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1 Logique et ensembles

1.1 Introduction

» La logique mathématique s’intéresse aux régles de construction de phrases mathématiques
correctes : propositions ou énoncés, et aux régles permettant d’établir la vérité de ces phrases.
» Le but de ce chapitre est de rappeler et de compléter les notions fondamentales sur les
ensembles et la logique.

» La notion d’ensemble est une notion premiére, qu’on admet et qu’on ne peut pas définir
a partir d’autres notions.

» Intuitivement, on peut considérer un ensemble E comme une “collection” d’objets qui sont
ses éléments.

» Dans certaines situations, les éléments d’un ensemble sont écrits entre deux accolades
{...}. Par exemple E = {a, b, ¢, d}.

» On note z € F pour signifier que = appartient & F ou que = est un élément de E. Si
x n’est pas un élément de E on note = ¢ E

Exemples 1.1. E = {1,2,3} est 'ensemble constitué des nombres 1,2 et 3. Ona 2 € E
mais 5 ¢ E.

» Les ensembles de nombres sont supposés connus, aussi nous les considérerons d’une ma-
niére systématique, sans les redéfinir. On rapelle les notations usuelles :

N, 'ensemble des nombres entiers naturels, N = {0, 1,2,...}.

Z, V’ensemble des entiers relatifs, Z = {...,—2,-1,0,1,2,...}.

Q, ’ensemble des nombres rationnels, Q = {% ipEZL,qEL}

R, I’ensemble des nombres réels contenant Q et les nombres irrationnels tels que /2, 7, e.
C, I'ensemble des nombres complexes, C = {a + bi : a,b € R}, o1 i? = —1.

1.2 Notion de proposition

» Les énoncés mathématiques sont constitués de phrases qu’on appelle propositions ou as-
sertions. Une proposition est un enoncé qui peut étre vrai ou faux. Par exemple " 24+2=4"
est une proposition vraie, " 5 < 3" est une proposition fausse. A toute proposition P on
attribue sa valeur de vérité, 1 ou ”V” si elle est vraie et 0 ou ”"F” si elle est fausse.

» Deux propositions P et @ sont dites équivalentes si elles ont la méme valeur de vérité
(elles expriment alors le méme contenu). On note alors P = Q. Ainsi, pour « € N, les deux
propositions P:" x < 7" et Q" x + 2 < 9”, sont équivalentes.

» Si P = (@, on dira aussi que ”P est vraie, si et seulement si, () est vraie”, ou que @ est
une condition nécessaire et suffisante pour P.

» Négation d’une proposition. A partir d’une proposition P on peut former sa négation
(ou son contraire) nonP notée aussi -P ou encore P, qui a la valeur de vérité contraire a
celle de P, suivant la table de vérité :

P|P
VI|IF
F\|V

Par exemple la négation de = € E est x ¢ F. La négation de x = y est © # y.

Proposition 1.2. P = P.
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PREUVE. Vérification immédiate sur la table de vérité.

P|P|P
VIF |V
FIVIF

1.3 Prédicat et quantificateurs

» On appelle prédicat ou forme propositionnelle, une proposition P(z,y, . ..), contenant
des variables z, y, ... , et dont la valeur de vérité dépend de ces variables. "z est pair" est un
prédicat. (La variable ici est ).

Les variables dans les prédicats sont souvent précédées par des quantificateurs. Dans le
langage mathématique, il y a deux quantificateurs :

» Le quantificateur universel : V (quelque soit ou pour tout). L’enoncé Vo € E on a P(x),
veut dire que tous les éléments z € E veérifie P(z).

Exemple 1.3. Vz € R,z? > 0.

» Le quantificateur existentiel : 3 (il existe au moins). L’énoncé 3z € E : P(z) veut dire
qu'’il existe au moins x € E qui vérifie P(x).

Exemple 1.4. 3z ¢ R: 2% = 2.

» On utilise parfois aussi le symbole 3! pour l'existence et 'unicité. 'z € E : P(x), veut
dire qu’il existe un seul x tel que P(z).

Exemple 1.5. 'z € R, : 22 =2,

» Un enoncé peut contenir deux ou plusieurs quantificateurs, 'ordre dans lequel ils sont
écrits est important. Ainsi une assertion qui commence par Vz, Jy n’est pas nécessairement
équivalente & celle qui commence par Jy, V.

Exemple 1.6. Vx € R, 3y € R : = < y est vraie, alors que Jy € R : Vz € R,z < y est fausse.

» Négation d’un prédicat avec quantificateur La négation des prédicats avec quanti-
ficateurs obéit aux régles suivantes :

» La négation de Vo € E, P(x) est 3z € E : P(x).

Exemple 1.7. la négation de "V € R, 2% > 0", est "Iz ¢ R: 22 < 0.

» La négation de dx € E : P(x) est Vo € E, P(x).

Exemple 1.8. la négation de "In e N:n+1=0"est "Vn e N:n+1#£0".

1.4 Connecteurs logiques

» A partir de deux propositions P et @ on peut former d’autres propositions a I’aide de
connecteurs logiques. Les plus importants sont les connecteurs et,ou, =, < .. ..

» La conjonction : P et (), notée aussi P A @Q, qui est vraie seulement si les deux propo-
sitions P et () sont vraies. On a la table de vérité suivante.
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P| Q]| Pet@
V|V \Y%
V| F F
F |V F
F|F F

Exemple 1.9. Soit € N, on considére les propositions P :” zest un diviseur de 24 (x |

24)" et Q" © < 6" . Pet @ est vraie pour z = 1,2, 3,4, 6, elle est fausse pour 8 et pour 5
par exemple.

Proposition 1.10. Soient P,Q, R trois propositions, alors :
1-PetQ=QetP

2-(PetQ)etR=Pet(QetR)

3-PetP=P.

4 - Principe de non contradiction : Pet (nonP) est toujours fausse.

Une théorie (ou un raisonnement) est dite contradictoire, si elle contient une proposition et
sa négation qui soient toutes les deux vraies.

» La disjonction P ou @, notée aussi PV Q) qui est vraie si I’'une au moins des propositions
P et Q est vraie :

P| Q| PouQ
V|V \Y%
V| F A%
F |V A%
F|F F

Exemple 1.11. Dans ’exemple 1.9 précédent P ou Q est vraie pour x = 0,1,2,3,4,5,6,8,12, 24.

Proposition 1.12. Soient P,Q, R trois propostions :
1-PouQ=QouP.

2-(PouQ)ouR =Pou(QouR).

3-PoubP=P

4 - Principe du tiers exclu : Pou (nonP) est toujours vraie.

Proposition 1.13. (Lois de De Morgan). Soient P et Q deux propositions, alors on a :
PetQ=PouQ
PouQ=PetQ

» L’implication logique P implique @, notée aussi P = (@, est donnée par la table de
vérité :

P|IQ|P=qQ
V|V A%
VI|F F
F |V A%
F|F V
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Proposition 1.14. Soient P et Q) deuz propositions, alors :
1-P=Q=PouQ.
2-P=Q=Q= P (principe de contraposition).

3-(P=Q)=PetQ

Exemple 1.15. La proposition Vz € R : x < 2 = x < 4 est vraie. Sa négation est
dreR:z<2et x> 4 est fausse.

» Double implication notée P < @, c’est la proposition (P = Q)et (Q = P) :

P|IQ|P&eQ
VIV Vv
VI|F F
F|V F
F|F \%

Remarque 1.16. Soient P et () deux propositions. P < @ est vraie, si et seulement si,
P = Q. Aussi, on écrira souvent P < @ pour signifier que P = Q.

Remarque 1.17. On peut combiner plusieurs connecteurs logiques avec plusieurs proposi-
tions par exemple (Pet Q) = R; (P = Q) = P, etc.

1.5 Raisonnements mathématiques.

Les théories mathématiques se basent sur un certain nombre de résultats admis sans dé-
monstration qu’on appelle axiomes. Par exemple, I'existence de I’ensemble N est I'un de
ces axiomes. Le but de ces théories est d’établir & partir de ces axiomes et la logique, des
résultats qu’on appelle théorémes, propositions, lemmes, propriétés, etc. . Les dé-
monstrations ou preuves de ces résultats, s’appuient sur des raisonnements logiques.
Dans la suite on expose les principales méthodes de raisonnements.

1 - Raisonnement par déduction ou raisonnement direct : On veut montrer que
P = Q. On suppose que P est vraie et avec une succession d’implications, on montre que
Q est vraie.

Exemple 1.18. Montrons que Yz € R, z > 1 = 2?4+ 2 — 2 > 0. Supposons que x > 1, on
az?+x>1+1=2 Doncaz?4+2—-2>0

2 - Raisonnement par contraposition : Pour montrer que P = @), il est parfois plus
simple de démontrer que @ = P.

Exemple 1.19. Montrons que Vz € N, si 22 est pair alors « est pair. Par contraposition,

supposons que z est impair et montrons que z2 est impair. On a : ¢ = 2k + 1 avec k € N.
Donc 22 = (2k + 1) = 4k? + 4k + 1 = 2k’ + 1, ot k' = 2k? + 2k, donc 22 est impair.

Exemple 1.20. Pour montrer que Vo € R;2? ¢ Q = z ¢ Q, il est plus facile de montrer
quez € Q=22€Q.

3 - Raisonnement par P’absurde : Si on suppose qu’une propriété P est fausse et qu’a la
fin du raisonnement on aboutit & une contradiction, alors P est vraie. (une contadiction est
une assertion du type @ et non Q).
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Exemple 1.21. Montrons la proposition P”+/2 ¢ Q”. On suppose que P est fausse. i.e.
V2 € Q. Par conséquent 3z = % € Q, avec p, q € N premiers enre eux (n’ont pas de diviseurs

2= Zé' Donc 2¢% = p?. Ce qui implique que 2 | p. On pose alors

communs), tels que 2 = z
p=2p'. On a 2¢*> = 4p’%. Ce qui entraine ¢*> = 2p’?, ou encore 2 | ¢. Ona 2 | pet 2| q, ce
qui est absurde car p et g sont supposés premiers entre eux. Cette contradiction montre que

non P est fausse. Donc P est vraie. C’est & dire que v/2 ¢ Q. |

4 - Raisonnement par contre-exemple : Pour montrer que la proposition ""Vz, P(z)" est
fausse on montre que Jx : P(x) n’est pas vérifié.

