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1 Logique et ensembles

1.1 Introduction

I La logique mathématique s'intéresse aux règles de construction de phrases mathématiques
correctes : propositions ou énoncés, et aux règles permettant d'établir la vérité de ces phrases.
I Le but de ce chapitre est de rappeler et de compléter les notions fondamentales sur les
ensembles et la logique.
I La notion d'ensemble est une notion première, qu'on admet et qu'on ne peut pas dé�nir
à partir d'autres notions.
I Intuitivement, on peut considérer un ensemble E comme une �collection� d'objets qui sont
ses éléments.
I Dans certaines situations, les éléments d'un ensemble sont écrits entre deux accolades
{...}. Par exemple E = {a, b, c, d}.
I On note x ∈ E pour signi�er que x appartient à E ou que x est un élément de E. Si
x n'est pas un élément de E on note x /∈ E

Exemples 1.1. E = {1, 2, 3} est l'ensemble constitué des nombres 1,2 et 3. On a 2 ∈ E
mais 5 /∈ E.

I Les ensembles de nombres sont supposés connus, aussi nous les considérerons d'une ma-
nière systématique, sans les redé�nir. On rapelle les notations usuelles :
N, l'ensemble des nombres entiers naturels, N = {0, 1, 2, . . .}.
Z, l'ensemble des entiers relatifs, Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
Q, l'ensemble des nombres rationnels, Q = {p

q : p ∈ Z, q ∈ Z∗}
R, l'ensemble des nombres réels contenant Q et les nombres irrationnels tels que

√
2, π, e.

C, l'ensemble des nombres complexes, C = {a + bi : a, b ∈ R}, où i2 = −1.

1.2 Notion de proposition

I Les énoncés mathématiques sont constitués de phrases qu'on appelle propositions ou as-
sertions. Une proposition est un enoncé qui peut être vrai ou faux. Par exemple " 2+2=4"
est une proposition vraie, " 5 < 3" est une proposition fausse. A toute proposition P on
attribue sa valeur de vérité, 1 ou �V� si elle est vraie et 0 ou �F� si elle est fausse.
I Deux propositions P et Q sont dites équivalentes si elles ont la même valeur de vérité
(elles expriment alors le même contenu). On note alors P ≡ Q. Ainsi, pour x ∈ N, les deux
propositions P :′′ x ≤ 7′′ et Q :′′ x + 2 ≤ 9′′, sont équivalentes.
I Si P ≡ Q, on dira aussi que �P est vraie, si et seulement si, Q est vraie�, ou que Q est
une condition nécessaire et su�sante pour P .
I Négation d'une proposition. A partir d'une proposition P on peut former sa négation
(ou son contraire) nonP notée aussi ¬P ou encore P , qui a la valeur de vérité contraire à
celle de P , suivant la table de vérité :

P P
V F
F V

Par exemple la négation de x ∈ E est x /∈ E. La négation de x = y est x 6= y.

Proposition 1.2. P ≡ P .
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Preuve. Véri�cation immédiate sur la table de vérité.

P P P
V F V
F V F

�

1.3 Prédicat et quanti�cateurs

I On appelle prédicat ou forme propositionnelle, une proposition P (x, y, . . .), contenant
des variables x, y, ... , et dont la valeur de vérité dépend de ces variables. "x est pair" est un
prédicat. (La variable ici est x).
Les variables dans les prédicats sont souvent précédées par des quanti�cateurs. Dans le
langage mathématique, il y a deux quanti�cateurs :
I Le quanti�cateur universel : ∀ (quelque soit ou pour tout). L'enoncé ∀x ∈ E on a P (x),
veut dire que tous les éléments x ∈ E véri�e P (x).

Exemple 1.3. ∀x ∈ R, x2 ≥ 0.

I Le quanti�cateur existentiel : ∃ (il existe au moins). L'énoncé ∃x ∈ E : P (x) veut dire
qu'il existe au moins x ∈ E qui véri�e P (x).

Exemple 1.4. ∃x ∈ R : x2 = 2.

I On utilise parfois aussi le symbole ∃! pour l'existence et l'unicité. ∃!x ∈ E : P (x), veut
dire qu'il existe un seul x tel que P (x).

Exemple 1.5. ∃!x ∈ R+ : x2 = 2.

I Un enoncé peut contenir deux ou plusieurs quanti�cateurs, l'ordre dans lequel ils sont
écrits est important. Ainsi une assertion qui commence par ∀x, ∃y n'est pas nécessairement
équivalente à celle qui commence par ∃y, ∀x.

Exemple 1.6. ∀x ∈ R,∃y ∈ R : x < y est vraie, alors que ∃y ∈ R : ∀x ∈ R, x < y est fausse.

I Négation d'un prédicat avec quanti�cateur La négation des prédicats avec quanti-
�cateurs obéit aux règles suivantes :
I La négation de ∀x ∈ E,P (x) est ∃x ∈ E : P (x).

Exemple 1.7. la négation de ′′∀x ∈ R, x2 ≥ 0′′, est ′′∃x ∈ R : x2 < 0′′.

I La négation de ∃x ∈ E : P (x) est ∀x ∈ E, P (x).

Exemple 1.8. la négation de ′′∃n ∈ N : n + 1 = 0′′, est ′′∀n ∈ N : n + 1 6= 0′′.

1.4 Connecteurs logiques

I A partir de deux propositions P et Q on peut former d'autres propositions à l'aide de
connecteurs logiques. Les plus importants sont les connecteurs et, ou,⇒,⇔, . . . .

I La conjonction : P et Q, notée aussi P ∧Q, qui est vraie seulement si les deux propo-
sitions P et Q sont vraies. On a la table de vérité suivante.
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P Q P etQ
V V V
V F F
F V F
F F F

Exemple 1.9. Soit x ∈ N, on considère les propositions P :′′ x est un diviseur de 24 (x |
24)′′ et Q :′′ x ≤ 6′′ . P etQ est vraie pour x = 1, 2, 3, 4, 6, elle est fausse pour 8 et pour 5
par exemple.

Proposition 1.10. Soient P,Q,R trois propositions, alors :
1 - P et Q ≡ QetP
2 - (P et Q) etR ≡ Pet (Q etR)
3 - P et P ≡ P.
4 - Principe de non contradiction : P et (nonP) est toujours fausse.

Une théorie (ou un raisonnement) est dite contradictoire, si elle contient une proposition et
sa négation qui soient toutes les deux vraies.

I La disjonction P ou Q, notée aussi P ∨Q qui est vraie si l'une au moins des propositions
P et Q est vraie :

P Q P ouQ
V V V
V F V
F V V
F F F

Exemple 1.11. Dans l'exemple 1.9 précédent P ouQ est vraie pour x = 0, 1, 2, 3, 4, 5, 6, 8, 12, 24.

Proposition 1.12. Soient P,Q,R trois propostions :
1 - P ouQ ≡ Qou P.
2 - (P ouQ) ou R ≡ Pou (Q ouR).
3 - P ouP ≡ P
4 - Principe du tiers exclu : P ou (nonP) est toujours vraie.

Proposition 1.13. (Lois de De Morgan). Soient P et Q deux propositions, alors on a :
P et Q ≡ P ouQ
P ouQ ≡ P et Q

I L'implication logique P implique Q, notée aussi P ⇒ Q, est donnée par la table de
vérité :

P Q P ⇒ Q
V V V
V F F
F V V
F F V

4



Université Chouaïb Doukkali � Faculté des Sciences
Département de Mathématiques

Algèbre 1
Responsable : A. Haïly

Proposition 1.14. Soient P et Q deux propositions, alors :
1 - P ⇒ Q ≡ P ouQ.
2 - P ⇒ Q ≡ Q ⇒ P (principe de contraposition).
3 - (P ⇒ Q) ≡ P et Q

Exemple 1.15. La proposition ∀x ∈ R : x ≤ 2 ⇒ x ≤ 4 est vraie. Sa négation est
∃x ∈ R : x ≤ 2 et x > 4 est fausse.

I Double implication notée P ⇔ Q, c'est la proposition (P ⇒ Q) et (Q ⇒ P) :

P Q P ⇔ Q
V V V
V F F
F V F
F F V

Remarque 1.16. Soient P et Q deux propositions. P ⇔ Q est vraie, si et seulement si,
P ≡ Q. Aussi, on écrira souvent P ⇔ Q pour signi�er que P ≡ Q.

Remarque 1.17. On peut combiner plusieurs connecteurs logiques avec plusieurs proposi-
tions par exemple (P et Q) ⇒ R ; (P ⇒ Q) ⇒ P , etc.

1.5 Raisonnements mathématiques.

Les théories mathématiques se basent sur un certain nombre de résultats admis sans dé-
monstration qu'on appelle axiomes. Par exemple, l'existence de l'ensemble N est l'un de
ces axiomes. Le but de ces théories est d'établir à partir de ces axiomes et la logique, des
résultats qu'on appelle théorèmes, propositions, lemmes, propriétés, etc. . Les dé-
monstrations ou preuves de ces résultats, s'appuient sur des raisonnements logiques.
Dans la suite on expose les principales méthodes de raisonnements.

1 - Raisonnement par déduction ou raisonnement direct : On veut montrer que
P ⇒ Q. On suppose que P est vraie et avec une succession d'implications, on montre que
Q est vraie.

Exemple 1.18. Montrons que ∀x ∈ R, x ≥ 1 ⇒ x2 + x− 2 ≥ 0. Supposons que x ≥ 1, on
a x2 + x ≥ 1 + 1 = 2, Donc x2 + x− 2 ≥ 0

2 - Raisonnement par contraposition : Pour montrer que P ⇒ Q, il est parfois plus
simple de démontrer que Q ⇒ P .

Exemple 1.19. Montrons que ∀x ∈ N, si x2 est pair alors x est pair. Par contraposition,
supposons que x est impair et montrons que x2 est impair. On a : x = 2k + 1 avec k ∈ N.
Donc x2 = (2k + 1)2 = 4k2 + 4k + 1 = 2k′ + 1, où k′ = 2k2 + 2k, donc x2 est impair.

Exemple 1.20. Pour montrer que ∀x ∈ R;x2 /∈ Q ⇒ x /∈ Q, il est plus facile de montrer
que x ∈ Q ⇒ x2 ∈ Q.

3 - Raisonnement par l'absurde : Si on suppose qu'une propriété P est fausse et qu'à la
�n du raisonnement on aboutit à une contradiction, alors P est vraie. (une contadiction est
une assertion du type Q et non Q).
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Exemple 1.21. Montrons la proposition P”
√

2 /∈ Q”. On suppose que P est fausse. i.e.√
2 ∈ Q. Par conséquent ∃x = p

q ∈ Q, avec p, q ∈ N premiers enre eux (n'ont pas de diviseurs

communs), tels que 2 = x2 = p2

q2 . Donc 2q2 = p2. Ce qui implique que 2 | p. On pose alors
p = 2p′. On a 2q2 = 4p′2. Ce qui entraîne q2 = 2p′2, ou encore 2 | q. On a 2 | p et 2 | q, ce
qui est absurde car p et q sont supposés premiers entre eux. Cette contradiction montre que
non P est fausse. Donc P est vraie. C'est à dire que

√
2 /∈ Q. �

4 - Raisonnement par contre-exemple : Pour montrer que la proposition ′′∀x, P (x)′′ est
fausse on montre que ∃x : P (x) n'est pas véri�é.

