R, six <yalorsx+z<y+z
Pour la multiplication, on a seulement une compatibilité partielle :
Vx,y,z € R, si0<zetx <y alors zx < zy.

Les notations suivantes sont trés commodes :

Pour tout x,y € R, onnotera x < ysi x < yetx # y. Lorsque x < y, on dit que x est strictement

inférieur a y. Ainsi, pour tout x,y € R, iln’y a que trois possibilités : x <y, x =youy < x.

L'expression x > v, qui se lit x supérieur ou égal a y, désigne y < x. On utilise également la notation

x > ylorsque y < x et on dit que x est strictement supérieur a y.
On peut combiner les deux expressions x < y ety < zen écrivant x <y < z.

Avant de donner les propriétés qui définissent les regles de calcul dans R, voici quelques notations utiles :

— VnelN",xeR:x"=xXxxX...Xx
N —

~—
n fois
— VnEIN*,xE]R*:x_”:—n
X
1 N n
— Vn € N*,x > 0: Onnote x# ou {/x la racine n°™¢ de x. Elle est telle que ({’/E) =x.

— Vx#£0:29=1

Voici a présents quelques regles élémentaires de calcul :

1) x>0« —x<0 (7) x<yetz>0=2xz<yz

2 x<y<= -—y<—x (8) x>0:>x_1:§>0

B *»<y<=x—-y<0 ) Six,y20a10rsx§y<:)x2§y2

4 y>20=x—y<x<x+yVxeck (10) 0<x<y:>0<;<i

®) VxelR,xzzxeO (11) (xgyetsgt):x+s§y+t

©) (x<0ety>0):xy<0 (12) ((x2y>s)ou(x>y2s):>x>s.

Exemple 2. En utilisant les propriétés ci-dessus on peut montrer que Vi € IN, n > 0.
On sait que 1 = 12 > 0. On en déduit que 2 = 1+ 1 > 1 > 0. Ainsi on peut montrer (par récurrence) que

Vn e N, n>0.
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Les notations suivantes désignent des intervalles :

o [ab={xeR:a<x<b} o |—oob[={xeR:x < b}
o Ja,bll={xeR:a<x<b} o | —o0,00[=R
o [a,b[={xeR:a<x<b} o [—o0,00] =R
o Ja,bl={xeR:a<x<b} o [0,00[=R"
o [a,00[={xeR:a<x} o ]0,00[= R*T
o Ja,c0[={x eR:a < x} o ]—00,0] =R~
o J—oo,b] ={xeR:x <b} o ] —00,0[=R*"
1.2 Valeur Absolue
X six>0

On définit sur R I'application “valeur absolue” par : Vx € R, |x| =
—x sinon

Remarque. D'aprés la définition de |'application valeur absolue on a, pour tout x € R,
|x| = | — x| = max(x, —x).

Les résultats suivants sont tres importants pour la manipulation de I'application valeur absolue d"un pro-

duit, une somme ou une différence de réels.

Proposition 4. L'application valeur absolue vérifie les propriétés suivantes :

1- x€R, |x]|=0<=x=0 5 Vx,y €R, [x+y| < |x|+ |y

2 Vxy R, |xy| =[xyl 6 Vxy R, ||lx|=lyl| <|x—y

3- VxeR, [x]*=[x? =22 7. |x|:0<:>(|x|§e,V€>0).

4- VxeR, Yy >0, [x] <y<= —y<x<uy. 8 x <y (x§y+e,Ve>0).
Démonstration.

1- Ona|x|>0<:>(x>0 ou—x>0)<:>x7é0.

2- Soient x,y € R, il existe trois possibilités :

x>0ety>0 = xy>0= |xy| = xy=|x||y|, oubien
x<0ety>0 = xy<0=|xy| = —xy=(—x)y=|x||y|,oubien
x<0ety<0 =xy>0= |xy| =|-xy[=—(—xy)=(-x)(-y) = [x]]y|

4- Six > Oalorsx = |x| <y.D'ott —y < 0 < x = |x| < y et en particulier —y < x < y.Six < 0 alors
—x > 0 etcomme | — x| = |x| <y, on déduit de ce qui précede que —y < —x < y. En multipliant par

—lona—-y<x<uy.
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5- Ona —|x| <x < |x|et —|y| <y < |y| d’out en additionnant les termes de ces inégalités on obtient
—|x| = ly| < x+y < |x| + |y|. Le résultat découle de la propriété précédente.