Exemple 1.22. 'assertion P :/ ¥n € N, 2n% + 1 est un multiple de 3’ est fausse car, par
exemple, n = 3 ne vérifie pas cette propriété. C’est un contre-exemple.

5 - Raisonnement par récurrence : Soit P une propriété, et ng € N. Si P(ng) est vraie
et si Yn > ng, P(n) = P(n+ 1), alors Vn > ng, P(n) est vraie.

Ainsi pour démontrer une propriété P(n) est vraie Vn > ng, on adopte alors le schéma
suivant :

Initialisation : On vérifie que P(ng) est vraie.

Hérédité : On montre que Vn > ng, P(n) = P(n+1).

Exemple 1.23. Pour n € N, posons S,, = > _, k. Montrons la propriété;

n(n—+1)

P(n): VvneN, S, = 5

Initialisation : P(0) est vraie.

Hérédité : Soit n € N, On suppose que P(n) est vraie (Hypothése de récurrence H.R). On a
Spi1 =8, +n+1= @ +n+1= ”(”H);FQ(”H) = ("+1)2(”+2). Donc P(n+ 1) est vraie.
On en déduit qu’elle est vraie pour tout n.

Exemple 1.24. Montrons que Vn € N,n > 4 = n? <27,

Initialisation : pour n = 4, 42 = 2% = 16. L’inégalité est vraie.

Hérédité : soit n > 4, supposons que n? < 2". On a 2"l = 227 = 27 4 2" D’aprés
I’hypothése de récurrence, 2" > n2? + n2. Or n? > 2n + 1,¥n > 4, il en résulte que
2l >n2 4 2n+1=(n+1)>%

Récurrence forte dans la récurrence forte on procéde selon le schéma de démonstration
suivant :

Initialisation : On vérifie que P(ng) est vraie.

Hérédité : On montre que si k € N est tel que ng < k < n, P(k) = P(n).

Alors Vn > ng, P(n) est vraie.

Exemple 1.25. Montrer que tout entier naturel supérieur ou égal & 2 posséde un diviseur
premier.

Initialisation : On démontre que 2 posséde un diviseur premier qui est lui-méme.

Hérédité : Soit n un entier supérieur ou égal & 2, on suppose que tous les entiers k tels que
2 < k < n possédent un diviseur premier (hypothése de récurrence) et I’on cherche a prouver
qu’il en est de méme pour n.

Ou bien n est premier alors il posséde un diviseur premier qui est lui-méme

Ou bien n est composé et il existe un entier d supérieur ou égal & 2 et strictement inférieur
n qui divise n. Alors, par hypothése de récurrence, d posséde un diviseur premier, qui est
aussi un diviseur de n.
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1.6 Inclusion et égalité entre deux ensembles

Définition 1.26. Soient F et F deux ensembles. On dit que F est inclus dans F', noté
E CF,si
Ve, r e E=x€F

On dit aussi que F est un sous-ensemble ou une partie de F.
La négation est £ ¢ F. On a

E¢gFeo3dreE:x¢F
Exemple 1.27. £ =1{0,1,2}, F ={1,2,3}, G={0,1,2,4} Ona E C G mais E ¢ F.
Proposition 1.28. Si E C F et F C G alors E C G.

Egalité de deux ensembles : Soient F et F' deux ensembles alors

(FE=F)s (ECFetFCE)

1.7 Ensemble défini par un prédicat

Soit P(x) un prédicat admissible, alors il existe un ensemble F = {z : P(x)}, qui est
I’ensemble de tous les éléments qui vérifient P.

Exemple 1.29. E={z e N:3 <z <8} =1{3,4,5,6,7,8}

Ensemble vide. Il existe un ensemble qui ne contient aucun élément, I’ensemble vide, noté
J.

Proposition 1.30. Pour tout ensemble E on a @ C E.

PREUVE. Sinon, 3z € @ : « ¢ E. Absurde car 3z € & est une proposition fausse. |

Singleton et paire : Soient z,y deux objets mathématiques distincts. Il existe un ensemble
{z} contenant seulement z appelé singleton de 1’élément x et un ensemble contenant x et y
noté {x,y}, appelé paire de z et y.

Ensemble des parties d’un ensemble : Soit E un ensemble. Il existe un ensemble noté
P(E) dont les éléments sont les sous-ensembles de E. P(E)={A: A C E}.

Exemple 1.31. Si E = {a,b,c}, alors P(E) = {&,{a}, {b}, {c},{a, b}, {a,c},{b,c}, E}.

1.8 Opérations sur les ensembles :

Soient E et F' deux ensembles, on définit :

La réunion : de F et F, EUF ={z:2 € Foux € F} (lire E union F).
L’intersection : de E et F, ENF ={z:2z € Fetx € F}. (lire E inter F).
Deux ensembles dont l'intersection est vide sont dits disjoints.

Proposition 1.32. Soient A, B,C trois ensembles, alors :

i-AUA=A, AUB=BUA, AU(BUC)=(AUB)UC).
ii-ANA=A, ANB=BNA, An(BNC)=(ANB)NC).

iii- AN(BUC)=(ANB)U(ANC), AU(BNC)=(AUB)N(AUCQC).
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Différence de deux ensembles I et F', E\F = {z € E: z ¢ I'}. (lire E moins F).

Si A C E, on définit le complémentaire de A dans E par A ou A ou C#, A= E\A. On
a:E\F=FENF.

Proposition 1.33. (Lois de De Morgan)

Soient A et B deux parties d’un ensemble I, alors :
i-AUB=ANB.

ii- ANB=AUB.

Différence symétrique de deux ensembles FE et F, EAF = (E\F)U (F\E). On a :
EAF = (EUF)\(ENF).

1.9 Partitions

Définition 1.34. Soit F un ensemble non vide. On appelle partition de E un ensemble A
de parties de E, (A C P(E), telle que :

1. Les éléments de A, sont non vides, (VA € A, A # ).

2. Tout élément de E est contenue dans un et un seul élément de A, (Vz € E,JA e Az €
A)

Exemple 1.35. Soit £ ={0,1,2,3,4,5}.

Ay = {{0,1},{4},{2,3,5}} est une partition de E.

A; ={2,{0,1,2},{4},{3,5}} n’est une partition de F car contient &.

As = {{0,1,2},{2,4},{3,5}} n’est une partition de E car 2 appartient & deux éléments
différents de As

Ag = {{0,1,2},{4,5}} n’est une partition de E car 3 n’appartient & aucun élément de Ay.
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2 Correspondances et Applications

2.1 Couples et produit cartésien

Définition 2.1. On appelle couple formé par deux éléments z et y I'expression (z,y) telle
que

({Z?,y) = (xlay/) T = x/ety = y,
x est la premiére composante ou premiére projection du couple.

y est la deuxiéme composante ou deuxiéme projection du couple.

Définition 2.2. Soient F et F' deux ensembles. Le produit cartésien F x F est I’ensemble
des couples (z,y) tels que x € E et y € F.

ExF={(z,y):x€FetyecF}
Si E=F, FE x E est noté parfois E2.

On définit de méme les triplets (x,y, z), les quadriplets (z,v, 2,t), et plus généralement les
n-uplets (21,2 ...,2,). Ainsi que les produits cartésiens E x F x G, E X F x G x H, et
plus généralement Fy x Fy X ... X E,.

2.2 Correspondances

Définition 2.3. On appelle correspondance, la donnée d’un triplet ¢ = (E, F,G) ou E
et F' sont deux ensembles et G une partie de F x F.

E est appelé ’ensemble de départ de ¢, F' est I’ensemble d’arrivée. G est le graphe de .
Si (z,y) € G, y est une image de x par ¢, = est un antécédent de y par .

Le domaine de définition de ¢ est 'ensemble D, = {z € E: 3y € F, (z,y) € G}.

Exemple 2.4. £ ={0,1,2,3}, F = {a,b,c}, G = {(0,b),(0,¢),(2,a),(3,a)}.

Définition 2.5. On appelle fonction une correspondance dans laquelle tout élément de
I’ensemble de départ posséde au plus une image.

Exemple 2.6. Soit E =R, F =R, G = {(x,y) € ExF : x = y*}. Alors G est le graphe d’une
fonction f. Son domaine de définition est Ry. Pour x € Dy =R, (z,y) € G & y = /x.

2.3 Applications

Définition 2.7. Une application f : F — F est une correspondance (E, F,G) telle que
Ve € B,y € F: (z,y) € G. i.e. tout élément de E posséde une et une seule image.
On note FZ ou F(E, F) ’ensemble de toutes les applications de E dans F.

» Une application est complétement définie par son ensemble de départ, son ensemble d’ar-
rivée et 'image de chaque élément de ’ensemble de départ.

» Deux applications f et g sont égales si elles ont méme ensemble de départ, méme ensemble
d’arrivée et pour tout élément x dans I’ensemble de départ on a f(z) = g(x).

Exemple 2.8. On a une application f : R — R, définie par :

202 —3zx+1 siz<1
L sinon.

o) = {

[x—1]”
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» Soit E C F. L’application ¢ : E — F, définie par +(z) = z, s’appelle I’injection cano-
nique de E dans F. Si F = F, Vapplication Ig : E — E, Ig(z) = x, notée aussi Idg, est
appelée 'application identique de E ou identité de E.