Exemple 1.22. l'assertion P :′ ∀n ∈ N, 2n2 + 1 est un multiple de 3′ est fausse car, par
exemple, n = 3 ne véri�e pas cette propriété. C'est un contre-exemple.

5 - Raisonnement par récurrence : Soit P une propriété, et n0 ∈ N. Si P (n0) est vraie
et si ∀n ≥ n0, P (n) ⇒ P (n + 1), alors ∀n ≥ n0, P (n) est vraie.
Ainsi pour démontrer une propriété P (n) est vraie ∀n ≥ n0, on adopte alors le schéma
suivant :
Initialisation : On véri�e que P (n0) est vraie.
Hérédité : On montre que ∀n ≥ n0, P (n) ⇒ P (n + 1).

Exemple 1.23. Pour n ∈ N, posons Sn =
∑n

k=0 k. Montrons la propriété ;

P (n) : ∀n ∈ N, Sn =
n(n + 1)

2

Initialisation : P (0) est vraie.
Hérédité : Soit n ∈ N, On suppose que P (n) est vraie (Hypothèse de récurrence H.R). On a
Sn+1 = Sn +n+1 = n(n+1)

2 +n+1 = n(n+1)+2(n+1)
2 = (n+1)(n+2)

2 . Donc P (n+1) est vraie.
On en déduit qu'elle est vraie pour tout n.

Exemple 1.24. Montrons que ∀n ∈ N, n ≥ 4 ⇒ n2 ≤ 2n.
Initialisation : pour n = 4, 42 = 24 = 16. L'inégalité est vraie.
Hérédité : soit n ≥ 4, supposons que n2 ≤ 2n. On a 2n+1 = 2.2n = 2n + 2n. D'après
l'hypothèse de récurrence, 2n+1 ≥ n2 + n2. Or n2 ≥ 2n + 1,∀n ≥ 4, il en résulte que
2n+1 ≥ n2 + 2n + 1 = (n + 1)2.

Récurrence forte dans la récurrence forte on procède selon le schéma de démonstration
suivant :
Initialisation : On véri�e que P (n0) est vraie.
Hérédité : On montre que si k ∈ N est tel que n0 ≤ k < n, P (k) ⇒ P (n).
Alors ∀n ≥ n0, P (n) est vraie.

Exemple 1.25. Montrer que tout entier naturel supérieur ou égal à 2 possède un diviseur
premier.
Initialisation : On démontre que 2 possède un diviseur premier qui est lui-même.
Hérédité : Soit n un entier supérieur ou égal à 2, on suppose que tous les entiers k tels que
2 ≤ k < n possèdent un diviseur premier (hypothèse de récurrence) et l'on cherche à prouver
qu'il en est de même pour n.
Ou bien n est premier alors il possède un diviseur premier qui est lui-même
Ou bien n est composé et il existe un entier d supérieur ou égal à 2 et strictement inférieur
n qui divise n. Alors, par hypothèse de récurrence, d possède un diviseur premier, qui est
aussi un diviseur de n.
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1.6 Inclusion et égalité entre deux ensembles

Dé�nition 1.26. Soient E et F deux ensembles. On dit que E est inclus dans F , noté
E ⊂ F , si

∀x, x ∈ E ⇒ x ∈ F

On dit aussi que E est un sous-ensemble ou une partie de F .
La négation est E 6⊂ F . On a

E 6⊂ F ⇔ ∃x ∈ E : x /∈ F

Exemple 1.27. E = {0, 1, 2}, F = {1, 2, 3}, G = {0, 1, 2, 4} On a E ⊂ G mais E 6⊂ F .

Proposition 1.28. Si E ⊂ F et F ⊂ G alors E ⊂ G.

Egalité de deux ensembles : Soient E et F deux ensembles alors

(E = F ) ⇔ (E ⊂ F etF ⊂ E)

1.7 Ensemble dé�ni par un prédicat

Soit P (x) un prédicat admissible, alors il existe un ensemble E = {x : P (x)}, qui est
l'ensemble de tous les éléments qui véri�ent P .

Exemple 1.29. E = {x ∈ N : 3 ≤ x ≤ 8} = {3, 4, 5, 6, 7, 8}

Ensemble vide. Il existe un ensemble qui ne contient aucun élément, l'ensemble vide, noté
∅.

Proposition 1.30. Pour tout ensemble E on a ∅ ⊂ E.

Preuve. Sinon, ∃x ∈ ∅ : x /∈ E. Absurde car ∃x ∈ ∅ est une proposition fausse. �

Singleton et paire : Soient x, y deux objets mathématiques distincts. Il existe un ensemble
{x} contenant seulement x appelé singleton de l'élément x et un ensemble contenant x et y
noté {x, y}, appelé paire de x et y.

Ensemble des parties d'un ensemble : Soit E un ensemble. Il existe un ensemble noté
P(E) dont les éléments sont les sous-ensembles de E. P(E) = {A : A ⊂ E}.

Exemple 1.31. Si E = {a, b, c}, alors P(E) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, E}.

1.8 Opérations sur les ensembles :

Soient E et F deux ensembles, on dé�nit :
La réunion : de E et F , E ∪ F = {x : x ∈ E oux ∈ F} (lire E union F ).
L'intersection : de E et F , E ∩ F = {x : x ∈ E etx ∈ F}. (lire E inter F ).
Deux ensembles dont l'intersection est vide sont dits disjoints.

Proposition 1.32. Soient A,B,C trois ensembles, alors :
i - A ∪A = A, A ∪B = B ∪A, A ∪ (B ∪ C) = (A ∪B) ∪ C).
ii - A ∩A = A, A ∩B = B ∩A, A ∩ (B ∩ C) = (A ∩B) ∩ C).
iii - A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
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Di�érence de deux ensembles E et F , E\F = {x ∈ E : x /∈ F}. (lire E moins F ).
Si A ⊂ E, on dé�nit le complémentaire de A dans E par Ā ou Ac ou CA

E , A = E\A. On
a : E\F = E ∩ F .

Proposition 1.33. (Lois de De Morgan)
Soient A et B deux parties d'un ensemble E, alors :
i - A ∪B = A ∩B.
ii - A ∩B = A ∪B.

Di�érence symétrique de deux ensembles E et F , E∆F = (E\F ) ∪ (F\E). On a :
E∆F = (E ∪ F )\(E ∩ F ).

1.9 Partitions

Dé�nition 1.34. Soit E un ensemble non vide. On appelle partition de E un ensemble A
de parties de E, (A ⊂ P(E), telle que :
1. Les éléments de A, sont non vides, (∀A ∈ A, A 6= ∅).
2. Tout élément de E est contenue dans un et un seul élément de A, (∀x ∈ E,∃!A ∈ A : x ∈
A)

Exemple 1.35. Soit E = {0, 1, 2, 3, 4, 5}.
A1 = {{0, 1}, {4}, {2, 3, 5}} est une partition de E.
A2 = {∅, {0, 1, 2}, {4}, {3, 5}} n'est une partition de E car contient ∅.
A3 = {{0, 1, 2}, {2, 4}, {3, 5}} n'est une partition de E car 2 appartient à deux éléments
di�érents de A3

A4 = {{0, 1, 2}, {4, 5}} n'est une partition de E car 3 n'appartient à aucun élément de A4.
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2 Correspondances et Applications

2.1 Couples et produit cartésien

Dé�nition 2.1. On appelle couple formé par deux éléments x et y l'expression (x, y) telle
que

(x, y) = (x′, y′) ⇔ x = x′ et y = y′

x est la première composante ou première projection du couple.
y est la deuxième composante ou deuxième projection du couple.

Dé�nition 2.2. Soient E et F deux ensembles. Le produit cartésien E×F est l'ensemble
des couples (x, y) tels que x ∈ E et y ∈ F .

E × F = {(x, y) : x ∈ E et y ∈ F}

Si E = F , E × E est noté parfois E2.

On dé�nit de même les triplets (x, y, z), les quadriplets (x, y, z, t), et plus généralement les
n-uplets (x1, x2 . . . , xn). Ainsi que les produits cartésiens E × F × G, E × F × G × H, et
plus généralement E1 × E2 × . . .× En.

2.2 Correspondances

Dé�nition 2.3. On appelle correspondance, la donnée d'un triplet ϕ = (E,F,G) où E
et F sont deux ensembles et G une partie de E × F .
E est appelé l'ensemble de départ de ϕ, F est l'ensemble d'arrivée. G est le graphe de ϕ.
Si (x, y) ∈ G, y est une image de x par ϕ, x est un antécédent de y par ϕ.
Le domaine de dé�nition de ϕ est l'ensemble Dϕ = {x ∈ E : ∃y ∈ F, (x, y) ∈ G}.

Exemple 2.4. E = {0, 1, 2, 3}, F = {a, b, c}, G = {(0, b), (0, c), (2, a), (3, a)}.

Dé�nition 2.5. On appelle fonction une correspondance dans laquelle tout élément de
l'ensemble de départ possède au plus une image.

Exemple 2.6. Soit E = R, F = R, G = {(x, y) ∈ E×F : x = y2}. Alors G est le graphe d'une
fonction f . Son domaine de dé�nition est R+. Pour x ∈ Df = R+, (x, y) ∈ G ⇔ y =

√
x.

2.3 Applications

Dé�nition 2.7. Une application f : E → F est une correspondance (E,F,G) telle que
∀x ∈ E,∃!y ∈ F : (x, y) ∈ G. i.e. tout élément de E possède une et une seule image.
On note FE ou F(E,F ) l'ensemble de toutes les applications de E dans F .

I Une application est complétement dé�nie par son ensemble de départ, son ensemble d'ar-
rivée et l'image de chaque élément de l'ensemble de départ.
I Deux applications f et g sont égales si elles ont même ensemble de départ, même ensemble
d'arrivée et pour tout élément x dans l'ensemble de départ on a f(x) = g(x).

Exemple 2.8. On a une application f : R → R, dé�nie par :

f(x) =
{

2x2 − 3x + 1 six ≤ 1
1

|x−1| , sinon.
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I Soit E ⊂ F . L'application ı : E → F , dé�nie par ı(x) = x, s'appelle l'injection cano-
nique de E dans F . Si E = F , l'application IE : E → E, IE(x) = x, notée aussi IdE , est
appelée l'application identique de E ou identité de E.
I Soit f : E → F une application. A ⊂ E. L'application f|A : A → F , dé�nie par
f|A(x) = f(x), ∀x ∈ A, est appelée la restriction de f , à A. On dit aussi que f est
un prolongement de f|A.
I Très souvent, par abus de notation, une application et sa restriction sont désignées par le
même symbole. Ainsi, l'application x 7→ sinx, désigne aussi bien l'application sinus R → R,
que cette application de [0, 2π] dans R.
I Composée de deux applications : Soient f : E → F , g : F → G, la composée de g et
de f est l'application g ◦ f : E → G, dé�nie par g ◦ f(x) = g(f(x)).