6- D’apres l'inégalité précédente, on a |x| = |y + (x —y)| < |y| + |x —y|, dou |x| — |y| < |x —y].
En échangeant les roles de x et y, on a aussi |y| — |x| < |y — x| = |x —y|. Comme ‘\x| - |y|’ =
max(|y| — |x|,|x| — |y|), on déduit de ce qui précede que ’\x\ — |y|‘ <|x—yl.

7- Ilest évident que si |x| = 0 alors pour toute > 0, |x| <e.

Supposons que pour tout € > 0,|x| < € mais |x| # 0. En prenant ¢’ = |Zi| on obtient une contradic-
tion.

8- Pourtoute > Oettouty € Ronay <y+eetdoncsix < yalors x <y + € par transitivité.

xgyonay+60:xT+y <x.

Six >y, prenons €y =

Exercice 1. Montrer que Vx,y € Rona:

max(x,y) = ¥~ I ; (x+y) et min(x,y) =

X+y—|x—y
I

1.3 Bornes supérieure et inférieure

Définition 1. Soit E un sous-ensembe non-vide de R et soient m et M deux réels.

On dit dit que E est une partie minorée par m (ou que m est un minorant de E) si m < x, Vx € E. Le plus

grand minorant de E, noté inf E, est appelé “borne inférieure” de E.

On dit que E est une partie majorée par M (ou que M est un majorant de E) si x < M, Vx € E. Le plus

petit majorant de E, noté sup E, est appelé “borne supérieure” de E.

On dit que E est une partie bornée si elle est 3 la fois minorée et majorée.

Exemple 3.
E = {-3,0,4,10} est minoré par -3 et majoré par v/101.
E =] —1,00[ est minoré par -4 mais n’est pas majoré. L'ensemble des minorants de E est l'intervalle

] — o0, —1], donc -1 est la borne inférieure de E.

E = {x € Q: x? < 2} est majoré par /2. Nous avons déja vu que v/2 ¢ E, nous montrerons plus tard
que v/2 = sup E.

Proposition 5. Soit E une partie non-vide et minorée dans IR, alors

a=IinfE < ((VxEE,an) et (Ve>0,3x€€E:a§xe<a+e)).
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Démonstration.

: Supposons que a4 = inf E. Soit € > 0, a2 + € n’est pas un minorant pour E (d’apres la définition de
a). Donc il existe x¢ € E qui vérifiea < x. < a+e.

: Soient E une partie non-vide et minorée dans R et a un réel tels que (Vx € E,a < x) et (Ve >
0,3xc € E:a < xe <a+e).lestclair que a est un minorant de E. Supposons qu’il existe un minorant de

!/
o a —a .
E, noté a’, qui soit strictement plus grand que a. Pour € = — > 0, il existe x. € Etel que x < a+e¢€ =

a +a
2

< a'. Ceci est impossible car 4’ est un minorant de E. O

Nous avons une caractérisation similaire pour la borne supérieure. La démonstration est laissée comme

exercice.
Proposition 6. Soit E une partie non-vide et majorée dans IR, alors
b=supE <= ((Vx € E,x <b)et (Ve >0,x € E:b—e<x <b)).

Proposition 7. Lorsque la borne inférieure (ou supérieure) existe, elle est unique.

Démonstration. Supposons qu’il existe E, une partie de IR non-vide et majorée qui admet deux bornes in-
férieures b et b’ € R avec b < b'. Supposons que b < V' et soit e = b’ — b. D’apres la caractérisation de
la borne inférieure, il existe x € E tel que b’ = b+ € < x < b. Ceci contredit le fait que b’ est une borne

inférieure de E. O

Les deux propriétés suivantes caractérisent I’ensemble des réels R.
Propriété de la borne inférieure :

Toute partie E non-vide et minorée admet une borne inférieure dans R.
Propriété de la borne supérieure :

Toute partie E non-vide et majorée admet une borne supérieure dans R.

Remarque.