» Soit f : £ — F une application. A C E. L’application fj4 : A — F, définie par
fia(z) = f(x), Vo € A, est appelée la restriction de f, a A. On dit aussi que f est
un prolongement de f| .

» Trés souvent, par abus de notation, une application et sa restriction sont désignées par le
méme symbole. Ainsi, 'application = +— sin x, désigne aussi bien ’application sinus R — R,
que cette application de [0, 27] dans R.

» Composée de deux applications : Soient f: E — F, g: F — G, la composée de g et
de f est lapplication go f : E — G, définie par g o f(z) = g(f(z)).

Exemple 2.9. Soient f,g: R — R, définies par f(z) = 2% et g(x) =+ 1 Ve € R. On a
gof(x)=a22+1, fog(x) = (x+1)?> = 2% + 22 + 1. Noter que fog # go f.

Proposition 2.10. Soit f : E — F une application folgp = f et I[po f = f.
Soient f : E— F,g: F — G, h: G— H, trois applications : on a : (hog)of=ho(gof).

- Soit f: F — F une application, A une partie de E, B une partie de F.
- On appelle image directe de A par f I'ensemble f(A)={ye F:3x € E, y = f(z)}.

~1
- On appelle image réciproque de B par f 'ensemble f (B)={z € E: f(z) € B}.

Exemple 2.11. Soit f : R — R définie par f(z) = 22. On a f(R) = R4, _fl({4}) ={2,-2},
—1
f{-1}) =2

2.4 Injection, surjection, bijection

Définition 2.12. Soit f: F — F une application :

f est dite injective si Va, 2’ € E, f(x) = f(2') = x = 2'. i.e. tout élément de F admet au
plus un antécédent.

On dit aussi que f est une injection de E dans F.

f est dite surjective, si tout y € F' admet un antécédent dans F.

On dit aussi que f est une surjection de E sur F.

f est dite bijective, si tout élément de F' posséde un et un seul antécédent.

f est bijective, si et seulement si, elle est injective et surjective.

On dit aussi que f est une bijection de F sur F.

Exemple 2.13.

1 - L’application N — N, n — n + 1, est injective non surjective. (0 n’a pas d’antécédent).
2 - L’application f : N — N, définie par f(0) =0 et f(n) =n —1, si n > 1, est surjective
non injective.

3 - L’application Z — Z, x — 2, n’est ni injective ni surjective.

Proposition 2.14. Soient f: E — F et g: F — G deuz applications.
Si f et g sont injectives, alors g o f est injective.
Si f et g sont surjectives, alors g o f est surjective.

Théoréme 2.15. Soit f: E — F une application. Alors :
1 - f est injective, si et seulement si, il existe une application g : F — FE telle que gof = Idg
2 - f est surjective, si et seulement si, il existe une application g : F — FE telle que fog = Idp

10
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PREUVE.
1 - = Supposons que f est injective. Posons G = f(F) et H = F' \ G. Soit a € F fixé. Si
y € G, il existe € F unique tel que y = f(x). On peut alors définir application g : FF — E

de la maniére suivante. (@)
_foz, siy=fx)eqG
g(y)—{m size H

Alors, Vo € E, g(f(x)) =x.ie go f = Ig.

<. Supposons qu’il existe g : F' — FE telle que g o f = Ig. Montrons que f est injective.
Soient z,z’ € E, tels que f(z) = f(a’). On compose alors & gauche par g, on a alors
g(f(x)) = g(f(z")). Donc = = 2’, par conséquent f est injective.

-1
2 - =. Supposons que f est surjective. Pour chaque y € F, f ({y}) # &, et les ensembles

-1
f ({y}) forment une partition de E. Grace a ’axiome du choix, on peut choisir pour chaque
y € F un = € E unique tel que f(z) = y. Posons alors ¢g(y) = x. On a alors f(g(y)) =
y,Vy € F. Donc fog=Ip.

<. Supposons qu’il existe g : FF — FE telle que f o g = Ir. Montrons que f est surjective.
Soit y € F. Posons = = g(y) € E. Alors f(z) = f(g(y)) = y. f est surjective. |

Théoréme 2.16. Soit f : E — F une application :

1 - f est bijective < il existe une application g : F — FE telle que go f =Ig et fog=1Ip.
Lorsque c’est le cas, Uapplication g est unique on la note f~1, on Uappelle ’application
réciproque de f. De plus, f~1 est bijective et (f~1)~1 = f.

2 - Soient f : E — F et g: F — G deux bijections, alors go f est bijective et (go f)~! =
flog

PREUVE.

1 - = Supposons que f est bijective. Alors f est injective et f est surjective. D’apreés le
théoréme 2.15, il existe g : F — FE telle que go f = I et il existe h : F — E telle que
foh=Ip.Onaalorsh=Igoh=(gof)oh=go(foh)=golr=g.Donch=g.
D’oi il existe une application g : F' — E tel que go f = Ig et fog = Ip. Ceci montre aussi
I'unicité de g.

La réciproque est claire d’apres le théoréme 2.15.

2-gofoflog l =Iget f~log ltogof = Ir. Donc gof est bijective et (gof)~1 = f~log~!.
|

Exemples 2.17.
1 - L’application f: Ry — Ry, f(z) = 2?2 est bijective. Sa bijection réciproque est = — /.
2 - L’application In : R} — R, est bijective, sa réciproque est la fonction exponentielle.

2.5 Familles d’éléments et familles de parties

Définition 2.18. Soit F un ensemble.On appelle famille d’éléments de F indexée par un
ensemble I, toute application I — FE; i — ;. On note la famille par (z;);er, o0 z; € E. T
est appelé I’ensemble d’indices.

» Cas particulier : lorsqu’on prend I C N, une famille d’éléments de E est alors appelée
une suite d’éléments de E, qu’on note alors : zg,T1,...,Tn,- - ..

Définition 2.19.
1 - On appelle famille de parties d’un ensemble E, toute famille d’éléments (A;);c; de P(E),
ensemble de parties de F. i.e. A; C E,Vie I.

11
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2 - On appelle réunion de la famille, 'ensemble U;c;A; = {x € E:Ji € I,z € A;}.
Cas particulier, si I = {1,2}, U,c; Ai={z € E:x € A; ou x € Ay} = A1 As.

3 - On appelle intersection de la famille, ensemble N;c;A;={x € E:Vi € I,x € Aj;}.
Cas particulier, si I = {1,2}, (,c; Ai={r € E:x € A et x € Ay} = A1) As.
Exemples 2.20.

L-Unen] = n.n[=R.

2- ﬂneN* [_Ha ;] = {0}.

2.6 Applications entre ensembles finis

Un ensemble E est dit fini ¢il existe n € N et une bijection de E & {1,...,n}. L'entier n
est alors unique et il est appelé cardinal de F ou le nombre d’éléments de E. On le note
card(E).

L’ensemble vide est fini et son cardinal est égal & zéro.

Un ensemble fini F de cardinal n, peut s’écrire E = {z1,29,...,2Zn}.

Un ensemble qui n’est pas fini est dit infini.
L’ensemble N est infini.

Proposition 2.21. Soient E et F' deux ensembles finis. Alors les trois assertions suivantes
sont équivalentes :

(i) card(E) < card(F).

(i) 1l existe un injection f : E — F.

(i) Il existe un surjection g: F — E.

PREUVE. Montrons que (i) < (7).

(i) = (ii). Supposons que card(E) < card(F). On peut supposer que E = {1,2,...,n} et
F={1,2,...,m} avec n < m. L’application E — F, k > k est injective.

(ii) = (4). Soit f : E — F une application injective. On considére I’application g : £ —
f(E), définie par g(z) = f(x). Alors g est bijective. D’ou card(E) = card(f(E)) < card(F).
(11) < (4i7), d’aprés la proposition 2.15. [

Proposition 2.22. Soient E et F' deuz ensembles tels que E soit fini et f : E — F une
application. Alors :

1. f(E) est fini et cardf(F) < cardE.

2. f est injective < cardf(F) = cardE.

PREUVE.

1. Comme lapplication g : E — f(E), x — f(z) est surjective, d’aprés la proposition
précédente, on a card(f(E)) < card(E).

2. Si f est injective, alors g : E — f(E), x — f(z) est bijective. Donc cardf(F) = card(E).
Supposons que f n’est pas injective. On peut supposer que f(z1) = f(x2). Donc f(E) =
{f(z1), f(z3) ..., f(xz,)}. Par conséquent, cardf(E) < card(E). [ |

Théoréme 2.23. Soient E et F' deux ensembles finis tels que cardE = cardF, alors les
assertions suivantes sont équivalentes :

(i) f est injective.

(ii) f est surjective.

(#i) [ est bijective.

PRrREUVE. Il suffit de montrer ’équivalence entre (i) et (i4). On a
f est injective & cardf(E) = card(E) = card(F) < f(E) = F < f est surjective [ |

12
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3 Relations binaires, Relations d’équivalence, Relations
d’ordre

3.1 Relations binaires

Une relation binaire R sur un ensemble E est la donnée d’une correspondance (E, E, G).
On note Ry, pour signifier que (z,y) € G et note (E,R) 'ensemble E muni de la relation
R.

Exemple 3.1. La relation de divisibilité : Dans Z on définit la relation de divisibilité notée
| par :
Ve,y€Z,x|ly=3Ikel:y=kx

Définition 3.2. Soit F un ensemble muni d’une relation binaire R.
R est dite réflexive si Vx € E on a: 2Rx.

R est dite symétrique si Vz,y € E on a : xRy = yRuz.

R est dite antisymétrique si Va,y € F on a : 2Ry et yRe=1x = y.
R est dite transitive si Va,y,z € F, 2Ry et yRz = zRz.

3.2 Relations d’équivalences

Définition 3.3. Une relation binaire R sur un ensemble F est dite une relation d’équi-
valence si elle est réflexive, symétrique et transitive.