Exemple 2.9. Soient f, g : R → R, dé�nies par f(x) = x2 et g(x) = x + 1 ∀x ∈ R. On a
g ◦ f(x) = x2 + 1, f ◦ g(x) = (x + 1)2 = x2 + 2x + 1. Noter que f ◦ g 6= g ◦ f .

Proposition 2.10. Soit f : E → F une application f ◦ IE = f et IF ◦ f = f .
Soient f : E → F , g : F → G, h : G → H, trois applications : on a : (h ◦ g) ◦ f = h ◦ (g ◦ f).

- Soit f : E → F une application, A une partie de E, B une partie de F .
- On appelle image directe de A par f l'ensemble f(A) = {y ∈ F : ∃x ∈ E, y = f(x)}.

- On appelle image réciproque de B par f l'ensemble
−1

f (B) = {x ∈ E : f(x) ∈ B}.

Exemple 2.11. Soit f : R → R dé�nie par f(x) = x2. On a f(R) = R+,
−1

f ({4}) = {2,−2},
−1

f ({−1}) = ∅.

2.4 Injection, surjection, bijection

Dé�nition 2.12. Soit f : E → F une application :
f est dite injective si ∀x, x′ ∈ E, f(x) = f(x′) ⇒ x = x′. i.e. tout élément de F admet au
plus un antécédent.
On dit aussi que f est une injection de E dans F .
f est dite surjective, si tout y ∈ F admet un antécédent dans E.
On dit aussi que f est une surjection de E sur F .
f est dite bijective, si tout élément de F possède un et un seul antécédent.
f est bijective, si et seulement si, elle est injective et surjective.
On dit aussi que f est une bijection de E sur F .

Exemple 2.13.
1 - L'application N → N, n 7→ n + 1, est injective non surjective. (0 n'a pas d'antécédent).
2 - L'application f : N → N, dé�nie par f(0) = 0 et f(n) = n − 1, si n ≥ 1, est surjective
non injective.
3 - L'application Z → Z, x 7→ x2, n'est ni injective ni surjective.

Proposition 2.14. Soient f : E → F et g : F → G deux applications.
Si f et g sont injectives, alors g ◦ f est injective.
Si f et g sont surjectives, alors g ◦ f est surjective.

Théorème 2.15. Soit f : E → F une application. Alors :
1 - f est injective, si et seulement si, il existe une application g : F → E telle que g◦f = IdE

2 - f est surjective, si et seulement si, il existe une application g : F → E telle que f◦g = IdF
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Preuve.

1 - ⇒ Supposons que f est injective. Posons G = f(E) et H = F \ G. Soit a ∈ E �xé. Si
y ∈ G, il existe x ∈ E unique tel que y = f(x). On peut alors dé�nir l'application g : F → E
de la manière suivante.

g(y) =
{

x, si y = f(x) ∈ G
a, si x ∈ H

Alors, ∀x ∈ E, g(f(x)) = x. i.e g ◦ f = IE .
⇐. Supposons qu'il existe g : F → E telle que g ◦ f = IE . Montrons que f est injective.
Soient x, x′ ∈ E, tels que f(x) = f(x′). On compose alors à gauche par g, on a alors
g(f(x)) = g(f(x′)). Donc x = x′, par conséquent f est injective.

2 - ⇒. Supposons que f est surjective. Pour chaque y ∈ F ,
−1

f ({y}) 6= ∅, et les ensembles
−1

f ({y}) forment une partition de E. Grâce à l'axiome du choix, on peut choisir pour chaque
y ∈ F un x ∈ E unique tel que f(x) = y. Posons alors g(y) = x. On a alors f(g(y)) =
y,∀y ∈ F . Donc f ◦ g = IF .
⇐. Supposons qu'il existe g : F → E telle que f ◦ g = IF . Montrons que f est surjective.
Soit y ∈ F . Posons x = g(y) ∈ E. Alors f(x) = f(g(y)) = y. f est surjective. �

Théorème 2.16. Soit f : E → F une application :
1 - f est bijective ⇔ il existe une application g : F → E telle que g ◦ f = IE et f ◦ g = IF .
Lorsque c'est le cas, l'application g est unique on la note f−1, on l'appelle l'application
réciproque de f . De plus, f−1 est bijective et (f−1)−1 = f .
2 - Soient f : E → F et g : F → G deux bijections, alors g ◦ f est bijective et (g ◦ f)−1 =
f−1 ◦ g−1.

Preuve.

1 - ⇒ Supposons que f est bijective. Alors f est injective et f est surjective. D'après le
théorème 2.15, il existe g : F → E telle que g ◦ f = IE et il existe h : F → E telle que
f ◦ h = IF . On a alors h = IE ◦ h = (g ◦ f) ◦ h = g ◦ (f ◦ h) = g ◦ IF = g. Donc h = g.
D'où il existe une application g : F → E tel que g ◦ f = IE et f ◦ g = IF . Ceci montre aussi
l'unicité de g.
La réciproque est claire d'après le théorème 2.15.
2 - g◦f◦f−1◦g−1 = IG et f−1◦g−1◦g◦f = IF . Donc g◦f est bijective et (g◦f)−1 = f−1◦g−1.
�

Exemples 2.17.
1 - L'application f : R+ → R+, f(x) = x2 est bijective. Sa bijection réciproque est x 7→

√
x.

2 - L'application ln : R∗
+ → R, est bijective, sa réciproque est la fonction exponentielle.

2.5 Familles d'éléments et familles de parties

Dé�nition 2.18. Soit E un ensemble.On appelle famille d'éléments de E indexée par un
ensemble I, toute application I → E ; i 7→ xi. On note la famille par (xi)i∈I , où xi ∈ E. I
est appelé l'ensemble d'indices.

I Cas particulier : lorsqu'on prend I ⊂ N, une famille d'éléments de E est alors appelée
une suite d'éléments de E, qu'on note alors : x0, x1, . . . , xn, . . ..

Dé�nition 2.19.
1 - On appelle famille de parties d'un ensemble E, toute famille d'éléments (Ai)i∈I de P(E),
ensemble de parties de E. i.e. Ai ⊂ E,∀i ∈ I.
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2 - On appelle réunion de la famille, l'ensemble ∪i∈IAi = {x ∈ E : ∃i ∈ I, x ∈ Ai}.
Cas particulier, si I = {1, 2},

⋃
i∈I Ai ={x ∈ E : x ∈ A1 ou x ∈ A2} = A1

⋃
A2.

3 - On appelle intersection de la famille, l'ensemble ∩i∈IAi={x∈E :∀i ∈ I, x ∈ Ai}.
Cas particulier, si I = {1, 2},

⋂
i∈I Ai = {x ∈ E : x ∈ A1 et x ∈ A2} = A1

⋂
A2.

Exemples 2.20.
1 -

⋃
n∈N]− n, n[= R.

2 -
⋂

n∈N∗ [− 1
n , 1

n ] = {0}.

2.6 Applications entre ensembles �nis

Un ensemble E est dit �ni s'il existe n ∈ N et une bijection de E à {1, . . . , n}. L'entier n
est alors unique et il est appelé cardinal de E ou le nombre d'éléments de E. On le note
card(E).
L'ensemble vide est �ni et son cardinal est égal à zéro.
Un ensemble �ni E de cardinal n, peut s'écrire E = {x1, x2, . . . , xn}.
Un ensemble qui n'est pas �ni est dit in�ni.
L'ensemble N est in�ni.

Proposition 2.21. Soient E et F deux ensembles �nis. Alors les trois assertions suivantes
sont équivalentes :
(i) card(E) ≤ card(F ).
(ii) Il existe un injection f : E → F .
(iii) Il existe un surjection g : F → E.

Preuve. Montrons que (i) ⇔ (ii).
(i) ⇒ (ii). Supposons que card(E) ≤ card(F ). On peut supposer que E = {1, 2, . . . , n} et
F = {1, 2, . . . ,m} avec n ≤ m. L'application E → F , k 7→ k est injective.
(ii) ⇒ (i). Soit f : E → F une application injective. On considère l'application g : E →
f(E), dé�nie par g(x) = f(x). Alors g est bijective. D'où card(E) = card(f(E)) ≤ card(F ).
(ii) ⇔ (iii), d'après la proposition 2.15. �

Proposition 2.22. Soient E et F deux ensembles tels que E soit �ni et f : E → F une
application. Alors :
1. f(E) est �ni et cardf(E) ≤ cardE.
2. f est injective ⇔ cardf(E) = cardE.

Preuve.

1. Comme l'application g : E → f(E), x 7→ f(x) est surjective, d'après la proposition
précédente, on a card(f(E)) ≤ card(E).
2. Si f est injective, alors g : E → f(E), x 7→ f(x) est bijective. Donc cardf(E) = card(E).
Supposons que f n'est pas injective. On peut supposer que f(x1) = f(x2). Donc f(E) =
{f(x1), f(x3) . . . , f(xn)}. Par conséquent, cardf(E) < card(E). �

Théorème 2.23. Soient E et F deux ensembles �nis tels que cardE = cardF , alors les
assertions suivantes sont équivalentes :
(i) f est injective.
(ii) f est surjective.
(iii) f est bijective.

Preuve. Il su�t de montrer l'équivalence entre (i) et (ii). On a
f est injective ⇔ cardf(E) = card(E) = card(F ) ⇔ f(E) = F ⇔ f est surjective �
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3 Relations binaires, Relations d'équivalence, Relations

d'ordre

3.1 Relations binaires

Une relation binaire R sur un ensemble E est la donnée d'une correspondance (E,E,G).
On note xRy, pour signi�er que (x, y) ∈ G et note (E,R) l'ensemble E muni de la relation
R.

Exemple 3.1. La relation de divisibilité : Dans Z on dé�nit la relation de divisibilité notée
| par :

∀x, y ∈ Z, x | y ⇔ ∃k ∈ Z : y = kx

Dé�nition 3.2. Soit E un ensemble muni d'une relation binaire R.
R est dite ré�exive si ∀x ∈ E on a : xRx.
R est dite symétrique si ∀x, y ∈ E on a : xRy ⇒ yRx.
R est dite antisymétrique si ∀x, y ∈ E on a : xRy et yRx⇒x = y.
R est dite transitive si ∀x, y, z ∈ E, xRy et yRz ⇒ xRz.

3.2 Relations d'équivalences

Dé�nition 3.3. Une relation binaire R sur un ensemble E est dite une relation d'équi-
valence si elle est ré�exive, symétrique et transitive.
Soit (E,R) un ensemble muni d'une relation d'équivalence R. Pour x ∈ E, on appelle classe
de x modulo R l'ensemble x̄ = {y ∈ E : yRx}. Notons que x̄ = ȳ ⇔ xRy.

