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Consignes :

1. L'épreuve dure une demi-heure (30 mn).

2. Ce questionnaire comporte 15 QCM (Q46 3 Qé&o).

3. Avec un stylo a bille (bleu ou noir) cochez sur la feullle réponse 3 l'intérieur des cases
correspondantes aux réponses justes de la maniére suivante :

4. Chaque QCM peut comporter une ou plusieurs réponses justes,

5. L'utilisation de la calculatrice est formellement interdite.

6. L'utilisation du Blanco sur la feuille réponse est strictement déconseillée.
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