Soit (E,R) un ensemble muni d’une relation d’équivalence R. Pour € E, on appelle classe
de z modulo R l’ensemble z = {y € F : yRa}. Notons que = = § < zRy.

Exemple 3.4.

1 - Dans un ensemble non vide F, la relation d’égalité z = y, est une relation d’équivalence.
2 - Soit n € N. Dans Z, on définit la relation 2Ry < n|z — y, qu’on note encore z = y (mod
n). On Pappelle relation d’équivalence modulo n. C’est une relation d’équivalence. Pour tout
keZ onak==k+nZ.

3 - Soit f : E — F une application. La relation 2Ry < f(z) = f(y) est une relation
d’équivalence.

Proposition 3.5. Deuzx classes d’équivalences sont ou bien disjointes ou bien confondues.

PREUVE. Soit R une relation d’équivalence. Supposons que Z N g # . Soit z € ZN g, on a
z € & donc Rz et z € ¢, donc zRy. Il en résulte que Ry, d’ou = = §. |

Définition 3.6. soit (F,R) un ensemble E muni d’une relation d’équivalence R. On appelle
ensemble quotient de F par R, 'ensemble noté E/R des classes d’équivalences modulo
R.

Proposition 3.7. L’ensemble quotient E/R d’un ensemble E par une relation d’équivalence
R est une une partition de E. De plus, Uapplication m : E — E/R, x — T est une surjection
appelée surjection canonique associée a R.

PREUVE. Les classes d’équivalences sont non vides, disjointes deux a deux et leur réunion
est I’ensemble F. |

Exemple 3.8. L’ensemble quotient de Z par la relation de congruence modulo n, est noté
Z/nZ. En utilisant la division euclidienne, on montre que Z/nZ = {0,1,...,n — 1}

13
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Théoréme 3.9. (Décomposition canonique d’une application). Soit E un ensemble muni
d’une relation d’équivalence R, F un ensemble et f : E — F wune application. On suppose
que

Vz,y € E, 2Ry = f(z) = f(y)

Alors il existe une application f : E/R — F unique telle que f = fon, oum: E — E/R
est la surjection canonique. -
Si de plus Va,y € E, xRy < f(x) = f(y), alors f est injective.

» On interpréte ce théoréme en disant qu’il existe une application f : E/R — F unique
telle que le diagramme suivant soit commutatif.

N

/R

E

3.3 Relations d’ordre

Définition 3.10. Une relation binaire < sur E est dite relation d’ordre si elle est réflexive,
antisymétrique et transitive. Le couple (E, <) est dit ensemble ordonné.

Deux éléments z et y sont dits comparables, si x < y ou # < y. Un ordre est dit total si
deux éléments quelcoques sont comparables.

Un ordre qui n’est pas total est dit partiel.

Soit (E,~<) un ensemble ordonné. On appelle chaine de F, toute partie de E totalement
ordonnée.

Exemple 3.11.

1 - Dans R, les relations = < y et x > y, sont des relations d’ordre total.

2 - Dans N, la relation de divisibilité est une relation d’ordre partiel.

3 - Soit E un ensemble. La relation d’inclusion C dans P(E) est une relation d’ordre. Si E
contient au moins deux éléments, cet ordre est partiel.

Définition 3.12. Soit A une partie d’'un ensemble ordonné (E, <). Un élément M (resp.
m) de E est dit majorant (resp. minorant) de A si Vo € A, on a © < M (resp. m < x).
Lorsqu’un majorant (resp. un minorant) appartient & A (ce qui n’est pas toujours le cas ),
on dit que c’est le plus grand élément ou maximum (resp. plus petit élément ou minimum)
de A.

Exemple 3.13. Dans (R, <), l'intervalle [0, 1[ posséde un plus petit élément qui est 0. Tout
réel supérieur a 1 est un majorant de [0, 1], mais [0, 1[ ne posséde pas de plus grand élément.

Définition 3.14. Soit (E, <) un ensemble ordonné et A une partie majorée (resp. minorée)
de E.

On appelle borne supérieure (resp. borne inférieure) de A s’il existe, le plus petit des
majorants (resp. plus grand des minorants) de A.

La borne supérieure de A dans (E, <) est notée sup(A) et la borne inférieure est notée

inf(A).

14



Université Chouaib Doukkali — Faculté des Sciences Algebre 1
Département de Mathématiques Responsable : A. Haily

Exemple 3.15. Dans (R, <) toute partie non vide majorée posséde une borne supérieure
et toute partie non vide minorée posséde une borne inférieure. (voir cours d’Analyse). Ce
n’est pas le cas pour (Q, <), en effet, A = {x € Qy : 22 < 2} est majorée par 2, mais n’a

pas de borne supérieure dans Q.

3.4 Ordre naturel sur N

Théoréme 3.16. Toute partie non vide de (N, <) posséde un plus petit élément.

PREUVE. Soit A une partie non vide de N. Notons F I’ensemble de tous les minorants de A.
E n’est pas vide car 0 € E. Montrons qu’il existe ng € E tel que ng+1 ¢ E. Sinon, Vn € E,
on an+1 € E. Ceci impliquerait par récurrence que £ = N. Ce qui est absurde. Soit
alors ng € F tel que ng + 1 ¢ E. Montrons que ng € A. Sinon, ng < x,Vx € A, entrainant
ng+1 <z, Ve € A, c’est a dire ng + 1 € E, c’est une contradiction. Par suite, ng € A.
Comme ng est un minorant de A, c’est le plus petit élément de A. |

Théoréme 3.17. Toute partie non vide majorée E de N est finie et posséde un plus grand
élément.

PREUVE. Considérons ’ensemble F' C N des majorants de E. Alors F' posséde un plus petit
élément m. Montrons que m € E. Sinon, Vn € E, n < m. Il en résulte que m — 1 est un
majorant de E, une contradiction. Donc m € E et on a E C {0,1,...,m}. Par conséquent
FE est fini. |

Théoréme 3.18. Toute suite décroissante x,, dans N est stationnaire. i.e. il existe ng € N,
tel que x, = zp,, Yn > ng

PrEUVE. Par ’absurde, supposons que la suite n’est pas stationnaire, alors Vk, il existe
n > k tel que x > x,. Par conséquent il est possible de construire une suite zx, > g, >
yee,> Tk, > ... strictement décroissante. L’ensemble E = {z}, : k € N} est alors une partie
infinie de N majorée par xy. Contradiction. |

Théoréme 3.19. (division euclidienne) Soient a,b € Z, avec b # 0. Alors il existe ¢, € Z,
uniques tels que a =bg+1r et 0 <r < |b).

q et r sont appelés respectivement quotient et reste de la division euclidienne de a par
b.

PREUVE. Soit E ={a—bs € N: s € Z} NN, E # &. Donc E posséde un plus petit élément
r. Montrons que r < |b|.
»Sib>0etr>bonaa—blg+l)=a—bg—b=r—>b>0.Donca—blg+1) € F et
a—0b(q+ 1) <r ce qui contredit la minimalité de r.
»Sib<Oetr>-bonaa—bl¢g—1)=a—-bg+b=r+b>0.Donca—blqg—1) € E et
a—0b(q—1) <r ce qui contredit la minimalité de r.

Unicité : Supposons que a = bg+r = bq' + 1" et 0 < 7,7’ < |b| . Supposons que r # /. On
peut supposer que r < 1/, alors b(q — ¢') = ' — r. Donc |b| | ' — r, par suite, |b] < ' —r.
Comme " —r < 7/, il en résulte que |b] < r/, ce qui est absurde. Donc r = 7/ et par
conséquent ¢ = ¢'. [ |

Exemple 3.20. Le quotient et le reste de la division euclidienne de -23 par 6 sont - 4 et 1,
car —23 =6-—-4+ 1.
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4 Arithmétique dans Z

4.1 Relation de divisibilité

Définition 4.1. (Rappel) Soient a,b € Z, on dit que a divise b ou que a est un diviseur
de b ou que b est un multiple de «a, et on note a | b, il existe ¢ € Z, tel que b = aq.

Si a # 0, ’entier ¢ est alors unique et il est noté g, c’est le quotient de b par a.

» Pour tout n € Z, On pose nZ = {kn € Z : k € Z}, ’ensemble des multiples de n.

Proposition 4.2.

1-a|be VZCdl.

2-Va€Z,ala.

3 -Va,beZ, alb et bla = b= +a.

4 -Ya,b,c €Z, alb et blc = alc.

5 - La relation de divisibilité est une relation d’ordre partiel dans N.
6 - Va,b,c € Z, sialb et a|c alors Vo, 5 € Z, alab + Be.

7 - Sia|b etb est non nul, alors |a| < |b|. En particulier, ’ensemble des diviseurs de b est
fini.

» On note D,, ’ensemble des diviseurs positifs de a.

Exemple 4.3. D15 ={1,2,3,4,6,12}.

Proposition 4.4. Soient a,b € Z, avec b # 0, alors b | a < le reste de la division
euclidienne de a par b est égal a 0.

4.2 PGCD et PPCM

Définition 4.5. Soient a,b deux entiers naturels non nuls.

On appelle PGCD de a et b noté a A b, le plus grand élément de D, N Dy,

On appelle PPCM de a et de b le plus petit multiple strictement positif commun a a et a b,
qu’on note m V n.

Geénéralisation : Soient a1, as, ..., a, des entiers naturels non nuls :

Le PGCD de la famille ay,as, ..., a,, qu’on note a; Aas A...Aay,, est le plus grand élément
de Dy, N Dy, N ... Dy,

Le PPCM noté a; Vas V...V a, est le plus petit élément de a;N* NasN*N...Na,N*,

Remarque 4.6. On définit le PGCD et le PPCM d’entiers relatifs comme étant le PGCD
et le PPCM de leurs valeurs absolues.

Définition 4.7. Deux entiers a et b sont dits premiers entre eux, si les seuls diviseurs
deaet bsont 1 et —1. Clest adireaNb=1

Exemples 4.8.