Exemple 3.4.
1 - Dans un ensemble non vide E, la relation d'égalité x = y, est une relation d'équivalence.
2 - Soit n ∈ N. Dans Z, on dé�nit la relation xRy ⇔ n|x− y, qu'on note encore x ≡ y (mod
n). On l'appelle relation d'équivalence modulo n. C'est une relation d'équivalence. Pour tout
k ∈ Z, on a k̄ = k + nZ.
3 - Soit f : E → F une application. La relation xRy ⇔ f(x) = f(y) est une relation
d'équivalence.

Proposition 3.5. Deux classes d'équivalences sont ou bien disjointes ou bien confondues.

Preuve. Soit R une relation d'équivalence. Supposons que x̄ ∩ ȳ 6= ∅. Soit z ∈ x̄ ∩ ȳ, on a
z ∈ x̄ donc xRz et z ∈ ȳ, donc zRy. Il en résulte que xRy, d'où x̄ = ȳ. �

Dé�nition 3.6. soit (E,R) un ensemble E muni d'une relation d'équivalence R. On appelle
ensemble quotient de E par R, l'ensemble noté E/R des classes d'équivalences modulo
R.

Proposition 3.7. L'ensemble quotient E/R d'un ensemble E par une relation d'équivalence
R est une une partition de E. De plus, l'application π : E → E/R, x 7→ x̄ est une surjection
appelée surjection canonique associée à R.

Preuve. Les classes d'équivalences sont non vides, disjointes deux à deux et leur réunion
est l'ensemble E. �

Exemple 3.8. L'ensemble quotient de Z par la relation de congruence modulo n, est noté
Z/nZ. En utilisant la division euclidienne, on montre que Z/nZ = {0̄, 1̄, . . . , n− 1}
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Théorème 3.9. (Décomposition canonique d'une application). Soit E un ensemble muni
d'une relation d'équivalence R, F un ensemble et f : E → F une application. On suppose
que

∀x, y ∈ E, xRy ⇒ f(x) = f(y)

Alors il existe une application f̄ : E/R → F unique telle que f = f̄ ◦ π, où π : E → E/R
est la surjection canonique.
Si de plus ∀x, y ∈ E, xRy ⇔ f(x) = f(y), alors f̄ est injective.

I On interprète ce théorème en disant qu'il existe une application f : E/R → F unique
telle que le diagramme suivant soit commutatif.

E - F

6

E/R

@
@

@@R

π

f

f

3.3 Relations d'ordre

Dé�nition 3.10. Une relation binaire ≺ sur E est dite relation d'ordre si elle est ré�exive,
antisymétrique et transitive. Le couple (E,≺) est dit ensemble ordonné.
Deux éléments x et y sont dits comparables, si x ≺ y ou x ≺ y. Un ordre est dit total si
deux éléments quelcoques sont comparables.
Un ordre qui n'est pas total est dit partiel.
Soit (E,≺) un ensemble ordonné. On appelle chaîne de E, toute partie de E totalement
ordonnée.

Exemple 3.11.
1 - Dans R, les relations x ≤ y et x ≥ y, sont des relations d'ordre total.
2 - Dans N, la relation de divisibilité est une relation d'ordre partiel.
3 - Soit E un ensemble. La relation d'inclusion ⊂ dans P(E) est une relation d'ordre. Si E
contient au moins deux éléments, cet ordre est partiel.

Dé�nition 3.12. Soit A une partie d'un ensemble ordonné (E,≺). Un élément M (resp.
m) de E est dit majorant (resp. minorant) de A si ∀x ∈ A, on a x ≺ M (resp. m ≺ x).
Lorsqu'un majorant (resp. un minorant) appartient à A (ce qui n'est pas toujours le cas ),
on dit que c'est le plus grand élément ou maximum (resp. plus petit élément ou minimum)
de A.

Exemple 3.13. Dans (R,≤), l'intervalle [0, 1[ possède un plus petit élément qui est 0. Tout
réel supérieur à 1 est un majorant de [0, 1[, mais [0, 1[ ne possède pas de plus grand élément.

Dé�nition 3.14. Soit (E,≺) un ensemble ordonné et A une partie majorée (resp. minorée)
de E.
On appelle borne supérieure (resp. borne inférieure) de A s'il existe, le plus petit des
majorants (resp. plus grand des minorants) de A.
La borne supérieure de A dans (E,≺) est notée sup(A) et la borne inférieure est notée
inf(A).
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Exemple 3.15. Dans (R,≤) toute partie non vide majorée possède une borne supérieure
et toute partie non vide minorée possède une borne inférieure. (voir cours d'Analyse). Ce
n'est pas le cas pour (Q,≤), en e�et, A = {x ∈ Q+ : x2 ≤ 2} est majorée par 2, mais n'a
pas de borne supérieure dans Q.

3.4 Ordre naturel sur N
Théorème 3.16. Toute partie non vide de (N,≤) possède un plus petit élément.

Preuve. Soit A une partie non vide de N. Notons E l'ensemble de tous les minorants de A.
E n'est pas vide car 0 ∈ E. Montrons qu'il existe n0 ∈ E tel que n0 +1 /∈ E. Sinon, ∀n ∈ E,
on a n + 1 ∈ E. Ceci impliquerait par récurrence que E = N. Ce qui est absurde. Soit
alors n0 ∈ E tel que n0 + 1 /∈ E. Montrons que n0 ∈ A. Sinon, n0 < x,∀x ∈ A, entraînant
n0 + 1 ≤ x, ∀x ∈ A, c'est à dire n0 + 1 ∈ E, c'est une contradiction. Par suite, n0 ∈ A.
Comme n0 est un minorant de A, c'est le plus petit élément de A. �

Théorème 3.17. Toute partie non vide majorée E de N est �nie et possède un plus grand
élément.

Preuve. Considérons l'ensemble F ⊂ N des majorants de E. Alors F possède un plus petit
élément m. Montrons que m ∈ E. Sinon, ∀n ∈ E, n < m. Il en résulte que m − 1 est un
majorant de E, une contradiction. Donc m ∈ E et on a E ⊂ {0, 1, . . . ,m}. Par conséquent
E est �ni. �

Théorème 3.18. Toute suite décroissante xn dans N est stationnaire. i.e. il existe n0 ∈ N,
tel que xn = xn0 , ∀n ≥ n0

Preuve. Par l'absurde, supposons que la suite n'est pas stationnaire, alors ∀k, il existe
n > k tel que xk > xn. Par conséquent il est possible de construire une suite xk0 > xk1 >
, . . . , > xks

> . . . strictement décroissante. L'ensemble E = {xk : k ∈ N} est alors une partie
in�nie de N majorée par x0. Contradiction. �

Théorème 3.19. (division euclidienne) Soient a, b ∈ Z, avec b 6= 0. Alors il existe q, r ∈ Z,
uniques tels que a = bq + r et 0 ≤ r < |b|.
q et r sont appelés respectivement quotient et reste de la division euclidienne de a par
b.

Preuve. Soit E = {a− bs ∈ N : s ∈ Z} ∩N, E 6= ∅. Donc E possède un plus petit élément
r. Montrons que r < |b|.
I Si b > 0 et r > b, on a a − b(q + 1) = a − bq − b = r − b > 0. Donc a − b(q + 1) ∈ E et
a− b(q + 1) < r ce qui contredit la minimalité de r.
I Si b < 0 et r > −b, on a a− b(q − 1) = a− bq + b = r + b > 0. Donc a− b(q − 1) ∈ E et
a− b(q − 1) < r ce qui contredit la minimalité de r.
Unicité : Supposons que a = bq + r = bq′ + r′ et 0 ≤ r, r′ < |b| . Supposons que r 6= r′. On
peut supposer que r < r′, alors b(q − q′) = r′ − r. Donc |b| | r′ − r, par suite, |b| ≤ r′ − r.
Comme r′ − r ≤ r′, il en résulte que |b| ≤ r′, ce qui est absurde. Donc r = r′ et par
conséquent q = q′. �

Exemple 3.20. Le quotient et le reste de la division euclidienne de -23 par 6 sont - 4 et 1,
car −23 = 6 · −4 + 1.
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4 Arithmétique dans Z
4.1 Relation de divisibilité

Dé�nition 4.1. (Rappel) Soient a, b ∈ Z, on dit que a divise b ou que a est un diviseur
de b ou que b est un multiple de a, et on note a | b, s'il existe q ∈ Z, tel que b = aq.
Si a 6= 0, l'entier q est alors unique et il est noté b

a , c'est le quotient de b par a.
I Pour tout n ∈ Z, On pose nZ = {kn ∈ Z : k ∈ Z}, l'ensemble des multiples de n.

Proposition 4.2.
1 - a | b ⇔ bZ ⊂ aZ.
2 - ∀a ∈ Z, a|a.
3 - ∀a, b ∈ Z, a|b et b|a ⇒ b = ±a.
4 - ∀a, b, c ∈ Z, a|b et b|c ⇒ a|c.
5 - La relation de divisibilité est une relation d'ordre partiel dans N.
6 - ∀a, b, c ∈ Z, si a|b et a|c alors ∀α, β ∈ Z, a|αb + βc.
7 - Si a | b et b est non nul, alors |a| ≤ |b|. En particulier, l'ensemble des diviseurs de b est
�ni.

I On note Da, l'ensemble des diviseurs positifs de a.

Exemple 4.3. D12 = {1, 2, 3, 4, 6, 12}.

Proposition 4.4. Soient a, b ∈ Z, avec b 6= 0, alors b | a ⇔ le reste de la division
euclidienne de a par b est égal à 0.

4.2 PGCD et PPCM

Dé�nition 4.5. Soient a, b deux entiers naturels non nuls.
On appelle PGCD de a et b noté a ∧ b, le plus grand élément de Da ∩ Db.
On appelle PPCM de a et de b le plus petit multiple strictement positif commun à a et à b,
qu'on note m ∨ n.
Généralisation : Soient a1, a2, . . . , an des entiers naturels non nuls :
Le PGCD de la famille a1, a2, . . . , an, qu'on note a1 ∧a2 ∧ . . .∧an, est le plus grand élément
de Da1 ∩ Da2 ∩ . . .Dan

.
Le PPCM noté a1 ∨ a2 ∨ . . . ∨ an est le plus petit élément de a1N∗ ∩ a2N∗ ∩ . . . ∩ anN∗.

Remarque 4.6. On dé�nit le PGCD et le PPCM d'entiers relatifs comme étant le PGCD
et le PPCM de leurs valeurs absolues.