Les deux propriétés ci-dessus sont équivalentes. En effet, supposons que toute partie non-vide et minorée
admet une borne inférieure dans R et soit E une partie de R non-vide et majorée. Notons Mg I'ensemble
des majorants de E. C'est un ensemble non-vide et minoré dans R (pourquoi?), donc admet une borne

inférieure. Montrons que inf Mg = sup E.

xo —inf M
Supposons qu'il existe xg € E tel que inf Mg < xg. Pour € = % il existe be € Mg tel que
xo +inf M
inf Mg < be <infMg+¢€= % < xg. Ce qui contredit le fait que be est un majorant de E.

Donc inf Mg est un majorant de E.

Montrons que Ve > 0,3x. € E : inf Mg — € < x¢ < inf ME.
Soit € > 0, il existe x¢ € E tel que inf Mg — € < x (sinon inf Mg — € serait un majorant de E).

Comme inf Mg est un majorant, on a aussi x¢ < inf Mg.

6
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La preuve de la réciproque est laissée en exercice. O
Si E est une partie de R non-vide et non majorée (respectivement non minorée) on pose sup E = oo (respec-

tivement inf E = —o0).

Exercice 2. Montrer que si E C R est une partie non-vide et minorée, alors F = {—x : x € E} est une partie

de R non-vide et majorée. En déduire que F admet une borne inférieure donnée par inf F = — sup E.

. o . 1
Exercice 3. Montrer que pour tout € > 0, il existe un entier n € IN tel que - < €.

1.4 Propriété d’Aarchimede

Archimede ftit le premier a constater qu'un voyageur partant a pieds d’'un point A peut atteindre un
point C, aprés un nombre fini de pas. Ce constat, appelé Propriété d’Archimede, peut-étre formulé comme

suit :

Proposition 8. Si x et y sont deux réels tels que 0 < y < x, alors il existe n € IN tel que x < ny.

Démonstration. Nous allons faire une démonstration par 1’absurde. S'il existait deux réels x et y tels que
0<y<xetquepourtoutn € N,ny < x,I'ensemble E = {n € N:ny < x} = N serait alors majoré par
x . L. g .

— et admettrait donc une borne supérieure B. Pour tout € = 1, il existerait ne € E telque B—1 < ne < B.

On en déduit que B < n¢ + 1, ce qui est impossible puisque ne +1 € IN. O

On dit que “RR est archimédien” ou que “IR vérifie la propriété d’Archimede”. La propriété d’Archimede
dans R une conséquence de la propriété de la borne supérieure. Remarquons toutefois que Q est archimé-
dien mais ne vérifie pas la propriété de la borne supérieure. Ainsi, c’est la propriété de la borne supérieure

qui caractérise R et non pas la propriété d’Archimede. Comme conséquence de cette propriété, nous avons

le résultat suivant :

Proposition 9. Pour tout x € R\Z, il existe un entier n € Z unique vérifiant la propriété suivante :

Ny < X < ny+1 (x)

Démonstration. Soit x € R\Z.
Si0<x<1l,onany =0.

Sil < x, d’apres la propriété d’Archimede, 3n € IN tel que x < n x 1 = n. Considérons I'ensemble
Ey = {n € N :n < x}. C’est un sous-ensemble de N fini et non vide. Soit 7y le plus grand élément
de Ex.Onaalors n,y < x < ny + 1.

Six < 0,ona—x > 0etdapres 'étape précédente ona n_y, < —x < n_y + 1. En multipliant par —1,

onobtient —n_y —1 < x < —n_,.Onprend ny = —n_, — 1.

7
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O
Définition 2. Pour tout x € IR, on appelle partie entiére de x, et on note E(x) ou [x], I'entier relatif n € Z qui
vérifie la relation (x).
Remarque. Si x € Z alors [x] = x. Si x ¢ Z, alors [x] = ny, ou ny est le plus grand entier relatif strictement

inférieur & x. Cet entier vérifie ny < x < ny + 1, et son existence est garantie par la proposition précédente.

Exemple 4. On a par exemple [2] =2 = [2.3], [-2.3] = —3et [V2] = 1.

1.5 Approximations décimales d"un réel

Définition 3. On dit que d € IR est un nombre décimal s'il admet une écriture décimale finie. L'ensemble

des nombres décimaux est noté ID.