1. D12 = {172,3,4,6, 12}, D15 = {1,375, 15} Dlg OD15 = {1,3} Donc On a 12 A 15 = 3.
12N* = {12,24,36,48,60,72,...}, 15N* = {15,30,45,60,75,90,...}. On a 12N* N 15N* =
{60, ...}, donc 12 Vv 15 = 60.

2. D12 ={1,2,3,4,6,12}, D35 = {1,5,7,35}. On a D15 N D35 = {1}. Par conséquent 12 et
35 sont premiers entre eux.

Proposition 4.9. Soient a,b deux entiers naturels non nuls, alors :
I1-anNb=d< deD,NDy, et Ve € D, NDy, ona c|d.
2-aANb=a<aVb=bsalb
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Théoréme 4.10. Soient a,b deux entiers naturels non nuls, alors :
1-aZ+bVZ = (aNb)Z
2-aZNbZ=(aVbZ

PREUVE.

1-Posons H =aZ +bZ = {z =ax+ by : z,y € Z}, alors H est un sous-groupe de (Z, +).
D’aprés la caractérisation des sous-groupes de (Z,+), il existe ¢ € N, tel que H = (Z.
Montrons que c est égal & d le PGCD de a et b.

D’une part en posant z = 1 et y = 0, on obtient a € ¢Z, donc ¢ | a. D’autre part, en prenant
x=0ety=1, on obtient b € ¢Z, donc ¢ | b. Il en résulte que ¢ | d.

Réciproquement, on a d | a et d | b. Donc a € dZ et b € dZ, par suite aZ + bZ C dZ, d’ou
¢Z C dZ, ce qui implique que d | ¢

2 - Posons G = aZ N bZ. On a G est un sous-groupe de Z, car intersection de deux sous-
groupes. Il existe s € N, tel que G = sZ. Montrons que m = s. On a s € aZ et s € bZ, donc
alsetb|s, doum|s

Réciproquement, puisque m € aZ et m € bZ, on a m € aZ NbZ = sZ, d’ou s | m. |

Corollaire 4.11. Soient a,b deux entiers et d = a A\b. Alors il existe u,v € Z : ua+vb = d.

Théoréme 4.12. (Bézout) Soient a,b € Z, alors a et b sont premiers entre euz, si et
seulement si, il existe a, 0 € Z : aa+ b= 1.

PREUVE. Supposons que a A b = 1, alors d’aprés le corollaire 4.11, il existe o, € Z :
aa+Bb=aANb=1.

Réciproquement, si’il existe a, 3 € Z : aa+ b =1, alors a Ab | aa + b =a Ab= 1. Donc
aNb=1. |

Exemple 4.13.
Montrons que Vn € Z, x = 11n+5 et y = 9n + 4 sont premiers entre eux. Soit d un diviseur
commun d zetdy. Onad |9z —1ly=45—-44=1

Proposition 4.14.
1 - Soient a,b,c € N*, alors ac Abc = c(a A D).
2 - Soient a,b € N* et s € D, N Dy,. Alorsf/\b anb,

S

3 - Soient a,b € N* et d € D, N D,. Alors : a/\b—d<:> /\b—l

PREUVE.
1-Posons d = aAb. On a cd | ac et cd | be. Donc ed | ac A be. Réciproquement, soient
a,f €Z:d=aa+ pb. Donc dec = aac + fbe. Par suite de | ac A be.

2 - Posons d = a/\b Alors s | d et ¢ T1en % Réciproquement, il existe u,v € Z : ua+vb = d.
Donc u$ + vf S, par suite ¢

3- EnutlhsantQ aAb= ‘“\b—1<:> /\b—l [ |

Proposition 4.15. Soient a,by,...,b, € N*. On suppose que Vk = 1,...,na Ab, = 1,
alors a A (biby -+ by) =1

PREUVE. Il suffit de montrer le résultat pour n = 2 et procéder par récurrence. Supposons
que aAby = aAby = 1. aa+Bby = 1. Donc aabs +Bb1bs = bs. Il existe u,v € Z : ua+vby = 1,
donc ua + v(abg + vBb1be) =1, (u+ by)a +vBbiby =1, ot a Abiby =1 [ |

Corollaire 4.16. Soient a,b € N premiers entre eux, alors Ym,n € N, a™ et b" sont
premiers entre-eut.

Théoréme 4.17. (Gauss) Soient a,b, ¢ tois entiers tels que a | bc et a ANb = 1. Alors a | c.
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PREUVE. aa + b = 1. Donc aac + bc = ¢. Comme a | ac, et a | Bbe, on a a | c. [ |
Théoréme 4.18. Soient aq,as,...,a, des entiers premiers entre euzr deut a deuz. Si a; | b,
Yi=1,...,n, alorsa; -az ... a, |b.

PREUVE. on montre le résultat pour n = 2 et on procéde par récurrence sur n. On a
b = c1a; = caas. Donc a; | caaz. Comme aj A ag = 1, on a d’aprés le théoréme de Gauss,
ay | c2. Donc ¢o = doay et b = dsajas. Par conséquent, ajas | b [ |

Proposition 4.19. Soient a,b € N*, alors (a V b) X (a Ab) = ab

PREUVE. Posons a = a’d et b= b'd. Alors o’ AV = 1. Ona a'b'd = a’b = al/. Donc m | a’b/d.
Réciproquement, posons m = xa = yb. Donc za’ = yb'. Par conséquent a’ | yb'. Or o’ AV =
1, donc d’aprés le théoréme de Gauss, o’ | y. On a aussi ' | z. Posons y = kad/, on a
m = ka’'b = ka'l/d. par suite, a’b'd | m, d’ot m = a'b'd. md = o’db'd = |ab|

Corollaire 4.20. Soient a,b € N, alorsaNb=1<aVb=ab |

4.3 Algorithme d’Euclide
Lemme 4.21. Soient a,b,q € Z. Alors a Ab="bA (a — bq).

PREUVE. Posons d =aAbetd =bA(a—bg). Onad|aetd]|b, doncd]|betd]| (a—bg),
il s’ensuit que d | d'.
Réciproquement, d’ | b et d’ | (a — bg). Donc d' | bet d | bg+ (a —bg) =a. Doud |d. N

Théoréme 4.22. (Algorithme d’Euclide) :

Soient a,b € N. On définit la suite d’entiers positifs ro,71,..., par :

ro =a, r, = b.

On suppose r,_o et rn_1 définis :

Sirn_1 =0 on pose r, = 0.

Sirn_1 # 0, on définit r,, comme étant le reste de la division euclidienne de r,_o par r,_1.
Alors :

1 - Il existe k tel que r = 0.

2 - Le dernier reste non nul est égal au PGCD de a et b.

PREUVE.

1 - La suite 7, est décroissante dans N, donc elle est stationnaire. Il existe n € N, tel que
rn =Tk, Yk > n. On a en particulier, r,, = 7,41, donc r,40 = 0.

2 - Soit r, le dernier reste non nul. D’aprés le lemme, on a a Ab = rg ATy = 11 Arg =
cee =Tp_1 ATy, comme 7,41 =0, 0n ar, | r,_1, ce qui implique que r,,_1 Ar, = 7,. D’ou
aNb=r,. [ |

Exemple 4.23. Soit & déterminer le PGCD de 1386 et 1274

a b r
1386 | 1274 | 112
1274 | 112 42
112 42 28

42 28 14

28 14 0

||| B =

Le dernier reste non nul est 14, c’est le PGCD cherché.
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L’algorithme d’Euclide permet aussi de déterminer les entiers u, v tels que ua + vb = a A b,
appelés les coefficients de Bézout.

Théoréme 4.24. (Algorithme d’Euclide étendu :Détermination des coefficients de Bézout)
Soient a,b € Z. On note :

ro =a, ry = b.

Si Ty, et g sont respectivement le quotient et le reste de la division euclidienne de ri_o par
Tk—1

On définit les suites uy et vy par :

up =1,u1 =0 et up = ug—2 — qrUr—1

vo=0,v1 =1 et v = Vg_2 — QLVE_1

Alors uga + vpb = 1y en particulier, si r,, est le dernier reste non nul, alors u,a + v,b =
rm =a/Nb

PREUVE. On montre par récurrence sur k que uga + vpb = rg.
Sik=0,onauy=1cetvyg=0,upa+ vob=a = rg.

Sik=1,onau; =0et vy =1, uia+v1b=b=r.

La relation est donc vérifiée pour k =0 et k = 1.

Soit k > 2. Supposons la relation vraie pour k —1et £ —2. On a :

upa + vpb = Up—2 — Qrur—10 + Vg—2 — @rUk—1b = (Up—20 + vp_2b) — qp(up—10 + Vvp_1b =
Th—2 — QkTh—1 = Tk n

Exemple 4.25. Déterminons le PGCD et des coefficients de Bézout pour le couple (224, 175)

a b r q

224 | 175 | 49 | 1 | 49=224-175 49=224-175

175 149 |28 | 3| 28=175—(49x 3) =175 — (224 —175) x 3 28 = (4 x 175) — (3 x 224)
49 |28 |21 |1 ]21=49—28=(224—175) — ((4 x 175) — (3 x 224)) 21 = (4 x 224) — (5 x 175)
28 |21 |7 |1 |7=28—21=(4x%x175)—(3x224)— (4x224)+ (5x175) | 7=(9x 175) — (7 x 224)
21 | [@ 0 | 3| Fin

On a donc 224 A175 =T et 7= (9 x 175) — (7 x 224)

4.4 L’équation axr + by = c dans Z
Théoréme 4.26. L’équation ax+by = c posséde une solution, si et seulement si, (aA\b) | c.
Lorsque cette condition est satisfaite, et si (xo,yo) est une solution particuliére de l’équation,
a
alors tout autre solution (x,y) est de la forme v = xo+ kb et yo—ka', k € Z, ot a' = Y
a
b

ty = ——.
¢ alAb

Pour déterminer une solution particuliére, on utilise ’algorithme d’Euclide pour déterminer
des coeficients de Bézout (u,v) du couple (a,b). On a alors au + bv = d = a A b. On pose

c
h= 7 alors (zg, yo) = (uh,vh) est une solution particuliére de 1’équation.