Dé�nition 4.7. Deux entiers a et b sont dits premiers entre eux, si les seuls diviseurs
de a et b sont 1 et −1. C'est à dire a ∧ b = 1

Exemples 4.8.
1. D12 = {1, 2, 3, 4, 6, 12}, D15 = {1, 3, 5, 15}. D12 ∩ D15 = {1, 3}. Donc On a 12 ∧ 15 = 3.
12N∗ = {12, 24, 36, 48, 60, 72, . . .}, 15N∗ = {15, 30, 45, 60, 75, 90, . . .}. On a 12N∗ ∩ 15N∗ =
{60, . . .}, donc 12 ∨ 15 = 60.
2. D12 = {1, 2, 3, 4, 6, 12}, D35 = {1, 5, 7, 35}. On a D12 ∩ D35 = {1}. Par conséquent 12 et
35 sont premiers entre eux.

Proposition 4.9. Soient a, b deux entiers naturels non nuls, alors :
1 - a ∧ b = d ⇔ d ∈ Da ∩ Db, et ∀c ∈ Da ∩ Db, on a c | d.
2 - a ∧ b = a ⇔ a ∨ b = b ⇔ a | b
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Théorème 4.10. Soient a, b deux entiers naturels non nuls, alors :
1 - aZ + bZ = (a ∧ b)Z.
2 - aZ ∩ bZ = (a ∨ b)Z.

Preuve.

1 - Posons H = aZ + bZ = {z = ax + by : x, y ∈ Z}, alors H est un sous-groupe de (Z,+).
D'après la caractérisation des sous-groupes de (Z,+), il existe c ∈ N, tel que H = cZ.
Montrons que c est égal à d le PGCD de a et b.
D'une part en posant x = 1 et y = 0, on obtient a ∈ cZ, donc c | a. D'autre part, en prenant
x = 0 et y = 1, on obtient b ∈ cZ, donc c | b. Il en résulte que c | d.
Réciproquement, on a d | a et d | b. Donc a ∈ dZ et b ∈ dZ, par suite aZ + bZ ⊂ dZ, d'où
cZ ⊂ dZ, ce qui implique que d | c.
2 - Posons G = aZ ∩ bZ. On a G est un sous-groupe de Z, car intersection de deux sous-
groupes. Il existe s ∈ N, tel que G = sZ. Montrons que m = s. On a s ∈ aZ et s ∈ bZ, donc
a | s et b | s, d'où m | s.
Réciproquement, puisque m ∈ aZ et m ∈ bZ, on a m ∈ aZ ∩ bZ = sZ, d'où s | m. �

Corollaire 4.11. Soient a, b deux entiers et d = a∧ b. Alors il existe u, v ∈ Z : ua+ vb = d.

Théorème 4.12. (Bézout) Soient a, b ∈ Z, alors a et b sont premiers entre eux, si et
seulement si, il existe α, β ∈ Z : αa + βb = 1.

Preuve. Supposons que a ∧ b = 1, alors d'après le corollaire 4.11, il existe α, β ∈ Z :
αa + βb = a ∧ b = 1.
Réciproquement, si'il existe α, β ∈ Z : αa + βb = 1, alors a ∧ b | αa + βb = a ∧ b = 1. Donc
a ∧ b = 1. �

Exemple 4.13.
Montrons que ∀n ∈ Z, x = 11n +5 et y = 9n +4 sont premiers entre eux. Soit d un diviseur
commun à x et à y. On a d | 9x− 11y = 45− 44 = 1

Proposition 4.14.
1 - Soient a, b, c ∈ N∗, alors ac ∧ bc = c(a ∧ b).
2 - Soient a, b ∈ N∗ et s ∈ Da ∩ Db. Alors a

s ∧
b
s = a∧b

s .
3 - Soient a, b ∈ N∗ et d ∈ Da ∩ Db. Alors : a ∧ b = d ⇔ a

d ∧
b
d = 1.

Preuve.

1 - Posons d = a ∧ b. On a cd | ac et cd | bc. Donc cd | ac ∧ bc. Réciproquement, soient
α, β ∈ Z : d = αa + βb. Donc dc = αac + βbc. Par suite dc | ac ∧ bc.
2 - Posons d = a∧b. Alors s | d et d

s |
a
s ∧

b
s . Réciproquement, il existe u, v ∈ Z : ua+vb = d.

Donc ua
s + v b

s = d
s , par suite

a
s ∧

b
s |

d
s .

3 - En utilisant 2, a ∧ b = d ⇔ a∧b
d = 1 ⇔ a

d ∧
b
d = 1. �

Proposition 4.15. Soient a, b1, . . . , bn ∈ N∗. On suppose que ∀k = 1, . . . , n a ∧ bk = 1,
alors a ∧ (b1b2 · · · bn) = 1

Preuve. Il su�t de montrer le résultat pour n = 2 et procéder par récurrence. Supposons
que a∧b1 = a∧b2 = 1. αa+βb1 = 1. Donc αab2+βb1b2 = b2. Il existe u, v ∈ Z : ua+vb2 = 1,
donc ua + v(ab2 + vβb1b2) = 1, (u + b2)a + vβb1b2 = 1, d'où a ∧ b1b2 = 1 �

Corollaire 4.16. Soient a, b ∈ N premiers entre eux, alors ∀m,n ∈ N, am et bn sont
premiers entre-eux.

Théorème 4.17. (Gauss) Soient a, b, c tois entiers tels que a | bc et a ∧ b = 1. Alors a | c.
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Preuve. αa + βb = 1. Donc αac + βbc = c. Comme a | ac, et a | βbc, on a a | c. �

Théorème 4.18. Soient a1, a2, . . . , an des entiers premiers entre eux deux à deux. Si ai | b,
∀i = 1, . . . , n, alors a1 · a2 · . . . · an | b.

Preuve. on montre le résultat pour n = 2 et on procéde par récurrence sur n. On a
b = c1a1 = c2a2. Donc a1 | c2a2. Comme a1 ∧ a2 = 1, on a d'après le théorème de Gauss,
a1 | c2. Donc c2 = d2a1 et b = d2a1a2. Par conséquent, a1a2 | b �

Proposition 4.19. Soient a, b ∈ N∗, alors (a ∨ b)× (a ∧ b) = ab

Preuve. Posons a = a′d et b = b′d. Alors a′∧b′ = 1. On a a′b′d = a′b = ab′. Donc m | a′b′d.
Réciproquement, posons m = xa = yb. Donc xa′ = yb′. Par conséquent a′ | yb′. Or a′ ∧ b′ =
1, donc d'après le théorème de Gauss, a′ | y. On a aussi b′ | x. Posons y = ka′, on a
m = ka′b = ka′b′d. par suite, a′b′d | m, d'où m = a′b′d. md = a′db′d = |ab|

Corollaire 4.20. Soient a, b ∈ N, alors a ∧ b = 1 ⇔ a ∨ b = ab �

4.3 Algorithme d'Euclide

Lemme 4.21. Soient a, b, q ∈ Z. Alors a ∧ b = b ∧ (a− bq).

Preuve. Posons d = a ∧ b et d′ = b ∧ (a− bq). On a d | a et d | b, donc d | b et d | (a− bq),
il s'ensuit que d | d′.
Réciproquement, d′ | b et d′ | (a− bq). Donc d′ | b et d′ | bq + (a− bq) = a. D'où d′ | d. �

Théorème 4.22. (Algorithme d'Euclide) :
Soient a, b ∈ N. On dé�nit la suite d'entiers positifs r0, r1, . . ., par :
r0 = a, r1 = b.
On suppose rn−2 et rn−1 dé�nis :
Si rn−1 = 0 on pose rn = 0.
Si rn−1 6= 0, on dé�nit rn comme étant le reste de la division euclidienne de rn−2 par rn−1.
Alors :
1 - Il existe k tel que rk = 0.
2 - Le dernier reste non nul est égal au PGCD de a et b.

Preuve.

1 - La suite rk est décroissante dans N, donc elle est stationnaire. Il existe n ∈ N, tel que
rn = rk,∀k > n. On a en particulier, rn = rn+1, donc rn+2 = 0.
2 - Soit rn le dernier reste non nul. D'après le lemme, on a a ∧ b = r0 ∧ r1 = r1 ∧ r2 =
. . . = rn−1 ∧ rn, comme rn+1 = 0, on a rn | rn−1, ce qui implique que rn−1 ∧ rn = rn. D'où
a ∧ b = rn. �

Exemple 4.23. Soit à déterminer le PGCD de 1386 et 1274

a b r q
1386 1274 112 1
1274 112 42 11
112 42 28 2
42 28 14 1
28 14 0 2

Le dernier reste non nul est 14, c'est le PGCD cherché.
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L'algorithme d'Euclide permet aussi de déterminer les entiers u, v tels que ua + vb = a ∧ b,
appelés les coe�cients de Bézout.

Théorème 4.24. (Algorithme d'Euclide étendu :Détermination des coe�cients de Bézout)
Soient a, b ∈ Z. On note :
r0 = a, r1 = b.
Si rk et qk sont respectivement le quotient et le reste de la division euclidienne de rk−2 par
rk−1

On dé�nit les suites uk et vk par :
u0 = 1, u1 = 0 et uk = uk−2 − qkuk−1

v0 = 0, v1 = 1 et vk = vk−2 − qkvk−1

Alors uka + vkb = rk en particulier, si rn est le dernier reste non nul, alors una + vnb =
rn = a ∧ b

Preuve. On montre par récurrence sur k que uka + vkb = rk.
Si k = 0, on a u0 = 1 et v0 = 0, u0a + v0b = a = r0.
Si k = 1, on a u1 = 0 et v1 = 1, u1a + v1b = b = r1.
La relation est donc véri�ée pour k = 0 et k = 1.
Soit k ≥ 2. Supposons la relation vraie pour k − 1 et k − 2. On a :
uka + vkb = uk−2 − qkuk−1a + vk−2 − qkvk−1b = (uk−2a + vk−2b) − qk(uk−1a + vk−1b =
rk−2 − qkrk−1 = rk �

Exemple 4.25. Déterminons le PGCD et des coe�cients de Bézout pour le couple (224, 175)

a b r q
224 175 49 1 49=224-175 49=224-175
175 49 28 3 28 = 175− (49× 3) = 175− (224− 175)× 3 28 = (4× 175)− (3× 224)
49 28 21 1 21 = 49− 28 = (224− 175)− ((4× 175)− (3× 224)) 21 = (4× 224)− (5× 175)
28 21 7 1 7 = 28− 21 = (4× 175)− (3× 224)− (4× 224) + (5× 175) 7 = (9× 175)− (7× 224)
21 7 0 3 Fin

On a donc 224 ∧ 175 = 7 et 7 = (9× 175)− (7× 224)

4.4 L'équation ax + by = c dans Z
Théorème 4.26. L'équation ax+by = c possède une solution, si et seulement si, (a∧b) | c.
Lorsque cette condition est satisfaite, et si (x0, y0) est une solution particulière de l'équation,
alors tout autre solution (x, y) est de la forme x = x0 + kb′ et y0− ka′, k ∈ Z, où a′ =

a

a ∧ b

et b′ =
b

a ∧ b
.