Rappelons que pour tout n € IN, le produit 10 x 10 x ... x 10 est noté 10" et se lit “dix a la puissance

n termes

1
n”). Le quotient Ton est noté 107",
Remarque. |l est facile de voir que ID C Q et que

deD<+<= 3InelN:10" xd € Z.

Exemple 5.
1. x = 11.319 est un nombre décimal car 10° x x = 11319 € Z.
2. x = —0.0542 est un nombre décimal car 10* x x = —542 € Z.

1 . 1 . [ By P
3. x= 3 n’est pas un nombre décimal. En effet, 3 admet une écriture décimale périodique et infinie.

Proposition 10. Pour tout x € R et tout n € IN il existe x, € ID tel que :

X <x<x,+107" (%)

Démonstration. Soient x € R et n € IN deux nombres donnés. D’apres la définition de la partie entiere on
a:[xx10"] <xx10" < [x x 10"] + 1. I suffit alors de prendre x,, = [x x 10"] x 107" O
Définition 4. Soient x € R et n € IN deux nombres donnés et x,, le décimal qui vérifie la relation ().

Le décimal x;, s'appelle I'approximation décimale de x par défaut a 10™" prés.

Le décimal x;, + 107" s'appelle I'approximation décimale de x par excés a 10™" prés.
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Proposition 11. Pour tout nombre réel positif x, et pour tout n € IN il existe une suite xg, x1, ..., X, de nombres
entiers naturels qui vérifient :

n n
VE<n, 0<x<9, e Y x10F<x<) x10f4+107"
k=0 k=0

Démonstration. Soit x un réel strictement positif. Posons xp = [x] et x; = [10 X (x — xp)]. On a ainsi x; <

10 x (x — xp) < x1 + 1etdonc xp + x1 X 107 <x<xpg+x x1071 41071, Supposons construits les entiers

n—1 n—1
X0, X1, ..., Xy—1 tels que ) xi 10 F<x< Y ox 1075 +10~ "V Lentier x, = [10" x (x — Yoy x1076)]
k=0 k=0

n—1
vérifie la relation x, < 10" x (x — Z Xk 10_k) < x;, +1,d’ott on déduit
k=0
n n
Y x10F<x< ) m10F 4107 (s % %)
k=0 k=0

O

Remarque. Pour avoir un encadrement analogue pour un x < 0, il suffit de considérer —x > 0 et d'appliquer le

résultat de la proposition.

Exemple 6. Le nombre 3.1415926535897932384626433832795 est la valeur approchée de 7 par défaut a
10731 pres. En effet il s’écrit 3.1415926535897932384626433832795 = Y, x:107F avec xg = 3, x; = 1,

Xp=4,x3=1,x4=05,...,x30 =9et x31 =5.

1.6 Q est dense dans R

Nous avons vu que tout nombre x € R peut étre encadré par deux nombres décimaux dont la différence

est aussi petite que ’on veut. Le résultat suivant est en quelque sorte une réciproque de cette propriété.

Théoreme 1. Pour tout couple de nombres réels (x,y) avec x < y, il existe un nombre r € Q tel que x < r < y.

, . x
Démonstration. Soien x,y € R tels que x < y. Posons t = ty

,sit € Q alors on prend r = t. Sinon,

on sait que pour tout n € N il existe t;, € D tel que t, < t < t;, +107". Soit ng € N tel que 107" <

y—x ( y—x
2 2

r = ty, +107"0. O

pourquoi un tel entier ng existe?) On a alors x < t < t,, +107" < t + = y, et on prend

Exercice 4. Démontrer le théoréme en utilisant les propriétés de la partie entiere.

Corollaire 1. Tout intervalle de IR qui contient au moins deux réels contient une infinité de rationnels et une

infinité d'irrationnels.
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1.6.1 Approximations rationnelles d"un réel

Nous terminons ce chapitre par une autre méthode d’approximation d’un irrationnel x par des ration-
nels. Pour simplifier, on donne "approximation pour un irrationnel positif x. L'approximation d’un irra-

tionnel négatif x est 'opposée de 'approximation de —x.