Exemple 4.27. Soit & résoudre 1’équation 224x + 175y = 21. On a 224 A 175 = 7 | 21, donc

Péquation posséde des solutions. On a d’aprés I’éxemple précédent, —(7x224)+(9x 175) = 7.
224

Donc (—21x224)+ (27 x 175) = 21. Une solution particuliére est donc (—21,27). o’ = — =

7
175
32,0 = - = 25. La solution générale de ’équation est (z,y) = (—21 + 25k, 27 — 32k),

ke Z.
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4.5 Nombres premiers et factorisation

Définition 4.28. Un nombre entier naturel p est dit premier, s’il est différent de 1 et ses
seuls diviseurs positifs sont 1 et p.

Exemple 4.29. 2, 3, 5, 7, ... sont premiers. 1, 9, 15 ne sont pas premiers.
Théoréme 4.30. Tout entier > 1 est divisible par un nombre premier.

PREUVE. Soit n > 1 et A I’ensemble des entiers > 1 qui divisent n. A est une partie non
vide de N (n € A), donc A posséde un plus petit élément p. Montrons que p est premier.
Soit d > 1 un diviseur de p. On a d < p. Or d | n. D’ot, par minimalité de p, d = p. |

Théoréme 4.31. (Euclide) Il existe une infinité de nombres premiers.

PREUVE. Soit p un nombre premier. Posons n = p! + 1. Alors n est divisible par un nombre
premier ¢. Montrons que ¢ > p. Raisonnons par I’absurde et supposons que ¢ < p alors ¢ | p!,
comme ¢ | p!+1,0onaq|n—p! =1, ce qui est absurde. Donc ¢ > p. Ainsi pour tout nombre
premier p, il existe un nombre premier ¢ strictement plus grand que p. |

Remarque 4.32. Les nombres premiers forment une suite d’entiers. A ’heure actuelle, on
connait trés peu de choses sur cette suite.

Proposition 4.33. Soit p est un nombre premier et n € 7Z, alors ou bien p | n ou bien

pAn=1.

PREUVE. Supposons ptn et soit d =pAn=1. Comme d | p, onad=1ou p.

Supposons que d = p, alors p | n. Absurde. Donc d = 1. |
Corollaire 4.34. Soit p un nombre premier et ai,as,...,a, des entiers tels que p | aj - as -

oo ap. Alors il existe i tel que p | a;.

PREUVE. Par contraposition. Supposons que Vi, p { a;, alors Vi, p A a; = 1, ce qui implique
que p A (arag -+ a,) =1 et par suite pt (arjaz - - an) [ ]

Théoréme 4.35. Pour tout entier naturel a > 1, il existe des nombres premiers p; < pa <

... < pi, des entiers naturels non nuls my,ma, ..., my tels que a s’écrit de maniére unique
m m M

sous la forme a = p{"'py"” ... p.*.

PREUVE. Existence par récurrence. Si n est premier, il n’y a rien & démontrer. Si n n’est
pas premier, alors il divisible par par un nombre premier p. Soit p; le plus petit nombre
premier divisant n. Soit p}"* la plus grande puissance de p; divisant a. On pose b = a/p7"".
On apy An =1et b < a, on applique alors ’hypothése de récurrence a b. On a alors
b=py?...p", d’'ou le résultat.

Unicité, par récurrence, si a = p/"'ph'?...p1"* = qi*q¢5% ... ¢;* € N. D’aprés le choix de p;
1 P2 k 1 G2 t
et ¢1 on a p; = ¢i. Donc I’égalité devient pi"'py™ ...py"* = pi'qs®...q;". On applique alors

Phypothése de récurrence a a/p;. |
Exemple 4.36. 1260 =2-630 =22-315=22-3.105=22.32.35=22.32.5.7.

Remarque 4.37. : Alors qu’on connait des algorithmes assez rapides pour tester si un
nombre trés grand est premier ou non, il n’existe pas avec les ordinateurs actuels de mé-
thode suffisament rapide pour factoriser des nombres de quelques centaines de chiffres.
Cette propriété (difficulté de la factorisation), est utilisée dans certains procédés cryptogra-
phiques (méthode RSA) : mots de passe dans les réseaux informatiques, messages secrets,
etc....
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Proposition 4.38. Soient p1,p2, ... pr des nombres premiers distincts et o;, 3;,1=1,...,k,
des entiers naturels eventuellement nuls. Alors

pytps? - pet |pf1p§2 pf’“ SVi=1,2,...,ka; <5;

PREUVE.

= Puisque p; Ap; = 1,Vi # j, on a pj* | pfi, ce qui entraine o; < ;.

< est claire. |

La factorisation permet de déterminer le PGCD et le PPCM de deux entiers. On a le :

t1, to

** et b = pi'ps ...pff, ot $i,t; € N (eventuellement

Théoréme 4.39. Sia = pi'ps?...p
nuls), alors :

alNb= plllplz2 .. .péc"' ot l; = min(s;, t;).

aVvb=rpliph .. pZ‘ ot h; = max(s;,t;)

PREUVE.

1-Onal; <a;et; <G Donc pi a et pi b. Par suite, pi
premiers entre eux deux a deux, il s’ensuit que pll1 pl;‘ e pég"' | a AD.

a A b, comme les pi sont

Réciproquement, si ¢ | a et ¢ | b, alors ¢ = p{'p3>...p* avec u; < s; et u; < t;, par suite
u; < ;, Vi. Donc ¢ | plllplQ2 .. pﬁc"
2 - Remarquons que min(s;, ;) + max(s;,t;) = s; + t;. Alors on a a Vb = =
a
k si+t;—min(s;,t;) k max(s;,t;)
Hi=1 p; = Hi=1 p; L

Exemple 4.40. 180 =22.32.5,42=2-3-7.0na: 180A42=2-3 = 6, 180 V 42 =
22.32.5.7 =1260.
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5 L’anneau Z/nZ, et arithmétique modulaire

5.1 Relation de congruence

Soit n un entier naturel non nul. On définit dans Z la relation de congruence modulo n
par
r=ynlen|lz—yedkeZ:z—y=k-n

En particulier, z =0 [n] & n | x

Théoréme 5.1.
1 - La relation de congruence modulo n est une relation d’équivalence dans 7.
2 - Pour tout x € Z, la classe de x modulo n est ’ensemble T = {z+kn € Z : k € Z} = z+kZ.

3 - L’ensemble quotient par cette relation d’équivalence est noté Z/nZ, et on a Z/nZ =
{0,1,...,n—1}

PREUVE.

1 - Montrons que la relation de congruence modulo n est une relation d’équivalence :

La relation = est réflexive, car Vo € Z, n |z — = = 0.

La relation = est symétrique, car Vz,y € Z,sn |z —y, alors n | y — «.

La relation = est transitive, car Vo, y,z € Z,n | x—y et n | y—z implique n | (z—y)+(y—=z) =
T — z.

2-yezxeon|ly—rxeodkeZ:y=x+knsycx=nZ.

3-Ona{0,1,...,n—1} C Z/nZ.

Réciproquement, soit & € Z/nZ. La division euclidienne de x par n donne x = gn + r, o

0<7<n-1.Onaalors x =r[n]. Donc z =7 € {0,1,...,n — 1}.
Enfin,si 0 < km<m-—1,et k=m, alors 0 < |k —m| <n—1. Commen | k—m,on a
k—m =0, dot k = m. Le cardinal de Z/nZ est donc égal a n. [ |

Théoréme 5.2. Sur Z/nZ on définit les opérations + et - suivantes VI, § € Z/nZ :

THy=x+y
Z-y=2y
Alors ces opérations sont bien définies et (Z/nZ,+,-) est un anneau commutatif.

PREUVE.

» (Z/nZ,+) est un groupe abélien :

Associativité : Va,y,z € Z, on a :
T4+y)+z=(@Fy+2)=(r+y)+z==a+(y+
Commutativité : Ve, y € Z, T+y=x+y=y+z =
Element neutre : 0 est 1’élément neutre de +. Vzx € Z, T +0 =T.
Elements symétrisables : Ve € Z, T+ —z =2+ (—x) =0

» (Z/nZ, x) est un monoide commutatif :

Associativité : Va,y,z € Z, on a :

XY XZ=@XYXZ)=TXYX2=TIXYXxz2=T X (JXZ)

Commutativité : Vo, y EZ, TXYT=T X y=y X & =7 X T.

Elément neutre : 1 est 1’élément neutre de x. Vz €

Ix1l=xzx1=1.

» La loi x est distributive par rapport a +.

Vo,y,2 €L, TX (J+2)=Tx (y+z)=zy+tazz=Ty+z2=(T X7y + (T XZ) [ |

Corollaire 5.3. Soient a,b € Z tels que a = b [n] alors : Vk € N, a* = b*
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On rappelle que dans Z/nZ, on a n | m < m = 0, cette remarque permet parfois de traiter
les questions de divisibilité d’une fagon plus simple, en utilisant les propriétés de ’anneau
(Z/nZ,+,")

Exemple 5.4. Montrons que Vn € N, on a 7 | 3271 4 2142,

Posons u,, = 3?"+1 4 2"+2 Dans Z/7Z, on a i, = 32"t +2"+2 =9 .3 42" . 4,
Or 9 =2, donc 1, =2"-3+2"-4=2".(3+4) =0.

Exponention rapide. dans certaines applications de I’arithmétique modulaire, par exemple
en cryptographie, on a besoin de calculer les puissances a*[n], out k est un trés grand nombre
entier naturel. Alors on procéde de la fagon suivante :

1 - On décompose k en base 2, i.e. k=" €2°, ou ¢ € {0,1}.