Pour déterminer une solution particulière, on utilise l'algorithme d'Euclide pour déterminer
des coe�cients de Bézout (u, v) du couple (a, b). On a alors au + bv = d = a ∧ b. On pose
h =

c

d
, alors (x0, y0) = (uh, vh) est une solution particulière de l'équation.

Exemple 4.27. Soit à résoudre l'équation 224x + 175y = 21. On a 224∧ 175 = 7 | 21, donc
l'équation possède des solutions. On a d'après l'éxemple précédent, −(7×224)+(9×175) = 7.

Donc (−21×224)+(27×175) = 21. Une solution particulière est donc (−21, 27). a′ =
224
7

=

32, b′ =
175
7

= 25. La solution générale de l'équation est (x, y) = (−21 + 25k, 27 − 32k),
k ∈ Z.
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4.5 Nombres premiers et factorisation

Dé�nition 4.28. Un nombre entier naturel p est dit premier, s'il est di�érent de 1 et ses
seuls diviseurs positifs sont 1 et p.

Exemple 4.29. 2, 3, 5, 7, ... sont premiers. 1, 9, 15 ne sont pas premiers.

Théorème 4.30. Tout entier > 1 est divisible par un nombre premier.

Preuve. Soit n > 1 et A l'ensemble des entiers > 1 qui divisent n. A est une partie non
vide de N (n ∈ A), donc A possède un plus petit élément p. Montrons que p est premier.
Soit d > 1 un diviseur de p. On a d ≤ p. Or d | n. D'où, par minimalité de p, d = p. �

Théorème 4.31. (Euclide) Il existe une in�nité de nombres premiers.

Preuve. Soit p un nombre premier. Posons n = p! + 1. Alors n est divisible par un nombre
premier q. Montrons que q > p. Raisonnons par l'absurde et supposons que q ≤ p alors q | p!,
comme q | p!+1, on a q | n−p! = 1, ce qui est absurde. Donc q > p. Ainsi pour tout nombre
premier p, il existe un nombre premier q strictement plus grand que p. �

Remarque 4.32. Les nombres premiers forment une suite d'entiers. A l'heure actuelle, on
connait très peu de choses sur cette suite.

Proposition 4.33. Soit p est un nombre premier et n ∈ Z, alors ou bien p | n ou bien
p ∧ n = 1.

Preuve. Supposons p - n et soit d = p ∧ n = 1. Comme d | p, on a d = 1 ou p.
Supposons que d = p, alors p | n. Absurde. Donc d = 1. �

Corollaire 4.34. Soit p un nombre premier et a1, a2, . . . , an des entiers tels que p | a1 · a2 ·
. . . · an. Alors il existe i tel que p | ai.

Preuve. Par contraposition. Supposons que ∀i, p - ai, alors ∀i, p ∧ ai = 1, ce qui implique
que p ∧ (a1a2 · · · an) = 1 et par suite p - (a1a2 · · · an) �

Théorème 4.35. Pour tout entier naturel a > 1, il existe des nombres premiers p1 < p2 <
. . . < pk, des entiers naturels non nuls m1,m2, . . . ,mk tels que a s'écrit de manière unique
sous la forme a = pm1

1 pm2
2 . . . pmk

k .

Preuve. Existence par récurrence. Si n est premier, il n'y a rien à démontrer. Si n n'est
pas premier, alors il divisible par par un nombre premier p. Soit p1 le plus petit nombre
premier divisant n. Soit pm1

1 la plus grande puissance de p1 divisant a. On pose b = a/pm1
1 .

On a p1 ∧ n = 1 et b < a, on applique alors l'hypothèse de récurrence à b. On a alors
b = pm2

2 . . . pmk

k , d'où le résultat.

Unicité, par récurrence, si a = pm1
1 pm2

2 . . . pmk

k = qs1
1 qs2

2 . . . qst
t ∈ N. D'après le choix de p1

et q1 on a p1 = q1. Donc l'égalité devient pm1
1 pm2

2 . . . pmk

k = ps1
1 qs2

2 . . . qst
t . On applique alors

l'hypothèse de récurrence à a/p1. �

Exemple 4.36. 1260 = 2 · 630 = 22 · 315 = 22 · 3 · 105 = 22 · 32 · 35 = 22 · 32 · 5 · 7.

Remarque 4.37. : Alors qu'on connait des algorithmes assez rapides pour tester si un
nombre très grand est premier ou non, il n'existe pas avec les ordinateurs actuels de mé-
thode su�sament rapide pour factoriser des nombres de quelques centaines de chi�res.
Cette propriété (di�culté de la factorisation), est utilisée dans certains procédés cryptogra-
phiques (méthode RSA) : mots de passe dans les réseaux informatiques, messages secrets,
etc....
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Proposition 4.38. Soient p1, p2, . . . pk des nombres premiers distincts et αi, βi, i = 1, . . . , k,
des entiers naturels eventuellement nuls. Alors
pα1
1 pα2

2 · · · pαk

k | pβ1
1 pβ2

2 · · · pβk

k ⇔ ∀i = 1, 2, . . . , k, αi ≤ βi

Preuve.

⇒ Puisque pi ∧ pj = 1,∀i 6= j, on a pαi
i | pβi

i , ce qui entraîne αi ≤ βi.
⇐ est claire. �

La factorisation permet de déterminer le PGCD et le PPCM de deux entiers. On a le :

Théorème 4.39. Si a = ps1
1 ps2

2 . . . psk

k et b = pt1
1 pt2

2 . . . ptk

k , où si, ti ∈ N (eventuellement
nuls), alors :
a ∧ b = pl1

1 pl2
2 . . . plk

k où li = min(si, ti).
a ∨ b = ph1

1 ph2
2 . . . phk

k où hi = max(si, ti)

Preuve.

1 - On a li ≤ αi et i ≤ βi. Donc pli
i | a et pli

i | b. Par suite, pli
i | a ∧ b, comme les pli

i sont
premiers entre eux deux à deux, il s'ensuit que pl1

1 pl2
2 . . . plk

k | a ∧ b.
Réciproquement, si c | a et c | b, alors c = pu1

1 pu2
2 . . . puk

k avec ui ≤ si et ui ≤ ti, par suite
ui ≤ li, ∀i. Donc c | pl1

1 pl2
2 . . . plk

k .

2 - Remarquons que min(si, ti) + max(si, ti) = si + ti. Alors on a a ∨ b =
ab

a ∧ b
=∏k

i=1 p
si+ti−min(si,ti)
i =

∏k
i=1 p

max(si,ti)
i �

Exemple 4.40. 180 = 22 · 32 · 5, 42 = 2 · 3 · 7. On a : 180 ∧ 42 = 2 · 3 = 6, 180 ∨ 42 =
22 · 32 · 5 · 7 = 1260.
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5 L'anneau Z/nZ, et arithmétique modulaire

5.1 Relation de congruence

Soit n un entier naturel non nul. On dé�nit dans Z la relation de congruence modulo n
par

x ≡ y [n] ⇔ n | x− y ⇔ ∃k ∈ Z : x− y = k · n

En particulier, x ≡ 0 [n] ⇔ n | x

Théorème 5.1.
1 - La relation de congruence modulo n est une relation d'équivalence dans Z.
2 - Pour tout x ∈ Z, la classe de x modulo n est l'ensemble x̄ = {x+kn ∈ Z : k ∈ Z} = x+kZ.
3 - L'ensemble quotient par cette relation d'équivalence est noté Z/nZ, et on a Z/nZ =
{0̄, 1̄, . . . , n− 1}

Preuve.

1 - Montrons que la relation de congruence modulo n est une relation d'équivalence :
La relation ≡ est ré�exive, car ∀x ∈ Z, n | x− x = 0.
La relation ≡ est symétrique, car ∀x, y ∈ Z, s n | x− y, alors n | y − x.
La relation≡ est transitive, car ∀x, y, z ∈ Z, n | x−y et n | y−z implique n | (x−y)+(y−z) =
x− z.
2 - y ∈ x̄ ⇔ n | y − x ⇔ ∃k ∈ Z : y = x + kn ⇔ y ∈ x = nZ.
3 - On a {0̄, 1̄, . . . , n− 1} ⊂ Z/nZ.
Réciproquement, soit x̄ ∈ Z/nZ. La division euclidienne de x par n donne x = qn + r, où
0 ≤ r ≤ n− 1. On a alors x ≡ r[n]. Donc x̄ = r̄ ∈ {0̄, 1̄, . . . , n− 1}.
En�n, si 0 ≤ k,m ≤ m − 1, et k̄ = m̄, alors 0 ≤ |k −m| ≤ n − 1. Comme n | k −m, on a
k −m = 0, d'où k = m. Le cardinal de Z/nZ est donc égal à n. �

Théorème 5.2. Sur Z/nZ on dé�nit les opérations + et · suivantes ∀x̄, ȳ ∈ Z/nZ :

x̄ + ȳ = x + y

x̄ · ȳ = xy

Alors ces opérations sont bien dé�nies et (Z/nZ,+, ·) est un anneau commutatif.

Preuve.

I (Z/nZ,+) est un groupe abélien :
Associativité : ∀x, y, z ∈ Z, on a :
(x + y) + z = (x + y + z) = (x + y) + z == x + (y + z) = x + y + z = x + (y + z).
Commutativité : ∀x, y ∈ Z, x + y = x + y = y + x = y + x.
Element neutre : 0 est l'élément neutre de +. ∀x ∈ Z, x + 0 = x.
Elements symétrisables : ∀x ∈ Z, x +−x = x + (−x) = 0.
I (Z/nZ,×) est un monoïde commutatif :
Associativité : ∀x, y, z ∈ Z, on a :
(x× y)× z = (x× y × z) = x× y × z = x× y × z = x× (y × z).
Commutativité : ∀x, y ∈ Z, x× y = x× y = y × x = y × x.
Elément neutre : 1 est l'élément neutre de ×. ∀x ∈ Z
x× 1 = x× 1 = x.
I La loi × est distributive par rapport à +.
∀x, y, z ∈ Z, x× (y + z) = x× (y + z) = xy + xz = xy + xz = (x× y) + (x× z) �

Corollaire 5.3. Soient a, b ∈ Z tels que a ≡ b [n] alors : ∀k ∈ N, ak ≡ bk
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On rappelle que dans Z/nZ, on a n | m ⇔ m̄ = 0̄, cette remarque permet parfois de traiter
les questions de divisibilité d'une façon plus simple, en utilisant les propriétés de l'anneau
(Z/nZ,+, ·)

Exemple 5.4. Montrons que ∀n ∈ N, on a 7 | 32n+1 + 2n+2.

Posons un = 32n+1 + 2n+2. Dans Z/7Z, on a ūn = 3̄2n+1 + 2̄n+2 = 9̄n · 3̄ + 2̄n · 4̄.

Or 9̄ = 2̄, donc ūn = 2̄n · 3̄ + 2̄n · 4̄ = 2̄n · (3̄ + 4̄) = 0̄.