1 1
Soit x un irrationnel positif. Posons x; = = On aalors x = [x] + o Comme x; est un irrationnel
- 1
1
>1,onaaussi x; = [x1]+ —oltx, = ———— > 1. Dol
X2 x1 = [x1]
1
x = [x] + —
[x1] + o

Supposons que 1’on est construit les irrationnels positifs xq, . . ., x, tels que

1 1
Vke {1,2,...,n}, xk:ﬁ>l,etx:[x}+ T
Xf—1 = [Xk-1 [x1] + :
[x2] + 1
o+ 7{}( I+ T
n—1 X
Il est évident que x,,41 = on = o] > 1 est un irrationnel positif qui vérifie la relation
n— n
1
x = [x] + T
[xl] + 1
[xﬂ + 1
.ot 1
] +
[xn] +
Xn41
En remplagant x,, par [x,], on obtient alors une suite de fractions pour approcher x :
1 1
ug = [x], wy = [x] + 5, ... un = [x] + i
[x1]
[xl] + 1
[XZ] + 1
oot o+ 1
n—1 [xn]

Exemple 7.
e Approximation de V2: Puisquel <2 < 4,0onal < V2 < 2 etdonc [\@] =1.Ainsionav2 =1+x

1
ouxy = ﬁ.EnmultipliantetdiVisantpar V2+1,0onax; =+2+1.Donc [x]] =2etx; =2+ x;
1 1
avec xp = —2 = N Notons que xp = x7 et qu'en fait, ona x1 = xp = ...xp, et [x,] = 2.
Dot :
1 1 1
ug =1, M1:1+§/u2=1+71/ M3=1+—1,
2+ —— 24—
1 1

2+§ 2—i-71

2 —

+2
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1 1
ug =1+ e Uy =1+
1 1
2+ T 24 ———
24— 24—
1 1
24+ — 2+ 5
24 =
+2
. 1
Remarquons que, pour tout entier natureln > 1,u, =1+ HT et donc
n—1
1 1 7 1 17 1 41
Uy =14 ——=15u =1+ uz =1+

—_— = _— :1 _— = —,
1+1 1+15 5 1175 122~ 151712~ 29

e Approximation de v/7 : Puisque 4 < 7 < 9,ona 2 < /7 < 3 et donc [/7] = 2. Calculons les premiers
1
V7 -2

.Et comme 2 < /7 < 3 on obtient, en ajoutant 2 a tous les membres de cette

termes ug, uq,...,uy. Onauy = 2 etu; = 2+ [x1] avec x; =

V742
3

4
inégalité, 4 < \/7 + 2 < 5. Dong, en divisant par 3, 3 <x < g et [x;] = 1. D’ott u; = 3. De la méme

. En multipliant et divisant par

\ﬁ—i-ZOnaxl =

maniere on obtient

1 7+1 1 5
Xp = :\f_l_ Dott[x) =1 = up=2+—-—=_,etuf=625<7
X1 2 L L2
v [x2]
1 7+1 1 2 8
X3 = = + .Dotufx3]=1 = uz=2+———-+——=2+4+-=—-
n—1 3 141 373
1
1-0-7[3(]
3
1 L. 1 9
Xy = =V7+2.Dol[xy] =4 = ug=2+ =24 =
;1 1 14
L
1+ 1
14 =
[x4]
1 1 1 45 2025
= = — x;. Dot [xs] = 1etus =2 222
5= o4 g nDotlxsl =letus +1+ 1 175 = 289
1
1+ 1
1+
it L
[xs5]

7.009 > 7.

On déduit donc que x4 = xp, X7 = X3, X§ = X4, X9 = X1, ..., etc. D’olt
1 82 6724

= — 2:7:
: = 31 U6 = ggp = 69968 <7.
1

1
1

Ug =2+

1+

1+

1+

4y ———
1

14—
[x6]
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1 127 , 16129

_ = = =7. .
Uy =2+ 1 18 t uz 7304 0004
1+ 1
1+
1
1+ 1
4+
1
1+ ——
1+ 1
[x7]
e . ~ 590 , 348100
Par un calcul similaire on obtient ug = 3 et ug = 19779 — 6.9999.

Exercice 5. Trouver I'approximation us pour l'irrationnel v/17.
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