2 - On calcule a; = a® [n], en utilisant la relation de récurrence a;;1 = (a;)?[n).

3-aF = Hi:eﬁéo a;[n].

Exemple 5.5. Calculons 673[100] On a 73 =64 +8 + 1 = 1 4 23 4 26.
62 = 36[100], 6* = 36% = —4[100], 6% = (—4)? = 16[100], 6'6 = 56[100], 63? = 562 = 36[100],
6%4 = 362 = —4 = 96[100]. Donc 6™ = 6 x 16 x —4 = 16[100].

5.2 Le théoréme des restes chinois

Théoréme 5.6 (Théoréme des restes chinois). Soient mi,ma,...,ms des entiers pre-
miers entre eux deux 4 deux, ai,as,...,as des entiers quelconques. Alors il existe au moins
un entier x tel que x = a; mod m;, Vi=1,...,s.

Si xo est une solution, alors Vx € Z, x est solution, si et seulement si, m | © — xg, ou
m=mimsa...Mg.
De plus, il existe une seule solution dans {0,1,...,m — 1}

PREUVE. Posons m = myms---ms et hy = m/my. Alors Vk = 1,2,...,s, on a : my | hy,
si ¢ # k. Par ailleurs, hy et mj sont premiers entre eux, donc il existe ug, vy € Z, tels que
upmy + viphy, = 1. Posons a = Z;l a;v;h;. Alors modulo my, on a

a = iaivihi (1)
=1

Comme my, | ki, Vi # k, on a :

a = apviphy = ak(l — ukmk) = ag (2)

Exemple 5.7. Déterminons les entiers dont le reste de la division euclidienne par 7 est est
4 et le reste de la DE par 11 est 2.

En utilisant Palgorithme d’Euclide étendu, on a4 =11-7,3=7-4=7—-(11-7) =
@xT7)—11,1=4-3=(11-7)—(2x7)+11=(2x 11) — (3 x 7).

On pose alors z = (2x11x4)—(3x7x2) = 88—42 = 46. Donc 46 est une solution particuliére.

5.3 Entiers inversibles modulo n

Définition 5.8. Soit n € N*. Un entier k € Z est dit inversible modulo n, s’il existe m € Z
tel que km = 1 modulo n.
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On note U,, = {k € N : k < n et k est inversible modulo n }. Le cardinal de U,, est noté
¢(n), appelé l'indicatrice d’Euler de n.

Proposition 5.9.
Soit n un entier naturel non nul et k un entier, alors k est inversible modulo n, si et
seulement si, k est premier avec n.

PREUVE.

Supposons que k est inversible modulo n. Alors il existe m € Z tel que km = 1 modulo n.
i.e. n | km — 1. Donc il existe s € Z tel que sn = km — 1, ou encore mk — sn = 1, ce qui
entraine que k An = 1.

Réciproquement, supposons kAn = 1, d’aprés Bézout, il existe m, s € Z tels que mk+sn = 1.
Donc n | mk — 1. Par suite, km = 1 modulo n. n

Exemples 5.10.
Uis ={1,5,7,11,13,17}. $(18) =6
Uis ={1,2,4,7,8,11,13,14}. ¢(15) = 8

Remarque 5.11. L’inverse de k modulo n est déterminé par I'algorithme d’Euclide. En
effet, on a ak +bn =1, donc ka = 1

Remarque 5.12. On peut résoudre le systéme de congruences dans le théoréme chinois en
calculant les inverses modulo n.

Exemple 5.13. Cherchons les entiers « dont le reste de la division euclidienne par 7 est 4
et le reste de la division euclidienne par 11 est 2. (voir exemple 5.7).

Onaz =4 (mod7) etz =2 (mod 11). Comme 7 et 11 sont premiers entre eux, une solution
existe d’aprés le théoréme chinois.

Onaz=7a+4=11b+ 2. Donc 11b — 7a = 2. Donc modulo 7, on a 116 = 2. Donc b = 4,
par suite b = Tk + 4.

Donc z =11 x (7Tk +4) + 2 = 46 + 77k.

Théoréme 5.14 (Euler). Va € Z, premier avec n, alors a®™ =1 modulo n.

PREUVE. Soit a € U,. Pour tout x € U, on a ax An = 1. Notons f(z) le reste de la
division euclidienne de ax par n, alors f(x) € U,. Considérons I’application f : U, — U,,
tel que z — f(x). Montrons que f est injective. Soient x,y € U, tels que f(z) = f(y), alors
n|ar —ay = a(z — y). Comme n A a =1, d’aprés le théoréme de Gauss, on an | x —y. Or
0 < x,y < n, il en résulte que x —y = 0, donc x = y. Par conséquent f est injective. Comme
U, est fini, f est bijective.

Posons U,, = {x1,29,...,Zm}, ol m = ¢(n), alors on a f(x1)f(x2) ... f(xm) = 122 ... 2,
modulo n. Donc a™z122...2, = x122...%, modulo n. Posons y = xi2s...x,,, alors
n|y(l —a™). Comme n Ay =1, il en résulte que a™ = 1 modulo n.

Soit maintenant a € Z quelconque premier avec n, on note k le reste de la division euclidienne
de a par n. Alors a = gn+k, k € U,,. Alors puisque a = k modulo n, on a a?(™) = k(") =1,
modulo n. |

Théoréme 5.15 (Le petit théoréme de Fermat). Soit p un nombre premier. Alors
U,={1,2,....,p—1}, ¢(p)=p—1etona

Va € Z,p|a’ —a

Définition 5.16. Soit n € N* et a un entier premier avec n. Alors le plus petit entier non
nul & tel que a® = 1, modulo n est appelé Pordre multiplicatif ou période de a modulo
n. On le note ord,(a).

ord, = min{k € N* : n | a* — 1}
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Exemples 5.17.
1 - Modulo 9, 0on a22=4,23=8,2'=7,2°=5, 26 = 1. Donc ordy(2) = 6.
2 - Modulo 15, on a 42 = 1. Donc Donc ord;5(4) = 2.

Théoréme 5.18. Soit n € N* et a un entier premier avec n. Si k € N, est tel que a* = 1
modulo n, alors ord,(a) | k. En particulier, ord,(a) | ¢(n).

PREUVE. Notons d = ord,(a) et soit r le reste de la division euclidienne de k par d. On a
k=gqd+7ravec0<r <meta = (a?)%a" = 1 modulo n. Supposons que r # 0, on a
a® = 1, par suite a” = 1 modulo n. D’otl par minimalité de d, on a d < r. Une contradiction.
par conséquent r =0 et d | k. |}

Exemple 5.19. Déterminons suivant les valeurs de n, le reste de la division euclidienne de
un = 77" par 10.

Remarquons d’abord 7 A 10 = 1. Calculons I'ordre de 7 modulo 10. On a 72 = 49 = 9[10],
7% = 63 = 3[10], 7* = 21 = 1[10]. Donc l'ordre de 7 modulo 10 est égal & 4.

Posons 7" = 4k + r, alors u,, = 7**" = 77[10], ot r € {0, 1,2, 3}.

Comme 7 = 3[4], 7 est d’ordre 2 modulo 4. Par conséquent, on le résultat suivant

Si n est pair, 7" = 1[4], ™" = 4k + 1, u,, = 74+ = 7[10].

Si n est impair, 7" = 3[4], 7" = 4k + 3, u,, = 73 = 3[10].

En conclusion, le reste de la division euclidienne de 7(7") par 10 est égal a 7 si n est pair et
égal & 3 si n est impair.

Proposition 5.20. Soit n € N* et a un entier premier avec n dont l’ordre multiplicatif
modulo n égal a d, alors

Vk € N,a* est d’ordre d modulo n < kAd=1

k ) _ _d _ kd _ g k
PREUVE. Supposons que a” est d’ordre d. Posons m = 75. On a km = 75 = d. Il en

résulte que d | km, par suite (a¥)™ = 1. Comme a* est d’ordre d, on a d | m = ﬁ. Ce qui
implique k Ad = 1.

Supposons que k Ad = 1. On a (a*)? = 1. Soit m € N, tel que (¢*)™ = 1. On a d | km.
Comme k A d =1, d’aprés le théoréme de Gauss, d | m. [}

Théoréme 5.21. (Propriétés de la fonction indicatrice d’Euler)
1 - Soient m1,mo, ..., my sont des entiers premiers entre eux deuzx & deux, alors

P(mamy - - -my,) = d(ma)d(ma) - - ¢(mi)
2 - Soient p un nombre premier et k € N*. Alors
o(p*) =p* —pFt

en particulier, ¢(p) =p—1
8 - Soient n = [[;_, p** la factorisation de n en produit de nombres premiers. Alors

S

o(n) = [L 0 — ) =n J[ (1 - pik>

k=1 k=1

4 - de ¢(d) =n.
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PREUVE.

1 - Il suffit de montrer le résultat pour k£ = 2 et de procéder par récurrence. Posons m =
mymsy, pour tout n € N*, notons, comme d’habitude, U,,, I’ensemble des entiers naturels
< n premiers avec n. Soit « € U,,, notons r; le reste de la division euclidienne de x par m;.
Onar;=x—qgm; et m; Ar; =m; Agm; +1; =m; Ax. Comme mAxz =1, et m =mima,
onam; Az =1,doncr; € Up,.

Considérons alors application f : U, — Uy X Up,, @ — (r1(x),r2(z)). ot r(z) est le
reste de la division euclidienne de x par m;. D’aprés le théoréme des restes chinois, pour
tout (r1,72) € Uy, X Uy, il existe x € N unique tel que z < m et z = r;[m;]. Comme
xAm; =1, pouri=1,2,onaxAm=11ie. z € Uy. Il en résulte que et f est une bijection.
Donc ¢(m) = card(U,,) = card(U,,, )card(U,,,) = ¢(my)p(ms).