Exponention rapide. dans certaines applications de l'arithmétique modulaire, par exemple
en cryptographie, on a besoin de calculer les puissances ak[n], où k est un très grand nombre
entier naturel. Alors on procède de la façon suivante :
1 - On décompose k en base 2, i.e. k =

∑m
i=0 εi2i, où εi ∈ {0, 1}.

2 - On calcule ai = a2i

[n], en utilisant la relation de récurrence ai+1 = (ai)2[n].
3 - ak =

∏
i:εi 6=0 ai[n].

Exemple 5.5. Calculons 673[100] On a 73 = 64 + 8 + 1 = 1 + 23 + 26.
62 = 36[100], 64 = 362 = −4[100], 68 = (−4)2 = 16[100], 616 = 56[100], 632 = 562 = 36[100],
664 = 362 = −4 = 96[100]. Donc 673 = 6× 16×−4 = 16[100].

5.2 Le théorème des restes chinois

Théorème 5.6 (Théorème des restes chinois). Soient m1,m2, . . . ,ms des entiers pre-
miers entre eux deux à deux, a1, a2, . . . , as des entiers quelconques. Alors il existe au moins
un entier x tel que x ≡ ai mod mi, ∀i = 1, . . . , s.
Si x0 est une solution, alors ∀x ∈ Z, x est solution, si et seulement si, m | x − x0, où
m = m1m2 . . .ms.
De plus, il existe une seule solution dans {0, 1, . . . ,m− 1}

Preuve. Posons m = m1m2 · · ·ms et hk = m/mk. Alors ∀k = 1, 2, . . . , s, on a : mk | hi,
si i 6= k. Par ailleurs, hk et mk sont premiers entre eux, donc il existe uk, vk ∈ Z, tels que
ukmk + vkhk = 1. Posons a =

∑s
i=1 aivihi. Alors modulo mk, on a

ā =
s∑

i=1

aivihi (1)

Comme mk | ki, ∀i 6= k, on a :

ā = akvkhk = ak(1− ukmk) = ak (2)

Exemple 5.7. Déterminons les entiers dont le reste de la division euclidienne par 7 est est
4 et le reste de la DE par 11 est 2.
En utilisant l'algorithme d'Euclide étendu, on a 4 = 11 − 7, 3 = 7 − 4 = 7 − (11 − 7) =
(2× 7)− 11, 1 = 4− 3 = (11− 7)− (2× 7) + 11 = (2× 11)− (3× 7).
On pose alors x = (2×11×4)−(3×7×2) = 88−42 = 46. Donc 46 est une solution particulière.

5.3 Entiers inversibles modulo n

Dé�nition 5.8. Soit n ∈ N∗. Un entier k ∈ Z est dit inversible modulo n, s'il existe m ∈ Z
tel que km ≡ 1 modulo n.
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On note Un = {k ∈ N : k < n et k est inversible modulo n }. Le cardinal de Un est noté
φ(n), appelé l'indicatrice d'Euler de n.

Proposition 5.9.
Soit n un entier naturel non nul et k un entier, alors k est inversible modulo n, si et
seulement si, k est premier avec n.

Preuve.

Supposons que k est inversible modulo n. Alors il existe m ∈ Z tel que km ≡ 1 modulo n.
i.e. n | km − 1. Donc il existe s ∈ Z tel que sn = km − 1, ou encore mk − sn = 1, ce qui
entraîne que k ∧ n = 1.
Réciproquement, supposons k∧n = 1, d'après Bézout, il existe m, s ∈ Z tels que mk+sn = 1.
Donc n | mk − 1. Par suite, km ≡ 1 modulo n. �

Exemples 5.10.
U18 = {1, 5, 7, 11, 13, 17}. φ(18) = 6
U15 = {1, 2, 4, 7, 8, 11, 13, 14}. φ(15) = 8

Remarque 5.11. L'inverse de k modulo n est déterminé par l'algorithme d'Euclide. En
e�et, on a ak + bn = 1, donc ka = 1

Remarque 5.12. On peut résoudre le système de congruences dans le théorème chinois en
calculant les inverses modulo n.

Exemple 5.13. Cherchons les entiers x dont le reste de la division euclidienne par 7 est 4
et le reste de la division euclidienne par 11 est 2. (voir exemple 5.7).
On a x ≡ 4 (mod 7) et x ≡ 2 (mod 11). Comme 7 et 11 sont premiers entre eux, une solution
existe d'après le théorème chinois.
On a x = 7a + 4 = 11b + 2. Donc 11b− 7a = 2. Donc modulo 7, on a 11b ≡ 2. Donc b ≡ 4,
par suite b = 7k + 4.
Donc x = 11× (7k + 4) + 2 = 46 + 77k.

Théorème 5.14 (Euler). ∀a ∈ Z, premier avec n, alors aφ(n) ≡ 1 modulo n.

Preuve. Soit a ∈ Un. Pour tout x ∈ Un, on a ax ∧ n = 1. Notons f(x) le reste de la
division euclidienne de ax par n, alors f(x) ∈ Un. Considérons l'application f : Un → Un,
tel que x 7→ f(x). Montrons que f est injective. Soient x, y ∈ Un tels que f(x) = f(y), alors
n | ax− ay = a(x− y). Comme n ∧ a = 1, d'après le théorème de Gauss, on a n | x− y. Or
0 < x, y < n, il en résulte que x−y = 0, donc x = y. Par conséquent f est injective. Comme
Un est �ni, f est bijective.
Posons Un = {x1, x2, . . . , xm}, où m = φ(n), alors on a f(x1)f(x2) . . . f(xm) ≡ x1x2 . . . xm

modulo n. Donc amx1x2 . . . xm ≡ x1x2 . . . xm modulo n. Posons y = x1x2 . . . xm, alors
n | y(1− am). Comme n ∧ y = 1, il en résulte que am ≡ 1 modulo n.
Soit maintenant a ∈ Z quelconque premier avec n, on note k le reste de la division euclidienne
de a par n. Alors a = qn+k, k ∈ Un. Alors puisque a ≡ k modulo n, on a aφ(n) ≡ kφ(n) ≡ 1,
modulo n. �

Théorème 5.15 (Le petit théorème de Fermat). Soit p un nombre premier. Alors
Up = {1, 2, . . . , p− 1}, φ(p) = p− 1 et on a

∀a ∈ Z, p | ap − a

Dé�nition 5.16. Soit n ∈ N∗ et a un entier premier avec n. Alors le plus petit entier non
nul k tel que ak ≡ 1, modulo n est appelé l'ordre multiplicatif ou période de a modulo
n. On le note ordn(a).

ordn = min{k ∈ N∗ : n | ak − 1}
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Exemples 5.17.
1 - Modulo 9, on a 22 ≡ 4, 23 ≡ 8, 24 ≡ 7, 25 ≡ 5, 26 ≡ 1. Donc ord9(2) = 6.
2 - Modulo 15, on a 42 ≡ 1. Donc Donc ord15(4) = 2.

Théorème 5.18. Soit n ∈ N∗ et a un entier premier avec n. Si k ∈ N, est tel que ak ≡ 1
modulo n, alors ordn(a) | k. En particulier, ordn(a) | φ(n).

Preuve. Notons d = ordn(a) et soit r le reste de la division euclidienne de k par d. On a
k = qd + r avec 0 ≤ r < m et ak ≡ (ad)q.ar ≡ 1 modulo n. Supposons que r 6= 0, on a
ad ≡ 1, par suite ar ≡ 1 modulo n. D'où par minimalité de d, on a d ≤ r. Une contradiction.
par conséquent r = 0 et d | k. �.

Exemple 5.19. Déterminons suivant les valeurs de n, le reste de la division euclidienne de
un = 7(7n) par 10.
Remarquons d'abord 7 ∧ 10 = 1. Calculons l'ordre de 7 modulo 10. On a 72 = 49 ≡ 9[10],
73 ≡ 63 ≡ 3[10], 74 ≡ 21 ≡ 1[10]. Donc l'ordre de 7 modulo 10 est égal à 4.
Posons 7n = 4k + r, alors un ≡ 74k+r ≡ 7r[10], où r ∈ {0, 1, 2, 3}.
Comme 7 ≡ 3[4], 7 est d'ordre 2 modulo 4. Par conséquent, on le résultat suivant
Si n est pair, 7n ≡ 1[4], 7n = 4k + 1, un ≡ 74k+1 ≡ 7[10].
Si n est impair, 7n ≡ 3[4], 7n = 4k + 3, un ≡ 74k+3 ≡ 3[10].
En conclusion, le reste de la division euclidienne de 7(7n) par 10 est égal à 7 si n est pair et
égal à 3 si n est impair.

Proposition 5.20. Soit n ∈ N∗ et a un entier premier avec n dont l'ordre multiplicatif
modulo n égal à d, alors

∀k ∈ N, ak est d'ordre d modulo n ⇐⇒ k ∧ d = 1

Preuve. Supposons que ak est d'ordre d. Posons m = d
k∧d . On a km = kd

k∧d = d k
k∧d . Il en

résulte que d | km, par suite (ak)m ≡ 1. Comme ak est d'ordre d, on a d | m = d
k∧d . Ce qui

implique k ∧ d = 1.
Supposons que k ∧ d = 1. On a (ak)d ≡ 1. Soit m ∈ N, tel que (ak)m ≡ 1. On a d | km.
Comme k ∧ d = 1, d'après le théorème de Gauss, d | m. �.

Théorème 5.21. (Propriétés de la fonction indicatrice d'Euler)
1 - Soient m1,m2, . . . ,mk sont des entiers premiers entre eux deux à deux, alors

φ(m1m2 · · ·mk) = φ(m1)φ(m2) · · ·φ(mk)

2 - Soient p un nombre premier et k ∈ N∗. Alors

φ(pk) = pk − pk−1

en particulier, φ(p) = p− 1
3 - Soient n =

∏s
k=1 pαk la factorisation de n en produit de nombres premiers. Alors

φ(n) =
s∏

k=1

(pαk

k − pαk−1
k ) = n

s∏
k=1

(1− 1
pk

)

4 -
∑

d|n φ(d) = n.
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Preuve.