2-Soit E={1,2,...p"}, F={m e E:-mAp" =1},G={m e E:m|p*} On a
#(p*) = card(F) = card(E) — card(G) = p* — pF~1.

3 - Soit n =[];_, p* la factorisation de n en produit de nombres premiers. Alors :

¢(n) = IThey 00p") = Ihca (7 =00 1) = Ilhcy 2™ (L= o) = n i, (L= 50)-
4}—PosonsE:{5,2,27...,2,...2 =1}etPourtoutd |n, Fy={%:1<k<nethAd=
1}.

Montrons que les (Fy)q), forment une partition de E.

Montrons que Ud|n F;=F,.

Soit d | n et § € Fy. Posons m = 4, on a g~ = kTm € F car puisque k£ < d, km < n. d’ou
F;CFEet Ud\an C FE.

Réciproquement, soit % € E,posons m = kAn, k' = % et d = 2. Alors K’ ANd =1 et
B € Fy. Dot E C Uy, Fa-

Montrons que les (Fy)q), sont deux a deux disjoints. Supposons que Fy N Fg # &, Soient

5: Z—: € FgnFy. Alors kd' = k'd. On a d | kd’ comme kA d =1, alors d | d’. De méme on

ad |d Doud=d et Fy=F). |
Théoréme 5.22. Soit p un nombre premier. Alors pour tout d € N, Iéquation z¢ = 1,
modulo p posséde au plus d solutions dans U,,.

PREUVE. Les solutions de I’équation 2% = 1 modulo p sont les racines du polynéome X¢ — 1
dans le corps Z/pZ. Le nombre des racines d’un polynoéme sur un corps est toujours inférieur
ou égal au degré du polynome. |

Théoréme 5.23. Soit p un nombre premier. Alors il existe un entier dont l'ordre multipli-
catif est égal a p — 1

PREUVE. Posons n = p—1 = card(U,). Soit d | n, notons E; I’ensemble des éléments d’ordre
multiplicatif d dans U,. Nous allons montrer que card(Ey) < ¢(d).

Tout élément a d’ordre d est solution de I’équation a® = 1 modulo p. Notons R4 I’ensemble de
ces solutions. On a Ey C R4. D’apreés le Théoréme 5.22, on a card(Ey) < d. Soit maintenant
a € U, un élément d’ordre d. Notons H = {1,a,a?,...,a? '} modulo p. Comme (a*)¢ =1
modulo p, on a H C Ryq- D’ou d = card(H) < card(Ry4) < d. Donc H = Ry. Il en résulte
que E4 C H. Or, d’aprés la proposition 5.20, I'ordre multiplicatif de a™ est égal a d, si et
seulement d A m = 1. Il en résulte que card(Ey;) < ¢(d). Comme tout élément de U, est
d’ordre un diviseur d de n, on an = }_;,, card(Ey). Par conséquent n = 3~ card(Ey) <
2dpn #(d) = n, donc 3, card(Eq) = 3, #(d), ou encore 3, (¢(d) — card(Eq)) = 0. Par
suite, card(Eq) = ¢(d), Vd | n, en particulier card(E,,) = ¢(n). D’ou U,, contient un élément
a d’ordre n. [ |

26



Université Chouaib Doukkali — Faculté des Sciences Algebre 1
Département de Mathématiques Responsable : A. Haily

Définition 5.24. Tout élément d’ordre p — 1 modulo p est appelé élément primitif mo-
dulo p.

Exemple 5.25. Cherchons un élément primitif modulo 17. Cet élément doit avoir un ordre
multiplicatif égal a 17-1=16.

Essayons avec 2. On a 22 =4, 23 =8, 2* = 16 = —1. Donc 2® = —12 = 1. D’ot1 I'ordre
multiplicatif de 2 est < 8. Donc 2 n’est pas un élément primitif modulo 17.

Essayons avec 3. Ona32=9,33=10,3*=13,3=5,3=15,3"=11,3* =16 = —1.
Donc ordre(3) > 8, comme ordre(3) | 16, on a ordre (3) = 16. 3 est un élément primitif
modulo 17 .

Remarque 5.26. Si n n’est pas premier, le Théoréme précédent n’est plus valable. En effet,
par exemple si n = 8, Ug = {1,3,5,7} et ¢(8) =4. Modulo 8 on a, 3> =9=1,5%=25=1,
72 = 49 = 1. Par suite il n’y a pas d’élément d’ordre 4 modulo 8.

Théoréme 5.27. Soit p un nombre premier et o € U, un élément primitif modulo p,
Uapplication :
f:4{0,1,....p—2} — U,
k — o*modulop

est une bijection. L’application réciproque est appelée le logarithme discret de base «.
On note k = Dlog, (z).

Si x € Z, non divisible par p, Dlog,(x) = Dlog,,(r), o r est le reste de la division euclidienne
de x par p.

On a doncVreZ etk e{0,1,...,p—2}

k = Dlog,,(z) < of = x modulo p
de plus, Dlog, (xy) = Dlog,(x) + Dlog,(y) modulo p — 1.

PREUVE. Puisque card(U,) = p — 1, il suffit de montrer que f est injective. Soient m > n €
{0,1,...,p — 2} tels que a™ = ™. Alors a™ " = 1 modulo p. Comme « est d’ordre p — 1,
onap—1|m—netpusque0<n<m<p—2 onam-—n=0. |

Exemple 5.28. On reprend ’exemple 5.25. On a 3 est un élément primitif modulo 17 et
37 = 11 modulo 17. Donc Dlogz(11) = 7 modulo 17.

5.4 Applications de Parithmétique & la cryptographie

L’arithmétique a plusieurs applications dans le domaine de la sécurité de I'information.

1. Mots de passe. Pour certains nombres premiers trés grands, le calcul du logarithme
discret est tres difficile. La seule méthode pour calculer le logarithme discret d’un entier y,
est la méhode qui consiste & tester tous les nombres entiers naturels k& < p — 2. Ce calcul
peut prendre un temps énorme méme avec le plus rapide des ordinateurs.

Par opposition le calcul de la puissance f(k) = of modulo p, ot a est un élément primitif
modulo p, est facile, mais la fonction inverse est difficile & déterminer. On dit que f est une
fonction & sens unique.

Ce type de fonction est utilisé en cryptographie, particuliérement pour ouvrir des sessions
(compte, e-mail, etc..) avec des mots de passe et les échanges de clés.

Un utilisateur A’ décide de créer un compte. Il compose son login (identifiant : nom ou
email) et compose aussi un mot de passe x qu’il est le seul & connaitre. Le serveur calcule
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y = f(z), ot f est une fonction & sens unique et associe y au login. Si ’A’ compose le login
et son mot de passe z, le serveur calcule f(z). Comme f(x) =y, la session s’ouvre. Si une
autre personne tape un mot de passe ' # x, on a f(z’) # y, la session ne s’ouvre pas.
Méme si une personne arrive a connaitre y, il lui sera trés difficile de trouver z, car f est
une fonction & sens unique.

2. Echange de clés. (Protocole de Diffie-Hellman) Deux personnes A et B décident
de créer un nombre N qui servira comme clé secréte & des échanges de communications
secrétes. Chacune de ces personnes dispose d’une clé secréte, n pour A et m pour B.

A envoie o™ & B, B calcule (a™)™ = o™™.

B envoie o™ & A, A calcule (&™) = ™™,

Donc A et B disposent tous les deux d’un nombre commun N = o™ qui sera la clé secréte.
Connaissant NV, A ne peut connaitre la clé secréte de B, car il doit déterminer le logarithme
discret de N, le méme probléme se pose pour B.

En fait le calculs précédents se font de maniére automatique par les serveurs de courrier
éléctronique, ou de téléphonie etc...

3. Cryptosystéme RSA Une personne A choisit deux grands entiers naturels premiers
p et ¢ (plus de 100 chiffres chacun) et calcule leur produit n = p.q. Puis elle choisit un
entier e premier avec ¢(n) = (p — 1).(¢ — 1). Enfin, elle publie sur le web, sa clef publique :
(RSA,n,e). Puis calcule d tel que ed = 1 modulo (p — 1)(¢ — 1). Elle ne publie pas d c’est
sa clé secréte.

Une personne B veut envoyer un message a A. Il doit utiliser le systéme RSA avec les deux
entiers n et e (prenons par exemple n = 5141 = 53.97 et e = 7, premier avec 52-96=4992).
Il transforme en nombres son message en remplacant par exemple chaque lettre par son
rang dans 'alphabet A =1, B = 2, C = 3..... Par exemple le message 'SALUT’ devient
z = (0019,0001,0012,0021,0020) = (x1,x2,x3,%4,x5). La personne B crypte le message
de la fagon suivante en calculant les 27, modulo n : 197 = 928,17 = 1,127 = 4179,21" =
883,207 = 4102, le message devient :y = (0928,0001,4179,0883,4102) = (y1, Y2, Y3, Y4, Ys)-
1l envoie ce message a A.

La personne A decrypte le message regu en calculant les y¢ modulo n. En effet,

eyd = ged = ZFem+1 _ (ﬁf(n))k

yg:(xi Ty =

i i .z; modulo n

Or xf(") = 1, modulo n. Donc y¢ = x; modulo n. Elle retrouve alors le message envoyé.

Supposons qu’une personne malveillante C a pu intercepter le message crypté. Elle pourra
décrypter le message si elle connait le nombre d. Pour cela, elle doit connaitre (p —1)(¢ —1)
donc connaitre p et ¢ que seul A connait. Pour cela C doit pouvoir factoriser n. Mais si
p et g sont deux nombres premiers trés grands avec plusieurs centaines de chiffres, cette
factorisation est pratiquement impossible méme avec le plus rapide des ordinateurs actuels.
Donc C' ne pourra pas "pirater" le message.
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