1 - Il su�t de montrer le résultat pour k = 2 et de procéder par récurrence. Posons m =
m1m2, pour tout n ∈ N∗, notons, comme d'habitude, Un, l'ensemble des entiers naturels
< n premiers avec n. Soit x ∈ Um, notons ri le reste de la division euclidienne de x par mi.
On a ri = x− qimi et mi ∧ ri = mi ∧ qimi + ri = mi ∧ x. Comme m∧ x = 1, et m = m1m2,
on a mi ∧ x = 1, donc ri ∈ Umi

.
Considérons alors l'application f : Um → Um1 × Um2 , x 7→ (r1(x), r2(x)). où ri(x) est le
reste de la division euclidienne de x par mi. D'après le théorème des restes chinois, pour
tout (r1, r2) ∈ Um1 × Um2 , il existe x ∈ N unique tel que x < m et x ≡ ri[mi]. Comme
x∧mi = 1, pour i = 1, 2, on a x∧m = 1 i.e. x ∈ Um. Il en résulte que et f est une bijection.
Donc φ(m) = card(Um) = card(Um1)card(Um2) = φ(m1)φ(m2).
2 - Soit E = {1, 2, . . . , pk}, F = {m ∈ E : m ∧ pk = 1}, G = {m ∈ E : m | pk} On a
φ(pk) = card(F ) = card(E)− card(G) = pk − pk−1.
3 - Soit n =

∏s
k=1 pαk

k la factorisation de n en produit de nombres premiers. Alors :
φ(n) =

∏s
k=1 φ(pαk

k ) =
∏s

k=1(p
αk

k − pαk−1
k ) =

∏s
k=1 pαk(1− 1

pk
) = n

∏s
k=1(1−

1
pk

).
4 - Posons E = { 1

n , 2
n , 3

n , . . . , k
n , . . . n

n = 1} et Pour tout d | n, Fd = {k
d : 1 ≤ k ≤ n, et k∧d =

1}.
Montrons que les (Fd)d|n forment une partition de E.
Montrons que

⋃
d|n Fd = En.

Soit d | n et k
d ∈ Fd. Posons m = n

d , on a km
dm = km

n ∈ E car puisque k ≤ d, km ≤ n. d'où
Fd ⊂ E et

⋃
d|n Fd ⊂ E.

Réciproquement, soit k
n ∈ E, posons m = k ∧ n, k′ = k

m et d = n
m . Alors k′ ∧ d = 1 et

k′

d ∈ Fd. D'où E ⊂
⋃

d|n Fd.
Montrons que les (Fd)d|n sont deux à deux disjoints. Supposons que Fd ∩ Fd′ 6= ∅, Soient
k
d = k′

d′ ∈ Fd ∩ Fd′ . Alors kd′ = k′d. On a d | kd′ comme k ∧ d = 1, alors d | d′. De même on
a d′ | d. D'où d = d′ et Fd = F ′

d. �

Théorème 5.22. Soit p un nombre premier. Alors pour tout d ∈ N, l'équation xd ≡ 1,
modulo p possède au plus d solutions dans Up.

Preuve. Les solutions de l'équation xd ≡ 1 modulo p sont les racines du polynôme Xd − 1
dans le corps Z/pZ. Le nombre des racines d'un polynôme sur un corps est toujours inférieur
ou égal au degré du polynôme. �

Théorème 5.23. Soit p un nombre premier. Alors il existe un entier dont l'ordre multipli-
catif est égal à p− 1

Preuve. Posons n = p−1 = card(Up). Soit d | n, notons Ed l'ensemble des éléments d'ordre
multiplicatif d dans Up. Nous allons montrer que card(Ed) ≤ φ(d).
Tout élément a d'ordre d est solution de l'équation ad ≡ 1 modulo p. NotonsRd l'ensemble de
ces solutions. On a Ed ⊂ Rd. D'après le Théorème 5.22, on a card(Ed) ≤ d. Soit maintenant
a ∈ Up un élément d'ordre d. Notons H = {1, a, a2, . . . , ad−1} modulo p. Comme (ak)d ≡ 1
modulo p, on a H ⊂ Rd. D'où d = card(H) ≤ card(Rd) ≤ d. Donc H = Rd. Il en résulte
que Ed ⊂ H. Or, d'après la proposition 5.20, l'ordre multiplicatif de am est égal à d, si et
seulement d ∧ m = 1. Il en résulte que card(Ed) ≤ φ(d). Comme tout élément de Up est
d'ordre un diviseur d de n, on a n =

∑
d|n card(Ed). Par conséquent n =

∑
d|n card(Ed) ≤∑

d|n φ(d) = n, donc
∑

d|n card(Ed) =
∑

d|n φ(d), ou encore
∑

d|n(φ(d)−card(Ed)) = 0. Par
suite, card(Ed) = φ(d), ∀d | n, en particulier card(En) = φ(n). D'où Un contient un élément
a d'ordre n. �

26



Université Chouaïb Doukkali � Faculté des Sciences
Département de Mathématiques

Algèbre 1
Responsable : A. Haïly

Dé�nition 5.24. Tout élément d'ordre p− 1 modulo p est appelé élément primitif mo-
dulo p.

Exemple 5.25. Cherchons un élément primitif modulo 17. Cet élément doit avoir un ordre
multiplicatif égal à 17-1=16.
Essayons avec 2. On a 22 ≡ 4, 23 ≡ 8, 24 = 16 ≡ −1. Donc 28 ≡ −12 = 1. D'où l'ordre
multiplicatif de 2 est ≤ 8. Donc 2 n'est pas un élément primitif modulo 17.
Essayons avec 3. On a 32 = 9, 33 = 10, 34 = 13, 35 = 5, 36 = 15, 37 = 11, 38 = 16 = −1.
Donc ordre(3) > 8, comme ordre(3) | 16, on a ordre (3) = 16. 3 est un élément primitif
modulo 17 .

Remarque 5.26. Si n n'est pas premier, le Théorème précédent n'est plus valable. En e�et,
par exemple si n = 8, U8 = {1, 3, 5, 7} et φ(8) = 4. Modulo 8 on a, 32 = 9 ≡ 1, 52 = 25 ≡ 1,
72 = 49 ≡ 1. Par suite il n'y a pas d'élément d'ordre 4 modulo 8.

Théorème 5.27. Soit p un nombre premier et α ∈ Up un élément primitif modulo p,
l'application :

f : {0, 1, . . . , p− 2} −→ Up

k 7−→ αk modulo p

est une bijection. L'application réciproque est appelée le logarithme discret de base α.
On note k = Dlogα(x).
Si x ∈ Z, non divisible par p, Dlogα(x) = Dlogα(r), où r est le reste de la division euclidienne
de x par p.
On a donc ∀x ∈ Z et k ∈ {0, 1, . . . , p− 2}

k = Dlogα(x) ⇔ αk = x modulo p

de plus, Dlogα(xy) = Dlogα(x) + Dlogα(y) modulo p− 1.

Preuve. Puisque card(Up) = p− 1, il su�t de montrer que f est injective. Soient m ≥ n ∈
{0, 1, . . . , p− 2} tels que αm = αn. Alors αm−n ≡ 1 modulo p. Comme α est d'ordre p− 1,
on a p− 1 | m− n et puisque 0 ≤ n ≤ m ≤ p− 2, on a m− n = 0. �

Exemple 5.28. On reprend l'exemple 5.25. On a 3 est un élément primitif modulo 17 et
37 ≡ 11 modulo 17. Donc Dlog3̄(11) = 7 modulo 17.

5.4 Applications de l'arithmétique à la cryptographie

L'arithmétique a plusieurs applications dans le domaine de la sécurité de l'information.

1. Mots de passe. Pour certains nombres premiers très grands, le calcul du logarithme
discret est très di�cile. La seule méthode pour calculer le logarithme discret d'un entier y,
est la méhode qui consiste à tester tous les nombres entiers naturels k ≤ p − 2. Ce calcul
peut prendre un temps énorme même avec le plus rapide des ordinateurs.
Par opposition le calcul de la puissance f(k) = αk modulo p, où α est un élément primitif
modulo p, est facile, mais la fonction inverse est di�cile à déterminer. On dit que f est une
fonction à sens unique.
Ce type de fonction est utilisé en cryptographie, particulièrement pour ouvrir des sessions
(compte, e-mail, etc..) avec des mots de passe et les échanges de clés.

Un utilisateur 'A' décide de créer un compte. Il compose son login (identi�ant : nom ou
email) et compose aussi un mot de passe x qu'il est le seul à connaitre. Le serveur calcule
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y = f(x), où f est une fonction à sens unique et associe y au login. Si 'A' compose le login
et son mot de passe x, le serveur calcule f(x). Comme f(x) = y, la session s'ouvre. Si une
autre personne tape un mot de passe x′ 6= x, on a f(x′) 6= y, la session ne s'ouvre pas.
Même si une personne arrive à connaître y, il lui sera très di�cile de trouver x, car f est
une fonction à sens unique.

2. Echange de clés. (Protocole de Di�e-Hellman) Deux personnes A et B décident
de créer un nombre N qui servira comme clé secrète à des échanges de communications
secrètes. Chacune de ces personnes dispose d'une clé secrète, n pour A et m pour B.
A envoie αn à B, B calcule (αn)m = αnm.
B envoie αm à A, A calcule (αm)n = αnm.
Donc A et B disposent tous les deux d'un nombre commun N = αnm qui sera la clé secrète.
Connaissant N , A ne peut connaitre la clé secrète de B, car il doit déterminer le logarithme
discret de N , le même problème se pose pour B.
En fait le calculs précédents se font de manière automatique par les serveurs de courrier
éléctronique, ou de téléphonie etc...

3. Cryptosystème RSA Une personne A choisit deux grands entiers naturels premiers
p et q (plus de 100 chi�res chacun) et calcule leur produit n = p.q. Puis elle choisit un
entier e premier avec φ(n) = (p− 1).(q − 1). En�n, elle publie sur le web, sa clef publique :
(RSA, n, e). Puis calcule d tel que ed ≡ 1 modulo (p − 1)(q − 1). Elle ne publie pas d c'est
sa clé secrète.
Une personne B veut envoyer un message à A. Il doit utiliser le système RSA avec les deux
entiers n et e (prenons par exemple n = 5141 = 53.97 et e = 7, premier avec 52·96=4992).
Il transforme en nombres son message en remplaçant par exemple chaque lettre par son
rang dans l'alphabet A = 1, B = 2, C = 3..... Par exemple le message 'SALUT' devient
x = (0019, 0001, 0012, 0021, 0020) = (x1, x2, x3, x4, x5). La personne B crypte le message
de la façon suivante en calculant les x7

i , modulo n : 197 ≡ 928, 17 ≡ 1, 127 ≡ 4179, 217 ≡
883, 207 ≡ 4102, le message devient :y = (0928, 0001, 4179, 0883, 4102) = (y1, y2, y3, y4, y5).
Il envoie ce message à A.
La personne A decrypte le message reçu en calculant les yd

i modulo n. En e�et,

yd
i = (xe

i )
d = xed

i = x
kφ(n)+1
i = (xφ(n)

i )k.xi modulo n

Or x
φ(n)
i ≡ 1, modulo n. Donc yd

i ≡ xi modulo n. Elle retrouve alors le message envoyé.

Supposons qu'une personne malveillante C a pu intercepter le message crypté. Elle pourra
décrypter le message si elle connait le nombre d. Pour cela, elle doit connaître (p− 1)(q− 1)
donc connaître p et q que seul A connaît. Pour cela C doit pouvoir factoriser n. Mais si
p et q sont deux nombres premiers très grands avec plusieurs centaines de chi�res, cette
factorisation est pratiquement impossible même avec le plus rapide des ordinateurs actuels.
Donc C ne pourra pas "pirater" le message.
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